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Abstract

This paper analyzes the optimal sequence of technology upgrades by a …rm that
lives for a …nite period of time. Other characteristics of the environment are the exis-
tence of technology-speci…c learning-by-doing, technology growth, and sunk costs. A
…nite planning horizon implies that the technology adoption problem is non-stationary
and the frequency of adoptions changes over time. This paper provides results for
the computation of the optimal plan and explores numerically the life-cycle pattern
of technology switches.
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1 Introduction

The adoption of technologies is an engine of economic progress. Even in the more developed

economies, the resources devoted to technology adoption are substantial relative to those

to technology-creating activities or research [see Jovanovic (1995)]. Di¤erent patterns of

technology adoption are also invoked as part of the explanation for observed disparities in

economic performances. These include economic inequalities across countries, as well as

across workers [Doms et al. (1997), Bartel and Litchenberg (1987), Parente and Prescott

(1994)]. Broadly viewed, decisions in many spheres of life involve elements that resemble

the choice of adopting new technologies. Examples include a government considering to

push ahead with policy reforms, or the decision to change a job or career by a worker.

Therefore, the study of the factors that shape the patterns of the technology adoption

choices is important to understand a variety of interesting choice problems.

The aim of this paper is to contribute to the analysis of technology adoption decisions

in dynamic contexts. The speci…c objective of this paper is to solve and characterize the

pattern of technology switches when there is a …nite time-horizon for the agent. This

is a pervasive characteristic of environments where technology adoption-like decisions are

made. In many labor markets workers confront a strictly …nite work-life dictated by the

retirement age. Fixed-term labor contracts have a predetermined termination data. In

some countries, public utilities are managed by private …rms over a predetermined period

before they revert back to the government. Heads of government can be reelected only a

…nite number of times. Patents typically guarantee a protection for a …nite period. The

goal of the present paper is to explore the implications of this upper bound for the pattern

of technology switches.

The analysis of the …nite-horizon case may also prove useful to analyze models where

the time horizon is in…nite but the discount rate may change over time. The sequence

of technology adoptions can be regarded as a succession of …nite-horizon problems. This

feature is characteristic, for example, of dynamic general equilibrium models where the

interest rate changes over the transition. Time-changing discount rates are also a feature

of life-cycle models where agents of di¤erent ages face di¤erent survival probabilities.

The paper analyzes the technology switching problem of a single agent with a …nite hori-

zon in continuous time. There is a process of continuously improving technologies which
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provides the drive for switching technologies. There are costs to switching technologies

though. On one hand, there is direct sunk cost associated with the upfront investment

needed to implement the technology to be adopted. On the other hand, learning-by-doing

on the current technology has to be foregone on adopting a new one. In this model, the

process governing the emergence of new technologies and learning-by-doing are determin-

istic. The key ingredient of the model is the choice by …nitely-lived agents on technology

adoptions in the presence of exogenous embodied technological change and technology-

speci…c learning-by-doing. This paper analyzes the choice of multiple technology adoption

as a non-stationary dynamic programming problem where both the number of adoptions

as well as their timing are the choice variables. The solution allows to investigate the

properties of the pattern of technology adoptions under these circumstances.

The outcomes of this paper are as follows. The analysis provides an algorithm for the

solution of the problem which exploits the analytical features of the model. An optimal

plan may include technologies that are learned along with technologies that are replaced

before learning occurs. In those cases, it is shown that the adoptions where learning occurs

must necessarily take place …rst. The pattern of adoptions will in general be uneven. The

qualitative and quantitative implications depend on the scope for and speed of learning-

by-doing, the costs of adoption, the discount rate, and the rate of technological progress.

The paper illustrates through numerical analysis the e¤ects of these factors.

This paper relates to a body of literature that analyzes the replacement/adoption of

technologies in dynamic settings, and that includes Zeckhauser (1968), Stokey (1991),

Jovanovic and Nyarko (1996), Parente (1994, 2000), Cooley et al. (1997), Greenwood

and Yorukoglu (1996), Jovanovic and Rob (1998), Klenow (1998), Yorukoglu (1998), and

Mateos-Planas (forthcoming). These papers study in…nite-horizon problems and the opti-

mal choices are typically characterized by a constant pattern of technology adoption. In the

present paper, instead, the planning horizon is …nite which implies that the policy function

is non-stationary. A simplifying feature in the present paper is that learning-by-doing is

technology speci…c. Other papers, like Stokey (1991), Jovanovic and Nyarko (1996), and

Parente (1994, 2000), accommodate the transfer of knowledge across di¤erent technologies.

Greenwood and Yorukoglu (1996) and Cooley et al. (1997) study a discrete-time model

and the solution is approximated numerically. The present paper is in continuous-time and

the approach is more analytical.
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There is also a body of literature on optimal investment and technology in stochas-

tic models. It includes Kamien and Schwartz (1972), Jensen (1982), Balcer and Lippman

(1984), McDonald and Siegel (1986), and Dixit and Pyndyck (1994). This literature empha-

sizes the role of uncertainty and market structure. The present paper studies a deterministic

model for a competitive agent.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3

describes the decision problem and outlines the approach taken for its solution. Section 4

contains the results that characterize some properties of the optimal choice and allow its

explicit computation. Section 5 demonstrates the properties of optimal plans. Section 6

concludes the paper.

2 The model

The agent lives and produces output for a period of length T . The agent is assumed to

operate a single …rm over his productive life. When the agent dies the …rm is dissolved and

there is no market for discontinued …rms.

The …rm produces output using one machine. The ‡ow of output of a …rm at time

t depends on the quality of the machine in use, and on the agent’s technology-speci…c

expertise. The quality of the machine is given by the technology embodied in it and I

index technologies over the positive real line by a. Expertise in a technology is denoted by

q. Output of a …rm that operates a machine of quality a with technology-speci…c expertise

q is

y = q ¢ a; (1)

with and a; q 2 R+. At any instant of time, a …rm may either switch to a more advanced

technology or continue to use the present one. I call technology adoption the decision to

operate a new technology by replacing the current machine with another of di¤erent quality.

The level of expertise on a technology evolves with its use as the result of learning-

by-doing. Thus one can write q as a non-negative function q(m), where m denotes the

duration of use of the technology. This learning-by-doing is technology-speci…c. Thus if

the …rm decides to switch technologies, no part of the expertise in the previous technology

can be carried over to the new one. This is a simpli…cation with respect to Parente (1994)
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and Jovanovic and Nyarko (1996).

The upper bound on the technologies that can be used by the …rm at time t is denoted

by A(t). This frontier technology grows at a constant and exogenous rate ° over time.

Switching to a technology a involves a cost to the …rm of size ¼¢a units of output. This …xed

payment is meant to re‡ect the cost of the piece of capital that embodies the technology.

This cost is a sunk cost. There is a perfect capital market where agents can borrow and

lend at a constant interest rate r.

The agent maximizes the present life-time value of output- net of adoption costs- from

the …rm he operates. To this end, he decides which technology, among those available to

him, to use at every instant over his productive life, [0; T ]. The parameters that the agent

takes as given are the learning curve q(:), technological progress °, the interest rate r, and

the time horizon T . The shape of q(:) will be speci…ed later. A feasible adoption plan

de…nes the set of choices available to the agent.

De…nition-1 Given parameters T and the path for technology A(t) , a feasible adoption

plan is de…ned by:

i. An integer number, J, denoting the number of adoptions.

ii. A sequence of real numbers fxjg for j = 1; :::; J; J+1 representing the dates at which

each j-th adoption occurs, such that 0 � xj < T , xj+1 > xj for j = 1; :::; J, and

xJ+1 = T .

iii. A path for the …rm’s technology a(t) for t ¸ 0 such that a(t) � A(t), and a(t) is

constant for t 2 (xj; xj+1) all j = 1; :::; J.

The technology in Eq. (1) implies that a feasible adoption plan generates a path of

output y(t) such that, for j = 1; :::; J ,

y(t) = a(xj)q(t¡ xj); t 2 [xj; xj+1) (2)

3 The Technology Adoption Problem

The problem of the …rm consists of maximizing the present value of output net of adoption

costs by choice of an appropriate feasible adoption plan. Let V (x; x) denote the optimal
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value of the …rm between the initial date x and a terminal date x divided by the initial

level of technology. The maximization problem of the …rm is then,

V (0; T) = max
fJ;xjg

JX

j=1

e¡rxja(xj)W (xj+1 ¡ xj) (3)

where

W (m) ´
Z m

0
e¡rtq(t)dt¡ ¼; (4)

and J and xj’s belong to the set of feasible adoption plans. Here W (m) is the present

value as of time 0 of output produced with a technology a = 1 over an interval of length

m, minus the cost of adopting that technology. I will make the following assumption.

Assumption 1: W (T ) > 0.

Assumption 2: r ¡ ° > 0.

The …rst assumption simply means that activity has a non-negative value. The second

assumption means that discounting must be su¢ciently high. Under these assumptions it is

straightforward to argue that an optimal adoption plan exists where the …rst adoption takes

place at time 0, x1 = 0, and the adopted technology is always the frontier so a(xj) = A(xj)

all j. This results follows from the assumption that neither the relative adoption costs,

¼, nor the speed of learning, q(:), depend on the productivity of the technology to be

adopted. Therefore, if an adoption occurs at time t, the technology adopted will be the

frontier technology a(t). Thus the agent’s choice consists of deciding at every date t 2 [0; T ]
whether to keep on operating the current technology or switch to the frontier technology.

Which technology is currently used in‡uences the time at which the next technology is

introduced but has no in‡uence on the choice of which technology to adopt at that date.1

Then the solution shows that optimal technology adoption results in a sequence of dates at

which the …rm switches to the frontier technology and stays there until the next upgrade.

Assuming that a(0) = 1, this result allows us to rewrite the agent’s problem as

V (x1; T) = maxfJ;xjg

JX

j=1

e¡(r¡°)xjW (xj+1 ¡ xj): (5)

1Jovanovic and Rob (1998) also assume adoption of the frontier technology. Parente (1994), Jovanovic
and Nyarko (1996), and Hendricks (1997) analyse adoption problems where the distance between the
current and the new technology a¤ect the costs of adoption.
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A solution must specify the timing, xj, and number, J , of adoptions. By increasing the

frequency of adoptions, the …rm is closer to the technology frontier more often. However, it

has to pay adoption costs more often and reduces the bene…ts from learning. The optimal

choice resolves this trade o¤. The choice of the number J is a novel feature of this analysis.

As a benchmark for the results to come, when the horizon is in…nite and J ! 1 then a

solution must consist of a sequence of equally spaced adoptions. The departure from this

case will in general lead to a time-varying time span between consecutive adoptions.

It is useful to start by solving for the timing, taking an arbitrary J as given. The

structure of this problem is recursive: the optimal decision rule mapping xj into xj+1 for

any j = 1; 2; :::; J¡1 depends on optimal decision rules for future adoptions. Every adoption

is chosen taking into account that subsequent adoptions will be decided optimally given

the remaining time span. To be general, let V (x; xjk) denote the optimal value of a …rm

that lives between dates x and x, conditional on the plan containing exactly k adoptions.

Thus, if k is optimal, then V (x; x) = V (x; xjk), where V (:; :) is as de…ned in Eq.(5) upon

letting x1 = x and T = x. Then one can write the problem recursively as follows:

V (x; xjk) = max
x02[x;x]

n
W (x0 ¡ x) + e¡(r¡°)(x0¡x)V (x0; xjk ¡ 1)

o
: (6)

The state for this choice is given by the current date, x, and the number, k, of adoptions

contained in the plan that starts at this date. One can write the optimal choice as a

policy function m(:j:) that gives the optimal duration of use of the current adoption so

x0 = x+m(xjk).
With these pieces of notation, the problem of the agent in equation (5) can be broken

down into a sequence of problems as follows.

V (xj; T jJ ¡ (j ¡ 1)) = max
x02[xj ;T ]

n
W (x0 ¡ xj) + e¡(r¡°)(x

0¡xj )V (x0; T jJ ¡ j)
o
; (7)

for j = 1; :::; J ¡ 1. With the convention that a plan involving zero adoptions carries zero

value V (:; T j0) = 0, it follows that V (xJ ; T jJ ¡ (J ¡ 1)) = W (xJ+1¡ xJ). Then the policy

functions give the optimal sequence of tenures mj =m(xjjJ ¡ (j¡ 1)) and xj+1 = xj +mj

for j = 1; :::; J ¡ 1, and mJ = xJ+1¡ xJ .
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Clearly this is a non-stationary dynamic programing problem for two reasons. First,

the discount rate is changing over time (besides being a¤ected by the choices). Second,

the value functions depend on the order of the current technology j. For the given J ,

this problem could be solved backwards numerically by constructing grids for the current

state. But this proves to be a highly ine¢cient procedure and provides no insight about

the nature of the optimal plan. This paper will exploit the analytical properties of the

problem to derive results that allow the computation of the exact optimal choices. Solving

the problem involves to solve for V (x; T ; J ¡ (j ¡ 1)) for di¤erent x and j = 1; :::; J . This

recursion starts from the last-stage optimal choice, V (x; T j1), and leads to the solution for

the entire sequence V (x; T jJ).
Of course, for the given time span T , the arbitrary number of adoptions J may be

inconsistent with an optimal choice. The second part of the problem is then to …nd the

optimal J as the solution to

J = arg max
k

fV (x1; T jk) : k = 1; 2:::g ; (8)

The solution of the original problem in Eq. (5) is then V (x1; T ) = V (x1; T jJ).
The approach of this paper to solving the problems de…ned in equations (7) and (8) is

as follows. For given J , if a solution exists to Eq. (7) it must feature

V (xj; T jJ ¡ (j ¡ 1)) = W (xj+1¡ xj) + e¡(r¡°)(xj+1¡xj)V (xj+1; T jJ ¡ j) (9)

for j = 1; :::; J . I will deal with situations where the value functions are di¤erentiable and

the solution can be characterized as a sequence that solves a …rst-order condition. Provided

that the envelope theorem holds, the above Eq. (9) implies that the optimal interior choice

of xj+1 in problem (7) must satisfy

W 0(xj+1 ¡ xj)¡ e¡(r¡°)(xj+1¡xj) [(r ¡ °)W (xj+2 ¡ xj+1) +W 0(xj+2 ¡ xj+1)] = 0 (10)

for j = 1; :::; J ¡ 1. This expression has a clear interpretation in terms of the costs and

bene…t of delaying the date of the next adoption. This is a 2nd order di¤erence equation

in xj with initial and terminal conditions x1 = 0 and xJ+1 = T , respectively. Similarly,

it can be regarded as a 1st order di¤erence equation in mj = xj+1 ¡ xj with
PJ mj = T .
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Whether this condition is su¢cient to characterize a solution, or gives the only solution

will depend on the assumptions underlying process of technology-speci…c skill q(:).

I will assume q(:) is a non-decreasing function of time and has an upper bound. The

…rst assumption rules out depreciation of skill with time of use. The second assumption

implies bounded learning which is consistent with the empirical literature like Jovanovic

and Nyarko (1995), Bahk and Gort (1993), Argote and Epple (1990), and Rapping (1965).

One possible speci…cation for the learning technology is the following continuous curve

q(t) = ± + (1 ¡ ±) exp(¹t). Here ± represents the progress ratio, or the maximum factor

increase in productivity that learning can produce. On its part, ¹ is a measure of the speed

of learning. This learning curve has been used in Parente (1994). One problem with this

speci…cation is that, in general, the …rst-order condition is not su¢cient for a maximum.

In other words, more that one root xj+1 to Eq.(10) may exists, possibly implying a local

minimum. This prevents the development of the approach in this paper that is based on

solving the …rst-order condition. Henceforth another simpler process of learning will be

considered. In particular, the following discrete-learning curve is assumed.

q(t) =

8
><
>:

1 if t < ¹

± otherwise
(11)

with ± > 1. If the …rm’s experience in the use of its current technology is shorter than

a period of length ¹, its level of expertise in this technology is 1. Thereafter, its level of

expertise in this technology increases to ±, which represents the progress ratio.

Even under this speci…cation, the properties of the …rst-order condition in Eq. (10) do

not rule out multiple local extrema. However, a method can be developed that allows us to

deal with this circumstance. The …rst step is based on solving, separately, for plans where

no technology is ever learned and plans where learning occurs in all technologies. These

"restricted" plans are shown to have a solution that can be characterized by applying Eq.

(10) for a given number of adoptions. This will be the result in Proposition 1.

Of course, within each class of plans, a given J may not be consistent with optimality

in the sense that it is not possible to …nd a feasible sequence that satis…es the recursion in

Eq. (10). Similarly, for a given initial date there may be di¤erent possible paths governed

by the …rst-order condition in Eq. (10) that are be consistent with feasibility. Numerically
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…nding the number of adoptions may be costly. The result in Proposition 2 below allows

us to determine exactly the optimal number of adoptions. To determine the optimal J , it

is possible to partition the time interval into segments. Then initial dates on the real line

can be mapped into the "restricted" optimal number of adoptions using this partition.

The two previous results characterize the restricted plans. The solution to the original

plan in Eq. (5) may consist of one of the restricted plans or a combination of restricted

adoption plans. In the latter case, and under a fairly mild assumption, the result in

proposition 3 will show that adoptions where learning takes place must occur …rst. Results

are provided that allow to identify conditions where only one class of restricted plan applies

throughout or, otherwise, to narrow down the region of search.

4 Optimal Adoption of Technologies

With the speci…cation of learning-by-doing in Eq. (11) above, one di¢culty is that, in

general, one has to account for the possibility that learning may not occur on some tech-

nologies that are adopted. Due to the discontinuity in the derivative of W(:; :), there may

be multiple local extrema at each stage of recursion in Eq. (7). Therefore, to characterize

a solution it proves useful to consider two classes of restricted adoptions plans separately:

plans that feature tenures shorter than ¹ only, which I call S-plans, and plans that feature

tenures longer than ¹ only, L-plans. The restricted return functions, value functions and

adoptions plans will be indexed by v = L; S accordingly as W v(:; :), V v(:; :), mvj and xvj . In

particular, given the de…nition in (4), the present value within a technology over an interval

m can be written

W v(m) =

8
><
>:

1
r
[1 ¡ e¡rm]¡ ¼ if v = S

1
r
[1 + (± ¡ 1)e¡r¹ ¡ ±e¡rm]¡ ¼ if v = L

(12)

Section 4.1 characterizes these restricted plans. Section 4.2 then derives the (unrestricted)

optimal adoption plan which may correspond to the optimal L-plan, the optimal S-plan,

or a combination of L-plans and S-plans over di¤erent subperiods of time.
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4.1 Characterization of restricted optimal plans

The optimal v-plan must satisfy a simple set of …rst order conditions. Notation is greatly

simpli…ed by de…ning,

¡v(m;m0) ´ I1 ¡ e°m
�r ¡ °
r
(I2 ¡ r¼

h
) + I3

°

r
e¡rm

0
¸
;

with

(I1;I2; I3) =

8
><
>:

(1; 1; 1) if v = S

(±; 1 + (± ¡ 1)e¡r¹; ±) if v = L
(13)

The following proposition is proved in appendix A.

Proposition 1. Suppose that xvj is the jth adoption in an optimal v-plan that

ends at x. Then the continuation optimal v-plan over [xvj ; x], fxvj ; xvj+1; :::; xvJg,
is unique and must satisfy the sequence of …rst order conditions

¡v(mv
i ;m

v
i+1) = 0; for j = J ¡ 1; :::; j; (14)

and
JX

i=j

mv
i = x¡ xvj; (15)

with xvj+1 = x
v
i +m

v
i = for i = j; :::; J ¡ 1 and mv

J = x ¡ xvJ.

The interpretation of this result is that under a particular class of adoptions, v 2 fL; Sg,

the solution can be found by simply applying the mapping ¡v(:; :) = 0 recursively as in Eq.

(14). The restricted solution to the problem in (7) is given when j = 1 and xv1 = 0. Here

e¡rm¡v(m;m0) is shorthand notation for the …rst-order condition in Eq. (10). Uniqueness

and existence are due to the fact that the objective is well behaved and guarantees that

¡v(:; :) is monotonic in the choice variables at each stage of the recursion in Eq. (14), and

that the value functions are di¤erentiable. The proof uses induction on the fact that these

properties hold for j = J¡1. Observe that the restricted S-plan is, in fact, the unrestricted

optimal plan when there is no scope for learning [i.e. ¹ > T or ± = 1.].

Proposition 1 provides an algorithm for solving the optimal v-plan restricted to the

number of adoptions being J ¡ (j ¡ 1). Appendix B describes the practical procedure to

perform this computation.

11



Figure 1. The Dynamics of Adoptions

m

m’

45

Γ(m,m’)=0

Figure 1: The curve represents the optimal relation between the tenures in two consecutive
adoptions.

The properties of the mapping de…ned by ¡v(:; :) = 0 in Eq. (14) can be analyzed. It

is possible to show that the mapping m0 !m is increasing and, as long as ¼ > 0, has one

…xed point which is unstable. Figure 1 shows the typical shape for this mapping. It is clear

that the time pattern for tenures depends on the value of the tenure on the …rst technology

relative to this …xed point. But the value of the initial tenure has to be consistent with the

constraint in Eq. (15) being satis…ed after exactly J steps. In addition, the value of J that

is optimal is still to be determined. This is something a priory theorizing cannot resolve.

A reference benchmark is the case where the time horizon for the problem is a multiple

of the tenure length that characterizes the …xed point of this mapping. The proof of

proposition 1 shows that the solution to Eq. (14) is unique [i.e. m(:jk) is a decreasing

function] so, in this case, the …xed point is a solution to the restricted problem if the time

horizon contains this span of time exactly J times. From this benchmark, a reduction in

J or an increase in T will then tend to increase the initial tenure length and produce an

uneven pattern of increasing tenures over time, with lower frequency of adoptions as time

goes by. So the pattern of tenures will depend on the features of the optimal choice of
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J relative to the one that leads close to the constant pro…le for tenures. The following

proposition characterizes the optimal number of adoptions.

Proposition 2. Suppose there exists an optimal v-plan over the interval [x; x],

then:

(i) There exists a unique sequence fzvjgJj=¡1 de…ned by

V v(zvj ; xjJ ¡ j +1) = V v(zvj ; xjJ ¡ (j +1) + 1); (16)

for j = J ¡ 1; J ¡ 2; ::: and with zvJ such that W v(zvJ ; x) = 0.

(ii) x = xvJ¡k if and only if x 2 (zvJ¡(k+1) ; zvJ¡k] and so J = k + 1 and

V v(x;x) = V v(x; xjJ):

Part (i) determines a sequence of dates where the constrained optimal value of making

k +1 adoptions is the same as that of k adoptions [in this case k = J ¡ j]]. The idea is as

follows. There is an early date such that the lifespan is long enough that making a large

number of adoptions such as k + 1 implies a higher present value than making a smaller

number of adoptions such as k. However the value of making k+1 adoptions relative to the

one from k adoptions declines as time draws on and the time horizon becomes shorter. One

can show that there is a point in time when the two values are the same, and making one

less adoption produces a higher value afterwards. Therefore, such a point zvJ¡k constitutes

an upper bound for the dates where making k+1 adoptions can possibly be optimal. This

is illustrated in …gure 2 below. Part (ii) of the proposition shows that these points zvj are

indeed the ones that de…ne the partition on the real line that can be mapped into the

optimal number of adoptions.

The procedure to solve for the optimal v-plan is thus as follows: (1) compute the

sequence of zvj ’s as in Proposition 2-i, (2) locate the starting date and determine the number

of adoptions, J , as in Proposition 2ii, and, …nally, (3) use Proposition 1 to calculate the

timing of adoptions. Note that computing the zvj ’s in the …rst step one must already use

proposition 1 and a convergent algorithm to …nd the point where the equality of value

functions in Eq. (16) holds. I …nd that a Newton-Rapson procedure works well.
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Figure 2. The Number of Adoptions

V(.|J-j+1)

V(.|J-(j+1)+1)

zj
vZj-1

v

Figure 2: The determination of the number of adoptions.

4.2 Characterization of the optimal plan

This section shows that the previous analysis is useful to compute the solution of the

(unrestricted) optimal plan. It is intuitive that the optimal (unconditional) plan over [0; T ]

contains some L-subinterval if ± is su¢ciently large, or ¹ or ° are su¢ciently small, or ¼

is su¢ciently large. When circumstances are the opposite, one would expect the optimal

plan to contain S-subintervals. There are situations where the entire optimal plan consists

of a v-plan for either v. In general, however, the optimal plan may contain L-plans and

S-plans over di¤erent periods.

Under some circumstances, the optimal plan can be shown to belong to a particular

restricted class. A trivial case is that were the learning period exceeds the given lifespan

or learning just cannot produce a positive value. Then only a S-plan can be optimal [this

are Propositions A1 and A2i in Appendix A]. As long as an adoption with learning can

produce a positive value [i.e. zLJ larger than initial date] then the optimal plan will contain

L-adoptions over some interval. If, in addition, a net positive value on a technology requires

learning then the optimal plan consists of the restricted L-plan [proposition A2iia].

The case when an adoption without learning can produce a positive value is consistent
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with the optimal plan containing both L and S plans over di¤erent intervals. In these

situations, the solution procedure relies on an educated conjecture.

Assumption 3. The restricted value functions V L(x; x+m) and V S(x; x+m)

do not intersect more than twice as functions of m.

This conjecture implies that, actually, the two value functions intersect only once for a

second intersection must necessarily imply a third one. The reason is that there is always a

span of time long enough that learning the adopted technologies dominates [this is Lemma

A4 in Appendix A]. Assumption 3 has to be made explicit because the non-linearities in

the restricted value functions preclude to state it as a property. In all the calculations

performed in this research this property holds. Under assumption 3, one can argue that,

if the optimal plan contains both adoptions of duration longer than ¹ and adoptions of

duration shorter than ¹, then the former type of adoptions must occur …rst. Proposition 3

states this result more precisely and summarizes the discussion thus far.

Proposition 3. Assume assumption 3 above holds, then the optimal plan solves

the following program,

V (0; T ) = max
x?2[0;T ]

n
V L(0; x?) + e¡(r¡°)x

?
V S(x?; T )

o
: (17)

As a practical concern, searching for the solution without further constraints on the

choice set for x? is highly ine¢cient. Propositions A2 to A4 in the appendix identify

conditions for which the optimal plan is either the optimal S-plan [i.e. x? = 0] or the

optimal L-plan [i.e. x? = T ], and, otherwise, provide results that narrow down the region

where x? may lie.

Whereas computation is feasible and e¢cient, proposition 3 cannot be used to study an-

alytically the pattern of the optimal choice of J and the frequency of technology adoptions.

Therefore, these implications will be analyzed numerically.

5 Numerical results

The sequence of steps in propositions A2-A4 in the appendix provide an algorithm to

calculate the optimal plans. The algorithm is complete if assumption 3 is veri…ed. In this
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section, this procedure is used to illustrate the pattern of technology adoption and assess

the role of the …nite horizon. We are interested in studying the pattern of tenures over time.

There are two reasons why tenures may not be constant. The …rst, already pointed in the

discussion of section 4.1, is that within a restricted plan departures may be expected from

the …xed point in …gure 1. The second source is the possibility that the solution contains

both long adoptions with learning and short adoptions without learning. That is, x¤ in

the problem of Eq. (15) above may be an interior solution. In this case, more frequent

adoptions should be observed towards the end of the period.

The parametric benchmark is r = 0:065, ° = 0:02, ± = 2:0, ¹ = 0:7, ¼ = 1:12, and

T = 60. The …gures for r and ° are consistent with observations for the annual real rate

of return on equity and aggregate economic growth over long periods. A progress ratio ±

is a choice made in other studies on learning-by-doing like Klenow (1998). The speed of

learning ¹ is as calibrated in Mateos-Planas (forthcoming). The time horizon corresponds

to 60 years. For this setting, the optimal adoption plan features 6 adoptions and frequency

increases over time as mj declines with j = 1; :::; 6. This plan is the optimal L-plan. I will

analyze the e¤ect of the parameters on the adoption plan by considering departures from

this benchmark setting.

Consider …rst the parameters characterizing learning-by-doing ¹ and ±. A reduction in

the speed of learning-by-doing is represented by a higher value for ¹. Graphically, such a

change brings about a downward shift of the curve in …gure 1. Assume …rst that the optimal

J remains una¤ected. It should be expected that the …xed point will move to the right

relative to the value of the initial tenure, thereby tending to increase the frequency of late

adoptions relative to that of early ones. The examples computed are consistent with this.

In …gure 3 below, for ¹ = 0:35 the path for tenures is increasing rather than decreasing,

so that, relative to the benchmark, adoptions become more frequent for earlier periods as

¹ is reduced. However, a rise in ¹ will also tend to reduce the number of adoptions J . In

this case, a higher ¹ can make late adoptions relatively less frequent. For example, …gure 3

also shows an increasing path for tenures associated with ¹ = 0:85 and one less adoption.

A rise in the progress ratio ± also shifts downwards the curve in …gure 1. Thus, for given

J , the slope of the time pro…le for tenures decreases and, consequently, early adoptions

become less frequent and later adoptions become more frequent. If an increase in ± also

increases the number of adoptions the contrary e¤ect can be observed. Figure 4 illustrates
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F i g u r e  3 :  T h e  S p e e d  o f  L e a r n i n g
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Figure 3: The e¤ect of changes in ¹ on the pattern of adoptions.

the e¤ect of ± on the pattern of optimal adoptions.

For given J , a shorter time horizon T reduces the length of the periods between adop-

tions and, according to …gure 1, tends to reduce the frequency of early adoptions and

increase the frequency of late adoptions. When lower T leads to a reduction in the number

of adoptions, the e¤ect may be overturned. Figure 5 illustrates this point.

For given J , a higher interest rate r reduces the frequency of early adoptions and

increase the frequency of late adoptions. When higher r leads to a reduction in the number

of adoptions, the e¤ect may be overturned. Figure 6 illustrates this point.

For given J , a higher rate of technical progress ° has opposite e¤ects on the timing

of adoptions: frequency increases in the early adoptions. A su¢cient rise in ° makes it

optimal to adopt a larger number of technologies. Illustrative paths are shown in …gure 7

below.

For given J , the sunk cost of technology adoption, ¼, reduces the frequency of early

adoptions and increases that of late adoptions. A su¢ciently large increase in ¼ leads to a

smaller number of adoptions. Some illustrative …gures are displayed in …gure 8.

In the examples reported, the optimal plan is always a L-plan. However, for other

parametric settings the optimal plan combines adoptions with and without learning-by-

doing [for example, if ¹ = 15:0]. No example has been found that violates assumption 3

which is reassuring about the general applicability of the solution algorithm developed in
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F i g u r e  4 .  T h e  P r o g r e s s  R a t i o
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Figure 4: The e¤ect of changes in ± on the pattern of adoptions.

F i g u r e  5 .  T h e  T i m e  H o r i z o n
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Figure 5: The e¤ect of changes in T on the pattern of adoptions.
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F i g u r e  6 .  T h e  I n t e r e s t  R a t e
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Figure 6: The e¤ect of changes in r on the pattern of adoptions.

F i g u r e  7 .  T h e  R a t e  o f  T e c h n o l o g y  G r o w t h
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Figure 7: The e¤ect of changes in ° on the pattern of adoptions.
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F i g u r e  8 .  T h e  A d o p t i o n  C o s t
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Figure 8: The e¤ect of changes in ¼ on the pattern of adoptions.

this paper. In all cases, like in Klenow (1998), technology upgrading is followed by a drop

of productivity.

6 Conclusion and Final Remarks.

This paper analyzes the optimal sequence of technology upgrades by a …rm that lives

for a …nite period of time. Other characteristics of the environment are the existence

of technology speci…c learning-by-doing, technology growth, and sunk costs of technology

adoption. The …nite planning horizon implies that the problem is non-stationary and the

frequency of adoptions changes over time. This paper provides results for the computation

of the optimal plan.

The paper also analyzes some properties of the solution. The length of the time period

between adoptions is monotonic. The response of the pattern of technology switches to

changes in the model’s parameters has been explored numerically. The e¤ects of local

changes that do not alter the number of switches is clear. Early adoptions become more

frequent (and thereby late adoptions become less frequent) the faster the learning-by-doing

process, the smaller the adoption cost, the smaller the interest rate, the higher the progress

ratio, the longer the time horizon, and the higher the rate of technology growth. However,

since the number of switches itself is a choice variable, the model’s predictions are in general
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ambiguous. The assessment of the signi…cance of the …nite-horizon approach — relative

to approaches based on, for example, on-the-job search as in Topel and Ward (1992)—

to interpret actual patterns of technology adoption then must await future work. In a

quantitative setting, this work should derive implications that can be compared with the

patterns observed in the data.
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A Proofs of Propositions
The proof of proposition 1 uses the two following lemmas.

Lemma A1. Consider the adoption plans solving V v(xvJ¡1; xj2) for some v = L; S.

(i) If xvJ¡1 is the J¡1th adoption, then xvJ exists, is unique and satis…es ¡v(mv
J¡1;m

v
J) =

0.

(ii) mv
J¡1(:) is a decreasing continuous function.

(iii) The value function V v(x; xj2) is continuously di¤erentiable in x with,

dV v(xvJ¡1; xj2)
dxvJ¡1

= W v
1 (x

v
J¡1; x

v
J) + (r ¡ °)e°(xvJ¡xvJ¡1)V v(xvJ ; xj1):

Proof:

(i) xvJ is the solution to the problem in Eq. (7) with j = J ¡ 1 and T = x. Clearly,
V v(x; xj1) = W v(x; x) so the objective is continuous (and di¤erentiable) and the
choice set [xvJ¡1; x] is compact. Therefore a solution exists. A solution must be inte-
rior, otherwise xvJ¡1 cannot be the J¡1th adoption. The derivative of the objective is
e¡r(x¡x

v
J¡1)¡v(x¡xvJ¡1; x¡x) . Sincemv

J = x¡x is decreasing in x, ¡v(x¡xvJ¡1; x¡x)
is monotonically decreasing in x = xvJ¡1+mvJ¡1. An interior solution is given by the
unique root of ¡v(x ¡ xvJ¡1; x¡ x) = 0. Clearly it must be a maximum.

(ii) Assume not. As xvJ¡1 increases, both mvJ¡1 and, by the properties of ¡(:; :), mvJ must
increase. But this violates the constraint. Continuity follows from the continuity of
¡v(:; :).

(iii) Immediate using that the …rst order condition holds with equality. Q.E.D.

Lemma A2. Consider the adoption plans solving V v(xvj+1; xjJ ¡ (j + 1) + 1) for some
v = L; S and some integer j � J ¡ 1. Assume that,

(i) Given xvj+1, the optimal xvj+2 is unique and satis…es the …rst order condition, ¡v(mv
j+1;m

v
j+2) =

0.

(ii) mv
j+1(:) is a decreasing continuous function.

(iii) The value function V v(x; xjJ ¡ (j + 1) + 1) is continuously di¤erentiable and at the
optimum,

dV v(xvj+1; xjJ ¡ (j + 1) + 1)
dxvj+1

= W v
1 (x

v
j+1; x

v
j+2) +

(r ¡ °)e¡(r¡°)(xvj+2¡xvj+1)V v(xvj+2; xjJ ¡ (j+ 2) + 1):

Then the solution of V v(xvj; xjJ ¡ j + 1) must satisfy the analogous of (i), (ii) and (iii).

Proof:
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(i) xvj+1 is the solution to the problem in Eq. (7). By assumption (iii), the objective is
continuously di¤erentiable and the choice set [xvj; x] is compact, so a solution exists.
A solution must be interior, otherwise xvj cannot be the jth adoption.

By assumption (iii), the derivative of the objective is

W2(x
v
j ; x

v
j+1) + e

¡(r¡°)(xvj+1¡xvj )
h
W1(x

v
j ; x

v
j+1) +W (x

v
j ;x

v
j+1)

i
;

which can also be written as e¡r(x¡x
v
j )¡v(x ¡ xvj ;m

v
j+1(x)). By assumption (ii),

mv
j+1 is decreasing and continuous in x, so ¡v(x ¡ xvj ;m

v
j+1(x)) is continuous and

monotonically decreasing in x. An interior solution is given by the unique root of
¡v(x ¡ xvj;mv

j+1(x)) = 0 which is a maximum.

ii) By assumption (ii), mv
j+1 is decreasing. Inspection of ¡v(:; :) concludes the proof.

iii) Immediate using that the …rst order condition holds with equality.Q.E.D.

Proof of Proposition 1. Lemma A2 says that if properties (i), (ii) and (iii) hold for
V vJ¡k(:; :jk + 1) for some k, then they also hold for V v(:; :jk + 2). Lemma A1 states that
these properties hold for V v(:; :jk +1) for k = 1. Induction on k then completes the proof
by showing that the …rst order condition in (i) is satis…ed for all k.Q.E.D.

For the proof of proposition 2 some de…nitions are required. Consider plans over [x; x].
For L-plans [i.e. v = L], the latest possible date for the last adoption, xLUJ , is given by
WL(xLUJ ; x) = 0. For S-plans [i.e. v = S ], xSUJ is given by W S(xSUJ ; x) = 0.

Let the sequences fmvU
j g and fxvUj g for j = J; J ¡ 1; J ¡ 2; ::: de…ne upper bounds for

earlier adoptions j � J . These values are found by iterations on ¡v(:; :): mvU
J = x ¡ xUJ ,

¡(mvUJ¡1;m
vU
J ) = 0, m

vU
J¡1 = x

U
J ¡ xUJ¡1, ¡(mvU

J¡2;m
vU
J¡1) = 0, m

vU
J¡2 = x

U
J¡1 ¡ xUJ¡2,...

Lemma A3. The expression expf¡(r¡ °)xg[V v(x; xjJ¡ (j¡ 1)¡ 1)¡V v(x; xjJ ¡ j+1)]
is a continuous decreasing function of x.

Proof. The proof is divided in two steps. Step 1: Prove that mvj (x) < mvj+1(x). For
j = J ¡ 1 it is obvious. More generally, assume that mv

j(x) < m
v
j+1(x). By Proposition 1,

in an optimal v-plan the following must hold:

¡(mv
j¡1(x);m

v
j(x +m

v
j¡1(x))) = 0

¡(mv
j(x);m

v
j+1(x +m

v
j(x))) = 0

Suppose, by way of contradiction, that mv
j¡1(x) ¸ mv

j(x). Then it must follow that mv
j(x+

mv
j¡1(x)) > mvj+1(x +m

v
j(x)). Induction on Lemmas A1 and A2 shows that tenures are

non-increasing. This and the assumption made imply x+mv
j¡1(x) < x +m

v
j (x). But his

contradicts the assumption made. Therefore, mv
j¡1(x) < m

v
j(x). Induction on the fact that

mv
J¡1(x) < m

v
J(x) concludes step 1.

Step 2: The value functions involved in the derivative are continuously di¤erentiable
by Lemmas A1 and A.2. Using the expressions obtained there, calculate the derivative of
expf¡(r ¡ °)xg[V v(x; xjJ ¡ (j ¡ 1) + 1) ¡ V v(x; xjJ ¡ j +1)] as,

e¡(r¡°)x
µ
1¡ r ¡ °

r

¶
hq

h
e¡rm

v
j (x) ¡ e¡rmv

j¡1(x)
i
< 0;
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with q = 1 if v = S, and q = ± if v = L. The inequality follows from the result in step 1.
Q.E.D.

Proof of proposition 2:

(i) For any v = L; S, existence of plans implies existence of xvUJ . The proof contains
three steps. Step 1: By de…nition of xvUJ¡1, we have that V v(xvUJ¡1xjJ ¡ (J ¡ 1) + 1) <
V v(xvUJ¡1; xjJ ¡J + 1). From Lemma A3, expf¡(r ¡ °)xg[V v(x; xjJ ¡ (J ¡ 1) + 1)¡
V v(x; xjJ ¡ J + 1)] is monotonically decreasing in x. Therefore, zvJ¡1 < xvUJ¡1 exists.
Step 2: prove that V v(xvUj ; xjJ ¡ j +1) < V vj+1(xvUj ; xjJ ¡ (j +1)+ 1) all j . Assume
that V v(xvUj+1; xjJ ¡ (j + 1) + 1) < V v(xvUj+1; xjJ ¡ (j +2) + 1), then

V v(xvUj ; xjJ ¡ j + 1) = W v(xvUj ; x
vU
j+1) + e

¡(r¡°)mvU
J V v(xvUj+1; xjJ ¡ (j +1) + 1)

< W v(xvUj ; x
vU
j+1) + e

¡(r¡°)mvU
J V v(xvUj+1; xjJ ¡ (j +2) + 1)

� max
x

n
W v(xvUj ; x) + e

¡(r¡°)(x¡xvUj )V v(x; xjJ ¡ (j + 2) + 1)
o

= V v(xvUj jJ ¡ (j + 1)+ 1)
Induction on the fact proved in step 1 that the property holds for j = J¡1 concludes
step 2. Step 3: Because expf¡(r¡ °)xg[V v(x; xjJ ¡ (j¡ 1) + 1)¡V v(x; xjJ ¡ j+1)]
is monotonically decreasing in x, the sequence fzvjg exists.

(ii) Step 1: Check that zvj < z
v
j+1. More speci…cally, zvj ¡zvj¡1 ¸ mv

j¡1(z
v
j¡1) > 0. Suppose

not: zvj¡1 +m
v
j¡1(z

v
j¡1) > z

v
j . Then,

V v(zvj¡1; xjJ ¡ (j ¡ 1) + 1)
= W v(zvj¡1; z

v
j¡1 +m

v
j¡1(z

v
j¡1))

+e¡(r¡°)m
v
j¡1(z

v
j¡1)V v(zvj¡1 +m

v
j¡1(z

v
j¡1); xjJ ¡ j +1)

< W v(zvj¡1; z
v
j¡1 +m

v
j¡1(z

v
j¡1))

+e¡(r¡°)m
v
j¡1(z

v
j¡1)V vj+1(z

v
j¡1 +m

v
j¡1(z

v
j¡1); xjJ ¡ (j + 1)+ 1)

� V v(zvj¡1; xjJ ¡ j + 1)
which contradicts the result in part (i) of this proposition.

Step 2: Clearly, if x = xvJ¡k, x < z
v
J¡k and x > zvJ¡(k+1). The converse also holds,

otherwise zvj > zvj+1 for some j. But this possibility has been ruled out in step 1.
Q.E.D.

The proof of propoasition 3 requires some intermediate results. In what follows I de…ne
a v-subinterval as an interval between two adoptions in the optimal adoption plan where
it is optimal an v-plan for v = L; S.

Proposition A.1. Suppose that x¡ x < ¹. (i) If zSJ > x then V (x; x) = V S (x; x). (ii) If
zSJ < x then V (x; x) = 0.

Proof: Clearly, there is no room for an L-subinterval since learning never occurs. If, in
addition, the net value from using just a single technology is negative (part (i)), then it is
optimal not to make any adoption at all. If the net value can be positive (part (ii)) then
the optimal plan consists of the optimal S-plan. Q.E.D.

Proposition A.2. Suppose that x ¡x > ¹ then:
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(i) If zLJ < x: (ia) If zSJ < x then V (x; x) = 0. (ib) If zSJ > x then V (x; x) = V S(x; x).

(ii) If zLJ > x: (iia) If zLJ < x ¡ ¹ then V (x; x) = V L(x; x). (iib) If zLJ > x ¡ ¹ then the
optimal plan may involve either S-subintervals or L-subintervals or both.

Proof: In case i, any feasible L-plan must yield a negative net value, thus there can not be
an L-subinterval in any optimal plan. If, in addition, the net value from using just a single
technology is negative (ia), then it is optimal not to make any adoption at all. If the net
value can be positive (ib) then the optimal plan consists of the optimal S-plan.

In case ii, there is some L-plan that gives a positive net value. If using a technology
has a positive net value only after learning occurs (part (iia)) then the optimal plan is the
optimal L-plan. Otherwise (part (iib)) some S-plans exist that give a positive net value.
Q.E.D.

Proposition A.3 below characterizes the solution in case (iib) of proposition A.2. Some
previous results and assumption 3 are needed.

Lemma A4.Consider the restricted optimal value functions V S(x; x+m) and V L(x; x+m)
for m > 0. Then, if the two value functions curves intersect at two di¤erent m, then there
must be a third intersection.

Proof. The …rst intersection is at m =ma with ma ¸ ¹ and V S(x; x +m) > V L(x; x+m)
for some m > ma [this follows from direct inspection of the . Assume a second intersection
occurs at m = mb, with mb > ma. Clearly, by continuity of the restricted value functions,
V L(x; x+m) > V S(x; x+m) for m 2 (ma;mb) and V L(x; x+m) < V S(x; x+m) for some
m > mb. I want to show that in this circumstances, a third intersection valuemc > mb must
exist. To do this, proceed in a series of steps. Step 1: For any m > mb, the S-plan includes
some adoption xSi in (x+ma; x +mb). Suppose that xSi ´ maxfxSj < x+mbg < x +ma,
so that output under S-plan is constant over (xSi ; xSi+1). Because for x 2 (x +ma; x+mb)
it holds that V L(x; x) > V S(x; x), output on the L-plan must be larger than output from
the S-plan at x+ma. But then, until xSi+1 > x+mb, the L-plan that sticks with the same
technology is better than the optimal S-plan. But this is a contradiction. Step 2: Let
m = ma +mb. Then (1) V L(x; xSi ) > V S (x; xSi ) since xSi 2 (x +ma; x+mb), and (2) since
x+m¡xSi < mb and x+m¡xSi >ma, we have V L(xSi ; x+m) > V

S(xSi ; x+m). Points (1)
and (2) imply that V L(x; x+m) > V S(x; x+m). Step 3: Continuity of the value functions
implies that some mc <m exists such that the two value functions intersect. Q.E.D.

Lemma A5. Suppose assumption 3 in the main text holds. If the optimal S-plan produces
a higher value than the optimal L-plan over a certain span of time, then it must be so for
any shorter span of time.

Proof. Assume V S(x; x) > V L(x; x). If for some x0 < x, V S(x; x0) < V L(x; x0), since V S(:)
is well-de…ned there must be an intersection below x0. By Lemma A4, if for x > x0 the
inequality is reversed, there must be yet another intersection. But this negates assumption
3. Q.E.D.

Lemma A6. Assume that the optimal can include either S-subintervals or L-subintervals
or both. If the optimal plan includes a S-subinterval, then it will occur after an L-subinterval.
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Proof. Suppose not: a S-interval of length mS occurs before and L-interval of length mL.
It must necessarily be the case that V L(x+mS; x) > V S (x+mS ; x). But then, by Lemma
A5, it must be that V L(xSj ; x) > V S(xSj ; x) for all xSj adoption dates occurring over the
S-interval. In particular, this holds for xSj = x. But this leads to the contradiction that a
S-interval can not be optimal. Q.E.D.

Proof of Proposition 3: Consider solving for V (x; x). A corollary of Lemma A6 is that

V (x; x) = max
x?

n
V L(x; x?) + e¡(r¡°)(x

?¡x)V S(x?; x)
o
; (18)

provided that in the situations in Propositions A.1 and A.2, where the optimal plan happens
to be either v-plan, the solution x? is non-interior. Letting, as in Eq. (5), x = 0 and x = T
concludes the proof. Q.E.D.

Proposition A.3. Assume the conjecture holds. Suppose the conditions in Proposition
A.2(iib) hold. Then zSJ > x¡ ¹ and:

(i) If zLJ¡1 > x¡ ¹, then V (x; x) = V S(x; x).

(ii) If zSJ¡1 < x ¡ ¹, then there must be an L-subinterval in the optimal plan and x? 2
f[maxfx¡¹; x+¹g; zSJ ][fxgg, where x? solves the program in the proof of Proposition
3.

(iii) If zSJ¡1 > x¡ ¹ and zLJ¡1 < x¡ ¹, then:

(iiia) If V S(x; x) > V L(x; x) then V (x; x) = V S(x; x).

(iiib) If V S(x; x) < V L(x; x) then there must be an L-subinterval in the optimal plan
and x? 2 f[maxfxLj : V S(xLj ; x) < V L(xLj ; x)g; zSJ ] [ fxgg, where x? solves Eq.
(18) in the proof of Proposition 3.

Proof: It holds that W S(zLJ ; x) > W
L(zLJ ; x) = 0 = W

S(zSJ ; x), where the inequality results
from the assumption that x ¡ zLJ < ¹, and the two equalities hold by de…nition of zvJ for
v = L; S.

(i) In any optimal L-subinterval the last adoption must occur at a distance from the
ending date less than x ¡ zLJ¡1. If zLJ¡1 > x ¡ ¹, then the distance from the last
adoption to the end of the period is less than ¹. Thus, no L-subinterval can be
optimal for there is a S-plan featuring the same timing that yields a higher value.

(ii) If zSJ¡1 < x ¡ ¹, then V S(x ¡ ¹; x) = V S(x ¡ ¹; xj1) = V L(x ¡ ¹; x), and for
any x 2 (zSJ¡1; x ¡ ¹) it holds that V L(x; x) > V S(x; x) = V S(x; xj1). Then, by
Lemma A5, V L(x; x) > V S(x; x) all x < x ¡ ¹. If x? 6= x, optimality requires that
V S(x?; x) > V L(x?; x), thus x? > x ¡ ¹. On the other hand, since x < x ¡ ¹, the
optimal plan must include some L-subinterval. Therefore x? > x +¹.

(iii) If zSJ¡1 > x ¡¹ and zLJ¡1 < x¡ ¹, then:

(iiia) Consider …rst the case that V S(x; x) > V L(x; x). Now suppose that there is
some L-subinterval in the optimal plan. By Lemma A6, this subinterval is [x; x0]
for some x0 � x. Optimality requires that V S(x; x0) < V L(x; x0). By Lemma A5
we know that V S (x; x) > V L(x; x) all x � x. This is a contradiction.
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(iiib) If V S(x; x) < V L(x; x) there must necessarily be an L-subinterval in the optimal
plan, otherwise V (x; x) = V S(x; x), a contradiction. By Lemma A6, we have
that the L-subinterval must precede the S-subinterval [if the latter exists in
the optimal plan]. Hence the objective of the maximization problem in the
proposition.

If the optimal plan includes a S-subinterval, then optimality requires that V S(x?; x) >
V L(x?; x). Thus x? > maxfxLj : V S(xLj ; x) < V L(xLj ; x)g If the optimal plan does
not include a S-subinterval, then x? = x and V (x; x) = V L(x; x). Q.E.D.

B Computing the v-plan for given J
Given the initial date xJ¡k, and the number of adoptions k +1, the algorithm to compute
the continuation v-plan is the following. Note I suppress indexes v to save notation.

1. Pick an initial value for xJ .

2. Let SJ =mJ = ¿ + T ¡xJ so that @SJ=@xJ = @mJ=@xJ = ¡1.

3. Use the …rst order condition, ¡h(mj;mj+1) = 0, to compute mj and

@mj
@xJ

=
@mj
@mj+1

@mj+1
@xJ

;

Sj = Sj+1 +mj;
@Sj
@xJ

=
@Sj+1
@xJ

+
@mj

@xJ
;

for j = J ¡ 1; J ¡ 2; :::; J ¡ k.

4. If SJ¡k + xJ¡k ¡ xJ is far from zero, start again in step 1 with a new xJ updated
according to

xJ = xJ ¡ SJ¡k + xJ¡k ¡xJ
@SJ¡k
@xJ

¡ 1
:
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