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Abstract

In a real options model, we show that the standard analysis of vertical relationships transposes

directly to investment timing. Thus, when a �rm undertaking a project requires an outside

supplier (e.g., an equipment manufacturer) to provide it with a discrete input to serve a growing

but uncertain demand, and if the supplier has market power, investment occurs too late from an

industry standpoint. The distortion in �rm decisions is characterized by a Lerner-type index, and

we show how market growth rate and volatility a¤ect the extent of the distortion. If the initial

market demand is high, greater volatility increases the e¤ective investment cost, and results in

lower value for both �rms. Vertical restraints can restore e¢ ciency. For instance, the upstream

�rm can induce entry at the correct investment threshold by selling a call option on the input.

Otherwise, if two downstream �rms are engaged in a preemption race, the upstream �rm sells the

input to the �rst investor at a discount which is chosen in such a way that the race to preempt

exactly o¤sets the vertical distortion, and this leader invests at the optimal time.
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1 Introduction

In real option models of investment, the cost of the investment (strike price) is often tacitly taken

to re�ect economic fundamentals closely. This assumption seems reasonable when the investment

consists of R&D that is performed largely in-house, or in industries such as real estate development

that may rely on competitive outside contractors. However, there are many other cases in which

a �rm wishing to exercise an investment option depends on an outside �rm with market power to

provide it with a discrete input (e.g., a key equipment) it needs to start producing and selling.

Thus, an electricity producer may buy a nuclear plant from an outside �rm, an oil company that

decides to drill o¤shore must acquire a platform from a specialized supplier, or an aeronautics �rm

will coordinate aircraft development with an engine manufacturer. In addition, strategic issues may

arise if several �rms seek to exercise related investment options, and call upon the same supplier.

To illustrate, in the next section we outline the case of a market for a new vaccine, where demand is

related to the di¤usion of an emerging pathogen, and �rms must invest in a factory constructed to

exact speci�cations before starting operations.

This paper uses advances in real options games to build a model of vertical relationships in

which the cost of a �rm�s investment is endogenous.1 We adopt similar speci�cations to models

by Boyer, Lasserre and Moreaux [1], Mason and Weeds [16], and Smit and Trigeorgis [20], and

incorporate an upstream equipment supplier that prices with market power. There are thus two

ways to approach the contributions of this paper. On the one hand, it extends the real options

literature, including strategic real options game, to encompass a richer industrial structure, and on

the other, the paper shows how insights drawn from the study of vertical relationships apply in

stochastic dynamic settings.

Speci�cally, we show that the standard analysis of vertical relationships translates directly to in-

vestment timing, with investment trigger replacing price as the decision variable of the downstream

�rm. When the upstream supplier exercises market power, a vertical e¤ect akin to double marginal-

ization causes the downstream �rm to unduly delay its investment decision relative to the optimal

1For recent surveys of game theoretic real options models, see Boyer, Gravel, and Lasserre [2], and Huisman, Kort,

Pawlina, and Thijssen [12]. Among economic extensions of real option models, Grenadier and Wang [11] comes closest

to our work here, as it studies the e¤ect of agency issues on option exercise (albeit, in a corporate governance frame-

work). Moreover, Lambrecht, Pawlina, and Teixeira [14] and Patel and Zavodov [17] develop alternative approaches to

investment options in vertical structures.
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exercise threshold for the industry. This distortion increases with both market growth and volatility.

Thus, the industry earns lower pro�ts under separation than under integration. In contrast with the

standard real option framework, greater volatility decreases upstream and downstream �rm value

near the exercise threshold, because of the simultaneous presence of two e¤ects: the option value of

delay is balanced by a greater markup choice by the upstream �rm.

If feasible (for example, because the upstream �rm has information regarding the stochastic �nal

demand), vertical restraints that take the form of an option or down payment restore the industry

optimum. Without vertical restraints, the upstream �rm bene�ts from the presence of a second

downstream �rm, although this possibly occurs at the expense of aggregate industry pro�ts. We �nd

that the race between downstream �rms to preempt one another exactly balances the incentive to

delay caused by the upstream �rm�s mark-up, so the leader invests at the optimal integrated threshold

(as in the integrated case with a single buyer), whereas the follower invests at the separation threshold

(for duopoly pro�ts), a type of �no distortion at the top� result. The leader receives a discounted

price, and this discount decreases when the volatility rises.

The remainder of the paper is organized as follows. In Section 2, we motivate the analysis, and

our model speci�cations, by examining the case of an emerging market for a new vaccine. In Section

3 we describe the model, with one upstream supplier and one downstream �rm, and investigate the

basic vertical externality. This is done by comparing the equilibrium outcomes in the integrated case,

which we use as a benchmark, with the outcomes of the separated case. In Section 4, we discuss the

introduction of vertical restraints that restore the industry optimum. In Section 5, we introduce a

second downstream �rm and compute the preemption equilibrium, before comparing the investment

threshold and pricing outcomes with the single-�rm case. Final remarks appear in Section 6. All the

proofs and derivations are in the appendix.

2 An Example: Investments in the Vaccine Industry

A recent example of investment in production facilities for a new vaccine against the dengue fever

motivates our model. Dengue is a disease caused by any of four closely related virus serotypes

transmitted by mosquitoes. It strikes people with low levels of immunity, with symptoms that

include intense joint and muscle pain, headache, nausea, and fever. The most severe form of the

disease is the dengue hemorrhagic fever. Although it occurs mostly in Asian and Latin American

countries, where it is a leading cause of hospitalization, the disease spreads to new parts of the globe
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each year, including countries such as Australia and the United States (Puerto Rico, the U.S. Virgin

Islands, the Texas-Mexico border, Paci�c islands, and most recently Florida).2

To address this problem, one or more vaccines are due to arrive over the next years. With

clinical studies reaching their �nal phase, Sano� Pasteur, the vaccines division of Sano� Aventis

SA, was the �rst to launch the construction of a new plant north of Lyon (France) in 2009, with

an annual capacity of 100 million doses per year. The total investment amounts to $477 million

(see Carroll [3]). The main facility, which concentrates the �rm�s production technology, has been

speci�cally designed for the processing of the novel vaccine. Most components of the investment,

including fees and wages, capital amortization, and the costs for the safety and quality quali�cation

procedure, are unrecoverable. The equipment is sourced on an intermediate market from specialized

input providers, and represents on the order of 35-40% of the plant construction cost. The customized

lyophilisators, which use liquid nitrogen refrigeration for freeze drying operations, constitute a central

piece of equipment in the mass production process. The suppliers of pharma freeze drying technology

are highly concentrated, suggesting the possibility of market power. In Europe, lyophilizators are

supplied by �rms such as Usifroid, a subsidiary of Telstar SA which recently claimed a French

market share of 80% in freeze drying equipment solutions for the pharmaceutical industry. In 2009,

GlaxoSmithKline Plc (GSK), another leading vaccine producer, announced that it would develop

and manufacture another dengue vaccine with a Brazilian partner. GSK is thus likely to also invest

in additional production capacities in the foreseeable future, at some point in time that will depend

on demand forecasts.3

The potential demand for the future vaccines is clearly growing, though future levels are uncer-

tain. The number of reported cases, as measured annually, is a simple indicator of the magnitude

of future demand.4 According to the World Health Organization (WHO) �[a]n estimated 2.5 billion

people live in over 100 endemic countries and areas where dengue viruses can be transmitted. Up

to 50 million infections occur annually with 500,000 cases of dengue hemorrhagic fever and 22,000

deaths mainly among children�. The number of countries reporting cases is another demand indi-

cator. The WHO indicates that �[p]rior to 1970, only 9 countries had experienced cases of dengue

hemorrhagic fever; since then the number has increased more than 4-fold and continues to rise�.5

2See World Health Organization [22] and Center for Disease Control [4].
3Sources on Telstar�s market shares in Europe and GSK�s project to manufacture a vaccine for dengue fever are

http://www.telstar-lifesciences.com/en/ and http://www.gsk.com/media/pressreleases/2009, respectively.
4The issue of demand forecasts for new vaccines is discussed thoroughly in Center for Global Development [5].
5Source: http://www.who.int/csr/disease/dengue/impact/en/index.html.
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This real-world situation, where �rms�choice of investment timing depends on the cost of a key

equipment, which is necessary in order to serve a growing though uncertain demand, and is delivered

by an upstream supplier with market power, is thus emblematic of the many market cases captured

by our model speci�cations, which are described in the next section.

3 The Basic Vertical Externality

Investment in a discrete input is necessary to operate on a �nal market. It can be produced and used

by the same �rm (integration), or produced by an upstream supplier and used by one or several other

�rms (separation). The �ow pro�t resulting from investment is Yt�M where �M is an instantaneous

monopoly pro�t, and Yt > 0 is a random shock assumed to follow a geometric Brownian motion

with drift dYt = �Ytdt + �YtdZt. The non-negative parameters � and � represent the market�s

expected growth rate (or �drift�) and volatility, respectively, and Zt is a standard Wiener process.6

A lowercase y = Yt is used to denote the current level of the state variable. The threshold yi is

a decision variable. It triggers the investment (whence the subscript i) in the discrete input when

attained by Yt for the �rst time and from below, at a future date which is stochastic. The cost I of

the input is positive. The discount rate r > � is common to all �rms.7

3.1 Integrated Case

Suppose that a single �rm produces the discrete input, decides at what threshold yi to invest, for a

current market size y � yi, and earns the subsequent �ow pro�t. The value of a �rm that decides to

invest when the market reaches size yi, given the investment cost I and the current market size y, is:

V (y; yi; I) =

�
y

yi

�� � �M
r � �yi � I

�
, (1)

where � � 1
2 �

�
�2
+
q�

�
�2
� 1

2

�2
+ 2r

�2
, which is referred to in what follows as a discounting term.

The expressions of V (y; yi; I) in (1), and of �, are standard in real option models (see Dixit and

6The geometric brownian motion is derived from Yt = Y0 exp
��
�� 1

2
�2
�
t+ �Zt

�
by using Itô�s lemma.

7 It can be proved easily that a �rm increases value by waiting to invest forever if r � �.
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Pindyck [7], Chapter 5, or Chevalier-Roignant and Trigeorgis [6], Chapters 11-12).8 We will use the

property that � is decreasing in � and in � throughout the paper.

The integrated �rm�s decision problem is maxyi V (y; yi; I). Since the objective is quasiconcave,

di¤erentiating (1) gives the value-maximizing investment trigger, y� = �
��1

r��
�M
I, which serves as a

benchmark throughout the analysis. Then the value of the �rm that invests at y� is:

V (y; y�; I) =

�
y

y�

�� I

� � 1 . (2)

It is assumed throughout that the current market size y at t = 0 is positive and su¢ ciently small

relative to I so that it is not pro�table to invest immediately.

3.2 Separated Case

Suppose that the input production and investment decisions are made by distinct �rms. We suppose

that the upstream �rm, as an input producer on the intermediate market, does not observe Yt at

(almost) any date t.9 As a separate entity, it chooses an input price pS � I that is independent of the
random shock. The downstream �rm is assumed to be a price-taker in the intermediate market.10

Given pS , it observes the �nal market shock, and decides when to invest, at yi. To establish the

equilibrium in (yi; pS) we proceed by backwards induction.

The value of a downstream �rm that decides to invest when the market reaches size yi, given the

investment cost pS and the current market size y, is:

V (y; yi; pS) =

�
y

yi

�� � �M
r � �yi � pS

�
, (3)

all y � yi. The separated �rm�s decision problem is maxyi V (y; yi; pS), and the associated value-

maximizing investment trigger is yS (pS) =
�
��1

r��
�M
pS , which is increasing in pS , with yS (I) = y�.

8The term
�
y
yi

��
in (1) reads as the expected discounted value, measured when Yt = y, of receiving one monetary

unit when Yt reaches yi for the �rst time. In the certainty case � = 0, we have � = r
�
and

�
y
yi

��
= e�r(ti�t), which is

the standard continuous time discounting term.
9We relax this assumption only in Section 4 which discusses possible vertical restraints.
10As in Tirole [21], this is �for simplicity� only that we �assume that the manufacturer chooses the contract� (p.

173), and the outside option of the downstream �rm is normalized to zero.
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At the current market size y, the upstream �rm�s value is:

W (y; pS) =

�
y

yS(pS)

��
(pS � I) , (4)

all y � yS . Given yS (pS), the upstream �rm�s decision problem is maxpS W (y; pS), leading to the

optimal price which is to set p�S =
�
��1I. In what follows, for compactness denote yS (p

�
S) by y

�
S . We

�nd:

Proposition 1 In the separated case, there is a unique equilibrium characterized by:

y�S =

�
�

� � 1

�2 r � �
�M

I and p�S =
�

� � 1I. (5)

Substituting back (5) into (3-4), we obtain the �rm values in the separated equilibrium case:

V (y; y�S ; p
�
S) =

�

� � 1

�
y

y�S

�� I

� � 1 and W (y; p�S) =

�
y

y�S

�� I

� � 1 . (6)

From (6) we obtain that
V (y;y�S ;p

�
S)

W(y;p�S)
= �

��1 , implying that V (y; y
�
S ; p

�
S) > W (y; p�S), all � > 1.

Using (2) we �nd that
V (y;y�S ;p

�
S)+W(y;p

�
S)

V (y;y�;I) =
�
1 + �

��1

��
�
��1

���
2
�
2
e ; 1
�
. Hence the industry value

is lower under separation than under integration, as is to be expected.

3.3 Comparative Statics

In the separated case, the upstream �rm introduces a distortion by charging a price pS above the

cost I. This is analogous to the baseline model of vertical externality11, the investment trigger

substituting for the �nal price as the downstream decision variable.

In fact, this model is formally identical to the baseline model with price choices, a �nal demand

Q = aP�b, a constant marginal cost of production c, and a wholesale price w, taking P � yi,

a � �M
r��y

�, b � �, c � r��
�M
I, w � pS r���M

.

The vertical externality in the model may be gauged as follows. The trigger in the separated

case, y�S =
�
��1y

�, is greater than in the integrated case. In static models of oligopoly, the Lerner

index is often used as a measure of market power. For the upstream �rm, we have:

Lp �
p�S � I
p�S

=
1

�
. (7)

11See Tirole [21] for a description.
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Formally, � plays the same role as the (absolute value of) the elasticity of demand in a monopoly

model. By analogy, although it does not represent a price-cost margin, one may de�ne a measure of

the dynamic dimension of the downstream �rm�s market power as:

Ly �
y�S � y�
y�S

=
1

�
: (8)

Note from (7) and (8) that Lp and Ly are fully characterized by �, and are impacted in the

same proportions by a higher growth rate or a greater volatility.12 Note also that
V (y;y�S ;p

�
S)

W(y;p�S)
=

p�S
I =

y�S
y� =

�
��1 which implies that, in the separated case, the relative �rm value is decreasing in �, as is

the distortion in the two �rms�decisions vis-à-vis the integrated case. The two measures Lp and Ly
behave similarly and converge to 0 when � tends to in�nity.

Another signi�cant magnitude is the relative joint value under separation and integration, that

is
V (y;y�S ;p

�
S)+W(y;p

�
S)

V (y;y�;I) =
�
1 + �

��1

��
�
��1

���
. In contrast with the distortion in upstream and down-

stream choices, the distortion in the separated and integrated payo¤s decreases when � and � in-

crease, since
d

��
1+ �

��1

��
�

��1

����
d� < 0, with lim�!1

��
1 + �

��1

��
�
��1

����
= 1 (recall that � is

decreasing in � and �).13 This is because factors other than the vertical externality also a¤ect �rm

values, including the denominator V (y; y�; I). When a rising � or � make � relatively low, the

impact of the vertical distortion is small relative to the real option e¤ect, and the joint value under

separation converges to the value under integration. To summarize:

Proposition 2 The industry value is lower under separation than under integration. The distortion

in �rm decisions, as measured by Lp and Ly, is increasing in market growth rate and volatility,

whereas the distortion in separated and integrated payo¤s is decreasing in market growth rate and

volatility.

For the sensitivity analysis of �rm choices and values we consider changes in the growth rate and

in the volatility parameter separately.

� Growth. The e¤ect on y�S and p�S of a change in the growth rate is univocal:
dy�S
d�

> 0;
dp�S
d�

> 0.

12These expressions are comparable to those in Dixit, Pindyck, and Sødal [8].

13 In Appendix 7.3 we fully characterize f (�) �
�
1 + �

��1

��
�

��1

���
:
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A change in these parameters does not impact only the magnitude of the vertical externality, as

there is also a real option e¤ect. To see that, focus �rst on the upstream �rm�s value. For notational

simplicity, let V � � V (y; y�S ; p�S). By the envelope theorem, @V@y�S = 0, and we �nd that:

dV �

d�
=
@V �

@�
+

�
@V �

@�
+
@V

@p�S

dp�S
d�

�
d�

d�
= V �

�
�

r � � +
�
ln
y

y�S
+
1

�

�
d�

d�

�
, (9)

which is positive for all y � y�S . The direct e¤ect in (9) is positive. The two terms between

brackets, which describe the indirect e¤ect, have opposite signs because a higher growth rate increases

the investment option�s value, but simultaneously raises the input price. However, the magnitude

of the latter term is limited, so that the option value e¤ect dominates the vertical e¤ect. The

sensitivity analysis is similar for the upstream �rm, whose value in equilibrium W � �W (y; p�S) has

an analogous form. Speci�cally, the e¤ect of greater market growth on upstream value is univocal,

as we �nd dW �

d� = W �
�

�
r�� +

�
ln y

y�S
+ 1

��1

�
d�
d�

�
> 0 (see Appendix 7.4), so in elasticity terms

0 < "W �=� < "V �=�.

y

.

.

.

Figure 1: Downstream value V � = V (y; y�S ; p
�
S), for y � y�S , with

r��
�M

= I = 1, r = 0:2, � = 0:05 and

�1> �2> �3 such that �(�1) = 2 (solid), �(�2) = 2:5 (dash), �(�3) = 3:5 (dots). For large initial market

sizes, greater uncertainty (i.e., a lower �) reduces �rm value.

� Volatility. The e¤ect on y�S and p�S of a change in volatility rate is also univocal:
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dy�S
d�

> 0;
dp�S
d�

> 0.

However, the e¤ect of volatility on �rm values is not univocal. Taking �rst the case of upstream

value, and noting again that @V
@y�S

= 0, we �nd that:

dV �

d�
=

�
@V �

@�
+
@V

@p�S

dp�S
d�

�
d�

d�
= V �

�
ln
y

y�S
+
1

�

�
d�

d�
, (10)

which is positive (zero) if and only if y < (=)y�S exp
�
� 1
�

�
� ŷ (note that ŷ is lower than y�S for all

� > 1). A change in � has two opposite indirect e¤ects on V �. The �rst term between parentheses

in (10) is the real option e¤ect: greater volatility (hence a lower �) has a positive impact on the

downstream value. The second term is the vertical e¤ect: greater volatility raises the upstream

�rm�s optimal price p�S , lowering the downstream value. The net e¤ect depends, in particular, on the

current market size y. At low market sizes, the real option e¤ect dominates and the downstream �rm

bene�ts from greater volatility, whereas at higher market sizes, which are closer to the investment

trigger y�S , the real option e¤ect is less important and the vertical e¤ect tends to dominate. For

large initial market sizes, in this model greater uncertainty thus reduces �rm value, which stands in

contrast with many real option models. Figure 1 illustrates the behavior of V (y; y�S ; p
�
S) over [0; y

�
S ]

for several levels of �.

Similarly, the e¤ect of greater volatility on the value of the upstream �rm is also ambiguous. As
dW �

d� = W �
�
ln y

y�S
+ 1

��1

�
d�
d� , the crossover occurs at a lower threshold than for the upstream �rm,

that is at y�S exp
�
� 1
��1

�
� �y < ŷ. Thus, both �rms bene�t from greater volatility at low enough

market sizes, and both are harmed by volatility at high enough market sizes, and there exists a range

of market sizes (�y; ŷ) over which the two �rms have divergent preferences with respect to volatility.

The following proposition summarizes these results, making use of the inherent elasticity form

in expressions such as (9) and (10).

Proposition 3 In the separated case, a higher growth rate or more volatility increase the upstream

price and the downstream trigger. A higher growth rate increases upstream and downstream values,

with 0 < "W �=� < "V �=�. The e¤ect of higher volatility on �rm values depends on the market size:8>>><>>>:
0 � "W �=� < "V �=� if y � �y;

"W �=� < 0 < "V �=� if �y < y < ŷ;

"W �=� < "V �=� � 0 if �y � y:
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4 Vertical Restraints

In the baseline model of vertical externality, various contracting options or vertical restraints allow

the separated structure to realize the integrated pro�t. Similar mechanisms apply here, although

the interpretation is di¤erent because of the underlying dynamic nature of the model. We illustrate

them by means of two examples.14

In Figure 2, the dashed line is the locus of the downstream �rm�s optimal responses to given

upstream prices, yS (pS). With the chosen parameters (that is, � = 2 and I = �M
r�� = 1), the

separation outcome of Section 3.2 is (y�S ; p
�
S) = (4; 2). For a given y below the benchmark trigger

y� = 2, we may graph the isovalue curves of both �rms in the plane (yi; pS). The convex curves

are the upstream isovalues, whereas the downstream isovalue curves are concave. The ordering

of the curves follows from the monotonicity of the value functions V and W in pS . Because p�S
maximizes W (y; pS), the point (y�S ; p

�
S) lies at a tangency of an upstream isovalue with the locus

yS (pS). To illustrate, when y = 1, say, the �rm values in the separated case are V (1; y�S ; p
�
S) =

1
8

and W (1; p�S) =
1
16 , whereas the integrated value is V (1; y

�; I) = 1
4 .

The two �rms can be made better o¤ by reaching a contractual agreement that yields a greater

total value than in (1), the equilibrium of the separated case. The most direct value-maximizing

contract speci�es both the investment trigger and the price. This is analogous to resale price main-

tenance in the standard vertical framework. For simplicity, assume that the upstream manufacturer

chooses the contract, and proposes it to the other �rm, at some given y � y�.

The contract proposal must satisfy the constraints that the downstream buyer earns no less

than in the separation outcome with no vertical restraint. Should the upstream �rm�s current o¤er

be rejected by the downstream �rm, the upstream �rm could not credibly commit not to sell the

speci�c input at p�S at a future date when the trigger y
�
S is reached. It follows that the downstream

�rm�s reservation value is V (y; y�S ; p
�
S). The upstream �rm can appropriate all bene�ts on top of the

latter downstream reservation level by dictating the trigger y�, so that the total industry value is

maximized, before charging the price for which the downstream participation constraint is exactly

satis�ed.

14Note though that certain contractual arrangements, such as a maintenance contract, may not have bearing on the

vertical externality. In the present model the distortion in investment timing arises because there is a mark-up on the

overall cost of the input. It is independent of how this investment expense is allocated in time.

11



Formally, for any y � y�, and by slightly abusing notation15 to introduce yi as an argument of
the function W , the upstream �rm�s problem is:

max
yi;pS

W (y; yi; pS)

s.t. pS � pS (yi) ; (11a)

pS � pS (yi) : (11b)

It is clear from Figure 2 that the �rst constraint is equivalent to V (y; yi; pS) � V (y; y�S ; p
�
S), and

the second one to W (y; yi; pS) � W (y; y�S ; p
�
S), with pS (yi) implicitly de�ned by W (y; y�S ; p

�
S) =

W
�
y; yi; pS (yi)

�
, and pS (yi) by V (y; y

�
S ; p

�
S) = V (y; yi; pS (yi)). Total value maximization implies

that yi = y�, and the upstream supplier maximizes its share of total value by charging pS = pS (y
�),

so that (11a) is exactly satis�ed. With the parameter values that we use in our example (� = 2,

y = I = �M
r�� = 1), the two participation constraints reduce to

5
4 � pS �

3
2 , and the input supplier

chooses yi = y� = 2 and pS = pS (2) =
3
2 .
16

Proposition 4 Suppose that y � y�. In a contract analogous to resale price maintenance, the

upstream �rm chooses the investment trigger y� and charges the input price pS (y
�), as de�ned by

V (y; y�S ; p
�
S) = V (y; y�; pS (y

�)). The downstream value is the same as in the separation outcome,

and the upstream value is W (y; y�; pS (y
�)) > W (y; y�S ; p

�
S).

One caveat is that the implementation of this contract requires the upstream �rm to continuously

monitor y until the market size reaches y�, which may be costly. This was not needed in the separated

case, with no vertical restraint. Nor is it clear that y� is an easily veri�able contract provision, or

that such contracts are used in practice.

15 In this example, we de�ne W (y; yi; pS) =
�
y
yi

��
(pS � I), all y � yi.

16The constraints (11a-11b) are compatible whenever p
S
(yi) � pS (yi), which always holds if yi = y� < y�D. This

results from continuity of V (y; yi; pS) and W (y; yi; pS) in yi and pS , together with V (y; yi; pS) being monotone

increasing in yi on [y�; y�D], and decreasing in pS , whereas W (y; yi; pS) is monotone decreasing in yi, and increasing in

pS . Obviously, the participation constraint of the input supplier, who writes the contract, can be omitted. However,

when the bargaining power is more evenly distributed among the parties, the price pS can be chosen anywhere in the

interval [p
S
(y�) ; pS (y

�)].
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Figure 2: Upstream and downstream isovalues (� = 2, y = I = �M
r�� = 1). Point A describes the separated

equilibrium, the upstream �rm charges p�S = 2, and the downstream �rm enters at y�S = 4. Points B and C

describe joint-value maximizing contracts, as chosen by the upstream �rm under the constraint that the

downstream �rm earns no less than V � = 1
8 . In both contracts the upstream �rm chooses the investment

level y� = 2. In B, the input price is 3
2 , and in C it is I, so that the upstream supplier takes no margin. In

the latter case the supplier can sell an up-front option with strike I and specify a transfer payment t�S =
1
8 ,

resulting in a downstream value V (1; y�; I) equal to the reservation level V � = 1
8 .

A contractual alternative is to set the equivalent of a two-part tari¤. In this case, for any y � y�,
the integrated value is realized by means of an up-front option o¤ered to the downstream �rm on the

speci�c input at an exercise price, pS .17 We know from Section 3.2 that the input buyer maximizes

its private value by exercising the option when Yt reaches the barrier yS (pS). As in the previous

contractual example, the objective of the upstream supplier is to induce the choice of the e¢ cient

investment trigger by the input buyer, and to appropriate the value in excess of the downstream

reservation level V (y; y�S ; p
�
S). This can be done through a transfer payment, tS , made at y, which

we interpret here as the option premium. This contract also corresponds to a non-refundable deposit

on the speci�c input.

17Airlines typically buy options to purchase planes conditioned on air tra¢ c volumes.
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The upstream problem is then:

max
pS ;tS

W (y; pS) + tS

s.t. V (y; yS (pS) ; pS)� tS � V (y; y�S ; p�S) ; (12a)

W (y; pS) + tS �W (y; p�S) : (12b)

With the joint-value maximizing input price p�S = I, the downstream �rm chooses to invest when

Yt = yS (I) = y
�. The transfer payment is chosen under the condition that the downstream �rm�s

participation constraint is exactly satis�ed.18 With the same parameter values as in Figure 2, (12a)

and (12b) reduce to 1
16 � tS �

1
8 , the downstream �rm invests at yS (1) = y

� = 2, hence the upstream

�rm chooses tS = t�S(1) =
1
8 , as paid by the downstream �rm when the market size is y = 1.

Proposition 5 Suppose that y � y�. In a contract analogous to a two-part tari¤, the upstream �rm

charges the price I, and chooses the transfer t�S(y) = V (y; y�; I) � V (y; y�S ; p�S). The downstream

value is the same as in the separation outcome, and the upstream value isW (y; I)+t�S(y) > W (y; p�S).

This kind of contract imposes a smaller informational requirement on the upstream �rm than

the previous one, although it does require it to have an estimate of the current market size y at the

date at which the option is written.

If the contracting alternatives, as described in this section, are not available to the upstream

�rm, the presence of a downstream �rm may act as a substitute. As it results in earlier investment,

the race to preempt downstream counteracts the �double marginalization� distortion, at least for

the �rst �rm that invests.

5 Downstream Duopoly

In this section the structural assumptions are those of Section 3, except that on the intermediate

market the upstream �rm faces two downstream buyers, that also compete on the �nal market. We
18The constraints (12a-12b) are compatible whenever V (y; yS (pS) ; pS) + W (y; pS) � V (y; y�S ; p

�
S) + W (y�S ; p

�
S),

which always holds if pS = I. As in the case of the previous vertical restraint, the participation constraint of the

upstream �rm, which writes the contract, can be omitted. We keep it here in order to describe the range of possible

transfer payments when the bargaining power is less asymmetrically distributed.
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build on the analysis of Fudenberg and Tirole [9] (preemption), Grenadier [10], Mason and Weeds

[16], and Boyer, Lasserre, and Moreaux [1] (preemption under uncertainty).19 Now Yt describes an

industry-wide shock, so that the �ow pro�ts are Yt�M (monopoly) if a single �rm has entered the

�nal market, and Yt�D (duopoly pro�ts) if both �rms have invested, with �D < �M .

The upstream �rm is constrained to a single instrument, the spot price of the speci�c input, but

it may charge di¤erent prices at di¤erent dates (intertemporal price discrimination). It may thus

condition the spot price on the information it receives regarding the demand of downstream �rms (in

particular, how many �rms are present). In what follows pL denotes the spot price charged to the

�rst �rm to invest (the �leader�), and pF denotes the spot price for the second �rm (the �follower�).

We also assume that the upstream supplier cannot make commitments at one date regarding prices

at some future date.

In the absence of strong positive technological externalities at the downstream stage (if total

duopoly pro�ts are lower than monopoly pro�ts), the integrated optimum from the industry�s view-

point is for a single downstream �rm to be active. However, in the separated case, and in the absence

of su¢ cient other instruments, we have seen that the downstream �rm invests too late. Therefore

the upstream �rm may �nd it pro�table to allow a second �rm into the market. Then the race to

preempt downstream, as it typically results in earlier investment, can counteract the �double mar-

ginalization�distortion, and thereby functions as a substitute for the vertical restraints examined in

Section 4.20

5.1 Equilibrium

The underlying strategies of the downstream �rms are the �simple� mixed strategies de�ned in

Fudenberg and Tirole [9], which consist of (augmented) distributions of investment thresholds, con-

ditional on the number of downstream �rms to have already invested.21 In order to determine the

equilibrium, it su¢ ces to determine two investment triggers, yP and yF , at which the leader and the

follower invest, respectively. In equilibrium, the identity of the leader and follower are indeterminate,
19A comprehensive discussion of these contributions can be found in Chevalier-Roignant and Trigeorgis [6].
20 If an exclusive dealing clause is allowed, an upstream �rm that is able to implement resale price maintenance

or price the downstream option contract can potentially use the threat of downstream duopoly, altering the terms

discussed in Section 4: it o¤ers the downstream �rm exclusivity but bene�ts from a lower reservation value which

corresponds to the ex-ante downstream value in a preemption equilibrium, as displayed in (21).
21See also Huisman, Kort, and Thijssen [13].
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in that either �rm e¤ectively invests �rst, with equal probability. The follower trigger results from

standard arguments: once the leader has invested, the subgame between the upstream �rm and the

follower is identical to that in Section 3.2.

In what follows, when the current market size is y, the value of a follower that invests at a

threshold yF and pays a price pF is:

F (y; yF ; pF ) =

�
y

yF

�� � �D
r � �yF � pF

�
. (13)

By the same arguments as in Section 3.2, the optimal second spot price for the upstream �rm is

p�F =
�
��1I, and the optimal follower investment threshold is y

�
F =

�
�
��1

�2
r��
�D
I. Compared with

the case where the speci�c input is produced internally (Boyer, Lasserre, and Moreaux [1], Mason

and Weeds [16]), the follower invests at a level of y that is �
��1 times higher, and has lower value by

a factor of
�

�
��1

�1��
.

Remark 1 F (y; y�F ; p
�
F ) does not depend on (pL; yP ).

Indeed, what the �rm takes into account when it chooses an investment trigger, as a follower, is

the pro�t �ow it may expect in the future. This �ow is not impacted by the investment cost of the

leader, nor by its exact investment date.

To determine the preemption threshold yP , given pL, it is necessary to refer to the value of a

�rm that invests immediately at the current market size y, given that its rival invests optimally as a

follower. Let L (y; pL) denote this value, which has a di¤erent form from the V (�) expressions is the
rest of the paper:

L (y; pL) =
�M
r � �y � pL �

�
y

y�F

�� �M � �D
r � � y�F . (14)

Although this function is commonly used in preemption models, it is also useful to consider a more

general expression of (14), that is ~L (y; yL; y�F ; pL) =
�
y
yL

�� �
�M
r��yL � pL

�
�
�
y
y�F

��
�M��D
r�� y�F . The

function ~L (y; yL; y
�
F ; pL) measures the value, at the current market size y, of a �rm that is free

to invest at yL as a leader.22 We have L (y; pL) = ~L (y; yL; yF ; pL) when the constraint yL � y is

imposed, and yF = y�F :

Remark 2 argmaxyL ~L (y; yL; y
�
F ; I) = fy�g:

22See Reinganum [18].
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In other words, when it incurs the �true�cost of investment pL = I, a �rm that is free to choose

yL invests at the same date as in the integrated case (with a single �rm). This is another illustration

of the �myopic�behavior as coined by Leahy [15].

The analysis of the investment game based on the functions (13) and (14) closely follows that

of existing models. The threshold yP , which is de�ned by L(yP (pL) ; pL) = F (yP (pL); y�F ; p
�
F ), is a

function of pL. We de�ne y�P � yP (p�L), where p�L denotes the upstream supplier�s value-maximizing

price. We �nd:

Proposition 6 In the separated case with two downstream �rms, there is a unique equilibrium char-

acterized by:

(i) downstream triggers : y�P =
�

� � 1
r � �
�M

I, y�F =

�
�

� � 1

�2 r � �
�D

I, (15)

(ii) upstream prices : p�L =

�
1� �

�
�;
�M
�D

��
p�F , p�F =

�

� � 1I, (16)

with �
�
�; �M�D

�
�
�

�
��1

�M
�D

�1��
�
�

�
��1

�M
�D

���
2
�
0;
�
��1
�

���1
1
�

�
.23

The intuition for this result is that, in a preemption equilibrium, rent equalization implies that,

for any investment cost chosen upstream, including pL = I, the leader�s value is pegged on the follower

payo¤ F (y; y�F ; p
�
F ). The latter value does not depend on pL (Remark 1). By raising the price pL

above I, the upstream �rm increases the cost of leading the sequence of investments, and thereby

raises the preemption equilibrium trigger yP (pL). It also appropriates any additional monetary gain

on top of the constant share ~L (y; yP (pL) ; y�F ; pL) = F (y; y
�
F ; p

�
F ) retained by the downstream leader.

Therefore, the supplier�s value-maximizing strategy is to set yP equal to the investment trigger y�, as

this trigger maximizes the joint value of the two vertically related units. This is the same investment

trigger as the one chosen by the leader when it incurs the �true�cost I (Remark 2).

The comparison of investment thresholds and input prices, across the single downstream �rm and

two-�rm scenarios, and the integrated case, follows directly from the expressions in (5) and (15-16).

23For all � > 1, we have
�
��1
�

���1
1
�
< 1

�
, implying that �

�
�; �M

�D

�
< 1.
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Proposition 7 In a preemption equilibrium, downstream triggers and upstream prices satisfy the

following rankings:

y�P = y
� < y�S < y

�
F and I < p

�
L < p

�
F = p

�
S. (17)

In the downstream duopoly case, the upstream supplier induces an investment threshold for the

�rst �rm, via the price pL, that is identical to the investment threshold in the integrated case (3.1),

that is y�, analogously to a �no discrimination at the top�result. The threat of preemption among

downstream �rms thus has the e¤ect of a vertical restraint, insofar as it induces investment at the

correct trigger for the �rst �rm. The race to be �rst exactly counterbalances the incentive that

the leader would otherwise have to delay, if its investment date resulted from the optimization of an

investment threshold. This substitute for a vertical restraint does not represent an industry �rst-best

however if, as it may be assumed, the presence of a second �rm reduces industry pro�t (�D < �M=2).

.

. .

. .

Figure 3: Leader and follower values at current market size y = 1 as a function of investment trigger yi
(with � = 2, I = r � � = �M= 2�D= 1). The preemption trigger y�P= y� in the separated case

maximizes the integrated leader value (that is, the leader value if pL= I), and is greater than the trigger

under preemption when downstream �rms face the true investment cost. By charging p�L> I , the upstream
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�rm appropriates the value di¤erential ~L (y; y�; y�F ; I)�~L (y; y�; y�F ; p�L). By charging p�F> I , it also earns
the di¤erence F (y; y�F ; I)�F (y; y�F ; p�F ).

To illustrate, in Figure 3 the two solid curves refer to the separated case. The quasi concave one

represents ~L (y; yL; y�F ; p
�
L), that is the value of the leader as a function of yL, and measured at a

given y (speci�cally, y = 1) provided that the follower invests at the optimal threshold y�F , and for

an upstream value-maximizing price p�L (with � = 2, I = r � � = �M = 2�D = 1). The other solid

curve is a graph of F (y; yF ; p�F ), which has the same expression as in (13). Note that, when y = y
�
F ,

the leader value is higher since p�L =
13
8 < 2 = p

�
F . The preemption threshold y

�
P is determined by the

condition that �rms are indi¤erent at that point between investing as a leader or waiting to invest as

a follower. In this �gure, the dashed curve represents the upstream �rm�s optimization problem. It

describes the reference (or �true�) leader value, based on the actual investment cost I (i.e., pL = I)

for all possible yL � y�F , and for yF = y�F (i.e., pF = p�F > I). This is the graph of ~L (y; yL; y�F ; I),
which reaches a maximum when yL = y�.

We also represent the case with two integrated downstream �rms (i.e., pL = pF = I). We

know from existing models with similar speci�cations (e.g., Boyer, Lasserre, and Moreaux [1], Ma-

son and Weeds [16]) that, in that case, in a preemption equilibrium the leader invests �rst at ~yP ,

which is strictly less than y� = �
��1

r��
�M
I, as computed in Section 3.1. Then the follower invests at

~yF =
�
��1

r��
�D
I. In Figure 3, the two dotted curves represent ~L (y; yL; ~yF ; I) and F (y; yF ; I). It is

straightforward to check that ~yP < y�P < ~yF < y
�
F .
24

Consider now the upstream value in the preemption equilibrium of Proposition 6, that is

~W (y; p�L; p
�
F ) =

 
y

yP
�
p�L
�!� (p�L � I) + � y

y�F

��
(p�F � I) . (18)

This value can be visualized in Figure 3 by reinterpreting each term on the right hand side of

the equality sign in (18) as follows. On the one hand, the supplier chooses pL, shifting the leader

value function, to maximize the di¤erence between the reservation value that must be given to the

leader and the reference leader value at the preemption trigger yP (pL). By charging exactly p�L > I,

so that the leader invests at y�P = yP (p
�
L) = y

�, the supplier appropriates the value di¤erential

~L (y; y�; y�F ; I)� ~L (y; y�; y�F ; p�L) =
 

y

yP
�
p�L
�!� (p�L � I) . (19)

24The comparison of ~yF with y�S is less straightforward in that it depends on the ratio
�D
�M
.
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In addition, the upstream supplier earns the di¤erence between the value that the follower would

earn as an integrated �rm, and the value it earns as a separate entity, with yF = y�F in both cases.

Formally, by charging p�F > I, the supplier appropriates

F (y; y�F ; I)� F (y; y�F ; p�F ) =
�
y

y�F

��
(p�F � I) . (20)

The magnitudes (19) and (20) are represented by the vertical arrows in Figure 3.

With respect to �rm values, intuition suggests that, in a preemption equilibrium, a downstream

�rm is worse o¤, and the upstream �rm is better o¤, than under bilateral monopoly since there is

competition downstream. The �rst of these comparisons is not immediate to verify, since the �rst

investment occurs at a lower threshold y�P < y
�
S , and also faces a lower input price p

�
L < p

�
S , which

is value enhancing. The closed-form expression of y�P is useful to resolve this ambiguity, as it allows

us to exactly evaluate the downstream �rm value, which we denote by ~V (y; p�L; p
�
F ), for all market

sizes y < y�P . This value is given by:

~V (y; p�L; p
�
F ) =

1

2

�
y

y�P

�� � �M
r � �y

�
P � p�L

�
+

�
y

y�F

��  �D � 1
2�M

r � � y�F �
1

2
p�F

!
. (21)

The expression (21) re�ects the fact that, ex-ante, a �rm is equally likely to be a leader or a follower

under preemption. The comparison of the equilibrium value of the upstream �rm ~W (y; p�L; p
�
F ) when

there are two downstream buyers, with W (y; p�S), is not immediate either. Although the upstream

�rm sells its input twice, the �rst sale is discounted and the second occurs at a more removed date.

Industry value increases under duopoly only conditionally, since although the investment thresh-

old of the �rst �rm is more e¢ cient, industry �ow pro�ts decrease with the investment of the second

�rm. When � is high, which corresponds for example to low volatility of the demand process, the

option component weighs less on �rm value than the vertical distortion (see Section 3.3.). The ben-

e�t gained from correcting the vertical externality by introducing a second �rm then outweighs the

destruction of downstream pro�ts that occurs under duopoly.

Proposition 8 For all y � y�P , for all � and all �D < �M , the downstream value is lower and the

upstream value is higher in a preemption equilibrium than under bilateral monopoly:

~V (y; p�L; p
�
F ) < V (y; y

�
S ; p

�
S) and W (y; p�S) < ~W (y; p�L; p

�
F ) . (22)

Moreover, for large enough
n
�; �M�D

o
, total industry value is greater in a preemption equilibrium than

under bilateral monopoly.
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5.2 Comparative Statics

A noteworthy feature of the speci�cation with vertical separation and two downstream �rms, com-

pared with similar real option games, is that the solution in the preemption scenario is analytic.

The closed-form expression of y�P facilitates the comparative statics, which are consistent with the

interpretation of the model given in Section 3.3.

First, we know from Proposition 6 that in the downstream duopoly case the supplier sells the

speci�c input to the �rst entrant at a discount as p�L
p�F
= 1� �

�
�; �M�D

�
< 1. We �nd that the e¤ect

on this discount of a higher growth rate � or volatility �, and also of a higher pro�t ratio �M
�D
, is

univocal.

Proposition 9 For all admissible parameter values:

d�
�
�; �M�D

�
d�

< 0;
d�
�
�; �M�D

�
d�M�D

< 0. (23)

Therefore, the markdown is decreasing in � and �M
�D
.

Next, recall from (7-8) that the parameter � is analogous to an elasticity of demand in the

intermediate market, and lower elasticity (greater �) results in a greater vertical distortion, with

higher prices and triggers. Although these features are robust to the introduction of a second

downstream �rm, an additional remark is warranted. In fact p�L =
h
1� �

�
�; �M�D

�i
p�F , with both

�
�
�; �M�D

�
and p�F increasing in �, which implies that the net e¤ect of more growth or volatility on

the �rst spot price, expressed here in terms of elasticities, is a priori ambiguous. By de�nition,

"p�L=� = "
�
1��

�
�;
�M
�D

��
=�| {z }

>0

+ "p�F =�| {z }
<0

; (24)

that is to say a greater � dampens the price discrimination e¤ect by decreasing the spread in prices

on the one hand, but also decreases the follower price on the other. The net e¤ect can be shown to

be negative, but the comparative static in the preemption game is thus not a direct corollary of the

bilateral monopoly case. We �nd that changes in market conditions, as captured by the parameter

�, have a greater impact on the follower input price than the leader input price.
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Proposition 10 In a preemption equilibrium, a higher market growth rate and volatility result in

higher triggers fy�P ; y�F g and higher downstream prices fp�L; p�F g with:

"p�F =� = "p
�
S=�

< "p�L=� < 0 and "y�F =� = "y�S=� < "y�P =� < 0. (25)

Finally, the comparative statics of ~V (y; p�L; p
�
F ) and ~W (y; p�L; p

�
F ), which involve additional e¤ects

from those of V (y; y�S ; p
�
S) and W (y; p�S), do not appear to have straightforward characterizations.

We �nd in particular that � may have either a monotone, or an ambiguous e¤ect on total industry

value. (See Section 7.9 in the Appendix.)

6 Discussion

In this paper, we have studied investment timing when �rms depend on an outside supplier to provide

a discrete input (e.g., a key equipment), developing a dynamic version of a heretofore static model.

The upstream �rm�s mark-up depends on the stochastic process followed by downstream �ow pro�ts.

A vertical externality arises because the upstream �rm�s pricing induces the downstream �rm to de-

lay the exercise of its investment option. This distortion, akin to a Lerner index, increases with both

market growth and volatility. Downstream �rm values are more sensitive to the market growth rate

than upstream values, and in contrast with the standard real option framework, greater volatility

decreases �rm value near the exercise threshold. If the input supplier has su¢ cient information re-

garding downstream demand, it can induce optimal investment timing by means of standard vertical

restraints. Otherwise, the upstream supplier bene�ts from the presence of a second downstream �rm,

which results in a preemption race and acts as a partial substitute for vertical restraints. The input

is then sold to the downstream leader at a discount which increases with volatility, the leader�s price

is less sensitive to market growth and volatility than the follower�s, and the leader invests at the

optimal threshold, resulting in greater industry pro�ts when growth and volatility are su¢ ciently

low.

In the �rst place, one may allow for upstream competition. If suppliers compete in prices and

there is a single downstream �rm, then the integrated optimum is restored. On the other hand,

in an industry with two upstream and two downstream �rms, upstream competition presumably

results in a standard preemption race downstream, and the leader invests too early. Second, a strong

qualitative prediction of the model is that, under duopoly, the �rst input is sold at a discount. In
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practice, we would expect that learning e¤ects which decrease the upstream �rm�s production cost

for the second input supplied, should reduce the apparent discount that is o¤ered to the leader.

Third, the assumption of a geometric Brownian motion for the stochastic market process can be

relaxed. For example, Poisson jumps may be included to allow for greater risk. Many of the results

here are unchanged, with the exception of those comparative static results that rely on the analytic

expression of �. Eventually, the analysis of this paper has adhered to the classical assumption that

the contract terms are decided by the upstream �rm. However, one could envisage that it is the

downstream �rms that have market power in the input market, and therefore write the contract, or

alternatively that downstream �rms may use some other device, such as the threat of reversion to a

tacit collusion equilibrium if such exists.

As stated in the introduction, this paper may be viewed alternatively as an extension of the

existing real options literature, or as the extension of the classic Industrial Organization analysis of

vertical relationships to a stochastic dynamic setting. Although this latter extension involves strong

formal analogies between the static model and the downstream duopoly case, it also uncovers some

signi�cant di¤erences. This is clearest in the downstream duopoly case, where under preemption

the upstream supplier treats the leader and follower di¤erently, and only a partial correction of the

vertical externality is feasible given the sequence of actions. Finally, besides shedding light on an

incentive for dynamic price discrimination, the model presented here makes several predictions with

respect to decision timing and �rm values which only await empirical testing on a suitable set of

data.

7 Appendix

7.1 Sensitivity of � to � and �

The derivatives of � with respect to the growth and volatility parameters � and � arise throughout

the paper, and have the following expressions:

d�

d�
=

���
� �

�
1
2 �

�
�2

��
�2
< 0; (26)

d�

d�
=

�2 (r � ��)�
� �

�
1
2 �

�
�2

��
�3
� 0: (27)
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With respect to the signs of these expressions, note that by assumption that 12�
�
�2
< 0, and r � ��,

with equality only if � = 0.

7.2 Sensitivity of y�S and p
�
S to � and �

Growth:

dy�S
d�

=
@y�S
@�

d�

d�
+
@y�S
@�

=

�
�

� � 1

�2 �
�2 + 2�

�
I

(�2 (2� � 1) + 2�) > 0;

dp�S
d�

=
@p�S
@�

d�

d�
= � I

(� � 1)2
d�

d�
> 0:

Volatility:

dy�S
d�

=
@y�S
@�

d�

d�
= � 2y�

(� � 1)2
d�

d�
> 0;

dp�S
d�

=
@p�S
@�

d�

d�
= � I

(� � 1)2
d�

d�
> 0:

7.3 Behavior of f (�)

De�ne f (�) �
�

�
��1

��� �
1 + �

��1

�
. This expression arises several times throughout the paper. To

establish that f(1) = 1, rewrite it as f(�) =
�

�
��1

���
+
�

�
��1

�1��
. Since lim�!1 (� � 1)��1 = 1,

f(1) = 1. To establish that lim�!1 f(�) = 2
e , note that for the denominator,

�
�
��1

��
=
�
1 + 1

��1

��
,

and lim�!1
�
1 + 1

��1

��
= limx!1

�
1 + 1

x

�x �
1 + 1

x

�
= e. Finally,

df(�)

d�
=
(� � 1)��1

��

�
2� (2� � 1) ln �

� � 1

�
: (28)

The last term in (28) is negative:
d
�
2�(2��1) ln �

��1

�
d� = �2 ln �

��1 +
2��1
�(��1) > 0,

d2
�
2�(2��1) ln �

��1

�
d�2

=

� 1
�2(��1)2 < 0 and lim�!1

�
2� (2� � 1) ln �

��1

�
= 0.�
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7.4 Proof of Proposition 3

The e¤ect of a change in � on V � and W � follows directly from the expressions displayed in the

main body of the paper, so that we need focusing on � only. We �rst sign dV �

d� . After simpli�cation,

computations yield, for all y � y�S :

dV (y; y�S (p
�
S) ; p

�
S)

d�
=

�
�

r � � +
�
1

�
+ ln

y

y�S

�
d�

d�

�
V (y; y�S ; p

�
S) . (29)

Since
�
ln y

y�S

�
d�
d� � 0,

dV (y; y�S (p
�
S) ; p

�
S)

d�
�
�

�

r � � +
1

�

d�

d�

�
V (y; y�S ; p

�
S) . (30)

Substituting for d�d� ,
dV (y;y�S(p

�
S);p

�
S)

d� > 0 if g (�; r; �) � �
�
� �

�
1
2 �

�
�2

��
�2� (r � �) > 0. When � =

r � z, � = 1, and therefore g (z; z; �) = 1
2 +

z
�2
> 0. Moreover, dg(�;r;�)dr = �

�
� �

�
1
2 �

�
�2

���1
> 0.

Therefore,
dV (y;y�S(p

�
S);p

�
S)

d� > 0 for all admissible parameter values.

Next, we sign dW �

d� . Similarly, after simpli�cation, computations yield, for all y � y
�
S ,

dW (y; p�S)

d�
=

�
�

r � � +
�

1

� � 1 + ln
y

y�S

�
d�

d�

�
W (y; p�S) . (31)

Again
�
ln y

y�S

�
d�
d� � 0 implies that

dW (y; p�S)

d�
�
�

�

r � � +
1

� � 1
d�

d�

�
W (y; p�S) . (32)

Thus,
dW(y;p�S)

d� > 0 if h (�; r; �) � (� � 1)
�
� �

�
1
2 �

�
�2

��
�2 � (r � �) > 0. Taking � = r � z,

h (z; z; �) = 0, and dh(�;r;�)
dr = (� � 1)

�
� �

�
1
2 �

�
�2

���1
> 0. Therefore,

dW(y;p�S)
d� > 0 for all

admissible parameter values.

It remains to rank "V �=� and "W �=�. A simple reorganization of terms in (29) and (31), together

with 1
� <

1
��1 , directly leads to "W �=� < "V �=�. �

7.5 Proof of Proposition 6

The optimal follower investment threshold y�F and second spot price p
�
F having been discussed in the

text, only the �rst spot price p�L and the preemption threshold y
�
P remain to be established.
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First, we determine the upstream �rm�s strategy space to be of the form [0; p]. The value function

F (y; y�F ; p
�
F ) is increasing and convex and L (y; pL) is increasing and concave in y. The choice of pL

is bounded because the equation L (y; pL) = F (y; y�F ; p
�
F ) must have at least one root in y, given pL,

for downstream �rms to wish to invest �rst in the market. Setting dL(y;pL)
dy =

dF(y;y�F ;p
�
F )

dy , we �nd

that tangency occurs at y =
�

�M
��M�(��1)�D

� 1
��1

y�F . Note that y < y
�
F so long as �D < �M . Then,

p is de�ned implicitly by L (y; p) = F (y; y�F ; p
�
F ) :

Second, for pL 2 [0; p], a preemption equilibrium exists at the threshold yP (pL) that veri�es

L (yP (pL) ; pL) = F (yP (pL) ; y
�
F ; p

�
F ). Speci�cally, yP (pL) is de�ned implicitly by:

�M
r � �yP � pL �

�
yP
y�F

�� �

� � 1

�
�

� � 1
�M
�D

� 1
�
I = 0. (33)

The decision problem of the upstream �rm can then be examined. Its value when the current market

size is y is:

~W (y; pL; p
�
F ) =

�
y

yP (pL)

��
(pL � I) +

�
y

y�F

��
(p�F � I) . (34)

From (33) we obtain an expression of pL � I, which is plugged into (34). This leads to:

~W (y; pL; p
�
F ) = y

�

�
�y��P I +

�M
r � �y

1��
P � �

� � 1

�
�

� � 1
�M
�D

� 1
�
y���F I

�
+

�
y

y�F

��
(p�F � I) :

(35)

Note that:
~W (y; pL; p

�
F ) = V (y; yP ; I) + U (y; p

�
F ) , (36)

where U (y; p�F ) is independent of yP , and V (y; yP ; I) is the integrated payo¤ (1) of Section 3.1. The

upstream �rm�s decision problem is thus that of the integrated �rm, and the �rst-order condition

is satis�ed at y�P =
�
��1

r��
�M
I. Substituting into (33) gives the optimal �rst downstream spot price

p�L =
�
1� �

�
�; �M�D

��
�
��1I, with �

�
�; �M�D

�
�
�

�
��1

�M
�D

�1��
�
�

�
��1

�M
�D

���
. Since �

��1
�M
�D

>

1,
�

�
��1

�M
�D
� 1
��

�
��1

�M
�D

���
= �

�
�; �M�D

�
> 0. Also, � (�; 1) =

�
��1
�

���1
1
� < 1

� . We have

d�
�
�;
�M
�D

�
d
�M
�D

= �
�
�D
�M

� 1
��

�
��1

�M
�D

���
< 0 because �M > �D, so �

�
�; �M�D

�
< 1

� . In addition, it can

be veri�ed that y�P < y if and only if �
�
�; �M�D

�
< 1

� , so the equilibrium preemption trigger is in the

admissible range.

Finally, as p�L and p
�
F are given under the assumption of price-taking by downstream �rms, only

the parameters of L (y; pL) and F (y; y�F ; p
�
F ) are altered (speci�cally, the investment cost which is
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asymmetric for the �rst and second �rm to invest), so Fudenberg and Tirole [9]�s argument applies

to establish that downstream �rms seek to invest immediately o¤ the equilibrium path if no �rm has

entered yet when the market size reaches y�P . �

7.6 Proof of Proposition 8

The downstream value in equilibrium is:

~V (y; p�L; p
�
F ) =

1

2

�
y

y�P

�� �

� � 1�
�
�;
�M
�D

�
I +

1

2

�
y

y�F

�� �

(� � 1)2

�
1 + � � ��M

�D

�
I. (37)

Evaluating,

~V (y; p�L; p
�
F )� V (y; y�S ; p�S) =

(� � 1)��2

���1

�
y

y�P

��  ��M
�D

���
� 1
!
I < 0. (38)

The upstream value in equilibrium is:

~W (y; p�L; p
�
F ) =

�
y

y�P

�� �
1� ��

�
�;
�M
�D

��
I

� � 1 +
�
y

y�F

�� I

� � 1 . (39)

Recall that �M�D > 1. After simpli�cation, ~W (y; p�L; p
�
F ) > W (y; p�S) if and only if:

�

�
�;
�M
�D

�
�
 �

�

� � 1

��
� 1
!�

�M
�D

��
� �2

� � 1
�M
�D

+ � + 1 > 0. (40)

Note �rst that �(�; 1) =
�

�
��1

��
� �

��1 > 0. Next, we compute:

d�
�
�; �M�D

�
d�M�D

= �

 �
�

� � 1

��
� 1
!�

�M
�D

���1
� �2

� � 1 . (41)

Since �M
�D

> 1,

d�
�
�; �M�D

�
d�M�D

> �

 �
�

� � 1

��
� 1
!
� �2

� � 1 =
� (2� � 1)
� � 1

1� f (�)
f (�)

> 0,

where the last inequality follows because f (�) < 1 (see section 7:3), and therefore �
�
�; �M�D

�
> 0.
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The industry value with two �rms is:

2 ~V (y; p�L; p
�
F ) +

~W (y; p�L; p
�
F ) =

�
y

y�P

�� I

� � 1 +
�
y

y�F

�� �

(� � 1)2

�
1 + �

�
1� �M

�D

��
I. (42)

After simpli�cation, 2 ~V (y; p�L; p
�
F ) +

~W (y; p�L; p
�
F ) > V (y; y

�
S ; p

�
S) +W (y; p�S) if and only if:�

y�S
y�P

�� � � 1
2� � 1+

�
y�S
y�F

�� 1 + � �1� �M
�D

�
2� � 1 =

1 + �

2� � 1

�
�M
�D

���
� �

2� � 1

�
�M
�D

�1��
+

1

f (�)
> 1. (43)

Since 1
f(�) > 1 and lim�!1 1

f(�) =
e
2 (section 7.3), (43) holds for � and

�M
�D large enough. More-

over, the condition (43) is indeed violated for admissible parameter values. Let �
�
�; �M�D

�
�

1+�
2��1

�
�M
�D

���
� �

2��1

�
�M
�D

�1��
+ 1

f(�) � 1. For a given �, this is minimized at
�M
�D

= 1+�
��1 . Then,

�
�
�; 1+���1

�
= 1

2��1

�
��

(��1)��1 �
�
��1
�+1

���1�
� 1, and lim�!1�(�; 1+���1) = �1 < 0. �

7.7 Proof of Proposition 9

We have established that d�
d
�M
�D

= �
�
�D
�M

� 1
��

�
��1

�M
�D

���
< 0 for all �M > �D in the proof of Propo-

sition 6. The other derivative is d�
d� =

1
��1

�
�
��1

�M
�D

��� h
�M
�D
� 1� ln

�
�
��1

�M
�D

��
� �M�D � (� � 1)

�i
.

The sign of d�d� is that of the expression in square brackets. The derivative of this expression with

respect to �M
�D

is (� � 1)
�
�D
�M

� 1
�
� � ln

�
�
��1

�M
�D

�
, which is negative for all � > 1 and �M � �D.

Then take �M
�D

= 1 for a lower bound, which is � ln �
��1 < 0. It follows that

d�
d� < 0. �

7.8 Proof of Proposition 10

For the comparative statics, note that the functional form of the triggers y�P and y
�
F is similar to

that of y�S , and that p
�
F = p

�
S . The calculations are similar to those of the bilateral monopoly case of

Section 7.2. To show that dp
�
L

d� < 0, let z �
�
��1

�M
�D

for compactness and �rst evaluate this expression:

dp�L
d�

= � I

(� � 1)2
h
1 + z�� (�� (� � 1) (z � 1) ln z + (� � 2) z � (� � 1))

i
. (44)

Consider dp
�
L

d� as a function of �M�D . After simpli�cation,

@2p�L
@�@ �M�D

= ��z
�� (�M � �D) (� ln z � 2) I

(� � 1)�M
, (45)
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so dp�L
d� is quasiconcave in �M

�D
and attains a global maximum at ��1� e

2
� . Then, again after simpli�ca-

tion,

@p�L
@�

�����M
�D

=��1
�
e
2
�

= �

�
1 + (� � 1) e�2 � �e�2

��1
�

�
I

(� � 1)2
. (46)

The sign of the numerator in (46) depends on the sign of the expression �(�) � 1 + (� � 1) e�2 �
�e
�2��1

� . We have �(1) = 0 and �0 (�) = e�2 � ��2
� e

�2��1
� > 0. Therefore, @p�L

@�

����M
�D

=��1
�
e
2
�
< 0,

from which it follows that dp
�
L

d� < 0.�

7.9 Sensitivity of Firm Values to � under Preemption

The simplest expression to consider is the total industry value, whose comparative static behavior is

independent of �
�
�; �M�D

�
. We have:

d
�
2 ~V + ~W

�
d�

=

�
y

y�P

��
ln

�
y

y�P

�
I

� � 1 +
�
y

y�F

�� �
2
�

� � 1
�M
�D

+ � ln

�
y

y�F

��
I

(� � 1)2
. (47)

Consider the value of this expression at the preemption threshold y�P , to �nd:

d
�
2 ~V + ~W

�
d�

������
y=y�P

=

�
y�P
y�F

�� � �

� � 1
�M
�D

� � ln
�

�

� � 1
�M
�D

��
I

(� � 1)2
, (48)

which has the sign of
�

�
��1

�M
�D
� � ln

�
�
��1

�M
�D

��
. For a given �M

�D
, lim�!1

�
�
��1

�M
�D
� � ln

�
�
��1

�M
�D

��
=

+1 by l�Hôpital�s rule, while lim�!1
�

�
��1

�M
�D
� � ln

�
�
��1

�M
�D

��
= �1. �
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