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Abstract

This paper describes a series of algorithms that are used to compute optimal pol-

icy under full and imperfect information. Firstly we describe how to obtain linear

quadratic (LQ) approximations to a nonlinear optimal policy problem. We develop

novel algorithms that are required as a result of having agents with forward-looking

expectations, that go beyond the scope of those that are used when all equations are

backward-looking; these are utilised to generate impulse response functions and second

moments for the case of imperfect information. We describe algorithms for reducing

a system to minimal form that are based on conventional approaches, and that are

necessary to ensure that a solution for fully optimal policy can be computed. Finally

we outline a computational algorithm that is used to generate solutions when there is

a zero lower bound constraint for the nominal interest rate.
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1 Introduction

A Linear-Quadratic (LQ) approach to nonlinear dynamic optimization problems in macroe-

conomics is widely used for a number of reasons. First, for LQ problems the characteri-

zation of time-consistent and commitment equilibria for a single policy maker, and even

more so for many interacting policymakers, are well understood. Second, the certainty

equivalence property results in optimal rules that are robust in the sense that they are

independent of the variance-covariance matrix of additive disturbances. Third, policy can

be decomposed into deterministic and stochastic components. This is a very convenient

property since it enables the stochastic stabilization component to be pursued using sim-

ple Taylor-type feedback rules rather than the exceedingly complex optimal counterpart.

Fourth, in an imperfect information context the conditional welfare loss (in deviation

form about the deterministic steady state) conveniently decomposes into a deterministic

component and two stochastic components one of which describes the effect of imperfect

information. Finally for sufficiently simple models, LQ approximation allows analytical

rather than numerical solution.

The solution to linear rational expectations models goes back to Blanchard and Kahn

(1980) and has since been generalized in various dimensions by Pearlman et al. (1986),

Klein (2000) and Sims (2003). The early literature on optimal policy with commitment

developed LQ infinite time horizon control theory for engineering, non-forward-looking

models into a rational expectations (RE) forward-looking context (Driffill (1982), Calvo

(1978)), Miller and Salmon (1985), Levine and Currie (1987)).

In a stochastic environment the feedback representation of policy is crucial. For the

standard infinite time horizon LQ engineering problem, optimal policy can be represented

as a linear time-invariant feedback rule on the state variables; but this is no longer the

case when RE are introduced. Then as is shown in Levine and Currie (1987) the optimal

policy can only be implemented as a form of integral control. The added complexity of

such a rule adds force to the case for designing policy in the form of simple optimized,

but sub-optimal rules. The normative case for such rules was first put forward by Vines

et al. (1983), Levine and Currie (1985), Currie and Levine (1985) and Currie and Levine

(1993). This early literature considered both monetary and fiscal policy and in the case of

Vines et al. (1983) incomes and exchange rate targeting policies. The positive case for a

particular form of monetary policy interest rate rule feeding back on current inflation the

output gap was advocated by Taylor (1999), so simple ‘Maciejowski-Meade-Vines-Currie-

Levine Rules’ eventually became known as ‘Taylor Rules’. More recently, in the context

of DSGE models, we have seen a renewed interest in simple rules in general (referred to

by Woodford (2003) as ‘explicit instrument rules’) and interest rate rules in particular.

Following the pioneering contributions of Kydland and Prescott (1977) and Barro and

Gordon (1983), the credibility problem associated with monetary policy has stimulated a
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huge academic literature that has been influential with policymakers. The central mes-

sage underlying these contributions is the existence of significant macroeconomic gains, in

some sense, from ‘enhancing credibility’ through formal commitment to a policy rule or

through institutional arrangements for central banks such as independence, transparency,

and forward-looking inflation targets, that achieve the same outcome. The technical rea-

son for this result is that optimal policy formulated by Pontryagin’s maximum principle is

time-inconsistent - the simple passage of time, even in a deterministic environment, leads

to an incentive to re-optimize and renege on the initial optimal plan. Appreciation of this

problem has motivated the examination of policies that are optimal within the constraint

of being time consistent (Levine and Currie (1985), Miller and Salmon (1985), Currie and

Levine (1987), Cohen and Michel (1988) and Söderlind (1999) )

Comparing optimal policy with and without commitment enables us then to quan-

tify the stabilization gains from commitment. A number of papers have addressed this

question (see, for example, Vestin (2001), Ehrmann and Smets (2003), McCallum and

Nelson (2004), and Dennis and Söderström (2006)), but only in the context of economet-

ric models without micro-foundations and using an ad hoc loss function, or both, or for

rudimentary New Keynesian models. The credibility issue only arises because the deci-

sions of consumers and firms are forward looking and depends on expectations of future

policy. In the earlier generation of econometric models lacking micro-foundations, many

aspects of such forward-looking behaviour were lacking and therefore important sources of

time-inconsistency were missing. Although for simple New Keynesian models a quadratic

approximation of the representative consumer’s utility coincides with the standard ad hoc

loss that penalizes variances of the output gap and inflation, in more developed DSGE

models this is far from the case. By utilizing an influential empirical micro-founded DSGE

model, the euro area model of Smets and Wouters (2003), Levine et al. (2008b) use a

quadratic approximation of the representative household’s utility as the welfare criterion,

toe remedy these deficiencies of earlier estimates of commitment gains.

An further important consideration when addressing the gains from commitment, and

missing from these earlier studies, is the existence of a nominal interest rate zero lower

bound. A number of papers have studied optimal commitment policy with this constraint

(for example, Coenen and Wieland (2003), Eggertsson and Woodford (2003), Woodford

(2003), chapter 6). In an important contribution to the credibility literature, Adam and

Billi (2007) show that ignoring the zero lower bound constraint for the setting of the

nominal interest rate can result in considerably underestimating the stabilization gain

from commitment. The reason for this is that under discretion the monetary authority

cannot make credible promises about future policy. For a given setting of future interest

rates the volatility of inflation is driven up by the expectations of the private sector that

the monetary authority will re-optimize in the future. This means that to achieve a given

low volatility of inflation the lower bound is reached more often under discretion than
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under commitment. All these authors study a simple New Keynesaian and are able to

employ non-linear techniques. In a more developed model such as Smets and Wouters

(2003), Levine et al. (2008b) adopt the more tractable linear-quadratic (LQ) framework

reviewed above.

Further work on policy design takes LQ approximation as given and addresses issues

of robustness or the zero lower bound constraint for interest rates, and this is a further

Dynare theme that will be addressed by the authors in the future.

Section 2 focuses on the quadratic approximation to the welfare function via the

quadratic expansion of the Lagrangian about the long-run optimum, while Section 3 pro-

vides a detailed account of the linear approximation to the constraints. Sections 4 and

5 describe how this is used to generate impulse response functions and second moments

when agents have imperfect information. Section 6 describes how the likelihood function

is computed under symmetric imperfect information between agents and econometrician.

Section 7 shows how to obtain a reduced form of the state space which is controllable

and observable - both essential for computational purposes. Section 8 discusses issues of

optimal policy when the nominal interest rate is constrained not to be below zero with a

given (small) probability; we outline an algorithm which has good convergence properties

in practice. Section 9 concludes.

2 The LQ Approximation

But what is the correct procedure for replacing a stochastic nonlinear optimization prob-

lem with a LQ approximation? As pointed out by Judd (1998), some common methods

employed by economists have produced poor approximations which fail to consistently

incorporate all relevant second-order terms and thus open up the possibility of spurious

results. These pitfalls are also very neatly exposed in Kim and Kim (2003) and Kim and

Kim (2006).

Judd (1998), pages 507-509, draws attention to a general Hamiltonian framework for

approximating a nonlinear problem by an LQ one due to Magill (1977a), who appears

to be the first to have applied it in the economics literature, albeit in a continuous-time

framework.1 This paper is the precursor to a recent literature led by Michael Woodford

that considers an LQ approximation to the Ramsey problem in the context of DSGE

models.2 Levine et al. (2008a) also apply the Hamiltonian approach to nonlinear prob-

1See also, Magill (1977b).
2See Woodford (2003), Benigno and Woodford (2003, 2005), Altissimo et al. (2005), Benigno and

Woodford (2008) for one-country models and Benigno and Benigno (2006) for a two-country generalization.

The large distortions’ case of Benigno and Woodford (2003) and Benigno and Benigno (2006) uses the

method of undetermined coefficients, but their more recent work uses what amounts to the Hamiltonian

approach of Magill which involves less algebraic manipulation and provides a more convenient algorithm

suitable for numerical computation.
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lems in a two-country context to obtain an LQ approximation. It should be noted that

the Judd second-order perturbation and Hamiltonian approaches generate the same LQ

approximation.

Both Benigno and Woodford (2008) and Levine et al. (2008a) develop the Magill frame-

work in presenting a discrete-time version of his results generalized to rational expectations

models with forward-looking variables. These results include second-order necessary con-

ditions for non-concave intertemporal problems which are rarely discussed in the literature

and have not been published anywhere for forward-looking systems. Levine et al. (2008a)

explain how these conditions relate to the non-optimality of zero inflation for certain pa-

rameter combinations in a New Keynesian setting.

The underlying idea behind LQ approximation is that it is an approximation that is

valid in the vicinity of the steady state of the optimal solution to the policy problem. This

poses no problems for a purely backward-looking system, but is potentially controversial

in economics, given that some behaviour is forward-looking. It would seem therefore

that there is potentially one steady state that is a solution to the policy problem when

the policymaker can commit, and another when the policymaker cannot. In the first

case, the steady state may be solved from the steady state of the first-order conditions

for an optimum; this is identical to the case when all forward-looking expectations are

treated as though they were dependent on the other variables in the equations in which

they appear, so that in effect they are backward-looking3. In the second case, the time-

consistent solution must be Markov perfect, which requires that forward expectations be

expressed in terms of variables which are backward looking; the optimal solution must

then be consistent with this assumed behaviour. However, apart from LQ problems there

is no known way to calculate the solutions to these time-consistent problems in which the

policymaker cannot commit. In addition there is the issue of whether there are further

possible steady states which take account of the policymaker merely applying an optimal

simple (e.g. Taylor-type monetary) rule.

The literature however appears to have converged to a view that most policymakers

have the ability to commit to a long-run value of the policy variable, but there is no

guarantee that they have the ability or institutional power to pre-commit to responses

to shocks. It follows that one can use an LQ approximation derived from perturbations

about the deterministic long run of the fully optimal (pre-commitment) solution, which

yields a linear approximation to the dynamics and the quadratic approximation to the

welfare. This in turn can be applied to solve the response to shocks under any further

behavioural assumption - pre-commitment, time consistency or commitment to simple

rules. A variation on the optimal rule is the timeless approach due to Woodford (1999),

which has been shown by Blake and Kirsanova (2004) to be sometimes inferior to time-

3Of course the dynamic behaviour is different from the forward-looking case, as the initial conditions

in the latter case can jump.
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consistent policy and by Ellison et al. (2009) to suffer from lack of transparency.

A useful property of the LQ approximation is that when it is extended to include

shocks as well, then the quadratic approximation of the welfare can be expressed in terms

of targets or ‘bliss points’ for linear combinations of macroeconomic variables. Such a

property fits in with the notion of targeting rules proposed by Svensson (2003, 2005).

For two decades or more many macroeconomists ’forgot’ the work of Magill (1977a),

and proceeded by linearizing the dynamics and taking quadratic approximations of the

welfare function, which leads to wrong results. For a number of years from about 2000-

2006, the LQ approximation to the Ramsey problem was analysed for the ‘efficient case’

(where subsidies eliminate distortions in the steady state due typically to price or wage

frictions) and the ‘small distortions case’ where such subsidies are not available, but for

which the steady state was similar to that of efficiency. However with the resurrection

of the Hamiltonian approach the so-called ’large distortions’ or LQ approach is becoming

the norm.

The problem is to maximize E0
∑

βtu(Yt,Wt) such that

Etg(Yt, Yt+1,Wt, εt) = 0 h(Yt, Yt−1,Wt, εt) = 0 (1)

We write the problem in this way so that, for convenience, there are no 2nd order deriva-

tives in Yt+1 and Yt−1; thus the main constraint is that there are no nonlinear interactions

between Yt+1 and Yt−1. If there are, then just define a new set of required variables

Y Lit = Yi,t−1, and append the latter equations to h( , ) and the new variables to Yt.

Write the Lagrangian as∑
βt[u(Yt,Wt) + λT f(Yt, Yt+1, Yt−1,Wt, εt)] (2)

where fT = [gT hT ]. First-order conditions are given by

∂L

∂Wt
= u2 + λT f4(Yt, Yt+1, Yt−1,Wt, εt) (3)

∂L

∂Yt
= u1 + λT f1(Yt, Yt+1, Yt−1,Wt, εt) +

1

β
λT f2(Yt−1, Yt, Yt−2,Wt−1, εt−1)

+βλT f3(Yt+1, Yt+2, Yt,Wt+1, εt+1) (4)

Second-order terms are given by

LWW = u22 + λT f44 LWY = u21 + λT f41

LY Y = u11 + λT f11 +
1

β
λT f22 + βλT f33 (5)

Lεε = λT f55 LWε = λT f45 LY ε = λT f15 (6)

Additional terms across time periods are as follows:

LW−1Y =
1

β
λT f42 LY−1Y = λT f31 +

1

β
λT f12 LWY−1 = λTh43 Lε−1Y =

1

β
λT f52

(7)
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Note that because of our assumption about no interaction between Yt+1 and Yt−1, it follows

that LY−1Y+1 = 0. Since it is expectation of the utility function that is to be maximized,

we can ignore LY−1ε = 0 because E0Yt−1εt = 0. We shall also assume for convenience that

f52 = 0, so that the last term of (7) is zero; the state space setup derived below requires

a new variable which is equal to the shocks, so this is not an unreasonable requirement.

As we shall see below, the linearized state space setup of the dynamics at time t will

contain a linear combination of ∆Yt ≡ Yt − Yt−1, as well as a ∆Yt−1, but in order to

accommodate the lags in ∆Wt, as in (7), we need these in the state space as well.

From now on we shall express all linearized variables apart from the shocks as pro-

portional deviations from the steady state of the optimum e.g. yit = Yit−Ȳi

Ȳi
, and all

second-derivatives of the Lagrangian are transformed to correspond to this e.g. Lwy =

diag(W̄1, ..., W̄k)LWY diag(Ȳ1, ..., Ȳn). An exception to this is when Ȳi = 0, in which case

we use deviations and not proportional deviations.

Suppose we write the linearized proportional deviation approximation of (1) as

A0yt+1,t +A1yt = A2yt−1 +B1wt +B2εt (8)

In general A0 will not be of full rank, and its rank could either be (a) less than the

number of forward-looking variables or (b) less than the number of equations in which a

forward-looking variable appears.

As we shall see in the next section, one can rewrite (8) in Blanchard-Kahn format as
εt+1

st

xt

xt+1,t

 =


0 0 0 0

G1 G2 G3 G4

0 0 0 I

H1 H2 H3 H4




εt

st−1

xt−1

xt



+


I

0

0

0

 εt+1 +


0

N1

0

N3

wt (9)

where yt = V1xt + V2st. However because of the requirement for lags in the instruments
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to enter the state space, we need to expand (34) to


εt+1

wt

st

xt

xt+1,t

 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

G1 0 G2 G3 G4

0 0 0 0 I

H1 0 H2 H3 H4




εt

wt−1

st−1

xt−1

xt



+


I

0

0

0

0

 εt+1 +


0

I

N1

0

N3

wt (10)

so that yt = V1xt + V2st = [V2G1 0 V2G2 V2G3 V2G4 + V1]zt ≡ Γyzt, where zTt =

[εTt wT
t−1 sTt−1 xTt−1 xTt ]. Also note that yt−1 = [0 0 V2 V1 0]zt ≡ Γy−1zt and wt−1 =

[0 I 0 0 0]zt ≡ Γwzt and that εt = [I 0 0 0 0]zt ≡ Γεzt.

Thus the welfare approximation in each period may be expressed as

WelfApprox =
1

2

[
zTt Wzzzt + wT

t Wwwwt + zTt Wzwwt + wT
t Wwzzt

]
(11)

where

Wzz = ΓT
y LyyΓy + ΓT

ε LεεΓε + ΓT
y LyεΓε + ΓT

ε LεyΓy

+ΓT
wLw−1yΓy + ΓT

y Lyw−1Γw + ΓT
y−1

Ly−1yΓy + ΓT
y Lyy−1Γy−1 (12)

Www = Lww Wwz = LwyΓy + LwεΓε + Lwy−1Γy−1 (13)

3 From the Sims to the Blanchard-Kahn State Space Form

The aim of this section is to describe an algorithm for turning the state space setup (8) of

Dynare, into one that is suitable for obtaining the partial information setup that conforms

to that of Pearlman et al. (1986):[
zt+1

xt+1,t

]
=

[
A11 A12

A21 A22

][
zt

xt

]
+

[
C

0

]
εt+1 +

[
D1

D2

]
wt (14)

We assume that the information set is expressed in linearized form as

mt = Lyt + vt (15)

where typically there is no observation error (vt = 0) and L picks out most of the economic

variables, typically excluding capital stock, Tobin’s q and shocks. However more generally

there is observation error, most notably when using historical data revisions.
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Agents’ measurements in the Pearlman et al. (1986) setup are then given by

mt =
[
K1 K2

] [ zt

xt

]
+ vt (16)

(14) can then be used in conjunction with the welfare loss of the previous section to gener-

ate fully optimal, time consistent and optimized simple rules for both the full information

case using Currie and Levine (1993), and the case when agents have only partial informa-

tion of the form , using the results of Pearlman (1992). In addition, when estimating a

system with given rules, one can generate the likelihood function under partial information

(see below).

The algorithm proceeds as follows. For the moment define uTt = [wT
t εTt ], and B =

[B1 B2], so that we may write (8) as

A0yt+1,t +A1yt = A2yt−1 +But (17)

To repeat, all shocks m̄t to the system at time t are dated as though they were mt−1.

The procedure for conversion to a form suitable for filtering is then as follows:

1. Obtain the singular value decomposition for matrix A0: A0 = UDV T , where U, V

are unitary matrices. Assuming that only the first m values of the diagonal matrix

D are non-zero, we can rewrite this as A0 = U1D1V
T
1 , where U1 are the first m

columns of U , D1 is the first m×m block of D and V T
1 are the first m rows of V T .

2. Multiply (17) by D−1
1 UT

1 , which yields

V T
1 yt+1,t +D−1

1 UT
1 A1yt = D−1

1 UT
1 A2yt−1 +D−1

1 UT
1 But (18)

Now define xt = V T
1 yt, st = V T

2 yt, and use the fact that I = V V T = V1V
T
1 + V2V

T
2

to rewrite this as:

xt+1,t +D−1
1 UT

1 A1(V1xt + V2st) = D−1
1 UT

1 A2(V1xt−1 + V2st−1) +D−1
1 UT

1 But (19)

3. Multiply (17) by UT
2 which yields

UT
2 A1yt = UT

2 A2yt−1 + UT
2 But (20)

which can be rewritten as

UT
2 A1(V1xt + V2st) = UT

2 A2(V1xt−1 + V2st−1) + UT
2 But (21)

4. Suppose that UT
2 A1V2 is not invertible. We then need a more sophisticated approach,

which reduces the dimension of the forward-looking variables (and increases the

dimension of the backward-looking variables), and which may require a loop:
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(a) For convenience, rewrite (19) and (21) as

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5ut (22)

C1xt + C2st = C3xt−1 + C4st−1 + C5ut (23)

and obtain the SVD C2 = J1K1L
T
1 .

(b) Multiply (23) through by JT
2 where J2 is orthogonal to J1 to yield

JT
2 C1xt = JT

2 C3xt−1 + JT
2 C4st−1 + JT

2 C5ut (24)

Note that the vector st will be augmented by JT
2 C1xt

(c) Find a matrix M that has the same number of columns as JT
2 C1 and is made

up of rows that are orthogonal to JT
2 C1, and define[

x̄t

x̂t

]
=

[
M

JT
2 C1

]
xt xt = M1x̄t+M2x̂t where [M1 M2] =

[
M

JT
2 C1

]−1

(25)

Now shift (24) one period forward and take expectations; the expectation

Etεt+1 = 0 automatically, but if any of the coefficients in JT
2 C5 correspond-

ing to Etwt+1 are non-zero, record an error - this will be sorted out at a much

later stage. Then equate this to the product of (22) by JT
2 C1 which yields

JT
2 C3xt + JT

2 C4st = JT
2 C1(−F1xt − F2st + F3xt−1 + F4st−1 + F5ut) (26)

or equivalently

(JT
2 C3+JT

2 C1F1)xt+(JT
2 C4+JT

2 C1F2)st = JT
2 C1(F3xt−1+F4st−1+F5ut) (27)

(d) Thus we can rewrite the system (22), (23) in terms of forward-looking variables

x̄t and backward-looking variables st, x̂t:

x̄t+1,t +MF1M1x̄t + [MF2 MF1M2]

[
st

x̂t

]
(28)

= MF3M1x̄t−1 + [MF4 MF3M2]

[
st−1

x̂t−1

]
+MF5ut

[
C1M1

JT
2 (C3 + C1F1)M1

]
x̄t +

[
C2 C1M2

JT
2 (C4 + C1F2) JT

2 (C3 + C1F1)M2

][
st

x̂t

]
(29)

=

[
C3M1

JT
2 C1F3M1

]
x̄t−1 +

[
C4 C3M2

JT
2 C1F4 JT

2 C1F3M2

][
st−1

x̂t−1

]
+

[
C5

JT
2 C1F5

]
ut

9



(e) Thus the number of forward-looking states has decreased because x̄t = M1xt,

and the number of backward-looking states s̄t =

[
st

x̂t

]
has increased by the

same amount. In addition the relationship yt = V1xt + V2st has changed to

yt = V1M1x̄t +

[
V2

V1M2

]
s̄t (30)

(f) We then re-define the matrices C1, C2, C3, C4, C5, F1, F2, F3, F4, F5 accordingly,

and check whether C2 is invertible. If not, then go back to (a); otherwise

continue.

5. Now that C2 is invertible, we can rewrite (19) and (21) as I 0 0

0 I 0

F2 0 I


 st

xt

xt+1,t

 =

 C−1
2 C4 C−1

2 C3 −C−1
2 C1

0 0 I

F4 F3 −F1


 st−1

xt−1

xt

+
 C−1

2 C5

0

F5

ut

(31)

which can be further rewritten as st

xt

xt+1,t

 =

 C−1
2 C4 C−1

2 C3 −C−1
2 C1

0 0 I

F4 − F2C
−1
2 C4 F3 − F2C

−1
2 C3 −F1 + F2C

−1
2 C1


 st−1

xt−1

xt



+

 H1

0

H3 − FH1

ut (32)

6. The measurements mt = Lyt + vt can be written in terms of the states as mt =

L(V1xt + V2st) + vt. To write the system in a form which corresponds to that of

Pearlman et al. (1986) we need to write the measurements in terms of the forward-

looking variables xt and in terms of the backward-looking variables st−1, xt−1. We

do this by substituting for st from (32); but this introduces a term in ut into the

expression, and Pearlman et al. (1986) assume that shock terms in the dynamics

and in the measurements are uncorrelated with one another. To remedy this, we

incorporate εt into the predetermined variables, but we can retain wt as it stands.

Defining  H1

0

H3 − FH1

ut =

 P1

0

P3

 εt +

 N1

0

N3

wt (33)
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we may rewrite the dynamics and measurement equations in the form:
εt+1

st

xt

xt+1,t

 =


0 0 0 0

P1 C−1
2 C4 C−1

2 C3 −C−1
2 C1

0 0 0 I

P3 F4 − F2C
−1
2 C4 F3 − F2C

−1
2 C3 −F1 + F2C

−1
2 C1




εt

st−1

xt−1

xt



+


I

0

0

0

 εt+1 +


0

N1

0

N3

wt (34)

mt =
[
LV2P1 LV2C

−1
2 C4 LV2C

−1
2 C3 LV1 − LV2C

−1
2 C1

]


εt

st−1

xt−1

xt

+LV2N1wt+vt

(35)

Thus the setup is as required, with the vector of predetermined variables given by [ε′t s
′
t−1 x

′
t−1]

′,

and the vector of jump variables given by xt. Note that there is an issue not covered by

Pearlman (1992), namely that the instrument wt is part of the measurement equation;

if we assume that the instruments are observed, then there is no problem to modify the

theory.

Note that this means that the relationship between the underlying variables yt and the

state space variables and instruments is given by

[
yt

wt

]
= Γ


εt

st−1

xt−1

xt

wt

 where Γ =

[
V2P1 V2G11 V2G12 V1 − V2G13 V2N1

0 0 0 0 I

]
(36)

4 Impulse Response Functions

We distinguish between two cases: agents having full information, and agents having

partial information mt at time t. Assume that the system (14) contains no instruments

and is already saddlepath stable, so that D1 = 0, D2 = 0, and that the relationship (36)

can be written as yt = Γ1zt + Γ2xt.

4.1 Full Information Case:

It is well-known that the impulse response functions can be generated from

zt+1 = (A11 −A12N)zt + Cεt+1 xt = −Nzt yt = Γ1zt + Γ2xt (37)
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where [
N I

] [ A11 A12

A21 A22

]
= ΛU

[
N I

]
(38)

and ΛU is a square matrix with unstable eigenvalues equal to those of the system.

4.2 Partial Information Case:

The reduced-form solution, that can be used to generate the impulse response functions

is then given by:

System : zt+1 = Fzt + (A− F )z̃t

+(F −A)PHT (HPHT + V )−1(Hz̃t + vt) + Cεt+1 (39)

xt = −Nzt + (N −A−1
22 A21)z̃t

−(N −A−1
22 A21)PHT (HPHT + V )−1(Hz̃t + vt) (40)

Innovations : z̃t+1 = Az̃t −APHT (HPHT + V )−1(Hz̃t + vt) + Cεt+1 (41)

Measurement : mt = Ezt + (H − E)z̃t + vt

−(H − E)PHT (HPHT + V )−1(Hz̃t + vt)

= Ezt,t−1 + (EPHT + V )(HPHT + V )−1(Hz̃t + vt) (42)

V ariables : yt = Γ1zt + Γ2xt (43)

where F = A11−A12N A = A11−A12A
−1
22 A21 E = K1−K2N H = K1−K2A

−1
22 A21

V is the covariance matrix of the measurement errors, and P is the solution of the Riccati

equation given by

P = APAT −APHT (HPHT + V )−1HPAT + CUCT (44)

and U is the covariance matrix of the shocks to the system.

5 Covariances and Autocovariances

Pearlman et al. (1986) show that

cov

[
z̃t

zt

]
=

[
P P

P P +M

]
≡ P0 (45)

where M satisfies

M = FMF T + FPHT (HPHT + V )−1HPF T (46)

To calculate the covariances and autocovariances of yt, we note from the previous section

that yt can also be written as yt = V1xt+V2st, and that the last bottom part of the vector

12



zt is given by [sTt−1 xTt−1]
T , of dimension n, say. Then defining Ω0 as the bottom right

n× n matrix of (P +M), it follows that

cov(yt) = [ V2 V1 ]Ω0

[
V T
2

V T
1

]
≡ R0 (47)

To calculate the autocovariances, define

Φ =

[
A(I − PHT (HPHT + V )−1H) 0

(A− F )(I − PHT (HPHT + V )−1H) F

]
(48)

Then the sequence of auto-covariance matrices of yt are defined as follows:

E

([
z̃t+k

zt+k

]
,

[
z̃t

zt

])
≡ Pk = ΦkP0 = ΦPk−1 (49)

Defining Ωk as the bottom right n× n matrix of Pk, it follows that

cov(yt+k, yt) = E(yt+ky
T
t ) = [ V2 V1 ]Ωk

[
V T
2

V T
1

]
≡ Rk (50)

It follows that

1. the autocorrelation function of the ith element of Y is given by the sequence
(R1)ii
(R0)ii

, (R2)ii
(R0)ii

, (R3)ii
(R0)ii

, ....

2. the correlation matrix of the yt variables is defined as

Corr = ∆̂R0∆̂
T where ∆̂ = diag(

√
(R0)11,

√
(R0)22,

√
(R0)33, ...) (51)

6 Calculation of the Likelihood Function

Once again we assume that there are no policy instruments wt and that the system is

saddlepath stable. In addition we assume that agents have the same information set as

the econometrician.

From the perspective of the econometrician, who starts out with no information other

than the structure of the system, the reduced form is given by (39) and (42), with covari-

ance matrices as calculated above. In order to reduce the amount of notation, we assume

that the measurement errors are incorporated into the shocks so that the vector εt+1 is

augmented by vt+1. After some algebraic manipulation it can be shown that the optimal

estimate of z̃t using information up to t − 1 is equal to 0, from which it follows that the

Kalman filtering equation for zt is given by

zt+1,t = Fzt,t−1 + FZtE
T (EZtE

T )−1et (52)
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where et = mt − Ezt,t−1 and

Zt+1 = FZtF
T + PHT (HPHT )−1HP − FZtE

T (EZtE
T )−1EZtF

T (53)

the latter being a time-dependent Ricatti equation.

The likelihood function is standard:

2lnL = −
∑

lndet(cov(et)−
∑

eTt (cov(et))
−1et (54)

where

cov(et) = EZtE
T (55)

The system is initialised at z1,0 = 0, and Z1 is initialised by the solution of the

Lyapunov equation

Z1 = FZ1F
T + PHT (HPHT )−1HP (56)

where P is the steady state of the Riccati equation above.

7 Controllable and Observable Forms

For the calculation of optimal policy based on the linearized version of the nonlinear

dynamics, there are two numerical problems. Firstly, if for example one is studying a

small open economy then there will be a part of the model (without an exogenous instru-

ment) describing the large economy that typically involves forward looking variables. This

will therefore have unstable eigenvalues that the period-doubling solution for the Riccati

equation cannot handle - this is the controllability problem. Secondly, the linearization

of the New Keynesian Phillips curve at an inflation level of 0 generates a set of at least

two dynamic equations that can be collapsed into just one (see Appendix for example);

the number of variables needs to be collapsed down as well, otherwise this also generates

problems with the period-doubling solution - this is the observability problem.

Write the system in the form[
zt+1

xt+1,t

]
= A

[
zt

xt

]
+Bεt+1 +Dwt yt = Γ

[
zt

xt

]
(57)

.

7.1 Controllable Form

Suppose that the system is not controllable, so that there exist eigenvalues λ and eigen-

vectors mT such that

mTA = λmT mTB = 0 mTD = 0 (58)
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This implies that mTxt+1 = λmTxt i.e. mTxt evolves independently of any instruments

or shocks.

If this were a backward-looking system, then the following algorithm is appropriate:

Define matrix T and its inverse, so that it is made up of mT and a set of row vectors

F orthogonal to mT :

T =

[
F

mT

]
T−1 =

[
F̂ n

]
TT−1 =

[
F

mT

][
F̂ n

]
=

[
I 0

0 1

]
(59)

We can then rewrite the dynamic equations as[
F

mT

]
xt+1 =

[
F

mT

]
A

[
F̂ n

][
F

mT

]
xt +

[
F

mT

]
Bwt (60)

which can be rewritten as[
Fxt+1

mTxt+1

]
=

[
FAF̂ Fn

0 λ

][
Fxt

mTxt

]
+

[
FBut

0

]
(61)

so the reduced form is

Fxt+1 = FAF̂ (Fxt) + FBwt yt = ΓF̂ (Fxt) (62)

Thus the system is now written in terms of Fxt.

However for RE systems one has to proceed with more care. Firstly, if mT contains

non-zero elements corresponding to both forward and backward-looking variables, then

this will imply a potential saddlepath relationship whether or not mTB = 0, provided

that the eigenvalue λ has modulus greater than 1. Secondly, ifmTB = 0, then one one only

reduces the system if all the the non-zero elements of mT correspond only to backward or

only to forward-looking variables.

Thus the program proceeds as follows:

1. Find λ,mT . If mTD ̸= 0 do nothing, but if mTD = 0 then

• if mT contains non-zero elements corresponding to both forward and backward

variables and |λ| > 1, proceed to 2; reduce the number of FL variables by 1.

Otherwise do nothing

• if mT contains non-zero elements corresponding to only forward or only back-

ward variables and mTB = 0, proceed to 2; reduce either the number of FL or

the number of BL variables by 1 accordingly. Otherwise do nothing.

2. Choose F to create T as in (60); find T−1 and hence F̂

3. Calculate FAF̂ , FB,ΓF̂ , and record whether the dimension of forward or backward

looking variables is reduced.

Remark: Typically all the eigenvalues and eigenvectors of the non-controllable states

will be grouped together in one sweep, rather than dealt with one by one.
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7.2 Observable Form

Suppose there are eigenvalues µ and eigenvectors s such that

Γs = 0 As = µs (63)

Now define matrix T and its inverse, so that it is made up of s and a set of column vectors

G each having a single 1 with remaining values 0:

T =

[
G s

]
T−1 =

[
H

vT

]
T−1T =

[
H

vT

][
G s

]
=

[
I 0

0 1

]
(64)

We can then rewrite the dynamic equations as[
H

vT

]
xt+1 =

[
H

vT

]
A

[
G s

][
H

vT

]
xt +

[
H

vT

]
Bwt yt = Γ

[
G s

][
H

vT

]
xt

(65)

which can be rewritten as[
Hxt+1

vTxt+1

]
=

[
HAG 0

vTAG λ

][
Hxt

vTxt

]
+

[
HBut

vTBut

]
yt = ΓG(Hxt) (66)

The dynamics of vTxt then play no role in the measurement yt, so we can rewrite this in

reduced form as

Hxt+1 = HAG(Hxt) +HBwt yt = ΓG(Hxt) (67)

Thus the system is now written in terms of Hxt.

To program this, we proceed as follows:

• Find µ, s. Select an s that contains only non-zero entries corresponding to backward-

looking variables or only forward-looking variables.

• Choose G to create T as in (65); find T−1 and hence H.

• Calculate HAG,HB,ΓG, and record whether the dimension of forward or backward

looking variables is reduced.

• If the only s that are left contain non-zero elements in the positions of both FL and

BL variables, record as error and exit.

8 Optimal Policy and the Zero Lower Bound

Details of optimal policy for the full information case can be viewed in Currie and Levine

(1993) and for the partial information case are in Pearlman (1992), so are not detailed here.

Three types of optimal policy are studied - fully optimal, time-consistent and optimized
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simple rules. If the variances of shocks are sufficiently large, this will lead to a large

nominal interest rate variability and the possibility of the nominal interest rate becoming

negative.

To rule out this possibility but remain within the tractable LQ framework, we follow

Woodford (2003), chapter 6, and modify our interest-rate rules to approximately impose an

interest rate ZLB so that this event hardly ever occurs. Write the quadratic approximation

to the single-period loss function can be written as Lt. As in Woodford (2003), chapter 6,

the ZLB constraint is implemented by modifying the single period welfare loss to Lt+wrr
2
t .

Then following Levine et al. (2008b), the policymaker’s optimization problem is to

choose wr and the unconditional distribution for Rt (characterized by the steady state

variance) shifted to the right about a new non-zero steady state inflation rate and a

higher nominal interest rate, such that the probability, p, of the interest rate hitting the

lower bound is very low. This is implemented by calibrating the weight wr different for

each policy rule - fully optimal (OPT), time-consistent (TCT) or optimized simple (SIM)

so that z0(p)σr < Rn where z0(p) is the critical value of a standard normally distributed

variable Z such that prob (Z ≤ z0) = p, R∗
n = (1+ π∗)R+ π∗ is the steady state nominal

interest rate, R is the steady state real interest rate, σ2
r = var(Rn) is the unconditional

variance and π∗ is the new steady state inflation rate. Given σr the steady state positive

inflation rate that will ensure Rt ≥ 0 with probability 1− p is given by

π∗ = max

[
z0(p)σr −R

1 +R
× 100, 0

]
(68)

In our linear-quadratic framework we can write the intertemporal expected welfare

loss at time t = 0 as the sum of stochastic and deterministic components, Ω0 = Ω̃0 + Ω̄0.

Note that Ω̄0 incorporates in principle the new steady state values of all the variables;

however the NK Phillips curve being almost vertical, the main extra term comes from

a contribution from (π∗)2. By increasing wr we can lower σr thereby decreasing π∗ and

reducing the deterministic component, but at the expense of increasing the stochastic

component of the welfare loss. By exploiting this trade-off, we then arrive at the optimal

policy that, in the vicinity of the steady state, imposes the ZLB constraint, rt ≥ 0 with

probability 1− p.

Note that in our LQ framework, the zero interest rate bound is very occasionally

hit. Then interest rate is allowed to become negative, possibly using a scheme proposed

by Gesell (1934) and Keynes (1936). Our approach to the ZLB constraint (following

Woodford (2003))4 in effect replaces it with a nominal interest rate variability constraint

which ensures the ZLB is hardly ever hit. By contrast the work of a number of authors

4We generalize the treatment of Woodford however by allowing the steady-state inflation rate to rise.

Our policy prescription has recently been described as a dual mandate in which a central bank committed

to a long-run inflation objective sufficiently high to avoid the ZLB constraint as well as a Taylor-type policy

stabilization rule about such a rate - see Blanchard et al. (2010) and Gavin and Keen (2011).
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including Adam and Billi (2007), Coenen and Wieland (2003), Eggertsson and Woodford

(2003) and Eggertsson (2006) study optimal monetary policy with commitment in the face

of a non-linear constraint it ≥ 0 which allows for frequent episodes of liquidity traps in

the form of it = 0.

A problem with the procedure described so far is that it shifts the steady state to

a new one with a higher inflation, but continues to approximate the loss function and

the dynamics about the original Ramsey steady state. We know from the work of Ascari

and Ropele (2007a) and Ascari and Ropele (2007b) that the dynamic properties of the

linearized model change significantly when the model is linearized about a non-zero infla-

tion. This issue is addressed analytically in Coibion et al. (2011), but in a very simple NK

model. We now propose a general solution and numerical procedure that can be used in

any DSGE model.

1. Set up the Non-Linear Model in Dynare. Define a new parameter: p, the probability

of hitting the ZLB, the weight wr on the variance of the nominal net interest rate

and a target steady state nominal interest rate R̂n.

2. Modify the single-period utility to Lt = Λt − 1
2wr(Rn,t − R̂n)

2.

3. In the first iteration let wr to be low to get through OPT, say wr = 0.001 and R̂n =
1
β − 1, the no-growth zero-inflation steady-state nominal interest rate corresponding

to the standard Ramsey problem with no ZLB considerations.

4. Perform the LQ approximation of the Ramsey optimization problem with modified

loss function Lt. For standard problems the steady state nominal net inflation rate

πRamsey = 0 and RRamsey
n = 1

β − 1. In general, for wr > 0, RRamsey
n ̸= 1

β − 1

5. Compute OPT or TCT or optimized simple rule SIM in Dynare-ACES

6. Extract σr = σr(wr).

7. Extract the minimized conditional (in the vicinity of the steady state, i.e. z0 = 0 in

ACES) stochastic loss function Ω̃0(wr)

8. Compute r∗n = r∗n(wr) defined by r∗n(wr) = max
[
z0(p)σr −RRamsey

n × 100, 0
]
, where

in the first iteration RRamsey
n = 1

β − 1 as noted above. This ensures that the ZLB is

reached with a low probability p.

9. If r∗n < 0, the ZLB constraint is not binding; if rn∗ > 0 it is. Proceed in either case.

10. Define π∗ = πRamsey + r∗n.

11. Compute the steady state Ω̄0(π
∗) at the steady state of the model with a shifted

new inflation rate π∗. Then compute ∆Ω̄0(r
∗(wr)) ≡ Ω̄0(π

∗)− Ω̄0(π
Ramsey)
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12. Compute the actual total stochastic plus deterministic loss function that hits the

ZLB with a low probability p

Ω0(wr) = Ω̃actual
0 (wr) + ∆Ω̄0(r

∗(wr)) (69)

13. A good approximation for Ω̃0(wr)
actual is Ω̃0(wr)

actual ≃ Ω̃0(wr) − 1
2wrσ

2
r provided

the welfare loss is multiplied by 1− β.

14. Finally minimize Ω0(wr) with respect to wr. This imposes the ZLB constraint as in

Figure 1.

15. What now changes is to reset R̂n = 1
β − 1 + απ∗ where α ∈ (0, 1] is a relaxation pa-

rameter to experiment with, i.e., (R̂n)
new = RRamsey,old+ r∗n, w

new
r = argminΩ0(wr)

and return to the beginning. Iterate until R̂n and wr are unchanged.

9 Conclusions

We have provided novel algorithms for writing RE models in Blanchard-Kahn form,

thereby enabling standard methods to be used for computing optimal policy, impulse

response functions and second moments. We have also demonstrated how standard meth-

ods for controllability and observability need to be tailored for RE models. Finally we

have described an algorithm with good convergence properties for computing policies -

fully optimal, time consistent and optimized simple - that satisfy the ZLB for nominal

interest rates.

Appendix

A Example of Non-observable Form

Consider the part of the NK Phillips Curve in non-linear form:

Ht − ξβEt[Π
ζ−1
t Ht+1] = Y 1−σ

t (70)

Jt − ξβEt[Π
ζ
tJt+1] = α

(
Yt
At

)1−σ

(71)

1 = ξΠζ−1
t + (1− ξ)

(
Jt
Ht

)1−ζ

(72)

Linearization yields

ht − ξβ((ζ − 1)πt+1 + ht+1) = (1− ξβ)(1− σ)yt (73)

jt − ξβ(ζπt+1 + jt+1) = (1− ξβ)(1 + ϕ)(yt − at) (74)
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Multiply (73) by ζ and (74) by ζ − 1 and subtract, which gives

ζht−(ζ−1)jt−ξβ(ζht+1−(ζ−1)jt+1) = (1−ξβ)[ζ(1−σ)yt+(ζ−1)(1+ϕ)(yt−at)] (75)

This is an equation in ζht − (ζ − 1)jt which is controllable, but which is not observable.

Only πt =
1−ξ
ξ (jt − ht) is observable.
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