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Summary. Beer sales in Germany are confronted for several years with a shrink-
ing market share in the market of alcoholic beverages. I use the approach of sales
response function (SRF) models as in Polasek and Baier (2010) and adapt it to
time series observation of beer sales for simultaneous estimation. I propose a new
class of growth sales (gSRF) models having endogenous and exogenous variables as
in Polasek (2011) together with marketing efforts that follow a sustained growth
allocation principle. This approach allows to model growth rates in markets that
are exposed to fierce competition and where marketing efforts cannot be evaluated
directly. The class of gSRF models has the property that it models supply (i.e.
marketing efforts) and demand factors jointly in a log-linear regression model that
are correlated over time. The estimated model can explain the relative success of
marketing expenditures for the shrinking beer market in the period 1999-2010.

Key words: Sales response functions (SRF), marketing budget models, MCMC
estimation, beer consumption, optimal budget allocation.

1 Introduction

Beer consumption and production in Germany is an important economic ac-
tivity but has declined over the last decade. Therefore it is rather surprising
that regional beer consumption is not available as a panel data set from the
German statistical office. Only marginal data, like the total beer production
or the total marketing effort per year is available. This incomplete data base
was the starting point of this paper: Is it possible to make inference in a short
time series model even if detailed information across regions is missing and the
marketing strategies of the many (regional) beer companies are not known?

Kao et al. (2005) have proposed a simultaneous estimation of marketing
success in dependence of optimal inputs in a sales response function (SRF)
model. The main idea behind this approach is that the (optimal) expendi-
tures for inputs might depend on the current sales and should be estimated
endogenously.
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Polasek (2010) has introduced a family of multiplicative SRF(k) for a cross-
sectional sample where the parameter k denotes the number of input variables
(sales expenditures and sales related covariates) that are producing the sales
output by a Cobb-Douglas type of production function. The multiplicative
model is extended to an additive SRF(k) model and a semi-additive SRF(k)
model, where we have a mixture of additive and multiplicative input terms.

The current approach emphasizes the system approach of the demand-
supply system for the estimation of a SRF in a panel model, because the input
variables (marketing efforts) are jointly determined by the output (sales). This
approach is the focus of macroeconomics and developed in econometrics since
several decades. New is the assumption that the endogeneity of the inputs
stem from an implied (stochastic) optimality consideration, which is imposed
through a first derivative constraint.

The paper is laid out as follows. In the next section 2 we justify our ap-
proach to sales response models by some general considerations. In section 3
we describe the basic SRF(1)-SPD model and the estimation approach. Sec-
tion 4 extends this approach to SRF(1)-AR models, since we have to expect in
time series models auto-correlated errors. In section 5 we discuss the Example
for the German beer market and the final section concludes.

1.1 Other approaches to beer marketing

There are almost no studies that try to quantify the impact of advertise-
ment on beer sales, also not on an international comparison. This might
change if the beer industry becomes a more global player and has to mar-
ket beer brands internationally. If there are more mergers and acquisitions,
then this will change the marketing strategies. In an article of ’Marketwatch’
(http://www.marketwatch.com/story/inbev-takeover-spotlights-anheuser-buschs-
big-ad-budget) we find the following quote in reaction to the takeover of
Anheuser-Busch: ”Will sports lose one of its biggest boosters? InBev takeover
spotlights Anheuser-Busch’s big ad budget. . . . That leaves Anheuser-Busch’s
massive advertising and sponsorship budget perhaps the juiciest target of swift
cost-cuts.

The No.1 U.S. beer maker is the nation’s 22nd largest advertiser, according
to data compiled by Advertising Age and TNS Media Intelligence, with total
expenditures of $1.36 billion last year. About a third of that – $475 million
– is spent on TV, radio, magazines and the Internet, with the rest aimed at
trade promotions, sponsorships, point-of purchase ad space and the like.

By contrast, SAB-Miller spent $230 million on U.S. media last year and Di-
ageo, the world’s largest spirits company with revenues in excess of Anheuser-
Busch’s, laid out $173 million. . . . ”

Thus, in the aftermath of market concentration, new strategies on spending
ad budgets will be developed. This will also affect the sponsoring market, as
the following quote on the same web site shows:
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”Will sports lose its biggest ad booster? . . . How will InBev’s $52 billion
takeover of Anheuser-Busch affect the No. 1 U.S. brewer’s massive sports
advertising and sponsorship budget?”

2 Some remarks on SRF models and their estimation

A shrinking sales market like the German beer market is challenge for quanti-
tative marketing models. The recent class of sales response models that were
promoted by Kao et al. (2005) and Baier and Polasek (2010) provide a flexible
framework to estimate by MCMC models the reaction of marketing efforts in
such markets. Models for sales response functions (SRF) provide a class of
models that can be combined with many additional assumptions on the re-
lationship between the supply and demand side of the market. For example,
in cross-sections or panels, the SRF model can be extended to the SRF-SAR
model, where SAR stands for a spatial autoregressive model (see e.g. Anselin
1986), as will be shown in a next paper.

Common to all approaches is that they assume a behaviorial model for
sales and marketing actions and therefore an appropriate joint model for the
demand and the supply side has to be found. The supply side model is gov-
erned by an market strategy that follows some optimality principle. For the
shrinking beer market we have assume a new sustained optimal growth alloca-
tion principle that results in an allocation rule that sales expenditures follow
a constant rule that is proportional to the first partial derivative over time.
Since this variable cannot be observed directly we need to assume a latent
variable.

The estimation of the latent variable SRF model for the German beer
market shows that there has been some positive effects of beer marketing
expenditures to fight the shrinking markets that was mainly caused by the
increasing market share of the wine sales in the German alcoholic beverage
market. Therefore we need to estimate an SRF(1)X(1) model where the X
stand for the exogenous (control) variable, in our case the increasing wine
share in the market.

For this shrinking sales over time we suggest to use a multiplicative SRFX
model applied to growth factors, briefly denoted by gSRFX model. Also we
cannot use the Albers marketing allocation rule as a response of the supply
side, since no regional data are involved. Instead we suggest that the supply
side follows a sustained growth allocation rule of the marketing expenditures,
such that a simple allocation rule follows. In such behaviorial models it is
not necessary to assume that marketing strategist will do in practice these
mathematical calculations, rather we like to know if such a combination of
simple SRF models and observed marketing expenditures lead to a simultane-
ous model of right and left hand side variables that explains the reality better.
Because of the complexity of the parameters involved and the usually small
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data base it seems that MCMC methods work best at the moment to achieve
this goal.

2.1 Stochastic partial derivatives (SPD) in a sales model

If the first derivative of a sales response (SRF) model is used as a latent vari-
able then the sales equation (log-y equation) and the derivative equation imply
a simultaneous equation system, and the stochastic allocation restriction im-
ply an endogeneity of the single input variable x. The following 3 stochastic
assumptions are the basic building blocks for the SRF-SPD model and are
based on 3 types of considerations that reflect the interaction of the actions
observed in the market from the demand and the supply side that leads to
appropriate steps (= equations) in the joint model building process:

1. The stochastic (demand) model: input variables and the func-
tional form imply (⇒) output variables plus noise.
2. The allocation model (supply side): Stochastic response model +
imposing optimal expenditure allocations = input variables & func-
tional form (SRF) ⇒ first derivatives plus noise.
3. The final model (conditional on assumed demand and supply re-
sponses): Known SRF coefficients & SPD assumptions ⇒ stochastic
regressors (pivotal variable change).

The sales response model that assumes stochastic SPD allocations implies
the following additional (implicit) assumptions that are part of the estima-
tion process:
1. The ”stochastic ads allocation” rule: We assume that the realized derivatives
of sales w.r.t. marketing efforts are approximately equal. We use the concept
of realized derivatives to emphasize the fact, that the exact sales changes are
unknown and have to be estimated for the estimation of the model by the first
derivatives, which is model dependent, i.e. depends on the assumed functional
form of the SRF. The company management have learned in the past to un-
derstand and to know about the SRF function in their field, even if the exact
functional form is unknown to them. Therefore they use the input variables
in an optimal way, that is they look to spend promotional money in such a
way that for each region the change in sales is about equal.
2. This implied behavioral assumption of the SRF model has to be incorpo-
rated into the estimation process and leads to a larger model class of system
estimation, since the input and output variables (y and x) are endogenously
linked by this assumption.
3. Thus the SDP assumption (for ads allocations) implies a joint distribution
of all the endogenous variables, since the realized derivatives depend on the
functional form of the SRF model.
4. The derivative w.r.t. marketing expenditures cannot be directly observed
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(either the amount channeled through the input variables is unknown or the
sales changes are not reported on this disaggregated level or is imprecisely
measured). Thus, it becomes necessary to introduce the unobserved deriva-
tive as a latent variable in the estimation process.
5. In the MCMC estimation procedure the latent derivatives are generated by
so-called ’direct simulations’ from the current specification of the SRF model.
6. The latent variable can be viewed as a proxy variable, which is simulated
through a model that uses the exogenous regressors of the system.
In the next section we introduce the SRF(1) model and the MCMC estimation
under the SPD assumption.

In Section 5 we discuss a regional sales response model that involves data
from the German beer market for the period 1997 to 2010. In a final section
we conclude.

3 The SRF(1) model with optimal allocations (OA)

In this section we start with the simple SRF(1) model because we want to
demonstrate the consequences of the OA and SPD assumption for the esti-
mation procedure.
We consider the SRF(1) sales response function y = y(x) with one input
variable x

y = β0x
β1eε, (1)

where ε is assumed to be a N [0, σ2
y] distributed error term. By taking logs

for the n cross-sectional observations we find the following linear regression
model

ln y ∼ N [µy = Xβ, σ2
yIn] (2)

with the regression coefficients β = (ln β0, β1) and the regressor matrix X =
(1n : ln x) where 1n is a vector of 1’s and x is the cross-sectional decision
variable that will influence the sales y (a n× 1 vector) in the n regions. Thus
the model is of the type of a log linear production function as it is used in
macro-economics.

For the optimal allocation problem in SRF models we need a target func-
tion that is suitable for sustainable growth rates.

Definition 1 (The stochastic allocation rule for ads expenditures).
We assume positive (and uncorrelated) sales yi, i = 1, ...., n over n time periods
and we assume that the total budget Btot is allocated optimally over the n
periods. The profit function to be maximized is P =

∑n
i=1 diy(xi). di is the

marginal contribution of the product to the profit. Since we only considering
1 product, we can set di = 1. This leads to the following Lagrange function:
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n∑
i=1

diy(xi) + λ(Btot −
n∑
i=1

xi)

The solution of this optimal allocation problem is given by setting the first
derivative to zero, from where we find

di∂y/∂xi ∝ (yx)i = λ for i = 1, ...., n, (3)

or that all derivatives of the sales y(xi) w.r.t. marketing effort xi have to
be constant. In cross-sections we refer to this allocation rule as ’Albers’ rule
because of Albers (1998).

This leads to the basic multiplicative (or Cobb-Douglas) type SRF model:

Definition 2 (The SRF model with latent partial derivatives). For
observed regressor x, the multiplicative SRF(1) model y = β0x

β1eε is defined
as the following set of 2 log-normal densities:

ln y ∼ N [ln β0 + β1ln x, σ
2
yIn]

ln yx ∼ N [log(β0β1) + (β1 − 1)ln x, σ2
yIn] (4)

where yx is the first derivative of the SRF(1) model and with the parameters
of the model given by θ = (β, σ2

y).

Note that this is a non-linear model in β and also a very restricted model,
since the sales observations y and the derivatives yx follow normal distribu-
tions with the same variance. Furthermore, both equations are correlated and
cannot be jointly estimated if yx is unobserved. Thus, we need to look for
better modeling strategies.

3.1 The SPD condition for SRF(1) models

We obtain an alternative SRF(1) model if we combine the assumptions for
generating the first derivatives ẏ = ln yx of the SRF model via the latent
variable and the assumption of a stochastic optimal allocation (OA) rule like
the stochastic Albers rule, like ẏi = (ln yx)i

ẏi | θλ ∼ N [λ, σ2
λ] for i = 1, ..., n (5)

or ln yx ∼ N [λ1n, σ
2
λIn]. This means that the sales responses y and the

decision variable x imply a prescription that marketing resources should be
allocated according to the first derivative of the SRF model. Since the empir-
ical observations across the n regions reveal some noise, we assume that the
ẏi’s are independently normally distributed for given parameters θλ = (λ, σ2

λ).
These stochastic fluctuations of the derivatives across the n units are captured
by the mean response λ, and the variance σ2

λ in assumption (5) imposes the
looseness or strength of this target λ, the optimal behavior, from the actual
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but not observed derivatives yx. It measures in practice how good marketing
people follow the prescription of the optimal allocation (OA) model.

If the ẏ’s could be observed, there would be no extra stochastic dependen-
cies. In our model we have to proxy the unobserved derivatives by the realized
derivatives of the multiplicative SRF function in (5):

ẏ = Xβ̃ with β̃ =

(
ln(β0β1)
β1 − 1

)
(6)

Adding this stochastic partial derivative (SPD) constraint for the x regres-
sor in the SRF model creates an behaviorial model that the partial derivatives
should be (approximately) equal across the regional units:

Lemma 1 (The SPD assumption for the SRF(1) model).
The combination of the stochastic optimal allocation (OA) rule (5) and the
generation of the latent partial derivatives as in (4) implies the endogene-
ity of x in the SRF(1) model. Thus, the SPD assumption implies a normal
distribution of the regressor x in the following way:

ln x | θλ ∼ N [µx(θλ), σ2
x(θλ)], (7)

with the parameters θλ = (λ, σ2
λ) and mean and variance

µx =
ln(β0β1)− λ

1− β1
, σ2

x =
σ2
λ

(β1 − 1)2
(8)

Proof. There are several ways to derive the result. One leads via the trans-
formation rule for random variables to the Jacobian of ln x is just 1/|β1 − 1|.
The other approach just equates equations (5) and (4) and solves for ln(x).
One way to see how the SPD assumption translates to an assumption about
the x is to write the exponent of the density (5) and use the log derivative (4)

(ln yx − λ)2/σ2
λ = (ln(β0β1) + (β1 − 1)ln x− lnλ)2/σ2

λ =

=

(
log(β0β1)− λ

1− β1
− ln x

)2

(β1 − 1)2/σ2
λ

∝ p(ln x | µx, σ2
x)

Finally, we can define the SRF(1)-OA and the SRF(1)-SPD model in the
following way:

Definition 3 (The SRF(1)-SPD model).
(a) The SRF(1)-SPD model is based on the multiplicative SRF model y =
β0x

β1eε, the endogeneity of x and the stochastic Albers rule (Definition 1),
which result in the following set of 3 log-normal densities:

ln y | θy ∼ N [ln β0 + β1ln x, σ
2
y]

⇒ ln x | θλ ∼ N [(ln β0 + ln β1 − ln λ)/(β1 − 1), σ2
λ/(β1 − 1)2]

ln yx | θλ ∼ N [λ, σ2
λ], (9)
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where yx is the first derivative of the SRF(1) model and the parameters of the
model are given by θ = (β, λ, σ2

y, σ
2
λ) and θλ = (λ, σ2

λ), θy = (β, σ2
y). The ”⇒”

denotes the derived distribution for ln x, making the SPD and the constant
allocation assumption.
(b) The SRF(1)-OA model that generates the endogeneity of x indirectly,
and leads to the following reduced set of equations, with the restriction β1 > 0

ln y | θy ∼ N [ln β0 + β1ln x, σ
2
y]

ln yx | θλ ∼ N [λ, σ2
λ]. (10)

Again, ln yx = Xβ̃ is the realized derivative (6), and thus just a linear trans-
formation of the regressors X and the β coefficients,and therefore for the con-
trol variable x, say a+ bx. Therefore, this stochastic OA assumption implies
implicitly a distribution for x.

For statistical inference we can estimate the parameter vector by maximum
likelihood or by MCMC, assuming a prior density given by p(θ). In the next
section we outline the MCMC procedure.

3.2 MCMC estimation in the SRF(1)-OA model

This section develops the MCMC estimation for the SRF(1)-OA model. The
optimal allocation (OA) rule in the SRF model requires a first derivative,
which can be not observed by data, and therefore has to be introduced into
the model as a latent variable.
The latent variable defines another equation in the D/S system that can be
generated conditionally through the assumptions of the system. The latent
variable ẏ = ln yx is considered to be a homolog (i.e. over-parameterized) pa-
rameter vector that is computed or estimated from the demand or y-equation.
Finally, the observed data D = (ln y, ln x) and the latent variable ln yx are
modeled by the joint density p(ln y, ln x, ln yx), which decomposes in the
general case as

p(ln y | ln x, β, σ2
x, ...) p(ln x | β, ln yx, ...) p(ln yx | λ, σ2

λ∗, ...).

Because the realized derivative ln yx = Xβ̃ with X = (1n : x) is generated
directly as a linear combination of the x variable, the density for ln x in
(11) implies a likelihood function for x. Thus, the likelihood function for the
SRF(1)-OA model is

l(θ | D) = N [ln y | µy, σ2
yIn] N [ln x | µx, σ2

λIn] (11)

with the conditional means

µy = ln β0 + β1ln x and µx = (ln β0 + ln β1 − λ)/(β1 − 1). (12)

The prior density for θ = (β, σ−2y , σ−2λ ) and ln yx is
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p(θ) = N [β | β∗, H∗]N [λ | λ∗, σ2
λ∗]N [ln yx | λ, σ2

λ]
∏

j∈{y,λ}

Ga[σ−2j | σ2
j∗, nj∗]

(13)
Thus, the SRF(1)-OA model consists of

1. The prior density (13),
2. The likelihood function (6),
3. The realized derivative (11).

The posterior distribution p(θ | D) ∝ l(D | θ)p(θ) is simulated by MCMC.

Theorem 1 (MCMC in the SRF(1)-OA model).
The MCMC iteration in the SRF(1)-OA model with the likelihood function
(11) and the prior density (13) takes the following draws of the full conditional
distributions (fcd):

1. Starting values: set β = βOLS and λ = 0
2. Draw σ−2y from Γ [σ−2y | s2y∗∗, ny∗∗]
3. Draw σ−2λ from Γ [σ−2λ | s2λ∗∗, nλ∗∗]
4. Draw λ from N(λ | λ∗∗, s2λ∗∗)
5. Compute ẏ = ln yx from N [ẏ | µẏ, (s2y)In]
6. Draw β = (β0, β1) from p(β0) and p(β1 | β0)
7. Repeat until convergence.

The proof is given in the Appendix.
The marginal likelihood of model M is computed by the Newton-Raftery

formula

m̂(y | M)−1 =
1

nrep

nrep∑
j=1

(
n∑
i=1

ln l(Di | M, θj)

)−1
l(Dj | M, θ)−1 (14)

where Di = (ln yi, ln xi) is the i-th data observation and with the likelihood
given in (11).

4 The AR-SRF(1)-OA model with SPD

In this section we describe the AR-SRF model because we want to demonstrate
the effects of correlated time series for the estimation procedure. The AR-
SRF(1) sales response function with one input variables x and the lagged
endogenous variable y−1 is

y = β0y
ρ
−1x

β1eε, or

ln y = ρln y−1 + ln(β0) + β1ln x+ ε, (15)

where ε is a N [0, σ2
y] distributed error term. This leads to the reduced form

equation
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R ln y = ln y − ρln y−1 = ln(β0) + β1ln x+ ε

with

R = In − ρL with L =


0 1 0 ...
0 0 1 0 ...
0 ... ... 0 1
0 0 ... 0

 (16)

and L being a supra-diagonal or the AR(1) lag-shift matrix. By taking log’s
for the n observations we find for known ρ the reduced form regression model

R ln y ∼ N [ln(β0) + β1ln x, σ
2
yIn]. (17)

The mean of the reduced form regression is µy = Xβ with coefficients β =
(ln β0, β1) and the regressor matrix X = (1n : ln x) is given as before, where
1n is a vector of 1’s and x is the supply-side control variable that will influence
the sales y (a n× 1 vector). Thus, the model is again a log-linear production
function as it is used in macro-economics. The stochastic partial derivative
(SPD) assumption is applied to the reduced form equation and leads to the
behavioral equation

ġ = ∂Ry/∂x = β0β1x
β1−1eε.

The realized first derivative is

gx =
∂Ry

∂x
|x: n× 1

evaluated at the vector x. This log (realized) derivative, for known β and SRF,
is given as in the simple SRF model (18) by

ln gx = µg + ε = ln(β0β1) + (β1 − 1)ln x+ ε, (18)

and therefore the log derivative p(ln gx | β, x) = N [µġ, σ
2
yIn] with µġ =

ln(β0β1) + (β1 − 1)ln x is normally distributed.
This leads to the following AR-SRF(1)-OA (optimal allocation) model:

Definition 4 (The AR-gSRF(1) model with the partial derivative
as latent variable). For observed y and x the the AR-gSRF(1) model (in
reduced form) is defined with R as in (16) and β1 > 0 as the following set of
2 log-normal densities:

Rln y ∼ N [ln β0 + β1ln x, σ
2
yIn]

ln yx ∼ N [ln(β0β1) + (β1 − 1)ln x, σ2
yIn], (19)

where yx is the first derivative of the AR-gRF(1)-OA model and θ = (β, ρ, σ2
y)

are the parameters of the model.



Marketing response models for shrinking beer sales in Germany 11

4.1 A loss function for growth rates

We consider the growth factor over time and we argue that the growth factors
are the target of the SRF models to monitor long term sales growth. The
growth rates are obtained from the growth factors by taking logs.

The total budget available is Btot and instead of maximizing the profit
directly, we look for a function that maximizes the sustainable growth of
sales. Thus, the criterion to be maximized is slightly different:

Q =

n∑
i=1

gt(xi) where gt(xi) =
yt(xi)

yt−1(xi)
.

gt(xi) denotes the growth factor of the sales: The growth factors are needed
to ensure positive vales of the SRF model. This function is correlated with
the profit function in (1). As a side constraint we assume that the company
is interested in a sustainable growth path, which is expressed as deviation
between the average growth rate

ḡ =
1

n

n∑
i=1

gt (20)

from a target growth rate g∗ over n periods. These considerations lead to the
following optimisation problem using the Lagrange function for the growth
factors of sales, which mimics the Albers rule (1) for a time period of length
n:

Definition 5 (An optimal allocation (AO) rule for sustainable growth).

We consider the growth factors gt(xi) of sales that depend on the ads variable
xfor n periods and we assume that the ads expenditures are allocated according
to a sustainable growth path as in (20)

G(xi, λ) =

n∑
i=1

gt(xi) + λ(ng∗ −
n∑
i=1

gt(xi)). (21)

The solution of this Lagrange problem requires setting the first derivative
∂G/∂xi to zero, from where we find

gx = ∂gt/∂xi = λ for i = 1, ..., n, (22)

or that all derivatives of the sales growth factors gt(xi) w.r.t. marketing effort
xi have to be constant.

While the Albers rule is applicable for sales in n regions, the sustainable
growth rule works for time series. It is set up in a similar way so that we
have a simple ads allocation rule over time. Note the similarity to the original
stochastic Albers rule. If a long-term planing horizon and the budget becomes
important, then the cross-sectional units are replaced by time series data.
Thus, the ads budget can be allocated in a simple way over the planing period.
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4.2 MCMC estimation in the AR-gSRF(1)-OA model

This section shows the MCMC estimation of the AR-gSRF(1)-OA model.
The likelihood function is a function of the observed data and the parameters
θ = (β, σ−2y , λ, ρ), where the matrix R involves the correlation coefficient ρ

l(θ | D) = N [R ln y | µy, σ2
yIn] N [ln yx | λ, σ2

λ∗In] (23)

with the conditional means µy and µx given by

µy = ln β0 + β1ln x and µx = (ln β0 + ln β1 − λ)/(β1 − 1). (24)

Because the realized derivative ln yx = Xβ̃ with X = (1n : x) is generated
directly as a linear combination of the x variable, the second density in (23)
tranlates actually to a likelihood function for x. The prior density for θ is

p(θ) = N [β | β∗, H∗] N [λ | λ∗, σ2
λ∗]

∏
j∈{y,λ}

Ga[σ−2j | σ2
j∗, nj∗] (25)

where all the parameter with a ’*’ index denote known hyper-parameters of
the prior distribution. Finally, the AR-gSRF(1)-OA model consists of

1. The prior density (25),
2. The likelihood function (23),
3. The realized derivative (6).

The posterior distribution p(θ | D) ∝ l(D | θ)p(θ) is simulated by MCMC.

Theorem 2 (MCMC in the AR-gSRF(1)-OA model).
The MCMC iteration in the AR-gSRF(1)-OA model with the likelihood func-
tion (23) and the prior density (25) takes the following draws of the full con-
ditional distributions (fcd):

1. Starting values: set β = βOLS and λ = 0
2. Draw σ−2y from Γ [σ−2y | s2y∗∗, ny∗∗]
3. Draw λ from N(λ | λ∗∗, s2λ∗∗)
4. Compute ġ = ln gx = Xβ̃
5. Draw β = (β0, β1) from p(β0) and p(β1 | β0)
6. Draw ρ by a griddy Gibbs step using p(ρ | D, ...).
7. Repeat until convergence.

Proof. The proof is almost identical to Theorem 1, except that we need one
more fcd for the extra parameter ρ. Furthermore only the fcd’s for the first
layer for the log-y equation, β and the residual variance are affected by the
reduced form transformation y → Ry: The residuals in (33) change to ey =
R ln y −Xβ and the fcd (29) for β changes to

p(β | D, ...) ∝ N [β | β∗, H∗] N [R ln y | Xβ, σ2
yIn] N [ln x | µx, σ2

λ/(1−β1)2In]
(26)
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and we have to make the variable change in (30) to

b# = H#

[
H−1∗ b∗ + σ−2X ′Ry

]
.

For the fcd of the correlation coefficient ρ we need as proposal density the
normal distribution based on the OLS estimate. The fcd is proportional to

p(ρ) = p(ρ | D) ∝ σ−2Ty exp

[
− 1

2σ2
(Ry − I†τ)′(Ry − I†τ)

]
.

The griddy Gibbs step: We evaluate a grid of 100 rho points around the MLE
of the approximate linear model: y = ρLy + ε. Under normality we have
ρ ∼ N [ρ̂, σ2

ρ] with ρ̂ = y′Ly/y′L′Ly and σ2
ρ = σ2

y/y
′L′Ly. The exponent is

(y − ρy−1)′(y − ρy−1)/σ2 = (ρ− ρ̂)2Sy/σ
2
y ∝ N [ρ | ρ̂, σ2

y/Sy].

Note that the MCMC algorithm for the AR-gSRF-X model parallels the
structure in Theorem 2, only the variables in the regressor matrix have to be
arranged as X = (1 : z : x), in blocks of exogenous and endogenous variable
where z is the exogenous variable.
Model choice: The marginal likelihood of modelM is computed by the Newton
and Raftery (1994) formula (14) with the likelihood given in (23).

5 Example: Ads and beer consumption in Germany

The German beer sales in hekto-liter (hl) and the marketing expenditures
(in mio Euros) for 1997-2010 are found in Table 1. (Source: The German
Statistische Bundesamt)
Table 1: German beer and ads data 1997-2010
Year Sales (hl) Marketing
1997 103 402,00
1998 100,18 431,00
1999 110,10 380,00
2000 109,80 388,00
2001 107,80 360,00
2002 107,80 347,00
2003 105,60 331,00
2004 105,90 364,00
2005 105,40 410,00
2006 106,80 374,70
2007 104,00 399,30
2008 102,90 401,80
2009 100,00 350,30
2010 98,30 376,88

The MCMC densities of the parameters of the SRF(1)-OA model are in
Figure 1.
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Fig. 1. Posterior MCMC betas of the SRF(1)-OA model, 1998-2000

The connection between beer and wine consumption is quite strong, as we
see in Figure 5, but there is also a surprising negative correlation between the
market share of wine and beer ads (in Euros) in Germany.

Fig. 2. a) Beer & wine cons. 1998-2000; b) Market share of wine and beer ads
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5.1 Results for the AR-SRFX model

The log data of the SRF(1)X(1)-AR(1) model are displayed by a scatter-plot
matrix with bivariate regression lines in Figure 3.

Fig. 3. The log data for SRFX-AR model in Germany 1999-2010

The modeling strategy is as follows. We start with the most complex model
as its MCMC estimation is given for the AR-SRFX-AO model in Theorem
2. Also, because of negative MCMC diagnostics, we dropped the assumptions
of a model imposing a SPD prior for the control variable x and we prefer to
use the SRFX-AO model. Furthermore, we prefer for the σ−2λ parameter to
be fixed at a tight constant, implying that the (stochastic) sustainable growth
allocation rule is taking place in a rather tight narrow band. Based on the
OLS estimate of ρ, the σ−2λ can be easily fixed at the variance of the latent
variable ln y = yx evaluated at the OLS β coefficients.
The MCMC estimates of the AR-SRF model are:

mean beta SD beta
beta[1] 7.709274 30.199488
beta[2] -11.405636 8.275701
beta[3] 5.009594 3.499446

and for the auto-correlation coefficient we find as average over the MCMC
sample ρ = −0.5089122, SD(ρ) = 0.2873213.
The density estimates can be seen in Figure 4. Convergence was achieved very
fast and the use of the griddy Gibbs method created no autocorrelation in the
ρ-runs. (A Metropolis-Hastings algorithm did not work so well.) The range of
coefficients is rather wide, but this is not surprising since there are only 12
observations. (Classical results based on asymptotic distributions would not
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work well for this data set.) The elasticity on log ads (the endogenous vari-
able) has to be positive which is the case in 75% of the number of iterations.
Interestingly, by discarding the negative draws, we get about the same type
of distributions (histogram shapes) of the coefficients.

Fig. 4. The density estimates for SRFX-AR model in Germany 1999-2010

Following our ”general to more simpler” specification philosophy we find,
that fixing certain hyper-parameters at a reasonable value yield better esti-
mation results for the coefficients of the SRF model in the first stage. Because
there are many parameters to estimate plus a latent variable, the Bayesian
analysis improves if there are fewer ’free’ parameters to estimate.

6 Conclusions

The paper has shown that the class of sales response models is large and
flexible enough to cope with shrinking sales in sales models with advertisement
expenditures. The results of the sales growth response function (gSRF) model
point in the right direction, but only if important possible marketing behaviors
have been appropriately implemented in the model.

As an additional consideration for the estimation of an SRF model in a
time series context we have proposed a specification that allows for AR(1)
errors. With this assumption we leave the framework of easy simulations in
the MCMC algorithm using normal and gamma distributions. We found that
the use of the griddy Gibbs sampler for the autocorrelation coefficients leads
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to a quick mixing of the sampler without the perils of long autocorrelation
when a Metropolis-Hastings step is used.
Given the large variety of models (SRF-X and AR-SRF-X) we have tried and
from the non-significant estimation results we conclude that the beer industry
has not reacted in a proper way to fight the shrinking sales in the beer market
in Germany over the last decade. For future work, many further extensions of
this flexible class of SRF-X models are possible. First of all there is the ques-
tion of the right or appropriate functional form of the SRF-X class models.
following the suggestions of Kao et al. (2005) more research is needed, espe-
cially if time series and shrinking markets have to be considered. Secondly,
there is the question of the appropriate marketing actions and strategies un-
dertaken by the supply side of the market.
A possible next step for a better model choice is the use of Bayesian model av-
eraging (BMA) techniques. Thus, there is room for more theory as how market
participants react either as consumers to marketing efforts or as marketing
strategists who react either to sales developments or company policies. Sys-
tem estimation would be required if more than 1 marketing channels should
be optimized or if marketing efforts depend also on the sales performance of
the competitors.

References

1. Albers S. (1998) Regeln fuer die Allokation eines Marketingbudgets auf Produkte
oder Marktsegmente, Zeitschrift fuer Betriebswirtschaftliche Forschung 50, 211-
229.

2. Anselin L.(1988) Spatial Econometrics. In: B. H. Baltagi (Ed.), A Companion
to Theoretical Econometrics. Blackwell Publishing Ltd AD, 310–330.

3. Baier, D. and Polasek W. (2010), Marketing and Regional Sales: Evaluation
of Expenditure Strategies by Spatial Sales Response Functions, in: Studies in
Classification, Data Analysis, and Knowledge Organization, Vol. 40, 673-682. .

4. Kao L.-J., C.-C. Chiu, T.J. Gilbride, T. Otter, and G.M. Allenby (2005) Evalu-
ating the Effectiveness of Marketing Expenditures. Working Paper, Ohio State
University, Fisher College of Business.

5. Newton, M.A. and A. E. Raftery (1994) Approximate Bayesian inference with the
weighted likelihood bootstrap (with discussion). Journal of the Royal Statistical
Society, Series B, 56, 3-48

6. Polasek W. (2010a), Sales Response Functions (SRF) with Stochastic Derivative
Constraints, Institute fuer hoehere Studien, Wien.

7. Polasek W. (2010b), Endogeneity and Exogeneity in Sales Response Functions,
to appear in GFKL 2010 .

8. Polasek W. (2011), Multi-level panel models for regional beer sales in Germany,
Institute fuer hoehere Studien, Wien.

9. Christian Ritter and Martin A. Tanner (1992), Facilitating the Gibbs Sampler:
The Gibbs Stopper and the Griddy-Gibbs Sampler, Journal of the American
Statistical Association, Vol. 87, No. 419, 861- 868

10. Rossi P.E., G.M. Allenby, and R. McCulloch (2005) Bayesian Statistics and
Marketing. John Wiley and Sons, New York.



18 Wolfgang Polasek

7 Appendix

7.1 Proof of Theorem 1 (MCMC in the SRF-OA model)

Proof. The full conditional densities (fcd’s) are as follows:

1. The fcd for λ, the average utility level can be estimated in the same way
as before:

p(λ | D, ...) ∝ N [λ | λ∗, s2λ∗] N [ln yx | λ1n, σ
2
λIn] ∝ N [λ | λ∗∗, s2λ∗∗] (27)

with s−2λ∗∗ = s−2λ∗+nσ−2λ and from (5) we find in the exponent the quadratic
from (ln yx − λ1n)′σ−2λ (ln yx − λ1n)

λ∗∗ = s2λ∗∗(s
−2
λ∗ λ∗ + nσ−2λ 1′n(ln yx)),

where σ2
λ is the variance of yx and the realized yx’s are evaluated at the

current β.
2. The fcd for z = ln yx under SPD is

p(ln yx | D, ...) ∝ N(ln yx | µz, σ2
zIn) N [ln yx | λ1n, σ

2
λIn]

= N [z | µz∗∗, s2z∗∗In]. (28)

with s−2z∗∗ = σ−2z + σ−2λ and µz∗∗ = s−2z∗∗(s
−2
z µz + σ−2λ 1nλ).

3. The fcd for β coefficients is

p(β | D, ...) ∝ N [β | β∗, H∗] N [ln y | Xβ, σ2
yIn] N [ln yx | λ1n, σ

2
λIn] (29)

since the third density of ln x in (29) contains the β coefficients in a non-
linear way and µx is given in (12). To avoid a Metropolis step we get a
analytical solution by combining the 3 components of normal densities in
3 steps.
Step 1: The first two normal densities can be combined in the usual way
to

N

[
β | β# =

(
β0#
β1#

)
, H# =

(
h00 h01
h10 h11

)]
with

H−1# = H−1∗ + σ−2X ′X,

b# = H#

[
H−1∗ b∗ + σ−2X ′y

]
, (30)

where the index ’#’ indicates an auxiliary result.
Step 2a: The conditional bivariate normal density in (30) for β1 | β0 is:

p(β1 | β0) = N [β1.0, σ
2
1.0] with

σ2
1.0 = h11 − h10h01/h00 = h11(1− ρ201),

β1.0 = β1# + h10(β0 − β0#)/h00. (31)
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Note that ρ201 is the squared correlation coefficient, defined as ρ201 =
h2
10

h00h11
.

Step 2b: The general case for the conditional normal density in (30) for
β1 | β0:

p(β1 | β0) = N [β1.0, σ
2
1.0] with

σ2
1.0 = h11 − h10h−100 h01

β1.0 = β1# + h10h
−1
00 (β0 − β0#). (32)

The variables in the SRF regression model need to be ordered in such a way
that the component with ’0’ contains the intercept (and the z variables of
the SRFX model), while the component with ’1’ contains the endogenous
variable x.
Step 3: Simulate the positive β1 coefficient either by keeping only those
draws that are positive or draw from a truncated normal density restricted
to the positive real line. The third density in (29) is also restricting the
draws and follows the same drawing approach using the conditional normal
density. The following Metropolis-Hastings step is used: We use a random
walk chain for the proposal βnew

βnew = βold +N [0, cβIk],

where k is the dimension of β. cβ is a tuning constant for the variance of
the proposal. The acceptance probability involves the posterior fcd density
p(β = p(β | D, ...) in (29) and is given by

α(βold, βnew) = min

(
p(βnew)

p(βold)
, 1

)
,

where we accept only proposals with |βnew1 | > 0
4. The fcd for σ−2y

p(σ−2y | D, ...) ∝ Ga[σ−2y | σ2
y∗∗ny∗∗/2, ny∗∗/2] (33)

with ny∗∗ = ny∗+n and ny∗∗σ
2
y∗∗ = ny∗σ

2
y∗+ e′yey, where ey = ln y−Xβ

being the current residuals of the log-y equation.
5. Only in case where the stochastic OA variance σ−2λ will be estimated: The

fcd for σ−2λ
p(σ−2λ | D, ...) ∝ Ga[σ−2λ | σ2

λ∗∗, nλ∗∗] (34)

with nλ∗∗ = nλ∗+n and nλ∗∗σ
2
λ∗∗ = nλ∗σ

2
λ∗+e

′
xex+e′λeλ and the residuals

ex = ln x− µx and eλ = ln yx − λ1n (or e′λeλ =
∑
i(ln yx,i − λ)2. This is

because we have 2 variance sources

p(σ−2λ | D, ...) ∝
(

σ2
λ

(1− β1)2

)−n/2
exp

[
− 1

σ2
λ

(ln x− µx)′(ln x− µx)(1− β1)2
]

(σ2
λ)−n/2exp

[
− 1

σ2
λ

(ln yx − λ1n)′(ln yx − λ1n)

]
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7.2 The griddy Gibbs sampler

This procedure was described in Ritter and Tanner (1992). Consider a m-
dimensional posterior density p(θ1, · · · θm) that is estimated via MCMC and
where the conditional distribution p(θi | θj , j 6= i) is untractable but univari-
ate. If it is difficult to directly sample from p(θi | θj , j 6= i), the idea is to
form a simple approximation to the inverse cdf based on the evaluation of
p(θi | θj , j 6= i) on a grid of points. This leads to the following 3 steps:
Step 1. Evaluate p(θi | θj , j 6= i) at θi = x1, x2, . . . to obtain w1, w2, ..., wn.
Step 2. Use w1, w2, ..., wn to obtain an approximation to the inverse cdf of
p(θi | θj , j 6= i).
Step 3. Sample a uniform U(0, 1) deviate and transform the observation via
the approximate inverse cdf.
Remark 1: The function p(θi | θj , j 6= i) need be known only up to a propor-
tionality constant, because the normalization can be obtained directly from
the w1, w2, ..., wn.
Remark 2: The grid x1, x2, ..., xn need not be uniformly spaced. In fact, good
grids put more points in neighborhoods of high mass and fewer points in
neighborhoods of low mass. One approach to address this goal is to construct
the grid so that the mass under the current approximation to the conditional
distribution between successive grid points is approximately constant.


