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1. Introduction 

 

The power of a popular test is irrelevant.  A test that is never used has zero power. 

(McAleer, 1994, 2005) 

 

The publications of Granger and Newbold (1974), Dickey and Fuller (1979, 1981), 

Nelson and Plosser (1982), Engle and Granger (1987) and Johansen (1988, 1995) have 

changed the way we think about and undertake time series econometrics.  Although 

discussion of trends and their importance in economic time series can be traced to Yule 

(1926) and Kendall (1954), until the 1970s and „80s the field remained mostly a curiosity. 

Statistical research focussed on the isolation of trends from cycles in a world (implicitly) 

assumed to be generating stationary data.  This was the world that quantitative economic 

historians occupied and where some remain.  However, the message of Granger and 

Newbold (1974) were simple, yet powerful:  

 

„In our opinion the econometrician can no longer ignore the time series 

properties of the variables with which he is concerned - except at his peril. The 

fact that many economic „levels‟ are near random walks or integrated processes 

means that considerable care has to be taken in specifying one‟s equations.‟   

 

The seminal time series papers and the research agendas they created have particular 

relevance for quantitative economic history.  Perhaps in more than any other area of 

applied economics, time series cliometrics utilizes long time spans of data which will 

often have the characteristics of non-stationarity in levels and/or which might experience 

structural change, persistence, large „shocks‟, large outliers, conditional 

heteroskedasticity and potentially switching time series properties. The traditional 

cliometrics topics relating for example to „trends‟,  „cycles‟ and „path dependency‟ have 
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been both challenged and given new and different meanings as a consequence of the 

ways we now typically analyse, estimate and test time series data.   

 Whether or not macroeconomic time series exhibit „unit roots‟ still remains a 

hotly debated issue see for example Darne (2009), and research continues to  seek out, if 

not the „truth‟, at least the „data generating process‟ (DGP).  However, whatever the 

outcome, current cliometrics research involving time series data has been fundamentally 

changed by the recent developments in time-series econometrics. 

 The purpose of this paper is to both inform those who may be unfamiliar with the 

changes in econometric methods that have ensued as a consequence of this econometric 

revolution of the nature and effects of these changes and also to provide some examples 

of how these new approaches have been (and might be) used to address some traditional 

and new areas of cliometrics.  The intention is not to provide a full presentation of all the 

technical properties of each and every test and estimation method, but rather to motivate 

the need for and use of such tests (and methods) and refer the reader to software where 

such tests and methods can be applied.  Most of the tests and methods discussed below 

can be easily and robustly implemented via packages such as EViews 6 and 7; STATA 9, 

10 or 11; STAMP, and RATS. The excellent user manuals that accompany these packages 

are also a comprehensive source of technical detail which, on occasion, we will also refer 

to in this paper. Exceptions to these intentions relate to sections where we highlight new 

and emerging areas where, as one might expect, implementation in the packaged software 

tend to lag the theoretical developments. 

 The paper will start by outlining the nature of what we believe are the  more 

important changes in method and interpretation that have occurred as a consequence of 
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the new time series developments (non-stationarity and unit root testing; measures of 

persistence; cointegration; Granger causality). Examples drawn from the cliometrics 

literature will complement the more technical aspects of the discussion.  Finally some 

new and emerging areas of time series econometrics will be discussed in relation to their 

potential applications to cliometrics research including long memory models and 

applications of graphical methods.   

In a single paper it is impossible to cover all areas of relevance to cliometrics 

research with time series data.  As a consequence, the following areas are excluded or 

given little emphasis, or simply enter by way of a specific example; spectral-based 

methods; Bayesian-based methods; non-parametric and semi-parametric approaches.     

Prior to the new developments in time series methods, the „meat and drink‟ of 

time series quantitative economic history was the detection and measurement of 

(deterministic) „trends‟ (if only to then subsequently remove them), their potential 

shifting location based upon tests for „structural breaks‟ and the decomposition of data 

into trends, cycles and possibly deviations from „long run trend‟.   The new econometrics 

considers stochastic trends versus deterministic trends; nonlinear trends; common trends 

(and common cycles, see Vahid and Engle, 1993); detrending and trend extraction 

(Hodrick and Prescott, 1997, Harvey, 1989, Harvey and Jaeger, 1993).  Phillips (2005) 

provides an excellent overview of the challenges faced by the notion of trends, arguing 

that we have „only scratched the surface‟ when it comes to understanding what trends are, 

how to model them and the consequences of getting that modelling wrong. 

The paper comprises the following sections.  In Section 2 we consider the notion 

and the importance of spurious regression as a precursor to Section 3 which introduces a 
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range of statistical issues relating to ideas of and tests for non-stationarity, cointegration, 

Granger causality, persistence and structural time series modelling.  Section 4 comprises 

a range of empirical applications which utilise the estimation methods and tests discussed 

in Section 3.  Section 4.1 contains a brief overview of the time series papers and topics 

published in the two main cliometrics journals, Explorations in Economic History (2000-

2009) and Cliometrica, 2007-2009.     Sections 4.2 - 4.5 present applications of such 

topics as; when did the British Industrial Revolution begin and what were its causes; 

development blocks and New Zealand economic development, testing for convergence in 

real GDP per capita; and new results interpreting English real wages data 1264 – 1913. 

Section 5 introduces new developments/applications with potential for cliometrics 

including the mildly explosive process of Phillips and Yu (2009); graphical modelling 

and implications for causality testing; and long memory estimation. Section 6 offers some 

final thoughts and Section 7 concludes.  

 

2. Prologue:  Spurious Regression 

Granger and Newbold (1974) state that: 

 

      „It is common to see reported .. time series regression equations with 

apparently high degree of fit as measured by R
2
 , but with very low reported 

Durbin Watson statistics. We find this strange given that almost every 

econometrics textbook warns of the dangers of autocorrelated errors. ...The 

most extreme example we encountered was an R
2
=0.99 and d=0.093....There 

are three main consequences of autocorrelated errors: 

1. Estimates are inefficient 

2. Forecasts based upon the regression are sub-optimal 

3. The usual significance tests on the coefficients are invalid” 
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They then concentrate on point 3 and the „discovery‟ of spurious relationships – 

the „nonsense correlations‟ between a pair of independent I(1) processes reported 

in Yule (1926).  In what was an empirically-based paper, they show that with non-

stationary series, a high R
2
 should not, on the basis of traditional tests, be regarded 

as evidence of a significant relationship between autocorrelated series.  In a 

practical sense, whenever DW<R
2
 alarm bells should sound as the classical 

properties of the error term have been violated with empirically, a highly 

persistent error equated with highly persistent dependent and independent 

variables.  These highly persistent variables will typically have the property, in 

levels, of non-stationary series. 

 Phillips (1986, 1998) provides a theoretical foundation to the empirical 

examples of Granger and Newbold (1974).   Consider a regression of: 

t t tX Y    
   (1)

 

where X and Y are independent random walks and t is a zero mean Gaussian 

white noise process.  Under these conditions Phillips shows that the OLS 

estimates of the model of equation (1) have no interpretable t statistics for α and β, 

as the distributions of these statistics diverge as the sample size increases. The 

estimate of β converges to some random variable whose value changes from 

sample to sample and the Durbin-Watson statistics for the equation tends to zero.   

 Rather worryingly, it‟s not just random walks that can cause spurious 

regression-type results.  Granger, Hyung and Jeon (2001) consider a variety of 

independent stationary (but highly persistent) processes and produced some 

„worrying‟ results.  For example, if the two processes were AR1, one with a 
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coefficient of 0.5 and the other a coefficient >0.75, then 20-26% of the regressions 

would spuriously suggest a relationship.  

 

3. Some statistical issues 

3.1 Overview 

It has now become standard practice in time series econometrics to use univariate tests to 

consider the existence of a unit root as a pre-test prior to subsequent estimation or 

inference.  Such a practice is seen as consistent with the guidelines of Granger and 

Newbold (1974) on the dangers of „spurious regression‟ and the need to consider only 

„balanced‟ relationships.  Here „balance‟ relates to a situation where a relationship to be 

estimated/tested includes only variables with the same (or lower) orders of integration. 

Order of integration relates to the numbers of times a series needs to be differenced to 

produce the property of stationarity. For example, a stationary series is said to be 

„integrated of order 0‟, denoted I(0) as it needs to be differenced „zero times‟ to become 

stationary (as it already is stationary).  „Integrated of order 1‟ means the series is rendered 

stationary by differenced 1 times (first differenced); I(2) differenced twice (difference of 

the difference), etc. The idea of „balance‟ is that any attempt to explain (say) an I(1) 

variable by a series of I(0) would be theoretically impossible (although due to the low 

power of some of the empirical tests we might produce evidence of such an occurrence – 

perhaps the source of some assumed „puzzling results‟ in econometrics see the Epilogue 

section 6.0 below).  To be a balanced relationship, the „order of integration‟ of the 

variables in a relationship to be estimated must be of equal orders of integration.  In an 

„all variables are stationary world‟ this is ensured by definition, but in a world where 

some variables are non-stationary in levels, some in differences, some stationary as linear 

combinations (cointegrated), etc., careful thought and modelling is required.   



9 

 

Below we will provide a very brief overview of unit root tests and developments, 

including the effects of „structural breaks‟ and in section 4 we consider how the unit root 

testing approach can be applied to cliometrics research. 

 

3.2 Plain vanilla Unit Root tests 

At the centre of some of the practical implications of the difference between stationary 

and non-stationary processes is the persistence of shocks, i.e., transitory or permanent. 

One of the simplest ways to model and subsequently infer persistence is to investigate the 

properties of uni-variate series, in particular, whether they are trend stationary (TS) or 

Difference Stationary (DS).  The class of model most commonly used to describe 

temporary, i.e. non-persistent, deviations about a trend is: 

                                          t ty a bt u  =                             (2) 

where ty  is typically the natural logarithm of the variable of interest, t  describes the 

trend and u  is a stationary invertible auto-regressive moving average (ARMA) process.  

This process is stationary in levels or trend stationary, (TS).    

The simplest class of model which captures permanent, i.e. persistent fluctuations 

is the random walk : 

                                -1 t  =  t ty y e                                   (3)  

The random walk is non stationary in levels, but stationary when differenced, i.e. 

difference stationary, (DS) where in this case ρ=1. 

    It has become common practice to discriminate between DS and TS processes and 

hence infer persistence or otherwise by using the Dickey-Fuller unit root tests see Dickey 

and Fuller (1981).  The usual form of the test treats DS as the null hypothesis and 

involves estimation of a regression like (4) below which presents the test in its 

„augmented‟ form.  Transforming (3) above, now the dependent variable is expressed as a 

first difference and α=(ρ-1), giving a null hypothesis (unit root) of Ho: α=0; H1: α<0 ,  
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p

t t-1 i t-i t

i=1

= +   + y y y                        (4) 

where  is assumed to be serially uncorrelated. The original, (un)augmented, Dickey-

Fuller test simply sets all the lags of the dependent variable equal to zero.  Assuming drift 

adds an intercept, μ, to (4) above: 

    -1 - t

1

       
p

t t i t i

i

y y y   


                          (4‟) 

and the possibility of a deterministic trend gives: 

   -1 -

1

        
p

t t i t i t

i

y y t y    


                           (4‟‟) 

In all cases, however, the hypothesis of interest remains the DS null, 0: =0H   

As is now well known, under the null hypothesis the usual t ratios are distributed 

as Dickey-Fuller  (1981) rather than Student's t. This is the approach pioneered by 

Nelson and Plosser (1982) and followed on numerous occasions (see Gaffeo, Gallegati 

and Gallegati (2005) for an excellent, up to date review).   

 

3.2.1 The Dickey-Fuller test with Generalised Least Squares detrending, (ADF-GLS) 

There have been many developments in unit root testing since Dickey and Fuller, 

including a range of Bayesian-based methods we are not going to consider here.  Instead 

we will present some recent developments in testing for a unit root where, in particular, 

these new tests can be found in eg., EViews, STATA and RATS. 

 Elliott, Rothemburg and Stock (1996) use  a modification of the ADF tests where 

the data are detrended so that explanatory variables are removed from the data prior to 

running the test regression. This ADF-GLS test is based upon the following regression: 
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 -1 -

1

    
k

t t i t i t

i

y y y u  


                         (5) 

where ut is assumed iid N(0,   
2
) and  ty is the locally detrended process.  Under the 

null hypothesis, H0: α=0, the ADF-GLS 
τ
 is the t-ratio on α with rejection inferred if it is 

significantly less than zero when compared with the response surface estimates in 

Cheung and Lai (1995).  

3.2.2 The Phillips-Perron (PP) Test 

 

The size distortions in the original DF test due to serial correlation in the error term was 

the reason for the adoption of lagged dependent variables in its „augmented‟ form of the 

DF test, the ADF. This augmented form of the DF remains the most common unit root 

test used in practice.   

 Phillips and Perron (1988) take a different approach to the potential effects of 

serial correlation – they use semi-parametric estimation of the long run effects of the 

short run dynamics. In particular, consider the auxiliary regression: 

 -1       t t ty y t                            (6) 

where ( ) ,  ~  (0,1).t t tL iid N      If we define the residuals from the OLS 

regression of yt on a constant and t, the Phillips and Perron test statistic can be  defined 

as: 
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Where ω2  and  are nuisance parameters consistently estimated by applying the Newey-

West (1987) estimator. Under the null hypothesis of a unit root, Zt converges in the limit 

to the Dickey-Fuller distribution, although they may differ in finite samples.  Empirically, 

however, Schwert (1989) showed that Zt is biased towards rejection of the null if the error 

term is an MA(p) process with negative first order serial correlation.  This is something to 

be considered in empirical applications. 

 

3.2.3 The Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Test 

In contrast to the tests considered above, these authors assume that the null hypothesis of 

the univariate process is stationarity.  The test is based on modelling the series as the sum 

of one stationary and one non-stationary component and testing the null hypothesis that 

the variance of the non-stationary component is zero.  The trend stationary null is rejected 

when the KPSS statistic is larger than the approximate critical values tabulated in 

Kwiatkowski, Phillips, Schmidt, and Shin (1992).  Given the null of stationarity, this test 

is often uses as part of a „battery‟ of tests to consider the robustness of other (non-

stationary null) test results.  

 

3.2.4  Ng and Perron  Tests 

Ng and Perron (2001) develop four test statistics based upon the Dickey-Fuller GLS 

approach with detrended data. In particular, they consider two variants of Phillips and 
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Perron (1988), the Bhargava (1986) R1  statistic, and the Elliott, Rothemberg and Stock,  

Point Optimal statistic.  For further details and implementation, see eg., Eviews 7. 

3.3 Unit roots with exogenous or endogenous change 

Perron (1989) demonstrated how structural breaks in a series can lead to biased unit root 

test results (in favour of  DS).  He uses the idea of exogenously determined breaks 

informed by prior knowledge.  Such exogenous assumptions have effects on the timing 

and properties of the critical values that are used to compare with the test results.  Zivot 

and Andrews (1992) allow for endogenously determined breaks chosen on the basis of 

particular statistical criteria in an economically atheoretical way. Their critical values are 

likewise affected by the testing methods and in the original form the number of breaks 

permitted is limited. 

 Ignoring the presence of breaks, when they actually occur can lead to spurious 

non-rejection of the null hypothesis of a unit root. The main differences in the testing 

procedures proposed by Perron (1989), and subsequently Zivot and Andrews (1992), over 

the original Dickey-Fuller approach, involves the addition of various dummy variables to 

(4) to capture changes in the intercept and/or time trend and the use of recursive 

estimation methods,  i.e., 

                     -1 -

=1

=  + +    +  +  +  + 
p

t t i t i t

i

y y t DT DU y u                   (7)   

where DU=1 if t>TB, 0 otherwise and DT = t if t>TB and 0 otherwise and TB refers to 

the time of the break.  

In the original Perron formulation, the variables DU and DT were included to 

capture the possibility of “crashes” (DU) trend changes (DT) and joint crashes and trend 

changes (DU and DT). In the empirical section below we consider the possibility of 
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“jumps” where the coefficient attached to DU could be positive rather than negative as in 

the case of a “crash”. Likewise a joint “jump” and trend change (denoted j&t), would 

involve the inclusion of both DU and DT in the equation. Tests of the null hypothesis of 

DS still involve 0 :  1,  0H     although critical values are now given in Perron 

(1989) for exogenous breaks or Zivot and Andrews (1992) for endogenously located 

breaks.  

 The original motivation for the Perron (1989) approach and modifications by 

Zivot and Andrews (1992) was in response to the lack of power to reject the null of a unit 

root in the presence of structural change.  However, Perron and Zivot and Andrews are 

only one-break models. If the DGP involves more than one break as might be expected in 

the very long time series often used in cliometrics, we are left with the same problem the 

original approach was attempting to remove - biased unit root test results (in favour of  

DS).  Vogelsang (1997), presents results showing the loss of power that ensures when 

using a one-break model in a world of two breaks.  Empirically, Ben David and Papell 

(1998) present evidence of more than one break and Lumsdaine and Papell (1997), 

discussed below, consider a generalisation of the endogenous break-point procedure of 

Zivot and Andrews (1992). 

  

3.3.1 Lumsdaine-Papell test 

The Lumsdaine and Papell (1997) test extends the Zivot and Andrews test equation (7) 

above, by adding in additional dummy variables for intercept and slope changes as shown 

below: 
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 -1 1 2 2 1 -

=1

=  + +    +  +  +  +  + 
p

t t i t i t

i

y y t DT DU DT DU y u              (8)        

As in the single break tests of Zivot and Andrews, three types of models can be 

considered, but now there are more variations including two breaks in the intercept; two 

breaks in the slope, etc.  Being a variation of a standard unit root test, the t  statistic on ρ 

is compared to the relevant critical value found in Lumsdaine and Papell (1997).  

 

3.3.2 Lee-Strazicich (2001, 2003) tests 

Lee and Strazicich (2001, 2003) take a similar approach to Lumsdaine and Papell (1997), 

but their test statistic uses a minimum Lagrange Multiplier, LM, test criteria.  This 

approach is based upon the results from Schmidt and Phillips (1992) on the potential for 

unit root tests to report spurious rejections when the null includes a genuine structural 

break.   The Lee and Strazicich LM-based test therefore starts with an assumption that the 

null hypothesis is a unit root with up to two breaks and as should be clear, the t statistic to 

test the null arises via a LM principle based upon the score.  The ability to permit (up to) 

two breaks in the null and two breaks in the level or slope of the alternative, makes the 

approach particularly flexible and attractive. This test procedure was recently utilised by 

Greasley, Madsen and Wohar (2010) to consider the empirics of long run growth. 

 

3.4 Panel Unit Root Tests  

It is now well know that conventional univariate ADF unit root tests often tend to suffer 

from low power when applied to series of only moderate length.  The idea of panel-based 

unit root testing is to pool the data across individual members of a panel to address this 
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issue by making available considerably more information regarding the series under 

investigation. Panel unit root ADF techniques are intended to allow researchers to 

selectively pool information regarding common long-run relationships from across the 

panel while allowing the associated short-run dynamics and fixed effects to be 

heterogeneous across different members of the panel see Maddala and Wu, (1999). We 

consider below three common forms of panel unit root tests, Levine et al. (2002, hereafter 

LLC), Im Peseran and Shin (2003, hereafter IPS) and Hadri (2000). 

LLC propose an ADF test with a panel setting that restricts parameters i  by 

assuming them identical across cross-sections as follows:  




 
k

j

itjitjitiiit eyyy
1

1     (9)

  

 

where Tt ,,2,1   refers to the time periods and Ni ,,2,1   refers the numbers in the 

panel. The null hypothesis of LLC test is 0  i  for all i indicating that the panel data 

are non-stationary while the alternative hypothesis is 021    . This test is 

based on the statistics, )ˆ.(./ˆ  esty  .  

It is clear that the null hypothesis of the LLC test is very restrictive and the test of 

IPS (2003) relaxes this assumption by allowing   to vary across i under the alternative 

hypothesis. The null hypothesis of the IPS test is therefore that 0i  for all i, while the 

alternative hypothesis is 0i  for all i. The IPS test then uses the mean-group approach 

and obtains the average of yt to compute the following statistic: 

)var(/))((
~

ttEtNZ            
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where )()/1( 1 tEtNt
iy

N

i   and )(tVar  represents the mean and variance of each yt , 

respectively. The statistic Z
~

converges to a Normal distribution, and we can compute the 

significance level in a simple way.  

By contrast, Hadri (2000) argues that the null hypothesis should be reversed to be 

stationarity in order to produce a test with more power. His Lagrange Multiplier (LM) 

statistics is given by the follow expression: 

  









N

i

ij

t

j

T

tT

N
LM

1
2

11

2

)
ˆ

ˆ
(

1




 (10) 

Where 2ˆ
  is the consistent Newey-West (1987) estimate of the long-run variance of 

disturbance terms ( ij ).  

Panel-based tests, which are now available via for example Eviews 7 include; 

Levin, Lin and Chu (2002), Breitung (2000), Im, Pesaran and Shin (2003), Fisher-type 

tests using ADF and PP tests (Maddala and Wu (1999) and Choi (2001)), and Hadri 

(2000).   A summary of some aspects of these tests is provided below.  All use lags as 

corrections for autocorrelation, as with the ADF, and permit the option of fixed effects; 

individual effects and individual trends where relevant to the tests: 

Levin, Lin and Chu (2002); H0: unit root; H1: no unit root.  

Breitung (2000) ; H0: unit root; H1: no unit root. 

Im,  Pesaran and Smith (2003) ; H0: unit root; H1: Some cross-sections 

without a unit root. 

Maddala and Wu,  Fisher-ADF, (1999); H0: unit root; H1: Some cross-

sections without a unit root. 

Maddala and Wu, Fisher-PP (1999);  H0: unit root; H1: Some cross-sections 

without a unit root. 

Hadri (2000); H0: No unit root; H1: unit root. 
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3.5  Direct measures of persistence 

One of the possible outcomes of testing for whether a series is a DS v. TS processes is to 

infer that that shocks implied by the process will have either infinite or zero persistence 

respectively.  Campbell and Mankiw (1987) and Cochrane (1988), amongst others 

consider this as extreme and provide methods to measure the actual persistence  of 

shocks, i.e. how much does a one-unit shock to output (say), affect forecasts into the 

future?  Furthermore, Cochrane (1988) demonstrates how any DS process can be 

represented as the sum of a stationary and random walk component where the issue of 

persistence revolves around the size of the random walk element. In particular assume y is 

a linear DS process i.e., 

                 - 

0

  (1- )     ( )      j t jt t t

j

y L y A L a   




                              (11) 

Utilising the Beveridge and Nelson (1981) decomposition, let 
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Here z  is to be considered the permanent and c , the temporary component of y . Long-

term forecasts of y  are unaffected by c , the temporary component.  

    Cochrane (1988) considers the innovation variance of the random walk 

component  as a natural measure of the importance of the random walk element .  He 
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gives two equivalent formulations of this measure.  The  variance of the random walk 

element 


 is given by:  

     z
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Equivalently, 


 is equal to the spectral density of y  at frequency zero, i.e., 
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which can be estimated  by the Bartlett estimator.  However, as demonstrated by 

Cochrane (1988), the Bartlett estimator will be biased in small samples  where the bias 

can be corrected  by multiplying the estimates by T/(T-k), where T is the effective sample 

size and k the window size.  One of the main advantages of  the 


 measure over 

parsimonious ARMA representations, is that it captures all the effects of a unit root on 

the behaviour of a series in a finite sample. Notice that tests of TS in this framework 

involve a test of  


 = 0.  However, further note that the size of the random walk 

element is a continuous choice where series can be more fruitfully categorised by the size 

of  


 or the persistence of y.  

    However, the persistence measure is derived assuming an underlying linear 

model, (without discontinuities).  If  y
t
 were a pure random walk, the variance of the kth 

difference would grow linearly with k.  If it were TS, however, the variance of the kth 

difference approaches a constant.  Non-linearities in the underlying series would 

invalidate this relationship and the relevance of the Cochrane-type persistence measure. 

          In circumstances when breaks in the series might be expected the following 

approach can be adopted; firstly check the order of integration of the data using standard 
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or extended versions of the Augmented Dickey-Fuller test. If the series is TS without 

breaks measure the degree of persistence using the methods discussed above,  however, if 

it is TS with breaks use the timing of the breaks, as a first approximation, to distinguish 

between persistence measure periods.  If it is DS after testing for breaks, present 

persistence measures for the full and, where necessary sub-samples. Check the sensitivity 

of the results to specific sample periods and investigate the existence of significant non-

linear elements. (see below section 4.2 and Greasley and Oxley (1997d, and 1998a, for an 

example) 

 

3.6  Cointegration  

In their classic paper, Engle and Granger (1987) show that a linear combination of two or 

more I(1) series may be stationary, or I(0). In this case, the series are said to be 

cointegrated. The linear combination, if it exists, defines a cointegrating equation with 

the resulting cointegrating vector of weights characterizing the long-run relationship 

between the variables. Stated more formally: 

 The components of the vector 
'

1 2 3( , , ,.... )t t t t ntx x x x x are said to be 

cointegrated of order d,b and denoted ~ ( , )tx CI d b if the following two 

conditions hold: i) All elements of xt  are integrated of order d  and ii) there 

exists a vector (the cointegrating vector)  1 2 3( , , ,.... )n      such that 

the linear combination 1 1 2 2 3 3 ....t t t t n ntx x x x x        is integrated 

of a lower order (d-b) where b>0.   
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3.6.1 Single equation Engle-Granger (1987) 2 step methods (residual based tests) 

 

This original form of testing for cointegration is effectively a test of the time series 

properties of the residuals in an (OLS) regression of the levels of the variables where the 

null hypothesis is of no-cointegration (no significant linear combination).  

Consider the following: 

  
0 1t t ty x e       (13) 

Where x and y are variables of interest; the β are coefficients to be estimated and et a 

random disturbance term.  If x and y are non-stationary I(1),  they have no tendency to 

revert to the mean, long run level.  However, if x and y are cointegrated, that is a linear 

combination of x and y are stationary, or I(0), then we can think of the relationship above 

as exhibiting a long run equilibrium.  

 The nature of the residual-based cointegraion tests is that we can rewrite (13) 

above as: 

  0 1t t te y x         (14) 

and if this linear combination of integrated variables is cointegrated, then et must be I(0) 

or stationary (this is another example of the „balance‟ property discussed above). Engle-

Granger two-step methods, therefore involve OLS regressions of equations like (13) 

above (step-one) followed by a test of the order of integration of the error term from that 

equation (et) as step-two.  Because the residual is derived from the step-one process it has 

the property of a generated regressor (see Pagan 1984 and Oxley and  McAleer 1993) and 

the critical values of the ADF test need to account for this property.  Software packages 

like Eviews take account of this automatically, otherwise incorrect inference could result. 
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Variations of the residual-based approach include Phillips and Ouliaris (1990) residual-

based tests, Hansen (1992), and Park (1992).  

If cointegration exists, and it should be stressed that not all integrated variables 

are co-integrated,  see Granger (1986), not only is OLS an appropriate method to use it 

also has the property of super-consistency such that  OLS estimates converge to the true 

value at the rate n compared to the usual rate n where n is the sample size. 

If we consider a special case of (14) above where et=0, then effectively the 

relationship estimated would be in long run equilibrium.  However, typically et≠0 and 

the term represents the equilibrium error often referred to as the error-correction term.  

Note, that this is captured as the second stage of the cointegration testing procedure.  The 

error-correction term plays an important role in the Error (or Equilibrium) Correction 

Models (ECM) which involves estimation of the short-run dynamics consistent with the 

long-run equilibrium captured by the cointegrating relationship.  If cointegration exists 

between the I(1), integrated variables, the error-correction term (et) must be I(0). To be a 

valid ECM model of the short-run dynamics, therefore all the other variables in an ECM 

must be stationary.  As the long run model involves I(1) in levels variables, the ECM will 

typically include variables  in first-differences for example: 

 

1 2 1 3 2 4 1t t t t t ty x x z e                
  (15)

 

 

where equation (15) may have been derived as part of a General-to-Specific search 

process yielding a relationship with an error term t with appropriate properties. Note et 

enters with a lag and an expectation that 4 <0. As 1te  has been derived from the long 

run cointegrating model, it effectively links the long run and short run aspects of the 
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relationship.  For discussions on alternative ways of constructing and interpreting the 

ECM see Muscatelli and Hurn (1992). 

 

3.6.2  Johansen maximum likelihood estimation-based cointegration methods 

As can be seen from the discussion above, Engle-Granger type methods for establishing 

the existence (or otherwise) of cointegration are simple, based upon an OLS regression of 

current valued variables, and powerful, having the property of superconsistency should 

cointegration be established.  However, the EG methods have a number of shortcomings.  

The first is that the normalisation can matter.  Normalisation here effectively means 

„which variable is on the left hand side‟.  Consider our relationship described by equation 

(13) above. 

As written we have chosen to assume y is the variable explained by x.   If x and y 

were I(1), but cointegrated, it shouldn‟t matter whether we estimate y=f(x) or x=f(y) as 

the test for cointegration is based upon the et.  This is the case asymptotically, but not 

necessarily in small samples. If we extend the relationship to include other variables the 

potential problem is expanded.  Furthermore, the EG approach can only identify (up to) 

one cointegrating relationship.  This isn‟t a problem in the bivariate case, but again once 

we go beyond two variables the potential to identify more than one significant 

cointegrating relationship is possible.  Whether this means there are more than one 

„economic‟ equilibrium is a mute point and requires careful consideration of the 

„economic sense‟ of the linear combination(s) identified by the testing procedure.   

In contract to Engle-Granger type methods, the Johansen (1988, 1995) approach 

utilizes a multivariate model where the sensitivity to normalisation problem outlined 
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above, disappears.  At this stage it is also worth stressing that cointegration identifies 

linear combinations of variables integrated of a lower order.  If we have two variables this 

implies at most, one (unique) cointegrating relationship; if we have three variables at 

most two cointegrating relationships; four variables at most three cointegrating 

relationships; k variables at most k-1 cointegrating relationships, etc.  If we establish via 

testing, k significant cointegrating relationships from k variables then it says any linear 

combination of the k variables is stationary which implies all the k variables are in fact 

stationary in levels (not non-stationary as thought or suggested by univariate pre-tests)!  

Of course, it should be stressed again that there may be no significant cointegrating 

relationships at all and in this case there is no tendency for the variables in the model to 

move together over time as the equilibrium interpretation of the mathematical notion of 

cointegration would imply.  

The Johansen approach utilises this rank property as the basis for its tests of the 

existence of cointegration,  in particular consider a multivariate version of the ADF 

equation: 

1 1 2 2 3 3 ....t t t t p t p tx A x A x A x A x        
  (16)

 

Defining this in vector form so that 1 2 3( , , ,.... )t t t t ntx x x x x   we can rewrite it as  

p-1

t t-1 i t-i t

i=1

= +   + x x x                        (17) 

where 

1

(1 )
p

i

i

A


   and 

1

p

i j

j i

A
 

   . 
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Here we can now see how the rank of π is crucial in determining the number of 

cointegating relationships and the issue of potential neglected stationarity .  If the rank of 

π=o then no significant cointegrating relationship exists.  If the rank of π=n, then any 

linear combination is stationary.  If the rank=1, a single cointegrating relationship exists 

and  πxt-1 represents the error correction term, whereas if the rank of π>0, <n, then 

multiple cointegrating relationships exist. 

 Testing for the number of significant cointegrating relationships using the 

Johansen approach involves checking the significance of the characteristic roots of π.  

Using the property that the rank of a matrix is equal to the number of characteristic roots 

that differ from zero, Johansen proposes two tests for cointegration; one based upon the 

trace and one on the maximum eigenvalue.  In particular, if we denote the ordered n 

characteristic roots of the matrix π are denoted 1 2 3 .... n       the trace test is 

defined as: 

 

  

1

ˆ( ) ln(1 )
n

trace i

i r

r T 
 

      (18)

  

 

and the maximum eigenvalue as: 

  max 1
ˆ( , 1) (ln(1 )rr r T         (19) 

 The null hypotheses of the two differ in that the trace tests whether the number of 

distinct eigenvalues is ≤r; whereas the maximum eigenvalue tests the null of r 

cointegrating relationships against r+1.   In a practical setting, one may find that the trace 

test results may find „more evidence‟ of a (or several) significant cointegrating 

relationships than the maximum eigenvalue test.  Therefore in analysing and assessing 
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empirical research, one should be careful to consider which test(s) have been reported 

and whether (if both trace and eigenvalue are reported) they support or contradict.  

 

3.6.3  Panel-based cointegration methods  

Pedroni (1999, 2004) develops a number of panel-based tests for cointegration. Pedroni 

(1999) allows for cross-sectional interdependence with different individual effects. If the 

panel data follow an I(1) process, the Pedroni (1999 and 2004) panel cointegration model 

can be applied to ascertain whether a cointegration relationship exists. Pedroni (1999) 

suggests the following time series panel expression: 

it i i it it ity t X e     
   

(20)   

Where ity and itX  are the observable variables with dimension of 1)( TN  and 

mTN  )( , respectively. He develops the asymptotic and finite-sample properties of the 

test statistics to examine the null hypothesis of non-cointegration in a panel.  The tests 

allow for heterogeneity among individual members of the panel, including heterogeneity 

in both the long-run cointegration vectors and in their dynamics. 

         Pedroni develops two types of residual-based tests. For his first type, four tests 

are distributed as standard Normal asymptotically and are based on pooling the residuals 

of the regression for the within-group. The four tests in this class are:; the panel  -

statistic; the panel  -statistic; the panel PP-statistic (or t -statistic, non-parametric) and 

the panel ADF-statistic (or t -statistic, parametric). For the group of second type tests, 

three are also distributed as standard Normal asymptotically, but are based on pooling the 

residuals for the between-group. The three tests in this class are: the group  -statistic; 

the group PP-statistic (or t -statistic, non-parametric) and the group ADF-statistic (or t -
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statistic, parametric). Pedroni (1999) presents the following heterogeneous panel 

cointegration statistics: 

Panel  -statistic: )ˆˆ( 2
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Panel  -statistic: )ˆˆˆ(ˆ)ˆˆ( 1
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Panel t -statistic (non-parametric):  )ˆˆˆ(ˆ)ˆˆˆ( 1
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And the following heterogeneous group-mean panel cointegration statistics: 

Group  -statistic:  
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Group t -statistic (non-parametric):  
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Group t -statistic (parametric):  
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Where itê  is the estimated residual from equation (20) above and 
2

11
ˆ

iL  is the estimated 

long-run covariance matrix for itê . Similarly, 2ˆ
i  and 2

îs  (
2*

îs ) are, respectively, the long-

run and contemporaneous variances for individual i. The other terms are defined in 

Pedroni (1999) with the appropriate lag length determined by the Newey-West method. 

All seven tests are distributed as standard Normal asymptotically. This requires 

standardization based on the moments of the underlying Brownian motion function. The 

panel  -statistic is a one-sided test where large positive values reject the null of no 

cointegration. The remaining statistics diverge to negative infinitely, which means that 
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large negative values imply rejection of the null. The critical values are also tabulated in 

Pedroni (1999).  

        The statistics above are based on estimators that simply average the individually 

estimated coefficients for each member, and each of these tests is able to accommodate 

individual specific short-run dynamics, individual specific fixed effects and deterministic 

trends, as well as individual specific slope coefficients (Pedroni, 2004). The number of 

observations available is greatly increased in a panel framework when testing the 

stationarity of the residual series in a levels regression and this can substantially increases 

the power of the cointegration tests  see,  Rapach and Wohar, (2004).  

3.7 Granger-type causality 

3.7.1 Conventional Granger-type tests 

Many tests of causality have been derived and implemented, including Granger (1969, 

1988), Sims (1972), and Geweke et al. (1983a). We are not going to debate here whether 

Granger causality tests „causality‟, but note that Granger-type causality tests are tests of 

temporal ordering. Granger showed via his Representation Theorem that a bivariate co-

integrated system must have causal ordering in at least one direction.  These inherent 

links between Granger-causality and co-integration have been exploited to formulate the 

current suite of tests for causality used in time series econometrics. The tests are all based 

upon the estimation of autoregressive or vector autoregressive (VAR), models involving 

(say), the variables X and Y, together with significance tests for sub-sets of the variables.   

    Although it is quite common to test for the direction of causality, the conclusions 

drawn in some studies are fragile for two important reasons.  Firstly, the choice of lag 

lengths in the autoregressive or VAR  models is often ad hoc, see for example, Jung and 

Marshall (1985), Chow (1987), and Hsiao (1987), although the length of lag chosen will 
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critically affect results. Secondly, in the absence of evidence on cointegration, "spurious" 

causality may be identified.   

      Engle and Granger (1987), show that if two series are individually I(1), and 

cointegrated, a causal relationship must exist in at least one direction.  Furthermore, the 

Granger Representation Theorem demonstrates how to model cointegrated I(1) series in 

the form of a VAR model. In particular, the VAR can be constructed either in terms of 

the levels of the data, the I(1) variables; or in terms of their first-differences, the I(0) 

variables, with the addition of an error-correction term (ECM) to capture the short-run 

dynamics.  If the data are I(1), but not cointegrated, causality tests cannot validly be 

derived unless the data are transformed to induce stationarity which will typically involve 

tests of hypotheses relating to the growth or first-difference of variables (if they are 

defined in logarithms), and not their levels.  To summarise, causality tests can be 

constructed in three ways, two of which require the presence of cointegration.  The three 

different approaches are defined below. 

      The first stage in testing for causality involves testing for the order of integration.  

Conditional on the outcome of such tests, the second stage involves investigating 

bivariate cointegration utilising the Johansen maximum likelihood approach. If  bivariate  

cointegration exists  then  either  uni-directional  or bi-directional Granger causality must 

also exist, although in finite samples there is no guarantee that the tests will identify it. 

On the basis of the bivariate cointegration results, a multivariate model of cointegration 

may then be investigated to examine interaction effects, taking the error term from this 

cointegrating regression as a measure of the ECM term to capture the short run dynamics 

of the model.  The third stage (or second if bivariate cointegration is rejected), involves 
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constructing  standard Granger-type causality tests, augmented where appropriate with a 

lagged error-correction term, see Giles et al. (1993).   

     The three-stage procedure leads to three alternative approaches for testing 

causality. In the case of cointegrated data, Granger causality tests may use the I(1) data 

because of the superconsistency properties of estimation. With two variables X and Y: 
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where ut   and vt   are zero-mean, serially uncorrelated, random disturbances and the lag 

lengths m,n,q and r are assigned  on  the  basis of minimising some form of Information 

Criteria.   

     Secondly Granger causality tests with cointegrated variables may utilise the I(0) 

data, including an error-correction mechanism term, i.e., 
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Where the error-correction term, derived from the cointegrating relationship, is denoted 

ECM. 
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      Thirdly if the data are I(1), but not cointegrated valid Granger-type tests require 

transformations to induce stationarity.  In this case the tests deploy formulations like (28') 

and (29') above, but  without the ECM term, i.e., (28'') and (29'') below. 
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Granger causality tests  based upon equations (28) and (29) involve the following:  

Y Granger causes (GC), X if, H n0 1 2 3 0: ......         is  rejected against the 

alternative H j n1 0 1: , ,...,   at least one    j  .  

X GC Y if, H c c c cr0 1 2 3 0: .....      is rejected against the alternative  

H j r1 0 1: , ,..., .   at least one c    j  . 

For equations (28') and (29') Granger causality tests involve the following: 

 

Y Granger causes (GC), X if,  H n0 1 2 3 0: ......         is  rejected against 

the alternative , H j n1 0 1: , ,...,   at least one    j , or   0, (see Granger 1986).  

X GC  Y if, H c c c cr0 1 2 3 0: .....      is rejected against the alternative 

H j r1 0 1: , ,..., .   at least one c    j  ,  or   d0, (see Granger 1986).  

 

Notice in this case however, with the possibility of causality being inferred from the 

significance of d or  alone that the causal nexus is altered i.e., causality runs from the 

past level to the current rate of change without any lagged change effects. 

   For non-cointegrated data (X and Y, I(1)), Granger causality tests involve tests 

based upon equations (28'') and (29''), in particular: 
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Y Granger causes (GC), X if,  H n0 1 2 3 0: ......         is  rejected 

against the alternative,  H j n1 0 1: , ,...,   at least one    j . 

X GC  Y if, H c c c cr0 1 2 3 0: .....      is rejected against the 

alternative. H j r1 0 1: , ,..., .   at least one c    j  

Given the inclusion of lagged dependent variables  in  (28)  and  (29), (28') and (29') 

and (28'') and (29''), tests of the hypotheses utilising OLS  results  require  the    

modified  Wald  statistics, nF1 and   rF2 , distributed (asymptotically) as  2 with n and 

r degrees of freedom, where F1 and F2  are the "normal" F statistics of the joint  

significance of the 's and c's respectively.  Furthermore, in the case of equations (28) 

and (29) we invoke the results of Lutkepohl and Leimers (1992), and Toda and Phillips 

(1991), which show that in bivariate non-stationary cointegrated models the Wald test 

will have the usual asymptotic 2 distribution.  

    In addition to the Wald test of zero restrictions, and 't' tests on d and  where 

appropriate, the Final Prediction Error (FPE) can be used as an additional indication of 

causality, i.e. if FPE(m*,n*)<FPE(m*), it implies Y Granger-causes X  (or Y Granger 

causes X where appropriate), likewise for r* and q*, see Giles et al. (1993) for more 

details.  All three criteria are used in the empirical section of the paper.  

 

3.7.2 Toda and Phillips (1991) - type tests 

Under conditions of cointegration, the ECM based tests discussed above involve some 

form of two-step process, i.e., test for cointegration and retain the residuals as the ECM 

term and utilise this variable in the second stage either as a direct test of causality 

following Granger (1986) and Engle and Granger (1987), or as part of the modelling 

strategy when testing the significance of the VAR terms. 
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  In Toda and Phillips (1991), - henceforth TP - the authors consider a different, single-

stage estimation, but (potentially), sequential testing, framework as well as a critical 

review of previous tests. 

    Consider the n-vector time series yt  generated by the k-th order VAR: 

                                                             

1( )                   1,....,                         (30)t t ty J L y u t k T      

 

where L is the lag operator defined as, J L J Lii

k i( ) 


 1

1 and ut an n dimensional random 

vector.  Making sufficient assumptions to ensure that yt is cointegrated, CI(1,1) with r 

cointegrating vectors (r1),  see TP for details, rewrite (30) in the equivalent ECM form:  

 

*
1 1( )                                  (31)t t t ty J L y A y u       

 

where J * (L) is defined analogous to the expression above.  

 

3.7.2.1 Causality Tests 

Following Sims, Stock and Watson (1990), consider a test of whether the last n3  

elements of yt cause the first n1  elements of the vector where yt is partitioned as: 

 

1 1

2 2

3 3

                                      (32)

t

t t

t

y n

y y n

y n

 
 


 
 
 

 

1. Levels VAR 

The null hypothesis of non-causality based upon equation (32) would be: 

 

1,13 ,13 :  .... 0                                   (33)kH J J    
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and  J J Lii

k i

13 131

1


 ,  is the n1 x n3  upper-right submatrix of J(L). Denoting A3 as the 

last  n3  rows of the matrix of cointegrating vectors A, if rank(A3) = n3 , then via TP, 

Corollary 1, under the null hypothesis from (33): 

F
d

n n k      1 3

2    

However, the rank condition on the sub-matrix (A3), based upon OLS estimates, suffers 

from simultaneous equation bias, such that there is no valid statistical basis for 

determining whether the required sufficient condition applies.  When the condition fails, 

the limit distribution is more complex than that shown above and involves a mixture of a 

2  and a non-standard distribution and generally involves nuisance parameters.   

2. Johansen-type ECM's 

Based now upon equation (34), the null hypothesis of non-causality becomes: 

* * *
1,13 1,13 1 3 :  .... 0  and  Γ   0                                  (34)kH J J A      

and  J J Lii

k i

13 131

1


 ,  is the n1 x n3  upper-right submatrix of J*(L), and 1 are the first 

n1 rows of the loading coefficient matrix .   If rank 1  =  n1 or  rank(A3) = n3 , then 

under the null hypothesis  (34) 

F
d

n n k   *   1 3

2  

Again, if neither of these conditions are satisfied, causality tests based upon 2  will not in 

general be valid. However, unlike the case above, tests of such conditions are relatively 

easy to construct and constitute the sequential testing strategy of TP. 

    Consider for the moment either n1=1 or n3=1, (or  n1=1 and n3=1), such that 1 is 

a scalar denoted 1 as is A3 denoted 3, then define  the following  null hypotheses: 



35 

 

 

H J Jk

*

,

*

,

*: ....    and                                     113 113 1 30 0        

* * *
1,13 1,13 :  .... 0                                kH J J 

  

 

H1 1 0*:           

H3 3 0*:   

H13 1 3 0*                                       :     

 

The TP sequential testing strategy  involves : 

 

( ) :*
* *

*
P H

If H is H

H
1 1

1
 Test 

   rejected test 

 Otherwise test 







 

 

( ) :*
* *

*
P H

If H is H

H
2 3

3
 Test 

   rejected test 

 Otherwise test 







 

and when n1=n3=1: 

 

( )





*

*

* *

* *

*

P H

If H

H H

H H

H

3

1 3

1 3

13

 Test   

  is rejected,  reject the null

hypothesis of noncausality

 Otherwise,  test  and   

If both  and  are rejected

test  if r > 1

or reject the null if r = 1 

Otherwise,  accept the null 

of non causality







































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(where r is an estimate of r). 

   Having established this theoretical hierarchy of testing, based upon their Monte 

Carlo results, TP make the following observations/recommendations: 

1. (P1) generally performs better than (P2) and  should be preferred over 

(P2) 

2. When n1=n3=1, (P1) and (P2) are less vulnerable to size distortions than 

(P3) which should be avoided 

3. None of the sequential procedures (or conventional tests), performed well 

for sample sizes below 100, at least with systems of three or more variables 

4. The sequential tests outperform the conventional VAR tests  which suffer 

considerable size distortions where tests are not valid asymptotically 2 . 

Furthermore, consideration of their Monte Carlo results reveals that for many cases 

considered, "our testing procedures do not have much power unless the lag length k is 

specified correctly.  This is not surprising because if k>1 the coefficients of the lagged 

differences of y3 are all zero."  For other cases, "If we choose 22% critical values for 

those sub tests (H H1 3

* *, ), then we would have approximately 5% significance level for the 

overall causality test ..... but of course we cannot do so without allowing large upward 

size distortions in other cases...."  - TP.  More generally, under many plausible cases it 

seems that the sequential procedures involve the potential to introduce large size 

distortions for relatively small deviations from assumed theoretical values, i.e., lag 

length, coefficient values and properties of the error term. 

 

3.7.3 Toda and Yamamoto (1995)  

The Toda and Yamamoto (1995)  method can also be utilised to ascertain the direction of 

causality and involves using the levels of the variables irrespective of their order of 
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integration. The test involves adding additional lags based upon the potential order of 

integration ie., one additional lag if one assumes the data is I(1), two if I(2), etc. It has the 

advantage that it can be used when the order of integration is ambiguous or uncertain, 

however, the cost is in terms of efficiency.   

3.8 The Structural Time Model (STM) approach of Harvey (1989) 

 

In a series of papers, Andrew Harvey has argued that structural time-series models 

provide the most useful framework within which to consider „stylised facts‟ about time 

series data.  Nested within the general models he proposed, one can consider tests of TS v 

DS; the Hodrick-Prescott (1977) filter (and many other more general filters); etc. In a 

particularly useful paper in this respect, Harvey and Jaeger (1993) examine some of the 

consequences of the „mechanical detrending methods of Hodrick and Prescott‟ and show 

that their uncritical use can lead to potentially spurious cycle detection. Instead of H-P, 

they propose the structural time series approach.   

 Below we will present the basics of the approach – those interested could usefully 

consult Harvey (1989).  

 

3.8.1 The trend plus cycle model 

Consider the following representation: 

 

(35) ,      1,...t t t ty t T     
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where ty  is the series of interest; t is the trend; t is the cycle and t is the irregular 

component.   The local linear trend model is defined as:   

 
2

1 1      ~ (0,  )t t t t t NID              (36) 

 
2

1        ~ (0, )t t t t NID          (37) 

where t is the slope and independence is assumed between the white noise errors t and 

t . 

The stochastic cycle is modelled as: 

*
1 1 cos   sin  t c t c t t          

  
* * *

1 1 sin   cos  t c t c t t           (38) 

 

where ρ represents the damping factor, 0 1  , and c is the frequency of the cycle in 

radians and t and 
*
t  are both 

2(0, )NID  .  The disturbances in all three equations 

are treated as independent and the irregular component is also assumed to be 

2(0, )NID  .   Estimation of the hyperparameters, 
2 2 2 2( , , , , , )c          can be 

undertaken by maximum likelihood methods and separate estimates of the trend, cycle(s) 

and irregular components obtained.  STAMP (Structural Time Series Analysis Modeller 

and Predictor) 8.3 is a powerful, flexible and very user friendly, Windows „drop-down‟ 

menu-based  software package written specifically for estimation and prediction of such 

models and methods.  

 This structural time series modelling approach is also very flexible as it nests 

within its general structure a range of special cases.  For example: 
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i) The trend is a random walk with drift and the cycle is an autoregressive 

component AR2 with the irregular either white noise or zero.  In this case the 

level is „stochastic‟ and the slope „fixed‟.  

ii) The model is assumed to be a local linear trend.  Here the level is „stochastic‟ 

as is the slope. A stationary trigonometric cycle is included as is an irregular. 

iii) Assume a smooth trend with level „fixed‟ and slope „stochastic‟.  The cycle 

may be a generalised version of the simple case considered above as in 

Harvey and Trimbur (2003). 

 

Consider some useful properties of for example, the local level model:  

2,      ~ (0, ),    1,....t t t ty NID t T       

  
2

1 ,      ~ (0, )t t t t NID          (39) 

Maximum likelihood estimates of σ
2

η and σ
2

ε and their relative variance σ
2

η / σ
2

ε allow 

the calculation of for example, the „signal to noise‟ ratio. STAMP can also create an H-P 

filter for example, assume a local linear trend (see equation 38 above) with the level 

„fixed‟ the slope „stochastic‟ and include an irregular component.  Fix  ση = 0,  σξ = 

0.000625 = 1/1600 = λ
-1

 will create the classic Hodrick Prescott filter calibrated for 

quarterly (US) data. 

 

4.0 Empirical applications 

4.1 Overview 

The use of modern time series-based methods in cliometrics research is growing.  Tables 

1 and 2 below collate and summarise the methods used in empirical, time-series based 

papers published in the two main cliometrics journals, Explorations in Economic History 

(2000-2009) and Cliometrica, 2007-2009.  The creation of Cliometrica itself is testimony 



40 

 

to the growing number of quantitative economic history papers being written.  

Furthermore, it is clear from the Tables, that there are a growing number of papers using 

modern time series methods in cliometrics more generally.  

 

Tables 1 and 2 near here 

 

The most common methods applied in the papers identified are simple unit root tests, 

typically of a Dickey-Fuller or Augmented Dickey-Fuller form. Cointegration, mainly 

Johansen-based and Granger causality are also commonly undertaken methods.  Simple 

Vector- AutoRegressive (VAR) (see Sims, 1980) methods are also used by several 

authors. Testing for structural breaks; Kalman filter estimation; Auto Regressive 

Distributed Lag (ARDL) (see Pesaran, Shin and Smith, 2001); Generalised Auto 

Regressive Conditional Heteroskedasticity GARCH, (see Bollerslev, 1986); TAR 

(Threshold AutoRegression) and STAR (see Tong 1990, and Terasvirta, 1998);  are less 

commonly used methods reflecting the particular applications under investigation. 

Overall, however, it is clear that many in the cliometrics group have adopted appropriate 

methods to consider the time-series questions they have chosen to consider, however, it is 

also clear from reading some applications by other authors, that more people need to 

consider their data, methods used and hence conclusions more carefully.  This is not 

unique to cliometrics, but we will not take this point further here.  
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Table 1 

Papers using Time Series methods: Explorations in Economic History, 2000-2009. 

YEAR AUTHOR(S) TITLE METHODS  

2000 Greasley and Oxley  

British Industrialization, 1815–1860: A Disaggregate Time-

Series Perspective 

Unit root tests//Kalman filter/ 

Stochastic trends 

2000 Weidenmier The Market for Confederate Cotton Bonds VAR/unit roots/Granger causality 

2000 Lew 

The Diffusion of Tractors on the Canadian Prairies: The 

Threshold Model and the Problem of Uncertainty Unit roots 

2000 Keay 

Scapegoats or Responsive Entrepreneurs: Canadian 

Manufacturers, 1907–1990 Unit roots/ trends 

2000 Baten and Murray 

Heights of Men and Women in 19th-Century Bavaria: 

Economic, Nutritional, and Disease Influences Unit root tests 

2000 Yousef The Political Economy of Interwar Egyptian Cotton Policy ARDL/ unit roots 

2001 Fratianni and Spinelli Fiscal Dominance and  Money Growth in Italy: The Long record Unit root/Granger /VAR 

2001 

Greasley, Madsen and  

Oxley 

Income Uncertainty and Consumer Spending during the Great 

Depression GARCH 

2001 Allen and Keay 

The First Great Whale Extinction: The End of the Bowhead 

Whale in the Eatern Arctic AR/Structural break/trends 

2002 Temin   Price Behavior in Ancient Babylon Random walk 

2002 Waldenstrom 

Taxing Emerging Stock Markets: A Beneficial Policy? Evidence 

from the Stockholm Stock Exchange, 1907–1939 ADF/ Johansen-cointegration 

2002 

Goodwin, Grennes and 

Craig 

Mechanical Refrigeration and the Integration of Perishable 

Commodity Markets 

Unit root tests/ Engle-Granger 

regression/cointegration 

2002 della Paolera and Taylor 

Internal versus external convertability and emerging market 

crises: lessons from Argentine history Unit Root tests/ VAR 

2003 Antras and  Voth 

Factor prices and productivity growth during the British 

Industrial Revolution ARMA/Crafts and  Harley 

2003 Tattara Paper money but a gold debt: Italy on the gold standard Cointegration/ unit root/ Johansen 
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2003 

Toniolo, Conte and  

Vecchi 

Monetary Union, institutions and financial market integration: 

Italy, 1862–1905 

ARMA/ Kalman Filter/ Structural 

break 

2003 Grant 

Globalisation versus de-coupling: German emigration and the 

evolution of the Atlantic labour market 1870–1913 Cointergration/Unit root tests 

2004 Greasley and  Oxley Globalization and real wages in New Zealand 1873–1913 Unit root tests/Cointegration/ADF 

2004 Crafts and  Mills  

Was 19th century British growth steam-powered?: the 

climacteric revisited AR(2)/Johansen/Cointegrating Vectors 

2004  Grubb 

The circulating medium of exchange in colonial Pennsylvania, 

1729–1775: new estimates of monetary composition, 

performance, and economic growth AR(2)/Dickey Fuller Tests 

2004 Keay and  Redish 

The micro-economic effects of financial market structure: 

evidence from 20th century North American steel firms Structural break/AR(3) 

2005 Rousseau and  Sylla Emerging financial markets and early US growth 

Granger causality/VAR-Sims/Dickey 

Fuller/Johansen 

2005 

Klug, Landon-Laneand 

White 

How could everyone have been so wrong? Forecasting the Great 

Depression with the railroads ARIMA 

2005 Officer 

The quantity theory in New England, 1703–1749: new data to 

analyze an old question AR(1) /Dickey Fuller Test 

2005 Lazaretou 

The drachma, foreign creditors, and the international monetary 

system: tales of a currency during the 19th and the early 20th 

centuries ARCH(1)/ARCH(2) 

2005 Temin and   Voth 

Credit rationing and crowding out during the Industrial 

Revolution: evidence from Hoare‟s Bank, 1702–1862 AR(1)/VAR 

2005 Sanz-Villarroya 

The convergence process of Argentina with Australia and 

Canada: 1875–2000 Structural Break/AR(1) 

2005 

Hickson, Turner and  

McCann 

Much ado about nothing: the limitation of liability and the 

market for 19th century Irish bank stock Structural Break/ARIMA/AR(1) 

2006 

Van Nieuwerburgh, 

Buelens and  Cuyvers Stock market development and economic growth in Belgium 

Cointegration/Johansen/Granger 

causality/Dickey-Fuller 
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2006 Burhop Did banks cause the German industrialization? 

Causality/Engle and  Granger/Toda 

and  Yamamoto 

2006 Ogren 

Free or central banking? Liquidity and financial deepening in 

Sweden, 1834–1913 VAR 

2006 

Sabate,  Gadea and  

Escario 

Does fiscal policy influence monetary policy? The case of Spain, 

1874–1935 VAR Model/Granger Causality 

2006 Jacks What drove 19th century commodity market integration? AR/random walk 

2006 Mattesini and  Quintieri 

Does a reduction in the length of the working week reduce 

unemployment? Some evidence from the Italian economy during 

the Great Depression Time series/heteroskedasticity 

2006 Kling 

The long-term impact of mergers and the emergence of a merger 

wave in pre-World-War I Germany VAR 

2007 

Crafts, Mills and   

Mulatu 

Total factor productivity growth on Britain‟s railways, 1852–

1912: A reappraisal of the evidence 

random effects/stochastic cost frontier 

model 

2007 

Ciccarelli and  

Fenoaltea Business fluctuations in Italy, 1861–1913: The new evidence cycle/random walk/Kalman filter 

2007 Herranz-Locan 

Infrastructure investment and Spanish economic growth, 1850–

1935 

VAR/Cointegration/Granger 

Causality/Dickey Fuller 

2007 

Landon-Lane and   

Rockoff 

The origin and diffusion of shocks to regional interest rates in 

the United States, 1880–2002 

VAR/time series/Unit root/Dickey 

Fuller 

2007 

Eichengreen and   

Hataseb 

Can a rapidly growing export-oriented economy exit smoothly 

from a currency peg? Lessons from Japan‟s high-growth era Dickey Fuller 

2007 Bodenhorn 

Usury ceilings and bank lending behavior: Evidence from 

nineteenth century New York Unit root /AR/ARMA 

2007 

Streb, Wallusch and  

Yin 

Knowledge spill-over from new to old industries: The case of 

German synthetic dyes and textiles (1878–1913) 

VAR/VECM/Unit root 

tests/Johansen/Granger causality 

2007 

Solomou and   

Shimazaki Japanese episodic long swings in economic growth 

Kalman filter/Stochastic 

shifts/Johansen cointegration/unit root 

tests 
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2007 Federico 

Market integration and market efficiency: The case of 19th 

century Italy TAR/unit root/MA 

2007 Jacks 

Populists versus theorists: Futures markets and the volatility of 

prices GARCH/time series 

2008 Craig and  Holt 

Mechanical refrigeration, seasonality, and the hog–corn cycle in 

the United States: 1870–1940 

TV-STAR/random walk/Dickey 

Fuller/unit root/TVAR 

2008  Siklos 

The Fed‟s reaction to the stock market during the great 

depression: Fact or artefact? 

VAR/GARCH/SVAR/Impulse 

response 

2008 Diebolt and  Parent Bimetallism: The “rules of the game” VAR & Granger causality 

2009 Rousseau 

Share liquidity, participation, and growth of the Boston market 

for industrial equities, 1854–1897 VAR & Granger causality/Unit roots 

2009 Klovland 

New evidence on the fluctuations in ocean freight rates in the 

1850s Cointegration/Johansen/Dickey-Fuller 

2009 Grossman and  Imai 

Japan‟s return to gold: Turning points in the value of the yen 

during the 1920s 

Non stationary process/random 

walk/structural breaks 

2009 

Esteves,  Reis and  

Ferramosca 

Market Integration in the Golden Periphery. The Lisbon/London 

Exchange, 1854–1891 random walk/stationary/AR1 

2009 Sarferaz and  Uebele 

Tracking down the business cycle: A dynamic factor model for 

Germany 1820–1913 Hodrick Prestcott filter/AR 
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Table 2 

Papers using Time Series methods: Cliometrica, 2007-2009. 

 

YEAR AUTHOR(S) TITLE METHODS 

    

2007 Neilsen 

UK money demand 1873–2001: a long-run time series analysis 

and event study 

VAR/Johansen/Stochastic 

Trends 

2008 Mills 

Exploring historical economic relationships: two and a half 

centuries of British interest rates and inflation 

GARCH/EGARCH/non 

stationary series/Dickey 

Fuller/AR(2) 

2008 Ricciuti The quest for a fiscal rule: Italy, 1861–1998 

Non-stationary/Engle-

Granger/Autoregressive 

model/Dickey-Fuller 

2009 

Prados de la 

Escosura and   Sanz-

Villarroya 

Contract enforcement, capital accumulation, and Argentina‟s 

long-run decline 

Hodrick-Prestcott/Granger 

Causality/Augmented 

Dickey Fuller test 

2009 Weisdorf and  Sharp 

From preventive to permissive checks: the changing nature of the 

Malthusian relationship between nuptiality and the price of 

provisions in the nineteenth century VAR/CVAR/structural break 

2009 

Ljunberg and   

Nilsson Human capital and economic growth: Sweden 1870–2000 

Granger causality/Toda and  

Yamamoto/VAR/ADF 

2009 Franck and  Krausz 

Institutional changes, wars and stock market risk in an emerging 

economy: evidence from the Israeli stock exchange, 1945–1960 VAR/Regression/Break 

2009 Mills 

Modelling trends and cycles in economic time series: historical 

perspective and future developments 

ARIMA/Cycles/Kalman 

Filter/HP Filter 

2009 

 Baubeau and  

Cazelles 

French economic cycles: a wavelet analysis of French 

retrospective GNP series 

Cycles/Time Series/Non-

Stationary 
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4.2 When did the Industrial Revolution begin? Some results utilising unit root tests, 

structural breaks and direct measures of persistence. 

 

In a series of papers we used time series methods to identify the timing and potential 

causes of the British Industrial revolution see, Greasley and Oxley (1994a,b, 1996b, 

1997c,e,f, 1998,a,b, 2000).  In this section we will present some of these results to 

demonstrate how time series  methods were used to consider such questions and also 

present some new results based upon the tests of Leybourne, Kim and Taylor (2007) 

The data used in this series of papers relates to an extended version of Craft and 

Harleys (1992) "best guess" estimates of the index of British Industrial Production, 

extended from 1913 to 1992. In a series of papers, we consider structural breaks in the 

series utilising both the Dickey-Fuller (1981) approach and the extensions of Perron 

(1989) and Zivot and Andrews (1992). On the basis of the results repeated below as 

Table 3, we identify an alternating TS/DS/TS characterisation of the data for the period 

1700-1913 and present a case for dating the British Industrial Revolution as 1780-1851, 

see Greasley and Oxley (1994a,b, 1996b, 1997c,f).  Furthermore, Greasley and Oxley 

(1996a, and 1997b,) use Perron (1989) and Zivot and Andrews (1992) methods to  

identify crashes and breaks in the post 1913 data coinciding with World War 1; the post 

(WW1) decline; a 1973 trend break and a 1979 crash, see Table 4 below. This leads to an 

alternating TS/DS/TS characterisation for the whole sample period 1700-1992. 
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Table 3 

Testing for unit roots: Levels data 

 

 1700-1913 1700-1780 1780-1851 1851-1913 

ADF(2) -1.13 -3.66* -1.16 -4.55* 

LM(SC)  0.20 2.51 0.84 0.81 

 
ADF(2) denotes 2 augmentations: LM(SC) is a Lagrange Multiplier test of first-order serial correlation: * denotes 

significant at the 5% level based upon MacKinnon (1991).  Results not presented here indicate that for the periods 

1700-1913 and 1780-1851, the data is I(1) and not I(2).  

 

Table 4 

Perron-type unit root tests - 1922-92  

 

Year Crash Trend Crash & Trend 

    

1929 -2.362 -2.084 -2.046 

1939 -2.758 -2.550 -2.600 

1945 -3.191 -2.672 -2.741 

1973 -2.948 -4.827* -4.809* 

1979 -4.362* -4.419* -4.718* 

 
* denotes significant at the 0.05 level using Perron (1989) critical values. 

 

 

 Furthermore, on the basis of  ADF test results we concluded that the period 1700-1992 

comprises several distinct epochs of industrial growth, in particular: 1700-1780; 1781-

1851; 1852-1913; 1922-1973 and 1973-1992. The defined periods are supported by the 

rich economic historiography and by the statistical results. 

    However, as discussed above, the characterisation of the time-series properties of 

a series as either DS or TS is an extreme one.  In contrast, the results presented as Table 5 

consider the Cochrane measure of persistence over a number of periods, including 

Greasley-Oxley epochs.  This is crucial as Cochrane (1988) demonstrates that measures 

of persistence constructed for periods (segments) of differing growth rates, will tend to 

bias the results in favour of finding too much persistence. 
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    If we consider the results presented as Table 5, and limit discussion initially to the 

column "Chatfield" which gives the Chatfield (1989) 2T criteria for the choice of 

window width (where T is the effective sample size), a number of features emerge.  

Firstly, the periods identified by Greasley and Oxley (1994a,b) have markedly different 

measures of persistence which lend support to the results based upon ADF tests.  As can 

be seen, the persistence measures for Greasley-Oxley epochs (pre-WW1) are respectively 

0.132, (1700-1780), 0.607, (1781-1851) and 0.449 (1851-1913) showing that the 

Industrial Revolution exhibited a marked difference in persistence from the earlier and 

later periods.  

Table 5 

Cochrane (1988) measure of persistence 

 

 k=5 k=10 k=15 k=20 k=30  Chatfield k 

1701-1992 0.521 0.469 0.465 0.544 0.659 0.712 34 

 (0.077) (0.096) (0.116) (0.153) (0.218) (0.248)  

1701-1780 0.340 0.265 0.164 0.135 0.098 0.132 18 

 (0.092) (0.094) (0.066) (0.058) (0.043) (0.056)  

1781-1851 0.389 0.464 0.577 0.704 0.912 0.607 16 

 (0.111) (0.173) (0.241) (0.310) (0.396) (0.258)  

1852-1913 0.832 0.538 0.497 0.558 0.653 0.449 16 

 (0.251) (0.209) (0.214) (0.248) (0.270) (0.195)  

1852-1992 0.807 0.558 0.532 0.622 0.559 0.549 24 

 (0.169) (0.159) (0.179) (0.232) (0.234) (0.217)  

1922-1992 1.225 0.975 0.980 1.223 1.377 1.058 16 

 (0.349) (0.362) (0.411) (0.543) (0.597) (0.449)  

1922-1973 1.209 0.789 0.593 0.774 0.716 0.531 14 

 (0.391) (0.195) (0.172) (0.343) (0.265) (0.233)  

1974-1992 0.918 0.504 0.817    -     - 0.660 8 

 (0.362) (0.192) (0.172)   (0.279)  
 

k denotes the window size for the Bartlett estimator; figures in parentheses are asymptotic standard errors; a  - denotes 

not calculated. All figures are corrected for small sample bias following Cochrane (1988). 

 

Turning to the preferred Cochrane window width of 30, the results are even more 

pronounced with measures of  0.098, 0.912 and 0.653 for the respective periods. 
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    Using the full sample period 1700-1992 and assuming no breaks in the series  

implies a high degree of persistence, i.e. 0.712  for the Chatfield rule, or 0.659 for k=30, 

reflecting the bias raised by Cochrane (1988) in favour of excessive persistence (or in 

favour of DS).  A similar problem arises if the twentieth century is treated as a single 

epoch.  In particular, the results for 1922-1992 imply a degree of persistence close to 1 

i.e. 1.058 for k=14 or 1.377 for k=30. However, if the Greasley-Oxley epochs are 

considered, the pattern of persistence presented as Figure 1 (derived from Table 5), 

emerges.  

 

Figure 1. 

Measures of Persistence over various epochs 
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For either k=30 or the Chatfield rule, persistence rises during the Industrial Revolution 

from the very low levels of pre-industrial Britain.  It then declines pre-WW1, recovering 
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only slowly to (or approaches, based upon k=30) its Industrial Revolution level.  

However, some caution needs be expressed about the period 1974-1992 given the small 

sample size. The results based on k=30 or k=Chatfield are qualitatively the same,  

however,  because of the quantitative differences the interpretation differs in important 

ways.  In particular based upon k=30, the Industrial Revolution represents an historical 

high point in terms of persistence.  Twentieth century persistence levels are moderately 

high and  higher than the mid-late nineteenth century, but lower than the period 1780-

1851.  This result is not as clear-cut based upon  k=Chatfield, although it depends 

crucially upon the small sample results of the period 1974-1992. On these basis, the 

Industrial Revolution period identified by Greasley and Oxley represents a unique period 

of high persistence. 

Notice, however, that using a low value window, k=5, which is similar to a low 

order ARMA measure, such as Campbell and Mankiw (1987), suggests a much different 

picture, see Table 5 and Figure 1.  Here, the Industrial Revolution seems unremarkable 

and the tendency for persistence to rise to very high levels into the twentieth century 

seems to emerge.  Treating the period 1922-1992 as a valid era would exaggerate the 

position even further.   The k=5 results help explain why some other measures exaggerate 

the degree of persistence experienced during the twentieth century. This coupled with the 

treatment of the post WW1 period as a single era explain why some results, i.e. Mills 

(1991) and Capie and Mills (1991) find in favour of a switch from TS to DS at this 

juncture. However, on statistical grounds, see Cochrane (1988), we would suggest that 

results based upon low valued k are in fact spurious.  
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    Apart from providing a measure of persistence, interpretation of the normalised 

spectral density function gives a measure of the proportion of total variance of the 

process accounted for by cycles of various lengths, l=2/  where  is the frequency, see 

Priestley (1981).  

Table 6, below, presents estimates of the cycle lengths contributing most to the 

explanation of the variance of industrial production based upon the Chatfield rule for 

choosing window width.  

Table 6 

Cycle lengths, l=2/ 

 

Years k Cycle  

   

1701-1780 18 2 

1781-1851 16 3 

1852-1913 16 10 

1922-1973 14 15 

1974-1992 9 9 
k=Chatfield window width 

 

For the period up to 1913 it can be seen how pre- and post-industrial production cyclical 

elements  differ.  Short cycles (around 2-3 years), or a low cyclical element to the data, 

explain most of the variance in output pre-1780.  Whereas post 1851 cycles of around 10 

years, or a high cyclical element to the series, explain most of the variance in production.  

The cyclical nature of the Industrial Revolution period is similar to the pre-revolution 

period - in both cases the data suggests an economy not best classified as cyclical.  

However, as discussed below, for different reasons. These measures are qualitatively 

similar (though with a somewhat different interpretation given the methods of analysis) to 

those presented by Crafts, Leybourne and Mills (1989a) where they consider the periods 

pre-1783, with cycles of around 4 years, and post 1815, with cycles of around 7 years. 

Plots of the spectrum also indicate the following phenomena.  For the periods 1701-1780, 
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1781-1852, the spectrum tends to rise continuously from low to high frequencies 

indicating the contribution of short cycles in explaining the variance of output.  However, 

the shape of the spectrum reverses post 1852, including the twentieth century, indicating 

the contribution of longer cycles. Taking the post 1922 period as a whole suggests that 

cycles of 14-15 years contribute most to the explanation of output variance.  These 

conform closely to the results of Leung (1992).  However, as with the persistence 

measure, treating the twentieth century as a single epoch can be misleading. Taking the 

Greasley-Oxley epochs produces the following description, presented as Figure 2 below, 

of the cycle lengths which contribute most the explanation of the variance of industrial 

production.   

Figure 2. 

Implied cycle lengths 
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The amount of variance explained by longer cycles (or a more cyclical characteristic to 

the data), increases after the Industrial Revolution.  However, cycle length appears to 

decline as persistence appears to increase.  It does seem however, that there is strong 
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quantitative and historical evidence in favour of distinct periods of growth, as argued by 

Greasley and Oxley. 

 

4.2.1  When did the Industrial Revolution begin: Revisited.  The Multiple Persistence 

Change Model of Leybourrne, Kim and Taylor (2007).  

 

In the approach presented above, it is relatively easy to identify a change in persistence 

stemming from a shift from a trend stationary (TS) process to one that is difference 

stationary (DS).  However, it is less simple to identify a process whose time series 

properties appear to alternate, TS-DS-TS etc., as the properties of the data in the apparent 

DS section would tend to dominate the TS sections.  Leybourne, Kim and Taylor (2007), 

consider testing for multiple changes in persistence model, in particular,  they propose a 

test for the presence of multiple regime shifts and how to consistently estimate the 

associated change-point fractions. They partition yt, t = 1, 2, ..., T, into its separate I(0) 

and I(1) regimes and show that a test statistic appropriate for this purpose is based on a 

doubly-recursive application of a unit root statistic where they employ the local GLS 

detrended ADF unit root testing methodology of Elliott et al. (1996), - discussed above - 

used for detecting a single change in persistence.  For further details of the test see 

Leybourne, Kim and Taylor (2007).   

 Utilising the same data as above on the log British industrial production for the 

period 1700-1992, the Leybourne, Kim and Taylor M test (with a maximum of 4 lags) 

implies that the series were: 

I(1) from 1700-1775; I(0) from 1775-1816; I(1) from 1816-1853; I(0) from 

1853-1913; I(1) from 1913-1949; I(0) from 1949-1973; I(1) from 1973-

1992.  
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The detailed test results are provided below in Table 7 below. 

Table 7 

Sample period 1700-1992 1700-1853 1913-1992 

M statistic -4.813 
*
   -6.252 

*
   -5.605

*
   

I(0) start - end 1853-1913 1775-1816 1949-1973 

* Denotes significant at the 5% level 

 

Although the subsamples are slightly different to those proposed by Greasley and Oxley 

(1996b),  the notion of alternating time series properties of the data are supported as is the 

macro-based timing of the Industrial Revolution. 

 

4.3  Testing for Causality 

4.3.1 What caused the British Industrial Revolution- disaggregate data?  

 

In section 3.7 above, we presented a number of approaches to testing for Granger-type 

causality and stressed the need to consider the order of integration of the variables under 

consideration as this will crucially affect the validity of the inferences drawn.   

In this section we will present some results taken from Greasley and Oxley (2000) 

where we consider the question which sectors „caused‟ the British Industrial Revolution 

by utilising measures of disaggregated British industrial production, 1815-1851.   

Causality in the context of these data and this question concern the linkages 

among the industries whose output defined early British industrialization. Of particular 

interest are those industries which are also ascribed in the historiography with key roles 
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in leading industrialization. Specifically we consider the importance of cotton, see 

Rostow (1963), utilizing the data for cotton cloth; iron and steel goods, see Hirschman 

(1958); coal, see Wrigley (1988), and elements of the food processing sector, see Horrell, 

Humphries, and Weale (1994), paying particular attention to beer and sugar. We show 

below that each of these industries have non-stationary output data for the period 1815-

1860, and were part of wider groupings of industries which shared stochastic common 

trends. Any causal links among the industries with non-stationary data may be long-term, 

since their output movements have permanent effects. At issue is whether or not 

particular industries within the cotton, mining and metals, or the food and drink groups 

played leading roles within their sector, or had causal linkages which spilled across the 

common trend groupings. 

Table 8 below presents unit root tests of the individual series from which those 

series identified as I(1) and I(0) can be identified.  Given that total industrial production 

is deemed to be a unit root process over this period, if we are interested in ascertaining 

which series (variables) „caused‟ this non-stationary outcome, we need to consider only 

those that are individually I(1).  As discussed in 3.7, the form of the causality testing 

depends crucially on the order of integration of the univariate series. Of the 15 series 

deemed I(1), several combinations were used to consider robustness amongst the  I(1) 

series.  
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Table 8 

Unit Root Tests 1815-1860 (Augmented Dickey-Fuller Statistics+) 

 
 ADF(1)          Trend (% p.a.) 

A. Minerals 

1. Coal 

2. Copper ore 

 

-0.597 

-3.005 

 

B. Metals 

1. Pig iron and steel 

2. Iron and steel products, machines and tools 

3. Copper 

4. Tin 

 

-1.061 

-1.248 

 

-1.491 

-3.180 

 

C. Textiles 

1. Cotton yarn 

2. Cotton cloth 

3. Woolen and worsted yarn 

4. Woolen and worsted cloth 

5. Silk thread 

6. Silk goods 

7. Linen yarn 

8. Linen goods 

9. Hemp products 

 

-0.603 

-0.831 

-3.984*            1.77 

-5.117*            1.40 

-4.552*            2.95 

-5.299*            3.61 

-4.203*            1.50 

-4.265*            0.60 

-3.385*            1.61 

 

D. Food drink and tobacco 

1. Wheaten flour 

2. Bread and cakes 

3. Sugar 

4. Beer  

5. Malt 

6. Spirits 

7. Tobacco 

 

-5.847*            0.80 

-5.706*            0.96 

-1.538 

-2.577 

-2.471 

-1.715 

-0.881 

 

E. Miscellaneous 

1. Shipbuilding 

2. Paper 

3. Leather 

4. Leather goods 

 

-2.617 

-0.281 

-3.843*            1.60 

-3.937*            1.60 

 

+ All the results are for ADF(1). 

* Denotes significant at the 5% level according to MacKinnon (1991) critical values. 

 

Table 9 below presents Johansen-based test results for cointegration using a 12 variable 

group which comprises the I(1) variables: coal, copper,  cotton yarn, cotton pieces, pig-

iron, malt, paper, shipbuilding, spirits, sugar, tobacco products, and beer. The 
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discontinuity in the spirits data around 1823 would tend to promote an idiosyncratic trend 

for this industry, and thereby reduce by one the number of common trends. r=the number 

of cointegrating vectors where the VAR lag length is chosen to 2 on the basis of 

Information Criteria tests. 

Table 9 

Johansen cointegration test results 

For 12 I(1) series1815-1860 

 

H0: H1: Maximal 

eigenvalue 

Trace 

r=0 r=1 171.7* 683.0* 

r1 r=2 113.3* 511.2* 

r2 r=3 91.60* 397.9* 

r3 r=4 85.67* 306.2* 

r4 r=5 64.51* 220.6* 

r5 r=6 44.60 156.1* 

r6 r=7 37.95 111.4* 

r7 r=8 26.89 73.54 

r8 r=9 20.78 46.64 

r9 r=10 14.36 25.86 

r10 r=11 8.18 11.49 

r11 r=12 3.31 3.31 
*denotes rejects the null at the 5% level. 

 

 

  Table 10 

  Johansen cointegration test results 

  Mining and Metals Group, 1815-1860 

 

H0: H1: Maximal 

eigenvalue 

Trace 

r=0 r=1 85.81* 254.6* 

r1 r=2 72.47* 168.7* 

r2 r=3 42.21* 96.32* 

r3 r=4 25.68* 54.11* 

r4 r=5 20.74* 28.42* 

r5 r=6 7.68 7.68 
 

The Group comprises I(1) variables: coal, copper, copper ore, iron-steel goods, pig iron, and tin; I(0) 

variables: none. r=the number of cointegrating vectors where VAR lag length is 3, and * denotes rejects the 

null at the 5% level.  
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Table 11 

Johansen cointegration test results 

Textiles Group, 1815-1860 

 

H0: H1: Maximal  eigenvalue Trace 

r=0 r=1 21.95* 27.73* 

r1 r=2 5.78 5.78 
 

The Group comprises I(1) variables: cotton pieces, cotton yarn. I(0) variables: linen yarn, linens, silk 

products, silk thread, woolens, worsted, hemp products, leather, and leather products.  r=the number of 

cointegrating vectors where VAR lag length is 2, * denotes rejects the null at the 5% level.  

 

Table 12 

Johansen cointegration test results 

Food, Drink and Tobacco Group, 1815-1860 

 

H0: H1: Maximal 

eigenvalue 

Trace 

r=0 r=1 102.2* 206.8* 

r1 r=2 49.56* 104.6* 

r2 r=3 34.64* 55.02* 

r3 r=4 19.41* 20.37* 

r4 r=5 0.96 0.96 
 

The Group comprises I(1) variables: beer, malt, sugar, spirits and tobacco products. I(0) variables: bread, 

wheaten flour. r=the number of cointegrating vectors where VAR lag length is 4, * denotes rejects the null 

at the 5% level. 

 

 

Tables 10-12 present cointegration results for groupings of the I(1) variables into sectors. 

The results from Table 9 identify 7 significant cointegrating relationships and hence 5 

stochastic trends; Table 10, 5 significant cointegrating relationships and 1 stochastic 

trend; Table 11, 1 significant cointegrating relationships and 1 stochastic trend; and Table 

12, 4 significant cointegrating relationships and 1 stochastic trend.  

The results of tests for bi-variate causality between cotton pieces, iron and steel 

goods, coal, beer, sugar, and the other industries with non-stationary output series are 

shown in Table 13, below using the Toda and Yamamoto (1995) method: 
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Table 13 

Toda and Yamamoto-type tests of causality, I(1) variables 

1815-1860 

  

Variable 1 Variable 2 p value 

1 does not 

cause 2 

p value 

2 does not 

cause 1 

                Coal Copper 0.253 0.626 

 Copper ore 0.342 0.662 

 Cotton pieces 0.429 0.003* 

 Cotton yarn 0.340 0.008* 

 Sugar 0.765 0.049* 

 Malt 0.256 0.336 

 Spirits 0.338 0.966 

 Tobacco products 0.597 0.004* 

 Iron and steel 0.738 0.011* 

 Tin 0.672 0.994 

 Pig iron 0.614 0.091** 

 Paper 0.122 0.000* 

 Shipbuilding 

Beer 

0.012* 

0.265 

0.230 

0.367 

 

              Cotton pieces Copper 0.236 0.601 

 Copper ore 0.508 0.487 

 Cotton yarn 0.001* 0.003* 

 Sugar 0.030* 0.252 

 Malt 0.256 0.185 

 Spirits 0.355 0.275 

 Tobacco products 0.245 0.690 

 Iron and steel 0.002* 0.003* 

 Tin 0.657 0.811 

 Pig iron 0.001* 0.001* 

 Paper 0.000* 0.117 

 Shipbuilding 0.064** 0.822 

 

              Sugar Copper 0.681 0.536 

 Copper ore 0.032* 0.198 

 Cotton yarn 0.351 0.021* 

 Malt 0.865 0.991 

 Spirits 0.934 0.414 

 Tobacco products 0.670 0.869 

 Iron and steel 0.170 0.156 

 Tin 0.415 0.944 

 Pig iron 0.159 0.225 

 Paper 0.004* 0.164 
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 Shipbuilding 0.932 0.291 

 

         Iron and Steel Copper 0.149 0.207 

 Copper ore 0.524 0.192 

 Malt 0.046* 0.922 

 Spirits 0.463 0.922 

 Tobacco products 0.785 0.933 

 Tin 0.927 0.794 

 Pig iron 0.493 0.385 

 Paper 0.404 0.334 

 Shipbuilding 0.368 0.057** 

 

                Beer Copper 0.536 0.353 

 Copper ore 0.171 0.903 

 Malt 0.349 0.091** 

 Spirits 0.205 0.226 

 Tobacco products 0.898 0.519 

 Tin 0.405 0.632 

 Pig iron 0.785 0.374 

 Paper 0.335 0.213 

 Shipbuilding 0.170 0.293 

 cotton piece 0.260 0.467 

 cotton yarn 0.316 0.467 

 iron and steel 0.588 0.482 

 sugar 0.187 0.036* 

 malt 0.349 0.091** 

 
p value denotes the probability of a causal relationship.* denotes reject non-causality null in favor of 

causality at the 5% level.** denotes reject non-causality null in favor of causality at the 10% level. 

 

On the basis of the causality tests, the industries with the most pervasive links to other 

industries are coal and cotton. Clearly, coal appears to be a follower, with its output 

determined by previous output levels of cotton yarn, cotton cloth, sugar, tobacco, iron 

and steel goods, pig iron, and paper. Only shipbuilding appears to have been led by coal, 

a finding which possibly reflects the importance of coal to the British coastal trade, 

especially between Newcastle and London, in the first half of the nineteenth century. A 

widening industrial demand for coal as a fuel and power source in the 1815-1860 period 

from the metals, foods, and textiles sectors, was the key to coal‟s expansion. Cotton 
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pieces, to the contrary, played a leading role in industrialization by stimulating coal, 

sugar, iron and steel goods, pig iron, paper, shipbuilding, and cotton yarn, though the 

latter is partly an artefact of data construction.  The two industries with idiosyncratic 

stochastic output trends, paper and shipbuilding, were both led by the cotton industry. To 

some extent the cotton results highlight the separateness of the foods sectors, with a 

causal link found only in the case of sugar. 

Iron and steel goods, identified by the input-output studies of Chenery and 

Watanabe (1958), and Hirschman (1958) as the industry with the widest transactions 

linkages, had fewer causal links than cotton in the 1815 to 1860 period. Iron and steel 

goods were led by shipbuilding, and had no significant links with paper, though like 

cotton pieces it led one foods industry, in its case, malt, and coal. However, the results do 

not provide a simple basis for favoring cotton pieces over iron goods as the key to early 

industrialization, as the results indicate bidirectional causality between the two industries. 

Thus, the cotton, mining, and metals sector appears jointly dominated by cotton and iron, 

while coal appears as a follower, and no causal links emerge for tin, copper, or copper 

ore. 

The causal links surrounding the foods sector appear less widespread. Beer, malt, 

spirits, sugar, and tobacco form the key foods grouping with a single stochastic common 

trend. Of these, beer is awarded the largest weight at 2.6% in Hoffmann‟s industrial 

production index (excluding building) for 1831-1860. Beer does not lead any other 

industry according to the causality tests, but follows both malt and sugar. In the foods 

sector, sugar has the widest causal links leading coal, paper, and copper ore, but 

following cotton. Generally the results play-down the importance of the linkages 
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surrounding the foods sector, and its role in defining the profile of early British 

industrialization. In part this arises from the large bread and flour industries having trend 

stationary output, which excludes both from shaping the swings in aggregate output and 

from having long-run causal links with the other foods industries, and with the cotton, 

mining and metals grouping. Sugar did lead, along with several other industries, the 

expansion of coal output, but had no causal links with iron goods and was led by cotton. 

The causality test results help to refine further the interpretation of early 

industrialization, which emerged from the common trends perspective. In the case of the 

cotton, mining and metals grouping, cotton and iron are revealed as the leading 

industries, and coal as a follower. Outside the sector, cotton had the wider linkages, 

statistically causing paper and shipbuilding production. However, cotton cannot be 

regarded as the more important lever to industrialization in the 1815-1860 period as 

bidirectional causality between iron goods and cotton output lies at the heart of the 

cotton, mining and metals sector. The findings for the foods sector show fewer within 

sector causal links, though both malt and sugar led beer. Only sugar appears to have 

causal links reaching outside the foods sector, to paper, coal, and copper ore. Together, 

the common trends and causality results point to cotton, iron goods, and possibly sugar, 

as the key industries promoting swings in British industrialization to 1860.  

4.3.2 What caused the British Industrial Revolution- aggregate level data?  

In section 4.3.1 above and Greasley and Oxley (2000) we consider testing for the causes 

of the Industrial Revolution using Hoffman‟s (1955) disaggregate industrial production 

data.  However, debate also revolves around the possible macro-level causes.  In Greasley 

and Oxley (1997e, 1998a), we utilise time series methods to identify the causes for the 
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extended period 1780-1851.  Several candidates for causality exist in the literature  

including: 

i) Export Led Growth (ELG): export growth causes growth in output.  This 

view is supported by for example, O'Brien and Engerman (1991), and 

Hatton and Lyons (1983), and was tested utilising data on industrial 

production and exports. 

 ii) Technological factors: developments in technology cause a change in 

the productive process and/or efficiency of production leading to a 

discernible change in the pattern of output growth.  This view is supported 

by Tsoulouhas (1992), and was tested utilising data on the number of 

patents registered and processes stemming from such patents, as measured 

by Sullivan (1989). 

iii) Population growth: here growth in the population influences output by 

both providing a growing pool of workers and also a growing source of 

domestic demand.  Supporters of this view include  Komlos (1990) and 

Simon (1994). 

iv) Domestic factors (general): other domestic factors including for example 

wages and the change in domestic demand, are seen as contributing to a 

domestically determined revolution.  Clearly population growth could be 

included in this category, although it is generally assigned a separate 

potential route of influence.  Supporters of the domestically determined 

growth include Deane and Cole (1969) and McCloskey (1981).  Such 

authors' views are often contrasted with supporters of the ELG hypothesis, 
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and i) and iv) could be regarded as two of the main competing explanations 

of the Industrial Revolution.  In testing iv) data on real wages taken from 

Crafts and Mills (1994) are utilised to test whether real wage levels, or rates 

of growth, caused industrial production or vice versa. 

v) Subsidiary hypotheses - imports cause exports: Deane and Cole (1969), 

posit that imports lead exports in the 18th century as British trade shifts 

from Europe to the W. Indies and North America.  Colonial economies, 

however, had limited spending power and as such needed to export to 

Britain if they were to buy imports from Britain.  If this hypothesis were 

true and were coupled with the ELG hypothesis, the data may suggest that 

imports cause output growth . 

vi) Other possible candidate hypotheses: given the current level of interest 

in endogenous growth models see  Rebelo (1991), it may seem natural to 

test for the effects of for example, human capital on growth.  However, for 

the period of interest, 1780-1851, the absence of annual data precludes 

formal investigation of the roles played by investment in education and even 

physical capital in the Industrial Revolution. 

 

As such there are five feasible testable hypotheses, i)-v) above.  The first stage of the 

causality testing procedure investigates the order of integration of the data. The results of 

the tests (not presented here, but can be found in Greasley and Oxley (1997e, 1998a),  

where definitions of the variables used can also be found) on the log levels of,  total 

industrial production; real wages; exports; imports; patents; processes and population 
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show in all cases that the null hypothesis of non-stationarity is not rejected.  Results for 

tests of bivariate and multivariate cointegration (also not presented here but can be found 

in Greasley and Oxley (1997e, 1998a) between industrial production and the other 

variables of interest, namely, real wages; exports; imports; patents; processes and 

population identify a single significant bivariate cointegrating relationship between 

industrial production and the variable of interest in all cases, but  imports.   Utilising 

these results a multivariate Johansen approach was adopted including all variables except 

imports and and one significant cointegrating vectors was identified.  A test of the 

restriction that the coefficient on population equals unity was not rejected implying that a 

proportionate relationship between the level of population and the level of industrial 

production cannot be rejected.  The results, therefore, demonstrate the existence of both 

bivariate and multivariate cointegration between the variables of interest.  The only 

candidate variable for which cointegration was not identified was imports.  This 

constrains tests of causality to the I(0) representation of the import data, i.e. in this case, 

first difference or growth rates, and does not rule-out the identification of a spurious 

relationship.  The potential for cointegration between exports and imports was discussed 

in Greasley and Oxley (1997e, 1998a) and is not considered further here, nor are the 

standard Granger-type causality tests except to summarise the results of such methods 

being the overall assessment is of unidirectional causality from processes to output or that 

technological change caused changes in industrial production - the Industrial 

Revolution. 
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4.3.3  Development Blocks, Innovation and Causality in New Zealand 1861-1939 

 The concept of a „development block‟, where innovations in leading industries promote 

complementary activities, has been utilized widely to understand economic development 

see Dahmen (1988) and Rostow (1963). Early work, including that of Hirschman (1958) 

and Chenery and Watanabe (1958) measured input-output transactions to identify leading 

industries, highlighting the strategic importance of the linkages from iron and steel 

industries. In Greasley and Oxley (2010a) we gauge which, if any, New Zealand industry 

or groups of industries led her economic development. 

A variety of approaches have been used to identify development blocks. Horrell, 

Humphries and Weale (1994) constructed an input-output table for 1841 to gauge the 

leading industries of the British Industrial Revolution, but the input-output method offers 

only a static perspective. Moser and Nicholas (2004) used historical patent citations to 

assess to the impact of electricity as a general purpose technology.  

Enflo, Kander and Schon (2008) also consider how development blocks formed 

around electricity by using a combination of cointegration and causality analysis. They 

define a development block as consisting of a number of sectors that share a common 

long run trend (i.e. are cointegrated) and linked to each other by mutually reinforcing 

Granger causality, where the latter ensures short term complementarities among 

industries. The method of using modern time series methods to identify leading industries 

was earlier used by Greasley and Oxley (2000) to gauge the leading sector groups of the 

British Industrial Revolution.  

In Greasley and Oxley (2010a) we firstly investigated the existence of common long 

run trends among the conventional industry sectors;  Pastoral, Agriculture, 
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Manufacturing, Minerals and a Miscellaneous group.  The unit root tests showed New 

Zealand‟s economic development was driven by 18 industries with the non stationary 

output trends. At issue is how many of these trends were common to more than one 

industry, pointing to the existence of development blocks. If trends were common to 

groups of industries then the possible sources of growth are simplified, as the effects of 

output innovations, including those from new technology will spill across industries. The 

cointegration tests showed (see Greasley and Oxley, 2010a, Table 3) that a small number 

of stochastic common trends drove output in most sector groups. Both the pastoral and 

agricultural sectors have two stochastic common trends, and the manufacturing sector 

only one. A cointegrating relationship was not observed for the mineral sector, and gold 

and kauri gum have individual output trends.  

      These findings show a small number of industry groups were central to the long 

run development of New Zealand economy to 1939, with, for example the 8 

manufacturing industries forming a unified group. Interestingly though the pastoral sector 

did not form a singular development block. The existence of two common trends in the 

pastoral sector shows the dairy and the meat industries were not simply connected by the 

opportunities of refrigeration, but that different forces shaped their output. Possibly the 

dichotomy stems from much of the frozen meat trade originating in the South Island 

corporate enterprises, whereas North Island co-operatives dominated dairying. Dairying 

expansion also required the clearing and cultivation of wetter, forested North Island land, 

and different technology, most especially that connected to cream separation. In the case 

of agriculture the existence of two stochastic trends probably relates to differences 

between the output drivers of potatoes and the two grain crops (wheat and oats).  
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    The existence of development blocks also requires short term complementarities 

between industries, and these are evaluated using tests of Granger causality. Additionally 

the list of possible leading industries will be made clearer by considering the direction of 

causal relationships between the industries. For example, sectors or development blocks 

which shared common trends may have been led by one particular industry. Of special 

interest is whether or not the impact of any industry spanned beyond its sector group to 

lead other sectors and overall commodity output. 

 

                                                           Table 14 

           Summary of Granger Causality Tests (number of causal links)  

 

 Leading  Following Bi-directional 

Pastoral Industries    

Meat 8 0 3 

Cheese 6 1 3 

Butter 8 1 1 

Manufacturing Industries    

Wool Cloth 2 8 5 

Beer 4 10 1 

Grain milling 5 2 1 

Biscuits 4 4 1 

Saw mills & Doors 3 7 2 

Foundry & Engineering 3 7 2 

Printing & Publishing 7 1 2 

Shoes & Boots 4 4 2 

Agriculture    

Wheat 0 2 0 

Oats 3 5 1 

Potatoes 0 3 0 

Mining & Other 

Industries 

   

Gold 2 0 4 

Gas  4 3 2 

Construction 0 11 2 
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The causal links between the 18 industries with non-stationary output are shown in Table 

14, above.  Generally, manufacturing, the pastoral industries and construction have the 

most causal links. However, construction and most manufacturing industries were 

followers, while pastoral industries‟ output often led the output of other industries. Thus 

beer has 15 causal links, including that with total commodity output, but in 10 cases beer 

followed, and in one other the causality was bi-directional. Similarly wool cloth has 15 

causal links, with 13 of these as a follower or bi-directional. Construction has 13 causal 

links, but was unambiguously led by output in other industries. Several other 

manufacturing industries, including saw mills and doors, and foundry and engineering 

have multiple causal links, but principally these show bi-directional causality within 

manufacturing or a follower relationship with the pastoral sector. Within manufacturing, 

printing and publishing is the industry with the most leading causal links. Printing and 

publishing accounted for around 23% of (non-pastoral) manufacturing from 1915, 

becoming the largest element of the sector by 1935. The results show printing and 

publishing had bi-directional causality with all commodity output and wool cloth, and led 

beer, saw mills and doors, foundry and engineering, shoes and boots, potatoes, kauri gum 

and construction.  

In the mining sector, gold was of principal importance and still contributed around 

7% of commodity output in 1905. Gold had bi-directional causal links with all 

commodity output and the pastoral sector, and led beer output. The pastoral sector 

dominates the leading causal links with other industries. Meat and butter are the only 

industries which led all commodity output. Meat led the output of 9 industries, and had 

bi-directional causality with two others. Interestingly though, no evidence was found of 
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causality between the meat and dairy industries. In addition to all commodity output 

butter also led 7 industries, and cheese led the output of 6 industries, including butter.  

         The pastoral sector dominated economic development in New Zealand, but the meat 

and dairy sectors each had individual driving forces, and formed separate development 

blocks. Gold was important, at least until the early years of the twentieth century, and 

made a contribution to stimulating pastoral and all commodity output. The manufacturing 

sector (other than the manufacture of pastoral goods) did form a unified block which 

shared a single stochastic common trend, but most linkages of the sector, with one 

exception, were bidirectional or following. The exception is printing and publishing, 

which comprised a sizeable element of New Zealand manufacturing, and led four other 

manufacturing industries as well as potatoes, kauri gum and construction.A small number 

of key industries, specifically, meat, cheese, butter, gold, and printing and publishing, 

shaped the directions of New Zealand‟s economic development.  

 

4.4  Time series-based test for Convergence 

 The economic underpinnings of the „convergence hypothesis‟, the view that poorer 

countries, in terms of GDP per capita, tend to grow faster than richer countries and as a 

result, economies should „converge‟ in terms of per capita income,  arises naturally 

within the standard or augmented Solow neoclassical growth model.  Here differences in 

initial endowments are seen to have no long term effects on economic growth with 

deficient countries able to catch-up to the leaders who suffer from diminishing returns.  

In contrast, Rebelo-type models of economic growth imply leadership can be maintained 

with non-convergence the likely outcome.  As such, not only are tests of convergence 
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interesting in their own right, but they emerge as one natural testable implication of 

alternative models of growth.  However, convergence is but one implication of such 

models and does not in itself represent a full test of the competing approaches.  In order 

to test for convergence some form of clear definition and some appropriate form of time 

series  data are required where, as we will see, the crucial feature to be exploited are the 

time series properties of the data. 

     Bernard and Durlauf (1995) utilise the Dickey-Fuller unit root testing procedure 

and cointegration as time series based tests of convergence. Here convergence implies 

output innovations in one economy should be transmitted internationally.  The absence of 

transmission implies that per capita output differences between countries contains a unit 

root, since output shocks generating relative GDP movement infinitely persist causing 

economic divergence - an implication of the endogenous growth models of Rebelo.  

 

Bernard and Durlauf (1995) define two types of convergence and two types of 

„common trend‟ 

 

Definition 2.1. Convergence in output 

 

Countries i and j converge if the long-term forecasts of output in both (countries) are 

equal at a fixed time t: 

 

 , ,lim ( | ) 0i t k j t k t
k

E y y I 


    (40) 

 

Definition 2.1‟. Convergence in multivariate output. 

 

Countries p=1,...., n converge if the long-term forecasts of output for all (countries) are 

equal at a fixed time t: 

 

, ,lim ( | ) 0       1i t k p t k t
k

E y y I p 


      (41) 
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Definition 2.2. Common trends in output 

 

Countries i and j contain a common trend if the long-term forecasts (of output) are 

proportional  at a fixed time t: 

 

, ,lim ( | ) 0i t k j t k t
k

E y y I 


    (42) 

 

 

Definition 2.2‟. Common trends in multivariate output 

 

Countries p=1,...., n contain a single common trend if the  long-term forecasts of output 

for all (countries) are equal at a fixed time t. 

 

Letting 2 3, ,....t t t pty y y y     then 

 
'

1,lim ( | ) 0t k p t k t
k

E y y I 


    (43) 

 

In terms of estimation and testing of the various types of convergence and common trend 

models, the main factor to note is that convergence implies that long-run forecasts of, in 

the case of output convergence, output differences, tend to zero at t→∞.   If  yi and yj etc, 

are I(1), which seems to be the empirical observation for most countries, it means that 

there is a natural way to test for convergence in the framework by invoking the properties 

and testing frameworks of  unit roots  and cointegration we have discussed earlier.  In 

terms of Definition 2.1, i and j  converge if their outputs are cointegrated with a 

restriction on the coefficients in cointegrating vector being [1, -1].  Alternatively in this 

bivariate case we can consider a simple unit root test on the differences in output.  Note 

that if  yi and yj are TS, then we can re-think of the definitions requiring that the time 

trends for each of i and j must be the same.  

 If the countries do not satisfy the strict requirement of convergence they may still 

be subject to the same permanent shocks.  These are the cases relevant to Bernard and 

Durlauf‟s Definitions 2.2 and 2.2‟.  Testability in these cases can also invoke 
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cointegration, but in this case the requirements are not as strong – now  the restrictions on 

the coefficients in cointegrating vector are [1, -α].     

We can also consider slight variations on the  Bernard and Durlauf (1995) 

definitions which  can be illustrated via the concepts of catching-up and long-run 

convergence. 

 

Definition: Catching-up: consider two countries i and j, and denote their per capita real 

output  as yi and yj. Catching-up implies the absence of a unit root in their difference
  

(yi -yj).    

 

This concept of convergence relates to economies out of long run equilibrium over a fixed 

interval of time, but assumes that they are sufficiently similar to make tests (and 

rejections), of the hypothesis non-trivial. In this case catching-up relates to the tendency 

for the difference in per capita output to narrow over time. Hence non-stationarity in (yi -

yj) must violate the proposition although the occurrence of a non-zero time trend, a 

deterministic trend, in the process in itself, would not. 

 

Definition: Long-run convergence: consider two countries i and j, and denote their per 

capita real output  as yi  and yj . Long-run convergence implies the absence of a unit root 

in their difference (yi -yj) or a time trend in the deterministic process, i.e., the absence of 

both a stochastic and deterministic trend.  

     

Catching-up differs from long-run convergence in that the latter relates to some particular 

period T equated with long-run steady-state equilibrium.  In this case the existence of a 

time trend in the non-stationary (yi -yj) would imply a narrowing of the (per capita output) 

gap or simply that the countries though catching-up had not yet converged. Conversely, 
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the absence of a time trend in the stationary series implies that catching-up has been 

completed. 

    Clearly long-run convergence and catching-up are related in that both imply 

stationary (yi -yj). However, long-run convergence relates only to (similar) economies in 

long-run equilibrium and therefore represents a much stronger version of the convergence 

hypothesis. 

    As defined above, tests of catching-up and long-run convergence hinge, therefore, 

on the time-series properties of (yi -yj).   The natural route for such tests involves Dickey-

Fuller type tests based on the bi-variate difference in per capita output between pairs of 

countries, i and j, i.e.,  

y y (y y ) t (y y )i t jt i,t 1 j,t 1 i,t k j,t k t        



     





1

                    (44) 

where y indicates the logarithm of per capita output. If the difference between the output 

series contain a unit root, =1, output per capita in the two economies will diverge.  The 

absence of a unit root, <1, indicates either catching-up, if 0, or long-run convergence 

if =0. 

   The main reservation surrounding the robustness of unit root tests in general, 

and therefore their application to tests of convergence in particular,  concerns the 

possibility that structural discontinuities in the series may lead to erroneous acceptance of 

the unit root hypothesis.   

Time series based tests of convergence, with and without breaks, were presented 

in Greasley and Oxley (1995, 1997a and 1998c) and a summary of some of those results 

are presented next. 
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4.4.1 Some results on convergence: Australia and Britain 

Here we present pairwise tests for long run (steady state) convergence, and catching-up 

between Britain, Australia and the US for the period 1870-1992 using the unit root 

approach.  On the basis of the results in Table 15 below, based on (43), neither version of 

the convergence hypothesis receives support, since a unit root cannot be rejected in the 

cross- country differences in GDP per capita.  

 

Table 15 

Unit root tests 

UK-Australian, US-Australian and UK-US, GDP per capita 

(without discontinuities) 

 

Countries Sample ADF LM(SC) 

UK-Australia 1870-1992 -3.250 0.792 
US-Australia + 1870-1992 -2.301 0.047 

UK-US + 1870-1992 -3.160 0.994 
 

* denotes significant at the 5% level based upon MacKinnon (1991), ADF denotes ADF(4) except those 

marked + which relate to ADF(2). # p value on included time trend = 0.627 

 

However the likelihood of structural discontinuities in the Australian (and the British) 

growth record, for example that associated with the crash of 1891, suggests their impact 

on the convergence process warrants investigation.   

However, the failure of the time series approach to identify convergence may 

stem from discontinuities in the process generating the data and can be assessed by 

applying for example, the Zivot and Andrews' search procedure to the comparative series. 

The results in table 16 below report the maximum absolute ADF statistics obtained by 

searching over the period 1870-1992 for crash, trend, and joint crash and trend changes in 

a naturally extended version of equation (44). 
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All three pairwise results reject the existence of a unit root in some variant of the 

model and are supportive of some form of the convergence hypothesis. The UK-Australia 

results support long run convergence, with the 1891 crash marking a discontinuity in the 

process.  

Table 16 

Unit root tests - Differences in GDP per capita 

 Zivot and Andrews approach 

 

Country k Year               Crash Trend Crash & Trend 

UK-Australia  4 1870-1992 -5.418* -4.192 -5.440* 

   [1891] [1899] [1891] 

US-Australia  2 1870-1992 -4.085 -4.483* -4.585 

   [1891] [1943-44] [1941] 

UK-US 3 1870-1992 -4.303 -4.828 -5.342 

   [1966] [1950] [1941] 

 
k is the degree of augmentation * denotes significant at the 5% level based upon Zivot and Andrews (1992), 

[  ] denotes the year of the maximum absolute value of the ADF. 

 

The UK-Australia results do contain a significant joint crash and trend change 

discontinuity in 1891, but the absence of a significant individual trend break and the 

closeness of the crash and joint crash and trend break ADF statistics point to the 

dominance of the 1891 crash. Alternatively, both the US-Australia and UK-USA results 

contain significant trend discontinuities, and hence favour the weaker, catching-up 

version of the convergence hypothesis. Catch-up towards the USA's GDP per capita 

appears to date from 1950 for the UK and the years of World War Two for Australia 

The results therefore show how the omission of significant discontinuities can 

lead to incorrect inferences being drawn regarding convergence and importantly the 

possible causes of economic growth.  In particular, in the UK-Australia case where long 

run convergence is inferred, support for the Solow growth model emerges.  Catching-up 

in the UK-USA and USA-Australia case is supportive of the augmented Solow model, 

while no case supports one important implication of the Rebelo model, i.e., long term 
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non-convergence.  However, as stated earlier such implications do not constitute full tests 

of the growth models. 

 

4.4.2 Alternative time-series based tests of convergence: St. Aubyn (1996) 

 

St. Aubyn (1999), defines convergence as follows:  

Two series , y yi j , converge if: 

( )y y pi j    as tt              (45) 

where  p , means converges in probability and  t  is a random variable where: 

E Dt XY( )                                         (46) 

var( ) t   0                             (47) 

Via (45)-(47), convergence implies that the difference between the two series converges 

in probability to a third series which is stationary, with constant mean DXY  and a 

constant variance . St. Aubyn (1999), relates these characteristics to previous notions of 

economic convergence, i.e.; 

i).  Point wise convergence  var( )t  0 , 

ii). Unconditional convergence    DXY  0  

iii). Conditional convergence   DXY  0 . 

 

4.4.2.1  Some results using the St.Aubyn approach 

 

The results presented below as Tables 17 – 19 are taken from Oxley and Greasley 

(1997b) where they are particularly interested in establishing whether some groups of 

countries converge (but not others) via the idea of „Convergence Clubs‟. 

  The results treat France as the leader i.e., yi in all instances where a „European 

Club‟ is considered and likewise Sweden for the „Nordic‟ group.  For the full sample, 

1900-1987, the null hypothesis of non-convergence is rejected in all cases with the 
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weakest result being between France and Germany where rejection is at the 10% level 

only.  On the basis of the full sample period results the concept of a European 

Convergence Club comprising France, Belgium, Germany, Italy, The Netherlands and the 

United Kingdom cannot be rejected and likewise a Nordic Club of Sweden, Denmark, 

Finland and Norway. 

St.Aubyn (1999) finds in his study of convergence, where he treats the United 

States as the leader, that in all cases that pre- and post- World War Two results differ.  

Table 18 and 19 below, taken from Greasley and Oxley (1997b),  present results for the 

sample sub-periods 1900-1938 and 1946-1987.  The results from Table 18 lead to non-

rejection of the non-convergence null for all cases. The results from Table 19, however, 

confirm, with somewhat more significant, results from the full sample conclusions, i.e., 

rejection of the non-convergence null in all cases for the European Club, but not non-

rejection in the Nordic case. 

Table 17 

Tests of Convergence: St. Aubyn test 

 

Countries 1900-1987 

France-Austria -3.359* 

France-Belgium -2.681* 

France-Germany -2.297** 

France-Italy -9.004* 

France-Netherlands -6.277* 

France-UK -6.082* 

Sweden-Denmark -3.143* 

Sweden-Finland -5.474* 

Sweden-Norway -2.847* 

* denotes significant at the 5% and ** 10% level based upon St.Aubyn (1999) 
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Table 18 

Tests of Convergence: St. Aubyn test 

 

Countries 1900-1938 

France-Austria 0.200 

France-Belgium 1.583 

France-Germany 1.436 

France-Italy -0.154 

France-

Netherlands 

0.107 

France-UK -0.025 

Sweden-Denmark 1.339 

Sweden-Finland -0.217 

Sweden-Norway -0.601 

 

Table 19 

Tests of Convergence: St. Aubyn test 

 

Countries 1946-1987 

France-Austria -10.24* 

France-Belgium -4.336* 

France-Germany -6.352* 

France-Italy -2.651* 

France-

Netherlands 

-4.376* 

France-UK -3.463* 

Sweden-Denmark -0.119 

Sweden-Finland -1.142 

Sweden-Norway 1.673 

* denotes significant at the 5% level based upon St.Aubyn (1999) 

 

The sub-sample results seem to imply that, in the European case, convergence occurs 

most strongly post WWII .  However, the full sample convergence implications for the 
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Nordic Club are not supported by either sub-period.  This could be due to small sample 

estimation problems.   

 

4.5 Application of STM model to English Real Wages data 1264 – 1913 

 

In section 3.8 above some benefits of utilising the STM of Harvey (1989) were detailed.  

In the examples below we present some new results from applying these methods to the 

English (chiefly London) real wages data 1264 – 1913 using STAMP version 8.3. The 

real wages data are for building labour as discussed by Allen (2001). Long run real wages 

data have been utilized by Galor (2005) and by Crafts and Mills (2009) to consider the 

timing of the transition from the Malthusian era. The STM model provides an especially 

useful route to examining such issues by distinguishing between level and trend breaks 

and outliers in long run time series.  

In the STM model the „one-off‟ outliers are captured by interventions (for a 

discussion of the types of intervention see Harvey and Koopman (1992)), where outliers 

could be simply data driven measurement errors or „obvious‟ one year only effects; the 

level shifts will typically pick up longer periods of level changes (possibly associated 

disease, including the Black Death, famine or wars); whereas a detected trend change will 

likely need an explanation via technological changes. Of course, if the underlying model 

structure is mis-specified then the interventions are just trying to handle the model 

misspecification.  Thus the model we „choose‟ should correspond with historical 

evidence of structural changes that suggest any dates identified for breaks are 

„understandable and acceptable‟, most especially for any level and trend changes. 

Figure 3 below presents a plot of the data, presented in logs. 
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Figure3. 

Log of English Building Labour Real Wages, 1264-1913 

 

 

As discussed in section 3.8 above there are alternative ways these data can be modelled 

within the STM approach.  Some of the possible assumptions that can be made are shown 

and tested below, using the real wages data to illustrate. The key issues of the 

historiography concern the timing of the shift to higher trend real wages growth 

(associated either with the end of the Malthusian era, the Industrial Revolution or a post- 

Industrial Revolution demographic transition); and the existence or otherwise of a long 

period of constant real wages before any decisive shift to higher trend growth. Identifying 

trend breaks in the long run real wages data are complicated by particular demographic or 

monetary events, notably the near century of population decline associated with the Black 

Death from 1347 which reduced Europe‟s population by around one-third (Persson, 

2010), and the debasements and re-coinages of the 16
th

 century (Outhwaite, 1969). Real 

wages rose as population fell with the Black Death, but discerning the post-plague real 
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wages peak is further complicated by currency manipulations in the 1540s. English real 

wages show a peak around 1548. There were sharp spikes in London real wages around 

that date probably connected to currency manipulations, and post Black Death wage 

growth in England may not have been sustained beyond 1500.  

The ability of the STM model to reveal outliers as well as level and trend breaks 

offers the promise of disentangling the complex forces shaping long run English real 

wages. Some of the possible modelling strategies are listed 1-7, and a range of 

implications are illustrated below in sections 4.6.1-5.  

 

1. The trend is a random walk with fixed drift (level stochastic and slope fixed) plus 

irregular (white noise), illustrated below as 4.6.1. 

2. As above (1) but with a cycle which is AR2, not illustrated.  

3. As above (2) but allowing for interventions to capture outliers. Therefore we 

have: the trend is a random walk with fixed drift (level stochastic and slope fixed) 

the cycle is AR2 plus irregular (white noise) + interventions (automatic), 

illustrated below as 4.6.2.  

4. A local linear model: the level is stochastic; slope stochastic plus cycle plus 

irregular, not illustrated.  

5. As above (4) but allowing for interventions, illustrated below, using a 5 year 

cycle, as 4.6.3 and 20-year cycle as 4.6.5. 

6. As 4 above but fixed level; stochastic slope plus cycle plus irregular, not 

illustrated. 

7. As above (6) but allowing for interventions, illustrated as 4.6.4 using a 5 year 

cycle. 

 

4.5.1 Trend is a random walk with fixed drift 

This model, without interventions to capture outliers, fits the data very poorly; the 

Durbin-Watson statistic=1.98 and R
2
=0.004. The trend, shown in the middle segment of 

Figure 4 (the slope of the log of real wages) is constant by assumption; it would be 

clearly wrong to impose this formulation to represent the data. 
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Figure 4 

 

 

 

4.5.2. Trend is a random walk with fixed drift plus interventions 

 

This formulation adds the use of interventions to the previous model to capture outliers. 

In STAMP interventions can be user defined or automated.  Automation involves the use 

of the standardised smoothed estimates of the disturbances referred to as the auxiliary 

residuals. The auxiliary residuals are smoothed estimates of the irregular and level 

disturbances. Graphs of these residuals, in conjunction with normality tests, are used for 

detecting data irregularities such as outliers, level changes and slope changes. Here an 

outlier is an unusually large value of the irregular disturbance at a point in time which 

can be handled via an impulse intervention variable which takes a value 1 at that point, 0 

otherwise. In contrast a structural break in the level is captured by a shift up or down as a 
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step intervention, 0 before the event and 1 subsequently, and a structural break in the 

slope as a staircase intervention, 1, 2, 3,….., starting after the detected break. 

Figure 5 below plots the timing of the interventions as selected automatically by 

STAMP. The adding of the outliers leads to considerable improvement in goodness of fit; 

now the Durbin-Watson statistic=1.90; and R
2
=0.40.  It should be noted this model 

retains the assumption of a fixed trend, and the level and outlier interventions may reflect 

these types of interventions are attempting to fit the data when the underlying model 

choice is too constraining. The volume of level breaks shown by this model for the 16
th

 

century appears excessive, and casts doubt on whether or not outlier and levels 

interventions are appropriately identified. 

Figure 5. 

Timing and location of interventions 

 

Notes: the outlier and level interventions are: Outliers 1438, 1527, 1551, 1562, 1573, 

1586, 1661, 1694; Levels breaks 1315, 1317, 1321, 1369, 1428, 1546, 1555, 1557, 1594, 

1598, 1800, 1802, 1894.  

 

 

4.5.3. A local linear model: the level is stochastic; slope stochastic, plus 5 year cycle plus 

irregular plus interventions 

This model relaxes the assumption of a fixed slope, and shows a further improvement in 

specification; the Durbin-Watson statistic=1.88; and R
2
=0.43.  Figure 6 below plots the 

Luk-Intervention 
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timing of the interventions as selected automatically by STAMP. They include a single 

trend break at 1867, which suggests that Industrial Revolution technology‟s impact of 

real wages was long delayed, and interrupted by a level shift around 1894. Overall the 

model shows fewer levels breaks than 4.6.2, and thus a representation of the long run data 

the accords more closely with the historiography. Between 1594 and 1867 the model 

shows no structural breaks in real wages and a single outlier in 1661. The long stagnation 

of English real wages following the higher levels during the century of population 

collapse to 1450 shown by this variant of the SMT model provides a plausible 

interpretation of English real wages history. 

Figure 6 

 

Notes: the interventions are: Outliers 1369, 1438, 1527, 1551, 1562, 1573, 1586, 1661; 

Levels breaks 1290, 1315, 1346, 1428, 1546, 1555, 1594, 1894; Slope breaks 1867. 

 

 

4.5.4. Fixed level; slope stochastic, plus 5 year cycle plus irregular plus interventions 

 

This variant retains the stochastic trend assumption, but adopts a fixed level 

representation. The model is shown inferior to that which incorporates a stochastic level, 
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with Durbin-Watson statistic=1.76; and R
2
=0.40. However this representation also shows 

a long stagnation of real wages 1594-1868.  

 

Figure 7 

 

Notes: the interventions are: Outliers, 1369, 1438, 1527, 1551, 1562, 1573, 1586, 1661; 

Levels breaks 1315, 1346, 1428, 1546, 1555, 1594, 1894; Slope break 1868. 

 

 

4.5.5 Stochastic level; Stochastic trend; 20 year cycle; irregular plus interventions 

 

This variant replicates model 4.6.3 but adopts a 20-year cycle, which improves the 

goodness of fit, with Durbin-Watson statistic=1.87; and R
2
=0.52. The timing of all 

interventions are the same as for model 4.6.3, including the single trend break in 1867.  
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Figure 8 

 
 

 

Notes: the interventions are: Outliers 1369, 1438, 1527, 1551, 1562, 1573, 1586, 1661; 

Levels breaks 1290, 1315, 1346, 1428, 1546, 1555, 1594, 1894; Slope breaks 1867.  

 

 

By using a sequence of SMT modelling strategies this section illustrates how English real 

wages 1264-1913 can be represented, by adopting varying assumptions surrounding 

trends, levels, irregular outliers, and cycles. The interventions identified by STAMP shed 

light on real wages history, but also in the plausibility of the alternative models. The 

flexible models which allow both the level and slope to be stochastic, and include 

cyclical elements provide the best representations of the data. The results from these 

simple illustrations conflict with elements of the published literature. For example the 

unified theory of Galor and Weil (2000) postulates a two break model where incomes per 

capita accelerate modestly around the Industrial Revolution of the late 18
th

 century and 

more dramatically around the later 19
th

 century demographic transition. The preferred 
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results here, in contrast, show a long period of stagnant real wages 1594-1867. Moreover 

Crafts and Mills (2009) utilizing Clark‟s (2005) alternative real wages find a trend break 

around 1800 in conflict with the results from the SMT model which show a later break of 

1867. 

 

4.6. Multiple Changes in Persistence and English Real Wages 1264-1913. 

 

An alternative way to investigate long run trends in English real wages is to consider if 

the series have alternating stochastic properties. In section 4.3.1 above we considered the 

test of Leybourne, Kim and Taylor (2007) applied to British industrial production data, 

1700-1992.  The same test applied to the real wages data considered in section 4.6 

suggests the following: I(0) 1264 – 1858, with effectively a zero trend then I(1) to 1913. 

The results, however, also suggest the potential for a short return to trend stationarity for 

the period 1881-1894, but the sample size is too small to confirm this categorically.  

 

 

5.0  Some new developments/applications with potential for cliometrics 

 

In Section 5 we introduce some new and emerging methods which we believe will be of 

importance to cliometrics research in the future.  In particular we will discuss; the mildly 

explosive processes of Phillips and Yu (2009); Graphical Modelling; and although not 

totally new to cliometrics, a discussion of fractionally integrated processes and their long 

memory interpretations. 
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5.1 Mildly explosive processes – Phillips and Yu (2009) 

Phillips and Yu (2009) have developed a new econometric methodology to test if and 

when bubbles emerge and collapse and apply it in various stock markets, real estate 

markets, mortgage markets, commodity markets, and the foreign exchange market over 

the period surrounding the subprime crisis.  

 The basis of their new approach is to consider mildly explosive processes. If we 

consider the typical DS v TS testing procedures for a unit root, we restrict our attention to 

regions of „no more than‟ a unit root process – an autoregressive process where ρ≤1. 

Phillips and Yu (2009) model „mildly explosive‟ behavior by an autoregressive process 

with a root ρ that exceeds unity, but still in the neighbourhood of unity. 

The basic idea of their approach is to recursively calculate right-sided unit root 

tests of a standard form, eg., Dickey-Fuller-type,  to assess evidence for mildly explosive 

behavior in the data. The test is a right-sided test and therefore differs from the usual left-

sided tests for stationarity. More specifically, consider the following autoregressive 

specification estimated by recursive least squares: 

2
1 ,        ~ (0, )            (48)t t t tX X NID        

The usual H0:  =1 applies, but unlike the left-sided tests which have relevance for a 

stationary alternative, Phillips and Yu (2009) have H1: δ > 1 which with δ = 1+c/kn, 

where kn →∞ and kn/n → 0 allows for their „mildly explosive‟ cases. Phillips and Yu 

(2009) argue that their tests have discriminatory power because, 

“They are sensitive to the changes that occur when a process undergoes a 

change from a unit root to a mildly explosive root or vice versa. This 

sensitivity is much greater than in left-sided unit root tests against stationary 
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alternatives.....Although a unit root process can generate successive upward 

movements, these movements still have a random wandering quality unlike 

those of a stochastically explosive process where there is a distinct 

nonlinearity in movement and little bias in the estimation of the 

autoregressive coefficient.” 

 

We believe these new approaches to identifying growing bubbles and their collapse will 

make a significant impact on this aspect of time series applied econometrics and because 

of the nature of the data and the questions on financial cliometrics.  

 

5.2 Graphical modelling and implications for causality testing 

Graphical Modelling (GM) is a relatively new statistical approach whose major 

development started in the 1970s.  It is a very convenient interface to obtain and crucially 

present in a graphical way, pairwise relationships among random variables in a 

multivariate context.  It has important links to causality and testing for causality and its 

manifest output makes it much easier to understand the linkages between variables of 

interest.  Below, we will present some of the basis of the approach, some references to 

the technical details for those interested, some past applications and current 

developments.  We believe the approach has enormous potential for cliometricans in the 

future, in particular, its ability to easily – graphically – present results on causality and 

exogeneity. 

 The initial step in the GM approach is the computation of the partial correlations 

among the variables in the multivariate system where this can be achieved by inverting 

and rescaling the covariance matrix as suggested by Whittaker (1990). With these 

computations complete, we can then distinguish between significant and non-significant 
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partial correlations using an opportune test.  Finally we can present the results by a graph 

where the random variables are represented by nodes and a significant partial correlation 

between two random variables is indicated by a line that links them.  The line in graph 

theory terminology is called and edge. If the variables in the graph are jointly distributed 

as a multivariate Gaussian distribution a significant partial correlation implies the 

presence of conditional dependence.  For this reason the graph described by these 

conditions is called a conditional independence graph or CIG. 

 A more informative object is the directed acyclic graph or DAG.  This is a 

directed graph where the arrows linking the nodes are where the joint distribution of the 

variables can be expressed as a sequence of marginal conditional distributions. For 

example, consider the graph in Figure 9 below. 

 

Figure 9: Directed Acyclic Graph 

 

Its joint density function can be defined as: ( , , ) ( | , ) ( ) ( )f a b c f a b c f b f c  

Although the DAG and the CIG represent a different definition of the joint probability, 

there is a correspondence between the two graphs which is embodied by the moralisation 

rule.  The rule means that we can obtain the CIG from the DAG by transforming the arrow 

into lines linking unlinked parents.  Consider by way of example Figure 4 below. 
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Figure 10: Moralisation of a Directed Acyclic Graph. 

 

A and B are called the parents of C.  The moralisation of the DAG on the left is obtained 

by transforming the existing arrows into edges and by adding an edge which links the 

parents.  These edges are called moral edges.  

  Importantly, while the CIG represents the associations among the variables either 

in terms of conditional dependence or simply in terms of partial correlations, if the joint 

distribution is not Gaussian, the DAG has a natural interpretation in terms of causality. For 

those wishing to consider more in this area of graphs and causality we refer you to; Shafer 

91996); Glymour and Cooper (1999); Lauritzen (2000); Pearl (2000) and Lauritzen and 

Richardson (2002). 

  The DAG is very attractive because of its causal interpretation, but all we can 

observe in practise is the CIG obtained by the sample partial correlation.  Therefore, we 

need to perform the inverse to the moralisation, the demoralisation. While the 

transformation of a DAG to a CIG is unique, there are several DAGs which might give the 

same CIG.  In this case we need to identify the moral links and remove them and to do that 

we need to use all the knowledge we have about the relationships among the random 

variables in the system.  
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  In Oxley, Reale and Tunnicliffe-Wilson (2009), we apply these methods to 

identifying an interest rate transmission mechanism for New Zealand and the sort of 

graphical interpretations, which in the paper are compared to more traditional Structural 

VAR (SVAR) models look like the figures below, where the A‟s – H‟s relate to a range of 

increasing in maturity interest rates, both domestic and foreign (US): 

 

Figure 11: Conditional Independence Graph 

(a range of quarterly NZ and foreign interest rates, 1987-2001) 

 

 

 

Figure 12: Chosen model representation. 
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5.3 Fractional integration and long memory 

In section 3 above, we discussed the implications for the persistence of shocks in the DS 

and TS data generating worlds.  In the former case, with a unit root, shocks to the I(1) 

process  would have infinite persistence – in the later mean I(0) case with mean 

reversion, shocks have  zero persistence.   

However, what about cases where the order of integration is a fraction d >0 and 

<1? In this case we have a case of fractional integration, or in the discrete case, ARFIMA 

(Auto Regressive, Fractionally Integrated Moving Average) and the degree of persistence 

will depend on the size of d.  With 0<d<1 we have processes that are typically described as 

having long memory or long range dependence.  When -1/2<d<0 we describe the process 

as anti-persistent.  

Some of the original work on such processes was undertaken by Hurst (1951) 

studying the Nile river, but in economics the processes were popularised by Granger and 

Joyeux (1980) with other major contributions by Robinson (1995, 2003), Beran (1992) and 

Hosking (1981).  The importance of this class of processes derives from smoothly bridging 

the gap between short memory stationary processes and unit roots in an environment that 

maintains a greater degree of continuity (Robinson, 1994). For an up-to-date survey see 

Gil-Alana and Hualde (2009). 

In economics and finance it appears common to see estimates of d≅0.4, implying 

significant long memory (but not infinite persistence) in the data considered.   In economic 

history, Mishra, Prskawetz, Parhi and Diebolt (2009) argue that long memory in economic 

growth occurs because of stochastic memory in population growth. They estimate d using 

the  Kim and Phillips (2000) modified log-periodgram estimator of  Geweke and Porter 
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Hudak (1983b) to „provide evidence of fractionally integrated population growth with non-

mean convergent shock dynamics ... in 63 countries from  1950 – 2004‟. Michelacci and  

Zalaroni (2000) also consider long memory issues, also in  relation to economic growth.  

They present estimates of d based on the  log-periodogram estimator of Geweke and Porter 

Hudak (1983b) and conclude that there is evidence of long memory and present a case for 

fractional (beta) convergence extending the ideas of the Solow-Swan growth model.  

 Several potential issues arise when considering long memory models.  The first is 

whether long memory processes make sense.  In finance, Rea et. al., (2008a) argue it 

makes little sense to consider long-memory or long range dependence in finance theories 

such as, option pricing models.  In the case of economic growth or population, however, 

long range dependence may make sense.  Secondly, however, long memory and 

structural change are „observationally equivalent‟ such that either assumptions can 

equally describe the data see Rea et. al., (2008a). Finally and crucially, „not all estimators 

of d are born equal‟, especially in small samples see Rea et. al., (2008b). 

Of the twelve estimators examined by Rea, W., Oxley, L. Reale, M. and Mendes, 

E. (2008b) the Whittle estimator and Haslett-Raftery (1989) estimators performed the 

best on simulated series. If we require an estimator to be close to unbiased across the full 

range of d values for which long memory occurs and have a 95 percent confidence 

interval width of less than 0.1 d units (that is 20 percent of the range for d values in which 

long memory is observed), then for series with fewer than 4,000 data points Whittle and 

Haslett-Raftery are the only two estimators worth considering.. For series with 4,000 or 

more data points, the Peng, et. al.,  (1994) estimator gave acceptable performance. For 

series with more than 7,000 data points the periodogram estimator was a worthwhile 
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choice. For series with more than 8,200 data points the wavelet became a viable 

estimator. The remaining seven estimators they considered did not give acceptable 

performance at any series lengths examined and are not recommended.  If you wish to 

conclude that long memory processes exist, be sure that the estimator used is „fit for 

purpose‟ as the typical sample sizes, even in long run cliometric applications are very, 

very short compared to what is needed for efficient and unbiased estimation.  

 

6.0  Epilogue 

Keynes reminds us that „Practical men, who believe themselves to be quite exempt from 

any intellectual influence, are usually the slaves of some defunct economist.‟ Keeping the 

slavishly following analogy, we wish to reiterate one quote and pass-on a message which 

represents a significant warning about delving into the world of time series econometrics 

and relying, slavishly, on the outcome of tests without recourse to history. 

 The quote is where we opened this paper: “The power of a popular test is 

irrelevant.  A test that is never used has zero power”(McAleer, 1994, 2005).  Although 

David Hendry might say, „test, test, test‟, not all tests are born equal and both type I and 

type II (or even type III, see Kennedy 2002) pervade empirical work. 

The message comes from the genius that was Sir Clive Granger. In Granger 

(unpublished) he considers a number of so called „puzzles‟ in economics and in many 

cases links them to his famous notion of spurious regressions.  However, he also 

discusses a case where he and a colleague considered the potential for reintegration and 

why relying on the results of statistical tests (especially those with known low power) can 
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be extremely dangerous.  To demonstrate the point consider Granger‟s example from that 

paper.   

In the case of cointegration, the sum of two I(1) series produces a linear 

combination that is I(0).  The complete opposite case would have I(0)+I(0)=I(1).  From a 

theoretical perspective this is impossible and Granger obviously knew this, however 

Granger and Jeon (unpublished) explored the case empirically.  Assume that Xt is a zero 

mean white noise process with large variance and let Yt=Zt+Xt where Zt is a random walk 

with white noise inputs having a zero mean and small variance. In their empirical 

examples with 500 observations standard unit root tests concluded that X and Y were 

I(0), but their sum (Zt) was I(1).  The testing process, with standard tests, suggested it 

was possible to sum two I(0)‟s and obtain an I(1) series!  The moral here: never state „the 

test proves/demonstrates the data are I(1) or I(0) or I(anything)‟.  Likewise never forget 

some of the messages of Kennedy (2002) i.e., Rule #1: Use common sense and economic 

theory; Rule #3: Know the context; Rule #7: Understand the costs and benefits of data 

mining and  Rule #9: Do not confuse statistical significance with meaningful magnitude. 

 

7.0 Conclusions 

Cliometrics has been with us for half a century and its original hallmarks were the links 

between economics and economic history see Greasley and Oxley (2010b). However, the 

use of econometric methods has become more common in quantitative economic history.  

Understanding modern time series methods and their application, therefore becomes 

much more important in cliometrics than perhaps ever in the past. The developments in 

time series econometrics, which started around 1974, have radically changed what 
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cliometricians do, or should do.  Granger and Newbold (1974), reminded us of the 

dangers of spurious regression; Dickey and Fuller (1979) began a research agenda on unit 

root testing which remains unresolved and provided tests which, although lacking power, 

are as popularly applied as ever.   Engle and Granger (1987), gave us co- integration  and 

the rest, as they say is history.  
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