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Non-constant Hazard Function and In�ation Dynamics

Fang Yao�

Humboldt Universität zu Berlin

Abstract

This paper explores implications of nominal rigidity characterized by a non-constant
hazard function for aggregate dynamics. I derive the NKPC under an arbitrary hazard
function and parameterize it with the Weibull duration model. The resulting Phillips curve
involves lagged in�ation and lagged expectations. It nests the Calvo NKPC as a limiting
case in the sense that the e¤ects of both terms are canceled out under the constant-hazard
assumption. Furthermore, I �nd lagged in�ation always has negative coe¢ cients, thereby
making it impossible to interpret in�ation persistence as intrinsic. The numerical evaluation
shows that the increasing hazard function leads to hump-shaped impulse responses of in�ation
to monetary shocks, and output leads in�ation.
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1 Introduction

The Calvo pricing assumption (Calvo, 1983) has become predominant in the world of applied
monetary analysis under nominal rigidity. Nevertheless, its ubiquity is neither based on theo-
retical soundness nor on empirical appeal. Instead, the main argument for using this approach
is that it gives great tractability, making it useful to analyze various monetary policy issues.
Recently, one of the main criticisms of the Calvo approach is that it implies a constant haz-
ard function for the stochastic pricing behavior. Unfortunately, constant hazard functions are
largely rejected by empirical evidence from the micro level data (See: e.g. Dhyne et al., 2006,
and references cited therein)1. Given this con�ict between theory and empirical evidence, it is
important to understand to which extent the constant hazard function is innocuous for aggregate
dynamics implied by the model.

To tackle this question, I construct a generalized time-dependent model of nominal rigidity
à la Wolman (1999) and derive the New Keynesian Phillips curve (NKPC) conditional on an
arbitrary hazard function. This model is useful to study the implications of nominal rigidity for
the aggregate dynamics because it models price rigidity in the most general form, so that, except
for the time-dependent pricing structure, its implications do not depend on any one speci�c price
setting assumption.

In the analytical results, I show that the NKPC derived from the model involves components
including lagged in�ation, forward-looking and lagged expectations of in�ation and real marginal
costs. This version of the Phillips curve nests the Calvo case in the sense that, under a constant
hazard function, e¤ects of lagged in�ation exactly cancel those of lagged expectations, so that
only current real terms and future expectations of in�ation remain in the expression, as in
the Calvo NKPC. In the general case, however, both lagged in�ation and in�ation expectations
should be present. The reason why lagged in�ation and lagged expectations exert opposite e¤ects
on the current in�ation is due to the following facts. On the one hand, sticky prices ensure that
lagged expectations have a long lasting in�uence on in�ation, in that higher expectations of
marginal costs leads to higher in�ation. On the other hand, the "front-loading" e¤ect deters
the current in�ation to react to a current economic condition. That means that a high level of
past in�ation hinders the ability of current in�ation to continue on a high course. In the more
general setting, both e¤ects work against each other, but in the Calvo model, these two e¤ects
just cancel each other out.

Furthermore, I �nd a general result relating to the debate on the nature of in�ation per-
sistence. Starting with Fuhrer and Moore (1995), the older literature believed that the NKPC
needs a signi�cant backward-looking component in order to generate the key feature of reduced-
form Phillips curve regression: the positive dependence of in�ation on its lags. More recently,
however, a new consensus has been emerging in the literature, showing that in�ation persistence
is mainly due to its time-varing persistent trend. Detrended in�ation has less signi�cant or even
negative autocorrelations. (Cogley and Sbordone, 2006, Bils et al., 2009). For example, Cogley
and Sbordone (2006) �nd that when correctly accounting for the time-varing trend in�ation, the
purely forward-looking model explains the persistence of the in�ation deviation from its trend

1The results of those work on the empirical hazard function is not conclusive. Some �nd strong support for
increasing hazard functions (e.g. :Fougere et al., 2005, Goette et al., 2005), while others �nd evidence in favour
of decreasing hazards (e.g.:Alvarez, 2007, Campbell and Eden, 2005).
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quite well. From my generalized NKPC, I �nd that the coe¢ cients on lagged in�ation should
always be negative, even after controlling for the e¤ects of lagged expectations of in�ation. In
particular, I show that the lagged expectations of in�ation can be transformed into lagged in�a-
tion and expectational errors, which reduce to white noises under rational expectations. After
transforming all the lagged expectations into lagged in�ation, the coe¢ cient on the lagged in-
�ation is still negative, thereby we can conclude that the forward-looking Phillips curve is able
to adequately account for the persistence of in�ation deviations from the steady state, and that
lagged in�ation is not important for this persistence.

In the numerical assessment, I parameterize the hazard function with a functional form mo-
tivated from the Weibull duration model. By de�nition, it is a function with two parameters.
One parameter is the scale parameter, which controls the average duration of the price adjust-
ment. The other is the shape parameter that determines the monotonic property of the hazard
function. By changing the value of the shape parameter, this hazard function enables the incor-
poration of a wide range of hazard pro�les. When simulating the full-scale general equilibrium
model, I combine the generalized NKPC with a simple aggregate demand curve and an exogenous
nominal money growth process. The simulation results show that the increasing-hazard model
generates hump-shaped impulse responses of in�ation and real output to the nominal money
growth shock. Moreover, impulse responses of output lead those of in�ation, which re�ects a
robust feature of the data.

This paper relates to a number of existing studies. While Mankiw and Reis (2002) also
emphasize the role of lagged expectations in propagating shocks through the sticky informa-
tion assumption, this model �nds that a similar mechanism can be motivated within the time-
dependent pricing paradigm. Mash (2004) constructs a mixture of the Calvo and Taylor pricing
models and shows that the NKPC under increasing hazard functions replicates a large part of
persistence in in�ation and in the output gap. Parallel to my methodology, Costain and Nákov
(2008) parameterize a hazard function in a state-dependent pricing context. The most closely
related paper in the literature is Sheedy (2007), who parameterizes the hazard function in such
a way that the resulting NKPC has a positive coe¢ cient on lagged in�ation given that the
hazard function is upward sloping. This result, however, is only valid under his hazard function
speci�cation.

The remainder of the paper is organized as follows: in section 1, I introduce the model with
generalized time-dependent pricing at the �rm�s level and derive the New Keynesian Phillips
curve; section 2 shows some analytical results to give the structural interpretation of the coe¢ -
cients of the generalized NKPC; in section 3, I introduce the calibration strategy of the model�s
parameters and present the simulation results; section 4 contains some concluding remarks.

2 The model

In this section, I introduce the generalized time-dependent model of nominal rigidity à la Wolman
(1999). The most important components of the model are 1) monopolistic competitive �rms who
set their prices according to the demand condition and the probabilities for re-optimizing their
prices, and 2) �rms cannot adjust their price whenever they want, instead, the opportunities for
re-adjusting their prices depend on exogenous hazard rates, which are based on the length of
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time since the last adjustment.

2.1 Monopolistic competition �rms

I consider an economy with a continuum of monopolistic competitive �rms which are di¤erenti-
ated with respect to the type of worker they use, indexed by i 2 f0; 1g. The �nal goods sector
is perfectly competitive and produces a single �nal good, Yt, with all intermediate goods using
a CES aggregate production function (Dixit and Stiglitz, 1977)

Yt =

�Z 1

0
Y

��1
�

i;t di

� �
��1

; (1)

Given this aggregate production function and the market structure, the pro�t maximization
problem of the �nal-good �rm solves the demand function for intermediate goods,

Y di;t =

�
Pi;t
Pt

���
Yt; (2)

Where Pi;t denotes the nominal price of good i, and Pt is the aggregate price for one unit
of the �nal good Yt. It follows that the welfare-based aggregate price index is obtained by the
following expression:

Pt =

�Z 1

0
P 1��i;t di

� 1
1��

(3)

2.2 The generalized time-dependent pricing

The principal assumption of the model is that �rms cannot adjust their price whenever they
want. Instead, opportunities for re-optimizing their prices depend on exogenous probabilities
which are related to the length of time since the last adjustment. I summarize this limited price
adjustment scheme using an arbitrary hazard function hj , where j denotes the period of time
elapsed since the last price adjustment j 2 f0; Jg. Because it is di¢ cult to justify that some
�rms keep their prices constant forever, I assume there is a maximum number of periods in
which a �rm can �x its price (J). Firms in the same vintage ( j ) have the same probability
(hj) of adjusting their prices. Note that, for the basic model, I do not parameterize the hazard
function, so that the relative magnitudes of the hazard rates are totally free. By doing that, the
analytical results derived from the model should be robust to any shape of the hazard function.

2.2.1 Dynamics of the vintage distribution

To aggregate the economy, we need to track the distribution of �rms�vintages. At the end of
each period, those �rms that reoptimize their prices in the current period are labelled by the
�vintage 0�, while the other �rms move to the next vintage j+1 because their prices age by one-
period. Assume that the ex ante distribution of price vintages is �t = f�t(0); �t(2) � � � �t(J�1)g,
then, after �rms re-optimize their prices, the ex post distribution �0t = f�0t(0); �0t(2) � � � �0t(J�1)g
is obtained by
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�0t(j) =

8<:
JP
i=1
hj�t(i) , when j = 0

�j�t(j) , when j = 1 � � �J � 1
(4)

When period t is over, this ex post distribution �0t becomes an ex ante distribution for
the new period �t+1: Table (??) summarizes key notations concerning the dynamics of vintage
distribution.

Table ?? is about here

2.2.2 The stationary distribution

As long as the hazard rates are well de�ned, dynamics of the vintage distribution can be viewed
as a Markov process with an invariant distribution �, obtained by solving �t(j) = �0t(j � 1) =
�t+1(j): It yields the stationary vintage distribution �(j) as follows:

�(j) =

j

�
i=0
�i

J�1
�
n=0

n
�
i=0
�i

=
Sj

J�1
�
n=0
Sn

, for j = 0; 2 � � �J � 1 (5)

Let�s assume the economy converges to this invariant distribution fairly quickly, so that
regardless of the initial vintage distribution, I only consider the economy with the above invariant
distribution of vintages. For any stationary distribution �(j), the aggregate price index (3) can
be rewritten as a distributed sum of all vintage prices, re�ecting the fact that all �rms setting
prices in the same period should choose the same price, assuming no other heterogeneity a¤ects
the �rms�price decisions.

The optimal price is de�ned as P �t�j , set j periods ago. It allows for the aggregate price
index to be obtained by the weighted sum of the past optimal prices as follows:

Pt =

0@J�1X
j=0

�(j)P �1��t�j

1A 1
1��

(6)

2.2.3 Optimal pricing

In a given period when a �rm is allowed to reoptimize its price, the optimal price chosen should
re�ect the possibility that it will not be adjusted in the near future. Consequently, adjusting
�rms choose an optimal price that maximizes the discounted sum of real pro�ts over the time
horizon during which the new price is expected to hold. The probability that the new price is
�xed is given by the survival function S(j) de�ned in Table (??). The maximization problem is
obtained by

max
P �t

J�1X
j=0

SjEtfQt;t+j [Y dt+jjt � TCt+j=Pt+j ]g

Where Et denotes the conditional expectation operator based on the information set at
period t, and Qt;t+j is the stochastic discount factor which is appropriate for discounting real
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pro�ts from time t + j to time t. Y dt+jjt denotes real output demand in period t + j for a �rm
that resets its price in period t. I implicitly assume here that �rms have no monopolistic power
in individual labor markets, so that �rms do not consider the possibility of their price decisions
a¤ecting future real wages and hence future marginal costs2. As a result, the optimal price has
no direct e¤ect on the future cost.

Firms maximize pro�ts subject to two constraints. The �rst is the production function

Yt = ZtNt (7)

where Zt denotes productivity which is identical across sectors. Log deviation of productivity
ẑt follows an exogenous stochastic process (ẑt = �z ẑt�1 + "z;t), where "z;t is white noise and
�z 2 [0; 1). Y dt+jjt denotes demand of real output in period t + j for a �rm that resets its price
in period t, which follows:

Y dt+jjt =

�
P �t
Pt+j

���
Yt+j ;

The parameter � can be interpreted as the elasticity of substitution among intermediate
goods.

This optimization yields the following �rst order necessary condition:

P �t =

�
�

� � 1

� J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j MCt+j ]

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j ]

(8)

Where MCt+j denotes nominal marginal cost. One can see that the optimal price is equal
to the markup multiplied by the weighted sum of future nominal marginal costs. The weight
depends on the survival rate. In addition, the maximum time horizon J depends on the speed
at which the survival function goes to zero. In the Calvo case, where S(j) = (1��)�j , survival
rates approach zero as j increases, but never reach, thereby making the decision horizon in�nite
in this case.

2.3 Steady State

Before starting to derive the NKPC in terms of log deviations from the steady state, I de�ne it
as follows: in the steady state, all real variables are constant, while, all nominal variables and
the price level grows at a constant rate of trend in�ation, which is equal to the growth rate of
nominal money stock set by the central bank g = �� . If we de�ne X as the steady state value
of variable X, then the optimality condition (8) can be rewritten as:

2Here I assume the �rm type is not the same as the labor type, thereby, in each labor market, all intermediate
�rms demand some labor from it. As a result, Iabor markets are competitive, and there is no di¤erence between
real wages among individual �rms. See Woodford (2003).
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�p�t =
�

� � 1

JP
j=0

�jS(j) �P �t+jmc

JP
j=0

�jS(j) �P ��1t+j

=
�

� � 1

JP
j=0

�jS(j) �P �t g
�jmc

JP
j=0

�jS(j) �P ��1t g(��1)j

r =
�p�t
�Pt
=

�

� � 1mc| {z }
=1

26664
JP
j=0

�jS(j)g�j

JP
j=0

�jS(j)g(��1)j

37775 (9)

From Equation (9), we see that, at the steady state, the relative price
�
r =

�p�t
�Pt

�
is a constant,

equal to the product of a constant markup, real marginal cost and an extra term, which sum-
marizes the e¤ect of trend in�ation on the relative price. When trend in�ation is zero (g = 1),
then this term is equal to one, allowing this equation to reduce to the static pricing equation,
which expresses the optimal price as the nominal marginal cost multiplied by a constant markup
( �
��1). When the trend in�ation is greater than zero (g > 1), however, the bracketed term is
greater than one, so is the relative price, meaning that the optimal price is adjusted at a higher
rate than the trend in�ation. The economic intuition is that forward-looking price setters take
into account that trend in�ation erodes their relative prices over time, so that they need to
�front-load� the price when they reoptimize it. Consequently, this higher relative price ratio
leads to lower steady state output and hence induces an additional welfare loss caused by the
positive trend in�ation.

2.4 New Keynesian Phillips curve

To derive the NKPC, I �rst log-linearize equations (6) and (8) around the zero-in�ation steady
state. De�ning x̂t = logXt � log �X:, I obtain following log-linearized equations:

p̂�t = Et

24J�1X
j=0

�jSj
	

(cmct+j + p̂t+j)
35 ; where 	 = J�1X

j=0

�jSj (10)

p̂t =

J�1X
k=0

�(k) p̂�t�k; (11)

After some tedious algebra, I obtain the generalized NKPC from Equation (10) and (11)3.
To reveal the essential implications of the NKPC for the in�ation dynamics, I derive it without
trend in�ation, i.e. g = 1.

3Log-linearization of price equations and the detailed derivation of NKPC can be found in a technical Appendix,
available upon request from the author.
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�̂t =
J�1X
k=0

�(k)

1� �(0)Et�k

24J�1X
j=0

�jSj
	

cmct+j�k + J�1X
i=1

J�1X
j=i

�jSj
	

�̂t+i�k

35� J�1X
k=2

�(k)�̂t�k+1;

where �(k) =

J�1P
j=k

Sj

J�1P
j=1
Sj

(12)

At �rst sight, this New Keynesian Phillips curve has a much more complex structure than
the Calvo NKPC. It involves not only lagged in�ation but also lagged expectations that were
built into pricing decisions in the past. All coe¢ cients in the NKPC are derived from deep
parameters which represent either stationary distributional parameters or the preference para-
meter. In particular, coe¢ cients before lagged in�ation and lagged expectations ( �(k)

1��(0) ;�(k)),
representing the compositional proportion of each dated price in aggregate in�ation.

To be more unobstructed, I give an example with J = 3:

�̂t =
1

(�1 + �1�2)	
cmct + �1

(�1 + �1�2)	
cmct�1 + �1�2

(�1 + �1�2)	
cmct�2

+
1

�1 + �1�2
Et

�
��1
	
cmct+1 + �2�1�2

	
cmct+2 + ��1 + �2�1�2

	
�̂t+1 +

�2�1�2
	

�̂t+2

�
+

�1
�1 + �1�2

Et�1

�
��1
	
cmct + �2�1�2

	
cmct+1 + ��1 + �2�1�2

	
�̂t +

�2�1�2
	

�̂t+1

�
+

�1�2
�1 + �1�2

Et�2

�
��1
	
cmct�1 + �2�1�2

	
cmct + ��1 + �2�1�2

	
�̂t�1 +

�2�1�2
	

�̂t

�
� �1�2
�1 + �1�2

�̂t�1

In this example, current in�ation depends on marginal costs, lagged in�ation and a complex
weighted sum of expectations. All coe¢ cients are expressed in terms of non-adjustment rates
(�j = 1� hj) and the subjective discount factor �:

It is natural to ask why these lagged terms are absent in the Calvo NKPC. Are there new
insights of the NKPC that can be gained by relaxing the constant hazard assumption? The
answer is yes. In the next section, I use a proposition to elaborate this point formally.

3 Analytical results

3.1 New insights of the generalized NKPC:

Proposition 1 When assuming the hazard rates are constant w.r.t. time-since-last-adjustment,
the generalized NKPC (12) reduces to the standard Calvo New Keynesian Phillips curve.

�̂t =
(1� �)(1� ��)

�
cmct + �Et (�̂t+1)

Proof. : see Appendix A.
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From the derivation, we see that the Calvo NKPC is equivalent to the following equation:

�̂t = Et

 
(1� �)(1� ��)

1X
i=0

�i�it+icmct+i + (1� �) 1X
i=0

�i�i�̂t+i

!
(13)

Lag Equation (13), the following expressions must hold too.

�̂t�1 = Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!

�̂t�2 = Et�2

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!
...

These equations reveal why the lagged in�ation and lagged expectations are missing in
the Calvo NKPC. Given the constant hazard function, the e¤ects of lagged in�ation exactly
cancel out the e¤ects of lagged expectations, leaving only current variables and forward-looking
expectations in the NKPC. In the more general case, however, both lagged in�ation and in�ation
expectations should be present in the Phillips curve.

In addition, given any values between zero and one for non-adjustment rates (�j), coe¢ cients
of the lagged in�ations are always negative, while coe¢ cients of lagged expectations are always
positive. The reason why lagged in�ation and lagged expectations exert opposite e¤ects on the
current in�ation is the following: on the one hand, because the price is sticky, expectations
have a long lasting in�uence on the economy. The higher the expectations of marginal costs,
the higher is the in�ation; on the other hand, past in�ation has a negative impact on current
in�ation due to the "front-loading" e¤ect. Again, because prices are sticky, �rms adjust more
than necessary to hedge against the risk that they might not be allowed to re-optimize again in
the near future and would be unwilling to react to a current economic condition. The �front-
loading�pricing therefore deters the price adjustment needed in the future. Due to this e¤ect, a
high level of past in�ation hinders the ability of current in�ation to continue to be high. In the
more general setting, both e¤ects work against each other, but in the Calvo model, these two
e¤ects just cancel each other out.

3.2 The role of lagged in�ation:

The next question that I can address by using the generalized NKPC is whether the in�ation
persistence is �intrinsic �in this model, de�ned as in�ation driven by its own lags with positive
coe¢ cients.

To answer this question, we need to identify the sign of the coe¢ cient on lagged in�ation,
while taking the e¤ects of lagged expectations into account. To do it, I substitute lagged
expectations of in�ation from the Phillips curve with expectational errors by using the following
identities:
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Et�1 [�̂t+1]� Et [�̂t+1] + Et [�̂t+1] = �t + Et [�̂t+1]

Et�2 [�̂t]� Et�1 [�̂t] + Et�1 [�̂t] = �t�1 + Et�1 [�̂t]

Et�1 [�̂t]� �̂t + �̂t = �t + �̂t

Et�2 [�̂t�1]� �̂t�1 + �̂t�1 = �t�1 + �̂t�1

Where �t and �t are white noises under rational expectations.
Again, when J = 3, I obtain the following compact form of the NKPC:

�̂t = � �2
1 + �2 + ��1�2

�̂t�1 +
1Et [�̂t+1] + 
2Et [�̂t+2] + 
3Ft [cmc] + 
3!t (14)


1 =
� + �2�2 + �

2�1�2
1 + �2 + ��1�2

; 
2 =
�2�2

1 + �2 + ��1�2
; 
3 =

�
1 + ��1 + �

2�1�2
�
(1 + �2)

1 + �2 + ��1�2

Where Ft [cmc] summarizes all expectational terms of marginal cost and !t is a linear combi-
nation of white noise expectational errors under rational expectations. Given any well-de�ned
hazard rate, the alphas lie between zero and one, and the coe¢ cient on �̂t�1 is always negative.
Since a negative coe¢ cient works against in�ation persistence, this theory does not provide
support for intrinsic persistence. Instead, persistence should come from the additional moving-
average terms of real shocks through the presence of the lagged expectations4. This result is
consistent with empirical evidence shown by Cogley and Sbordone (2006) and Bils et al. (2009),
that the purely forward-looking model explains the persistence of the in�ation deviation from
its trend quite well when applied to the correctly detrended in�ation data. Based on these
results, we can conclude that the forward-looking Phillips curve is able to adequately account
for the persistence of in�ation deviations from the steady state, and that lagged in�ation is not
important for this persistence.

4 Numerical experiment

To study the e¤ects of varying shapes of the hazard function on the dynamics of in�ation and
output gap, I close the model by adding a simple aggregate demand condition and a nominal
money growth rule to the NKPC.

m̂t = ŷt (15)cmct = �1ŷt � �2ẑt (16)

m̂t = m̂t�1 � �̂t + gt (17)

ẑt = �z ẑt�1 + �t (18)

gt = �m gt�1 + ut (19)

Equation (15) represents a simple money-market equilibrium condition, where m̂t is the log
deviation of the real money balance from the steady state. This equation can be motivated

4 In principle, this result can be extended to the NKPC with an arbitrary length of J .
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through the quantity theory of money.with a constant velocity.  is the income elasticity of
money demand. Equation (16) de�nes the real marginal cost as a linear function of real output
gap and the technology shock. �1 and �2 are positive coe¢ cients, which measure the degree
of real rigidity (Ball and Romer, 1990). Equation (17) is a nominal money growth rule, where
gt denotes the exogeneous growth rate of the nominal money stock. For both shocks (ẑt; gt), I
assume that they are following AR(1) processes with i.i.d. innovations.

4.1 Calibration

In calibration, I use a novel strategy for parameterizing the hazard function. Since the hazard
function in this model is de�ned in terms of the time-since-last-adjustment, it is reasonable to
base its calibration on the well-established statistical theory of duration analysis. In particular,
the functional form I apply is based on the Weibull distribution with two parameters5.

h(j) =
�

�

�
j

�

���1
(20)

� is the scale parameter, which controls the average duration of the price adjustment, while �
is the shape parameter to determine the monotonic property of the hazard function. It enables
the incorporation of a wide range of hazard functions by using various values of the shape
parameter. In fact, any value of the shape parameter that is greater than one corresponds to
an increasing hazard function, while values ranging between zero and one lead to a decreasing
hazard function. By setting the shape parameter to one, we can retrieve the Poisson process
from the Weibull distribution. In the �gure (1), I give some examples of hazard functions and
the corresponding Weibull distributions with varing values of the shape parameter.

Figure 1 about here

To calibrate the Weibull parameters, I choose the shape parameter � in the range between 1
and 2. Even though this range only covers increasing hazard functions, it is more theoretically
justi�ed, because it makes the maximum number of price duration J �nite. Furthermore, I set
� = 4:5, so that it implies an average non-adjustment rate equal to 0.75, a value commonly
used for the Calvo model. In the calibration of the preference parameters, I assume � = 0:9902,
which implies a steady state real return on �nancial assets of about four percent per annum.
I also choose � = 10, which implies the markup is around 11%. Following Mankiw and Reis
(2002), I choose income elasticity of money demand  = 0:5. Finally, I set �1 = �2 = 0:15,
implying a mild degree of �real rigidity�.

4.2 Impulse responses

To evaluate the quantitative performance of the model, I apply the standard algorithm to solve
for the log-linearized rational expectation model6 and report the impulse responses of in�ation
and output gap.

5 In Appendix(B), I give an introduction to the Weibull distribution.
6 I am grateful to Alexander Meyer-Gohde for helping me to calculate the equilibrium with some extreme

parameter values, where the computation involves large numbers of lags and leads of expectations. For the details
of the algorithm, you can refer to Meyer-Gohde (2007).
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Figure 2 illustrates impulse responses of in�ation and output to a transitory 1% increase
in the annual nominal money growth rate (�m = 0). While, in the Calvo setup, the response
of in�ation jump on impact and decays monotonically afterwards, it is hump-shaped in the
increasing-hazard setting and peaks at around third quarters.

Figure 2 about here

Figure 3 depicts responses to a persistent money growth shock (�m = 0:95). When shocks are
persistent, both in�ation and output responses are hump-shaped. It also exhibits that output
leads in�ation, a rather robust feature of the data. Under Calvo, however, either in�ation and
output have their largest correlation contemporaneously (non-persistent shock) or in�ation leads
output (persistent shock).

Figure 3 about here

The economic intuition behind these results is that, on the one hand, only a few �rms adjust
their prices immediately after a shock, and more and more adjust later on, thereby postponing
the timing of the adjustment. On the other hand, the size of the adjustment is increasing in the
time since the shock occurred. The later a �rm changes its price, the larger the adjustment it
needs to make. In another words, the increasing-hazard pricing a¤ects not only the timing of
the price adjustment, but also the average magnitude of �rms�adjustments, in that they tend
to increase some periods after the shock, leading to a hump-shaped response.

Conclusion

The central theme of this study is to show non-constant hazard functions induced by the pricing
assumption implies di¤erent aggregate dynamics. I derive a general New Keynesian Phillips
curve, re�ecting an arbitrary hazard function. The generalized NKPC involves components in-
cluding lagged in�ation, forward-looking and lagged expectations of in�ations and real marginal
cost, which nests the standard Calvo Phillips curve as a limiting case.

While the standing theory of the Phillips curve has argued that, in order to generate in�ation
persistence in the data, the NKPC needs to incorporate the lagged in�ation with a signi�cant
positive coe¢ cient, which is interpreted as �intrinsic in�ation persistence�, I however, show that
this is not the case in the general time-dependent pricing model. It accounts for in�ation
persistence not because of the �intrinsic� force, but due to the moving-average precess of real
shocks through the presence of lagged expectations. Therefore including lagged expectations is
important for the in�ation dynamics.

In the numerical exercise, I contribute to the literature with a new approach to parameterize
the hazard function by using the Weibull distribution. The main advantage of this approach
is that it allows for �exible characteristics in the hazard function, which in turn provides an
alternative discipline to calibrate the parameters of the distribution of price vintages. More
importantly, this parsimonious approach makes the underlying mechanism transparent. The
numerical results show that the increasing hazard function leads to hump-shaped impulse re-
sponses of in�ation to monetary shocks, and output leads in�ation.
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Given that handling a more sophisticated pricing model-such as the state-dependent pricing
model-is rather challenging, the model presented here is a promising candidate for monetary
policy research, in that it compromises of a better modeling of the pricing mechanism and
tractability of the model�s solution required for policy analysis.
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A Proof for Proposition 1

In the Calvo pricing case, all hazards are equal to a constant between zero and one. Let�s denote
the constant hazard as h = 1� � . We can rearrange the NKPC 12 in the following way:

�̂t +
1X
k=1

�k�̂t�k = (1� �)
1X
k=0

�kEt�k

 
(1� ��)

1X
i=0
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�i�i�̂t+i�k

!

�̂t + ��̂t�1 + �
2�̂t�2 + � � � = Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+ �Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!

+ �2Et�2

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�2 + (1� �)
1X
i=0

�i�i�̂t+i�2

!
... (21)

Then iterating this equation one period forwards,
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Then substitute Equation 21 for the term in the brackets on the left hand side of this
equation,

14



�̂t+1 + �Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+�2Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!

+�3Et�2

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�2 + (1� �)
1X
i=0

�i�i�̂t+i�2

!
...

= Et+1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i+1 + (1� �)
1X
i=0

�i�i�̂t+i+1

!

+�Et

 
(1� �)(1� ��)

1X
i=0

�i�imct+i + (1� �)
1X
i=0

�i�i�̂t+i

!

+�2Et�1

 
(1� �)(1� ��)

1X
i=0

�i�imct+i�1 + (1� �)
1X
i=0

�i�i�̂t+i�1

!
...

After canceling out equaling terms from both sides of the equation, we obtain the following
equation:

�̂t+1 = Et+1
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Lagging this equation and rearranging it yields the familiar NKPC of the Calvo model.
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B The Weibull distribution

The PDF of Weibull distribution is given by the following expression:

Pr(j) =
�

�

�
j

�

���1
exp

�
�
�
j

�

���
and the cumulative probability function is:

F (j) = 1� exp
�
�
�
j

�

���
The parameters that characterize the Weibull distribution are the scale parameter � and the
shape parameter � . The shape parameter determines the shape of the Weibull�s pdf function,
e.g. when � = 1, it reduces to an exponential case; while with � = 3:4, the Weibull amounts
to the normal distribution. The scale parameter de�nes the characteristic life of the random
process that amounts to the time at which 63.2% of the �rms adjust their labor. This can be
seen with the evaluation of the cdf function of the Weibull distribution at j equaling the scale
parameter�. Then we have, F (�) = 1� e(�1) = 0:632.

Note that it relates to the mean duration j according to the following equation:

j =
1

��
= ��(

1

�
+ 1);

where �() is the Gamma function.
It follows that the hazard function of Weibull distribution is:

h(j) =
�

�

�
j

�

���1
Note that this hazard is constant when the shape parameter � equals one, and increasing when
� is greater than one.
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C Tables

Vintage Hazard Rate Non-adj. Rate Survival Rate Distribution
j hj �j Sj �(j)

0 0 1 1 �(0)

1 h1 �1 = 1� h1 S1 = �1 �(1)
...

...
...

...
...

j hj �j = 1� hj Sj =
j

�
i=0
�j �(j)

...
...

...
...

...
J hJ = 1 �J = 0 SJ = 0 �(J)

Table 1: Notations of the dynamics of price-vintage-distribution.
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D Figures

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hazard Function

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Weibull Distribution

Tau=0.8
Tau=1
Tau=1.5
 Tau=2

Figure 1: Hazard function and Weibull distribution with various shape parameters
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Figure 2: Impulse responses to a transitory money growth shock (�m = 0)
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Figure 3: Impulse responses to a persistent money growth shock (�m = 0:95)
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