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Abstract

There are only few “positive” results concerning multi-person games with the

fictitious play property, that is, games in which every fictitious play process

approaches the set of equilibria. In this paper we characterize  classes of multi-person

games with the fictitious play property. We consider an { EINBETTEN Equation.2  }

player game { EINBETTEN Equation.2  } based on { EINBETTEN Equation.2  } two-

person sub-games. In each of these sub-games player 0 plays against one of the other

players. Player 0 is regulated, so that he must choose the same  strategy in all {

EINBETTEN Equation.2  } sub-games. We show that if all sub-games are either zero-

sum games, weighted potential games, or games with identical payoff functions, then

the fictitious play property holds for the associated game.

1. Introduction

In the fictitious play (FP) process proposed by Brown (1951) each player believes that

each one of his opponents is using a stationary mixed strategy, which is the empirical

distribution of this opponent’s past actions. We say that a FP process approaches

equilibrium, if the belief sequence is as close as we wish to equilibria set after

sufficiently late time. A game in which every FP process, independent of initial

actions and beliefs, approaches equilibrium, is called a game with the FP property.

Robinson (1951) proved that every two person zero-sum game has the FP property.

Miyasawa (1961) proved that every two person 2x2 game has the FP property under

certain indifference breaking rules. In 1964 Shapley gave an example of an ordinal

class of 3x3 games without the FP property. Milgrom and Roberts (1991) showed that

every game which is dominance solvable has the FP property. Krishna (1992) proved

that if the strategy sets are linearly ordered, then every game with strategic

complementarities and diminishing returns has the FP property. Monderer and

Shapley (1996) proved that every game with identical interests has the FP property,

where a game with identical interests is a game which is best response equivalent in

mixed strategies to a game with identical payoff functions.

There are only few  “positive” results concerning the FP property in multi-person

games. In this paper we characterize  classes of multi-person games  with the FP

property.
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We study an{ EINBETTEN Equation.2  } player game { EINBETTEN Equation.2  }

based on { EINBETTEN Equation.2  } two-person games,{ EINBETTEN Equation.2

}. The players in { EINBETTEN Equation.2  }, are player 0 and player { EINBETTEN

Equation.2  }. The payoff function of player { EINBETTEN Equation.2  }in {

EINBETTEN Equation.2  } for { EINBETTEN Equation.2  } depends only on his

strategy and player 0’s strategy. Player 0 has the same  strategy set in all {

EINBETTEN Equation.2  } sub games { EINBETTEN Equation.2  }, such that he

must choose the same strategy in all { EINBETTEN Equation.2  } sub games, and his

payoff is the sum of his payoffs in all the sub games. { EINBETTEN Equation.2  }

will be called the compound game. We analyze the fictitious play process in such

compound games. We do it by associating with each such game, a two player game

that will be called the reduced game. We show that a fictitious play process

approaches equilibrium in the compound ({ EINBETTEN Equation.2  }+1) player

game, if and only if it approaches equilibrium in the reduced two player game. This

result enables us to identify classes of compound games with the fictitious play

property. In particular, we show that if all sub-games are either zero-sum games,

weighted potential games or games with identical payoff functions then the fictitious

play property holds for the associated compound game.

2. An Illustration

Consider  an industry with a corporation producing and selling a single good in {

EINBETTEN Equation.2  } distinct markets. In each of these markets there is also a

local firm operating solely in this market. The corporation is regulated, so that it must

charge the same price in all the markets. We can model this situation by a Bertrand-

like game with { EINBETTEN Equation.2  } players. The strategies of the players are

prices (charged by the firm and the corporation) in the local market.

 We denote the corporation by 0 and the local firm in market { EINBETTEN

Equation.2  }by { EINBETTEN Equation.2  }.

The demand functions  in market { EINBETTEN Equation.2  }, { EINBETTEN

Equation.2  }, are:

{ EINBETTEN Equation.2  }.
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Where { EINBETTEN Equation.2  } are the prices charged by the corporation and the

local firm respectively in market { EINBETTEN Equation.2  }.

The corporation’s profit function in market { EINBETTEN Equation.2  }is:

{ EINBETTEN Equation.2  }.

And the firm { EINBETTEN Equation.2  } profit function is:

{ EINBETTEN Equation.2  }.

The corporation’s profit is the sum of its profits in all the markets. We call such a

game a compound Bertrand game.

Consider now a repeated compound Bertrand game in which the firms adopt fictitious

play’s behavior rules. We are interested whether the agents in a compound Bertrand

game learn to play Nash equilibrium strategies by this adaptive play, namely, whether

the compound Bertrand game has the fictitious play property.

It can be shown that each market (Bertrand oligopoly) is a game with identical

interests, where a game with identical interests is best response equivalent in mixed

strategies to a game with identical payoff functions. As was shown by Monderer and

Shapley (1996), every game with identical interests has the fictitious play property,

and therefore in every local market the agents’ beliefs approach equilibrium. In this

paper we study whether the agents’ beliefs approach equilibrium in the compound

Bertrand game as well. This is not a simple question since the corporation operates in

all the markets simultaneously and therefore the { EINBETTEN Equation.2  } distinct

markets are not completely separated. We show below that compound Bertrand games

as well as other classes of games based on the same separable structure, are games

with the fictitious play property.

3. The Fictitious Play process

The fictitious play (FP) proposed by Brown (1951) has two different versions. In the

first version, each player believes that each one of his opponents is using a stationary

mixed strategy, which is the empirical distribution of this opponent’s past actions.

Such a player will be called a IFP player ( “I” stands for independent ). In the second

version, each player believes that his opponents are using a joint correlated mixed

strategy, which is the empirical distribution of his opponents’ past actions. Such a

player will be called a JFP player ( “J” stands for joint ). In two-person games, the
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concepts of IFP player and JFP player coincide. Since most of the research on the FP

process has concentrated in two-person games, the difference between JFP and IFP

has been hardly noticed. In this paper we refer to the IFP as FP.

Let { EINBETTEN Equation.2  }be the set of players. For each { EINBETTEN

Equation.2  }, { EINBETTEN Equation.2  } is the finite strategy set of player {

EINBETTEN Equation.2  }. For every { EINBETTEN Equation.2  } we denote {

EINBETTEN Equation.2  }. In particular we denote { EINBETTEN Equation.2  } and

{ EINBETTEN Equation.2  }. Let { EINBETTEN Equation.2  } be player {

EINBETTEN Equation.2  }s  payoff function, where { EINBETTEN Equation.2

}denotes the set of real numbers. For each finite set { EINBETTEN Equation.2  } we

denote by { EINBETTEN Equation.2  } the set of probability measures over {

EINBETTEN Equation.2  }. For { EINBETTEN Equation.2  } we denote {

EINBETTEN Equation.2  } and { EINBETTEN Equation.2  }. The set of player {

EINBETTEN Equation.2  }s mixed strategies { EINBETTEN Equation.2  } is denoted

by { EINBETTEN Equation.2  }.

We denote { EINBETTEN Equation.2  } and{ EINBETTEN Equation.2  }. We

identify { EINBETTEN Equation.2  } and { EINBETTEN Equation.2  } with extreme

points in { EINBETTEN Equation.2  } and { EINBETTEN Equation.2  }respectively.

A path in S is a sequence { EINBETTEN Equation.2  }, for { EINBETTEN Equation.2

} of elements in S.

A belief sequence { EINBETTEN Equation.2  }, for { EINBETTEN Equation.2  }{

EINBETTEN Equation.2  }, consist of elements of { EINBETTEN Equation.2  }, i.e.,

{ EINBETTEN Equation.2  }, is the belief of player { EINBETTEN Equation.2  }about

the other players’ strategies at stage { EINBETTEN Equation.2  }. { EINBETTEN

Equation.2  } is the belief of player { EINBETTEN Equation.2  }about player {

EINBETTEN Equation.2  }s strategy at stage { EINBETTEN Equation.2  }.

A joint belief sequence { EINBETTEN Equation.2  }, for { EINBETTEN Equation.2

}, consist of elements of { EINBETTEN Equation.2  }, i.e. { EINBETTEN Equation.2

}, is the belief of player { EINBETTEN Equation.2  }about the joint strategy of the

other players at stage{ EINBETTEN Equation.2  }. Let { EINBETTEN Equation.2  }

and { EINBETTEN Equation.2  }. Denote by { EINBETTEN Equation.2  }the

marginal distribution on { EINBETTEN Equation.2  }. That is ,
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{ EINBETTEN Equation.2  }.

A learning process is a pair { EINBETTEN Equation.2  }, where { EINBETTEN

Equation.2  } is a path in { EINBETTEN Equation.2  }, and { EINBETTEN Equation.2

} is either a belief sequence or a joint belief sequence, such that for every {

EINBETTEN Equation.2  } and every player{ EINBETTEN Equation.2  }the strategy {

EINBETTEN Equation.2  } is a best response to { EINBETTEN Equation.2  }.

A learning process { EINBETTEN Equation.2  }is a fictitious play (FP) process, if for

every player { EINBETTEN Equation.2  }, and for every { EINBETTEN Equation.2  },

{ EINBETTEN Equation.2  }, ( here { EINBETTEN Equation.2  }is a point in {

EINBETTEN Equation.2  }).

Note that in a FP process { EINBETTEN Equation.2  } for all { EINBETTEN

Equation.2  }. We denote by { EINBETTEN Equation.2  }the identical belief of all the

players about player { EINBETTEN Equation.2  } strategy at stage { EINBETTEN

Equation.2  } .

A FP process { EINBETTEN Equation.2  }approaches equilibrium, if for every {

EINBETTEN Equation.2  } there exist { EINBETTEN Equation.2  }, such that for

every { EINBETTEN Equation.2  }, there exists a mixed equilibrium profile {

EINBETTEN Equation.2  }, such that, { EINBETTEN Equation.2  } .

We say that a game has the FP property , if every FP process, independent of initial

actions and beliefs, approaches equilibrium.

A learning process { EINBETTEN Equation.2  } is a joint fictitious play (JFP)

process, if for every player { EINBETTEN Equation.2  }, { EINBETTEN Equation.2  }

( here { EINBETTEN Equation.2  }is a point in { EINBETTEN Equation.2  }).

Note that in a JFP process, for every two players { EINBETTEN Equation.2  }, and

for all { EINBETTEN Equation.2  }, { EINBETTEN Equation.2  }. We denote by {

EINBETTEN Equation.2  }the identical belief of all the players about player {

EINBETTEN Equation.2  }’s strategy at stage { EINBETTEN Equation.2  }.

In two person games, the FP and JFP processes coincide. It can be shown that in

general these processes do not coincide.

4. The Model
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{ EINBETTEN Equation.2  } is the set of players. { EINBETTEN Equation.2  } is the

finite strategy set of player { EINBETTEN Equation.2  }, and { EINBETTEN

Equation.2  }. { EINBETTEN Equation.2  }, is a two-person game (the players are

player 0 and player { EINBETTEN Equation.2  }). The payoff functions of the players

in { EINBETTEN Equation.2  } are : { EINBETTEN Equation.2  }.

We define an { EINBETTEN Equation.2  } player game { EINBETTEN Equation.2  }

as follows:

The payoff of player 0 is defined as the sum of his payoffs in the games {

EINBETTEN Equation.2  } , that is,

{ EINBETTEN Equation.2  }

Where { EINBETTEN Equation.2  } is player { EINBETTEN Equation.2  }’s strategy

in the joint strategy { EINBETTEN Equation.2  }.

The payoff of player { EINBETTEN Equation.2  }, depends only on his strategy and

player 0’s  strategy in { EINBETTEN Equation.2  }, that is,

{ EINBETTEN Equation.2  }.

The game { EINBETTEN Equation.2  }will be called the compound game.

At each stage of a learning process, each of the players in { EINBETTEN Equation.2

} may face a tie problem between several best replies. We assume a complete order on

each of the strategy sets { EINBETTEN Equation.2  }, and the following tie-breaking

rule :

Assumption ( tie breaking rule ): If a player plays according to the FP or JFP process

and he is indifferent among some best replies, he chooses the largest one according to

the order on his strategy set.

The compound game { EINBETTEN Equation.2  }will be associated with a two player

game { EINBETTEN Equation.2  } that will be called the reduced game of {

EINBETTEN Equation.2  }. The players in the reduced game will be denoted by 0 (the

row player) and by A (the column player).

The strategy set of player 0 in { EINBETTEN Equation.2  } is { EINBETTEN

Equation.2  }. That is, player 0 in the compound game { EINBETTEN Equation.2  }

and player 0 in its reduced game { EINBETTEN Equation.2  } have the same strategy

set.
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The strategy set of player { EINBETTEN Equation.2  } is { EINBETTEN Equation.2

}, where { EINBETTEN Equation.2  }.

The payoff function of player 0 in { EINBETTEN Equation.2  } is :

{ EINBETTEN Equation.2  }.

That is, the payoffs of players 0 are the same in the compound game and in its reduced

game. In fact we can say that the same player 0 plays in both games.

The payoff function of player A is :

{ EINBETTEN Equation.2  }  .

That is, the payoff of player{ EINBETTEN Equation.2  } in the reduced game is equal

to the sum of all the players’ (except player 0 ) payoffs in its compound game.

We assume the following tie-breaking rule for the FP process in the reduced game :

Assumption (tie breaking rule ): If  player{ EINBETTEN Equation.2  } plays

according to the FP process in a reduced game, and he is indifferent among some best

replies, he chooses the strategy { EINBETTEN Equation.2  }, such that for every {

EINBETTEN Equation.2  }, { EINBETTEN Equation.2  }, { EINBETTEN Equation.2

} is the best response of player { EINBETTEN Equation.2  }(in the compound game),

which is the largest one according to the order of player { EINBETTEN Equation.2

}’s strategy set. 1

5. Identities

Let { EINBETTEN Equation.2  } be a FP process and { EINBETTEN Equation.2  } be

a JFP process as detailed in section 2. The two processes define the same beliefs at

stage { EINBETTEN Equation.2  }, if for every player { EINBETTEN Equation.2  }, {

EINBETTEN Equation.2  }. That is, the beliefs of all the players in { EINBETTEN

Equation.2  } about  player { EINBETTEN Equation.2  }’s  strategy at stage {

EINBETTEN Equation.2  } are identical according to both processes.

Lemma 1: Let { EINBETTEN Equation.2  } be a compound game, and let {

EINBETTEN Equation.2  } and { EINBETTEN Equation.2  } be FP and JFP

processes in { EINBETTEN Equation.2  } respectively. If the processes define the

                                                          
1 It is always possible to choose such largest strategy because of the additive property of player A’s
utility function.
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same beliefs at { EINBETTEN Equation.2  }, then the processes define the same path

in { EINBETTEN Equation.2  }, that is, { EINBETTEN Equation.2  }.

Proof: Note that if { EINBETTEN Equation.2  } and { EINBETTEN Equation.2  } are

FP and JFP processes respectively, that define the same beliefs at stage t, then for

every player { EINBETTEN Equation.2  }, { EINBETTEN Equation.2  }, since

actually every player { EINBETTEN Equation.2  } (except player 0) plays a two player

game, and in such games there is no difference between the processes.

Therefore we proceed to show that player 0 also chooses the same strategy at stage {

EINBETTEN Equation.2  } in both cases.

Given a learning process, we denote by { EINBETTEN Equation.2  }, the number of

stages that the strategy profile { EINBETTEN Equation.2  } occurred up to stage {

EINBETTEN Equation.2  }.

The expected payoff of player 0 according to the FP process at stage { EINBETTEN

Equation.2  } if he chooses { EINBETTEN Equation.2  } is :

{ EINBETTEN Equation.2  }.

On the other hand, the expected payoff of player 0 according to the JFP process at

stage { EINBETTEN Equation.2  } if he chooses { EINBETTEN Equation.2  } is :

{ EINBETTEN Equation.2  }

Thus, the expected payoff of player 0 for every strategy is the same in both processes.

Since player 0 chooses the best action according to his belief, which is also the largest

one according to the order on his strategy set, he chooses the same strategies in both

cases. That is, { EINBETTEN Equation.2  }, and this implies that { EINBETTEN

Equation.2  }. n

Let { EINBETTEN Equation.2  } be a JFP process defined on a compound game {

EINBETTEN Equation.2  } , and { EINBETTEN Equation.2  } be a JFP process

defined on its reduced game { EINBETTEN Equation.2  }. The processes define

identical beliefs at

stage { EINBETTEN Equation.2  } if :

1.  { EINBETTEN Equation.2  }. That is, the belief of each player { EINBETTEN

Equation.2  }, in { EINBETTEN Equation.2  } about player 0’s strategy at stage {
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EINBETTEN Equation.2  }, is the same as player { EINBETTEN Equation.2  }‘s

belief in { EINBETTEN Equation.2  } about player 0’s strategy at stage {

EINBETTEN Equation.2  }.

2.  { EINBETTEN Equation.2  }. That is, the belief of player 0 in { EINBETTEN

Equation.2  } about the joint strategy { EINBETTEN Equation.2  } of the other

players at stage { EINBETTEN Equation.2  }, is the same as player 0’s belief in {

EINBETTEN Equation.2  } about player { EINBETTEN Equation.2  }’s strategy {

EINBETTEN Equation.2  } at stage { EINBETTEN Equation.2  }.

By the construction of the reduced game we obtain :

Lemma 2:  Let { EINBETTEN Equation.2  } be a JFP process defined on a

compound game { EINBETTEN Equation.2  } , and { EINBETTEN Equation.2  } be a

JFP process defined on its reduced game { EINBETTEN Equation.2  }. If the

processes define identical beliefs at { EINBETTEN Equation.2  }, then the processes

define identical beliefs for every { EINBETTEN Equation.2  } .

By lemma 1 and lemma 2 we can learn about the FP process in a multi-player ({

EINBETTEN Equation.2  }players) game by analyzing a simpler two player game. In

particular we have the following result :

Proposition 3: A FP process approaches equilibrium in a compound game {

EINBETTEN Equation.2  } if and only if it approaches equilibrium in its reduced

game { EINBETTEN Equation.2  }.

We now use proposition 3 to demonstrate by examples that the behavior of the

fictitious play process in the { EINBETTEN Equation.2  } sub games may not help us

in analyzing its behavior in the compound game.

Example 4

{ EINBETTEN Equation.2  }
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{ EINBETTEN Equation.2  } and { EINBETTEN Equation.2  } have dominated

strategies. Thus, it can be verified that every FP process in { EINBETTEN Equation.2

} approaches the unique equilibrium of this game, namely, row 2 and column 1.

Likewise, every FP process in { EINBETTEN Equation.2  } approaches the unique

equilibrium of this game, namely, row 1 and column 1. That is, each of the games {

EINBETTEN Equation.2  } has the FP property.

Nevertheless, by proposition 3, the compound game of { EINBETTEN Equation.2

}and { EINBETTEN Equation.2  } does not have the FP property, since its reduced

game after elimination of weakly dominated strategies2

is the following game :

{ EINBETTEN Equation.2  }

This game belongs to the class of Shapley’s games (Shapley (1964)), and therefore it

does not have the FP property.

Example 5

{ EINBETTEN Equation.2  }

{ EINBETTEN Equation.2  } and { EINBETTEN Equation.2  } have the FP property3.

In this case the compound game of { EINBETTEN Equation.2  } and { EINBETTEN

Equation.2  } has also the FP property, since its reduced game is the following game:

{ EINBETTEN Equation.2  }

And this game is best response equivalent in mixed strategies to a zero-sum game, and

therefore it has the FP property by Robinson (1951).

Example 6

{ EINBETTEN Equation.2  }

{ EINBETTEN Equation.2  }and { EINBETTEN Equation.2  } belong to the class of

Shapley’s games. Hence, both games don’t have the FP property. By proposition 3 the

                                                          
2 Note that if every row occurred at least once up to stage { EINBETTEN Equation.2  }, then non of the
eliminated strategies will be played from this stage on.
3 These games are actually { EINBETTEN Equation.2  }games.
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compound game of  { EINBETTEN Equation.2  }and { EINBETTEN Equation.2  }

does not have the FP property either, since its reduced game after elimination of

weakly dominated strategies is the following game:

{ EINBETTEN Equation.2  }

And this game belongs to the class of shapley’s game4.

Robinson (1951) showed that every two-person zero-sum game has the FP property.

Monderer and Shapley (1996) showed that every game with identical payoff

functions5 has the FP property. By these results and by proposition 3 we have the

following multi-person games with the FP  property :

Proposition 7: Let { EINBETTEN Equation.2  } be a compound, such that every {

EINBETTEN Equation.2  }, is a zero sum game6. Then its reduced game {

EINBETTEN Equation.2  } is also a zero sum game. Therefore { EINBETTEN

Equation.2  } has the FP property.

Proposition 8: Let  { EINBETTEN Equation.2  } be a compound game, such that

every { EINBETTEN Equation.2  }, is a game with identical payoff functions7. Then

its reduced game { EINBETTEN Equation.2  } is also a game with identical payoff

functions. Therefore { EINBETTEN Equation.2  } has the FP property.

6. 2xK Reduced Games

Consider a compound game in which player 0 has only two possible (pure) strategies

(say, low price and high price). Each of the other players has any finite number of

(pure) strategies. The reduced game of such a compound game is a { EINBETTEN

                                                          
4 There is also a reversed example, in which { EINBETTEN Equation.2  }and { EINBETTEN
Equation.2  } belong to the class of shapley’s games, but the compound game of  { EINBETTEN
Equation.2  }and { EINBETTEN Equation.2  } has the FP property.
5 A game with identical payoff functions is a game in which { EINBETTEN Equation.2  }for all {
EINBETTEN Equation.2  }.
6 Note that the compound game in this case is not necessarily a zero-sum game.
7 Note that the compound game in this case is not necessarily a game with identical payoff functions.
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Equation.2  } two player game. By proposition 3, a FP approaches equilibrium in the

compound game { EINBETTEN Equation.2  } if and only if it approaches equilibrium

in its { EINBETTEN Equation.2  } reduced game { EINBETTEN Equation.2  }.

Miyasawa  showed that every FP process approaches equilibrium in every 2x2 game.

The case of { EINBETTEN Equation.2  } was proved by Monderer and Sela (1993)

for the continuous (time ) FP process. The general case ({ EINBETTEN Equation.2  })

is still unknown, although it seems that this class of games has the FP property. Here

we identify a class of { EINBETTEN Equation.2  } games with the FP property and by

this result we identify also a class of compound games with the FP property.

Let { EINBETTEN Equation.2  } be a compound game of { EINBETTEN Equation.2

} players, in which player 0 has only two (pure) strategies, { EINBETTEN Equation.2

}. The other players 1,2,…,n , have finite strategy sets { EINBETTEN Equation.2  }.

Denote { EINBETTEN Equation.2  } and { EINBETTEN Equation.2  }.

For { EINBETTEN Equation.2  }, and for { EINBETTEN Equation.2  }denote by {

EINBETTEN Equation.2  } the set of all mixed strategies { EINBETTEN Equation.2

}of player 0 such that { EINBETTEN Equation.2  } is a best reply to { EINBETTEN

Equation.2  }. { EINBETTEN Equation.2  } can be identified with the closed segment

: { EINBETTEN Equation.2  }.

For { EINBETTEN Equation.2  }, let { EINBETTEN Equation.2  } . Note that any two

different intervals in { EINBETTEN Equation.2  } intersect at most one point. If {

EINBETTEN Equation.2  }and { EINBETTEN Equation.2  }, { EINBETTEN

Equation.2  }, belong to { EINBETTEN Equation.2  }and { EINBETTEN Equation.2

}, then { EINBETTEN Equation.2  }and { EINBETTEN Equation.2  } are adjacent

intervals in { EINBETTEN Equation.2  } and the intersection point of these intervals

is called an overlapping point of { EINBETTEN Equation.2  }.

There is a natural order on { EINBETTEN Equation.2  }: { EINBETTEN Equation.2  }

if { EINBETTEN Equation.2  } and the left end point of { EINBETTEN Equation.2

}is greater or equal than the right end point of { EINBETTEN Equation.2  }.

For { EINBETTEN Equation.2  } we denote by { EINBETTEN Equation.2  }, and we

denote { EINBETTEN Equation.2  }.

The concepts of adjacent intervals, overlapping points and order are naturally

generalized from { EINBETTEN Equation.2  } to { EINBETTEN Equation.2  }.
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 For a subset { EINBETTEN Equation.2  }  we say that { EINBETTEN Equation.2  }

is a dominant strategy in { EINBETTEN Equation.2  } for { EINBETTEN Equation.2

} if { EINBETTEN Equation.2  }.

Two different strategies of player { EINBETTEN Equation.2  }are called adjacent

strategies if they are dominant in adjacent intervals of { EINBETTEN Equation.2  }.

We say that { EINBETTEN Equation.2  } is a generic compound game, if there are no

overlapping points for every  { EINBETTEN Equation.2  } and { EINBETTEN

Equation.2  }.{ EINBETTEN Equation.2  }

Now, we present another class of compound games with the FP property. We show

that a compound game associated with a { EINBETTEN Equation.2  }weak weighted

potential game, has the FP property.

Let { EINBETTEN Equation.2  } be a vector of positive numbers called weights.

A function { EINBETTEN Equation.2  } is a weighted potential for a game {

EINBETTEN Equation.2  }, if for every { EINBETTEN Equation.2  } and for every {

EINBETTEN Equation.2  } there exist :

{ EINBETTEN Equation.2  }.

Where { EINBETTEN Equation.2  },{ EINBETTEN Equation.2  }, is the payoff

function of player { EINBETTEN Equation.2  }.

In this case G is called a weighted potential game.

Monderer and Shapley (1996) proved that every weighted potential game has the FP

property. It is easy to verify that if in a compound game { EINBETTEN Equation.2  }

every { EINBETTEN Equation.2  } is a weighted potential, then its reduced game is

not necessarily a weighted potential game. Thus, the above result of Monderer and

Shapley (1996) is not applicable to our model.8

Let G be a  { EINBETTEN Equation.2  } two-person game, where player 0 is the row

player with payoff function { EINBETTEN Equation.2  } and player { EINBETTEN

Equation.2  } is the column player with payoff function { EINBETTEN Equation.2  }.

A function { EINBETTEN Equation.2  } is a weak weighted potential for a game {

EINBETTEN Equation.2  } if for every player { EINBETTEN Equation.2  }, there

exist (positive) weights { EINBETTEN Equation.2  }such that :

{ EINBETTEN Equation.2  }.

                                                          
8 For more details concerning  weighted potential games see Monderer and Shapley (1996).
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{ EINBETTEN Equation.2  }, and for every two adjacent strategies of player {

EINBETTEN Equation.2  }.

In this case { EINBETTEN Equation.2  } is called a weak weighted potential game.

We have the following result:

Proposition 10: Every weak weighted potential { EINBETTEN Equation.2  }game

has the FP property.

Proof : See Appendix.

The implication of proposition 10 to our model is :

Proposition 11: Let { EINBETTEN Equation.2  } be a generic compound game,

such that every { EINBETTEN Equation.2  } is a { EINBETTEN Equation.2

}weighted potential game9. Then its reduced game { EINBETTEN Equation.2  } is a

weak weighted potential game, and therefore { EINBETTEN Equation.2  } has the FP

property.

Proof :  See Appendix.

6. Concluding Remarks

We study a set of multi-player games (compound games) which is restricted but hides

important economic applications. We show that a FP process approaches equilibrium

in some classes of compound games which are not included in any well known class

of games with the FP property. We do so by associating with each such a game, a best

response equivalent two player game, called the reduced game. The transformation

from the set of compound games to the set of reduced games is a useful method to

identify whether or not a given compound game has the FP property, and without this

transformation the identification is intricate as was shown in Examples 4, 5 and 6. The

mapping between the set of compound games and the associated set of reduced games

is not a one-to-one mapping. Thus, any characterization of compound games by

reduced games will not work. An analyzing along these lines  is possible only if the

transformation from compound games to reduced games preserves important

structural properties such as in Propositions 7, 8 and 11.

                                                          
9 Note that the compound game in this case is not necessarily a weighted potential game.
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The concepts of IFP and JFP coincide in our model. Usually, these two concepts do

not coincide. Nevertheless, we do not  know about formal convergence results that

hold for one of these processes and do not hold for the other one.

7. Appendix

Proposition 10 : Every weak weighted  potential { EINBETTEN Equation.2  }game

has the FP property.

Proof : Let { EINBETTEN Equation.2  } be a { EINBETTEN Equation.2  } two player

game. The players are denoted by 0 (row player) and 1 (column player). The strategy

set of player { EINBETTEN Equation.2  }is denoted by { EINBETTEN Equation.2  }.

The payoff function of player { EINBETTEN Equation.2  }is : { EINBETTEN

Equation.2  }.

Denote by{ EINBETTEN Equation.2  } the set of all mixed strategies of player 0 in{

EINBETTEN Equation.2  } against which { EINBETTEN Equation.2  } is a best reply

for player 1. Let { EINBETTEN Equation.2  }. Without loss of generality we assume

that { EINBETTEN Equation.2  }, according to the natural order on { EINBETTEN

Equation.2  }.

Let { EINBETTEN Equation.2  }, be the weights, and { EINBETTEN Equation.2  } is

the weak weighted potential, such that :

1)  { EINBETTEN Equation.2  }.

2) { EINBETTEN Equation.2  }.

A game which is best response equivalent in mixed strategies to a game with identical

payoff functions is called a game with identical interests. As was shown by Monderer

and Shapley (1996) every such game must have the FP property. Thus we proceed to

show that { EINBETTEN Equation.2  } is a game with identical interests. In order to

show that, it is enough to show that there exists a function { EINBETTEN Equation.2

}  such that :

(1) { EINBETTEN Equation.2  },

{ EINBETTEN Equation.2  }.

(2) { EINBETTEN Equation.2  }

    { EINBETTEN Equation.2  }.
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Where { EINBETTEN Equation.2  }, and { EINBETTEN Equation.2  }is defined

similarly.

This function { EINBETTEN Equation.2  } is called  the potential of the game. We

will  show that the weak weighted potential { EINBETTEN Equation.2  } is actually

the potential of the game. That is, { EINBETTEN Equation.2  }satisfies the above

conditions (1) + (2).

By the definition of { EINBETTEN Equation.2  } and the linearity of { EINBETTEN

Equation.2  }, for all { EINBETTEN Equation.2  }:

{ EINBETTEN Equation.2  }.

Consequently condition (1)  holds.

Suppose that { EINBETTEN Equation.2  } is a best response to { EINBETTEN

Equation.2  }, that is, { EINBETTEN Equation.2  }.

We will show that  { EINBETTEN Equation.2  }.

Given any { EINBETTEN Equation.2  }, by the definition of the weighted potential

game, we obtain :

(3)     { EINBETTEN Equation.2  }

Because the best response structure of { EINBETTEN Equation.2  } games, if {

EINBETTEN Equation.2  } is a best response to { EINBETTEN Equation.2  }, then

for every { EINBETTEN Equation.2  },10 and { EINBETTEN Equation.2  },{

EINBETTEN Equation.2  }.

Hence, all the terms in the above sums of equation (3) are positive, and therefore {

EINBETTEN Equation.2  }. That is, condition (2)  holds.11 n

Proposition 11: Let { EINBETTEN Equation.2  }be a generic compound game,

such that every { EINBETTEN Equation.2  } is a { EINBETTEN Equation.2

}weighted potential game. Then its reduced game { EINBETTEN Equation.2  } is a

weak weighted potential game, and therefore { EINBETTEN Equation.2  } has the FP

property.

                                                          
10 The same argument holds if { EINBETTEN Equation.2  }.
11 The “only if” statement follows by the same argument.
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Proof :  Without loss of generality we denote by { EINBETTEN Equation.2  }, the

weights of the game { EINBETTEN Equation.2  }, and { EINBETTEN Equation.2  } is

the weighted potential of  { EINBETTEN Equation.2  }.

Define a function { EINBETTEN Equation.2  }, where { EINBETTEN Equation.2  }

and { EINBETTEN Equation.2  } are the strategy sets of player 0 and player{

EINBETTEN Equation.2  } respectively in { EINBETTEN Equation.2  }, such that : {

EINBETTEN Equation.2  }.

We will show that { EINBETTEN Equation.2  } is a weak weighted potential of  {

EINBETTEN Equation.2  }.

By the definition of weighted potential we have for every { EINBETTEN Equation.2

} :

{ EINBETTEN Equation.2  }

On the other hand, we have for every { EINBETTEN Equation.2  } and for every two

adjacent strategies

{ EINBETTEN Equation.2  }:

{ EINBETTEN Equation.2  }Since the game is generic, for any two adjacent strategies

{ EINBETTEN Equation.2  }, there exists a unique j such that { EINBETTEN

Equation.2  } , and therefore we have :

{ EINBETTEN Equation.2  }where { EINBETTEN Equation.2  }.

 We showed that the reduced game { EINBETTEN Equation.2  } has a weak weighted

potential, and therefore it has the FP property. By proposition 3, its compound game {

EINBETTEN Equation.2  } has also the FP property. n
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