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Abstract

This study disentangles experimentally imitation, reinforcement, and reciprocity in
repeated prisoners’ dilemmas. We compare a simple situation in which players in-
teract only with their neighbours (local interaction) with one where players interact
with all members of the population (group interaction). We observe choices under
different information conditions and estimate parameters of a learning model. We
find that imitation, while assumed to be a driving force in many models of spatial
evolution, is often a negligible factor in the experiment. Behaviour is predominantly
driven by reinforcement learning.
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1 Introduction

In this paper we study with the help of experiments a question from evolutionary game
theory: if agents are in a situation where they can learn from their own experience as well
as from other players’ experience, how do they weight these two sources of information?
Evolutionary game theory would traditionally assume that players weight information
from both sources equally: When Axelrod (1984, p. 158ff) discusses the evolution of
a network of cooperators and defectors in a prisoners’ dilemma he naturally assumes
that players choose the strategy with the highest payoff in the past, regardless whether
this payoff was obtained by the learning player or by a neighbour. Nowak and May
(1992), Eshel, Samuelson, and Shaked (1998) and many others! follow this approach. The
approach is simple and reasonable if we interpret the evolutionary dynamics in a biological
context where successful species displace less successful ones. Also in an economic context
where successful firms invade the markets of less successful ones we may treat both sources
of information equally. Neither resources nor markets have to make a distinction between
the success of the incumbent species or firm and the success of the invading species or
firm.

However, if the objects of evolution are learning agents we have to be careful. In
contrast to resources or markets, agents have the ability to distinguish between their
own success and success of other strategies. Whether they do distinguish between own
and others’ success should theoretically depend on the degree of homogeneity of the
environment. If the agent and the neighbours are in the same environment there is no
reason to value information differently. However, one can argue (see Kirchkamp (1999))
that in a heterogeneous environment agents should learn relatively more from their own
experience and relatively less from the experience of other players.

In this paper we investigate with the help of laboratory experiments whether players
indeed weight own and neighbours’ information equally in homogeneous environments
and differently in heterogeneous environments. To control the degree of homogeneity, we
compare two structures: In one structure agents are located on a circle and interact in
overlapping neighbourhoods. This is what we call local interaction or a spatial structure.
In such a structure players’ environments are not entirely identical. Players may learn
from their neighbours, still, a neighbour’s success might be due to an opponent that is
not part of the interaction neighbourhood of the learning player. In the other structure
agents operate in a group where each agent is equally likely to interact with every other
agent. This is what we call group interaction or spaceless structure. In this structure all
agents face the same interaction partners.

From several other experiments we know that players do learn from their own expe-
rience (for an overview see Erev and Roth (1998)). From this literature we know that
reinforcement describes this learning process fairly well. Most of these experiments are
based on games with mixed equilibria only and most experiments study a homogeneous
environment. In our experiment we use a game with an equilibrium in pure strategies
and we compare a homogeneous with a heterogeneous environment. With an equilibrium
in pure strategies incentives to learn decrease less when converging to an equilbrium. A

1See also Nowak and May (1993), Bonhoeffer, May, and Nowak (1993), Lindgreen and Nordahl (1994),
Kirchkamp (2000).



heterogeneous environment allows us to distinguish between reinforcement learning and
imitation.

Related experiments have been done by Keser, Ehrhart, and Berninghaus (1998) who
study selection of equilibria in coordination games in similar structures. To answer our
question, however, coordination games are not ideally suited. In these games we can not
distinguish between a player who chooses a strategy as a result of imitating successful
neighbours, and a player who chooses a strategy as a result of myopic optimisation. Both
motives call for the same action. If we want to learn more about imitation we have to
look at a different game. A very simple game is a prisoners’ dilemma.

This game is interesting in the context of local interaction not only because it describes
the well known dilemma situation. What is useful here are two other properties: firstly,
that learning and myopic optimisation may call for very different actions in this game, and,
secondly, that theoretical analysis shows that interaction structure may crucially deter-
mine the behaviour of a population (see footnote [1). If players copy successful strategies
from their neighbours, cooperation may be a stable outcome in prisoners’ dilemma games
in a locally structured population, but can not be stable in a population without such a
structure.

While space is here introduced as a helpful tool to model similarity of situations
and to allow studying the evolution of strategies, space is also crucial in many economic
situations. Restaurants or shops along streets do not compete equally with all other
restaurants or shops on that street. Strategic interaction and imitation is more important
among producers of similar products. Should we, therefore, find more tacit collusion in
industries where product space or geographic space is relevant for interaction?

In our experiment groups of players repeatedly play prisoners’ dilemmas either within
a locally structured neighbourhood (a circle with overlapping neighbourhoods) or within
an unstructured (spaceless) group. Players get information about the success of the two
strategies separately for their neighbourhood and for themselves. We find that players
indeed learn from their own experience. Success of their neighbours, however, does not
seem to play any significant role. This holds for both structures: the spatial as well as
the spaceless one. As a consequence we do not find the higher levels of cooperation in the
spatial structure that were predicted by the theoretical literature under the assumption
of learning from neighbours (see footnote [1). Various modifications of our setup do not
change this result.

In section 2, we briefly summarise a theoretical argument that is based on imitation
and that suggests more cooperation in a spatial world than in a non-spatial world. We will
describe the experimental setup in section 3. In section |4/ we come to our experimental
results. We will study stage game behaviour and learning behaviour. In section we
study a structure where the population is seeded with computerised cooperators. Section
4.3/ studies the effect of introducing information not only about realised payoffs but also
about the payoff matrix. Section 5 concludes.



Payoft: ‘

own | number of neighbours choosing C
group members
action 0 1 2 3 4
C 0 5 10 15 20
D 4 9 14 19 24

TABLE 1: Payoff Matrix

2 A simple imitation model

In this section we will sketch a simple and common evolutionary learning dynamics that
is based on imitation? and that suggests more cooperation in a spatial environment and
less in a non-spatial one. From the example in this section, it should become clear that
with imitation we should expect more cooperation in the spatial structure than in the
non-spatial one.

Let us assume that players play a prisoners’ dilemma in a neighbourhood of five as
described in table [1. Players can only use the same strategy against all four neigh-
bours/group members. Playing C' contributes 5 points to the payoff of each neighbour,
playing D contributes nothing but gives always a payoff that is 4 points higher than the
payoff from playing C'.

Obviously, in a non-spatial (group) setting with myopic imitation, or replicator dynam-
ics, non-cooperation is always more successful than cooperation. Hence, in a non-spatial
setting, cooperation always dies out. In the upper part of figure [1 we give an example.
We simulate a group of five players who always imitate the strategy with the highest
average payoff in their neighbourhood (copy best average). With a small probability (1%
in this example) players ‘mutate’ and choose the other strategy. We start with 5 cooper-
ating players who imitate cooperation until the first mutant arrives. In the example this
happens in period 13 where one player mutates and plays D. Being very successful, this
player is imitated by all neighbours and from period 14 on everybody plays D. Further
mutants that appear in later periods do not lead the group back to cooperation?.

In a spatial setting and with similar imitation dynamics (see footnote [1) however,
cooperation is protected through space and may, hence, survive/* Let us assume that
player 2 from table [2| knows his own payoff from playing D, which is 14, but also the
payoff from his two D-playing neighbours, 9 and 4. The average payoff of playing D is,
hence, 9. The two C-playing neighbours of this player have a payoff of 15 and 10, on
average, hence, 12.5. If player 2 copies the strategy with the highest average payoft then

2Similar dynamics are used e.g. in Nowak and May (1992, 1993), Bonnhoeffer, Nowak, and May (1993),
Lindgren and Nordahl (1994), Eshel, Samuelson, and Shaked (1998), Kirchkamp (2000).

3The only way to move a population where everybody plays D back to cooperation is a simultaneous
mutation of all five players. With independent mutations this is not very likely. And even if it happens,
cooperation will not last for long since the first single mutant leads the population back to D. As a result
the population will spend most of the time in a state where most of them play D.

4With myopic optimisation (Ellison 1993) players would obviously never cooperate.



‘Copy best average’ imitation in a group:
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FIGURE 1: Simulated learning.

‘Copy best average’ imitation in a circle:
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TABLE 2: Example of a neighbourhood of Cs and Ds
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The first mutant D makes cooperation disappear completely in groups. Cooperation in circles, however,
radius is 2, as in the experiment. Simulations starts with 5 cooperators in the first period.)
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player 2 will choose C' in the next period — thus, cooperation will gro.

In our example (see the bottom part of figure [1) cooperation grows from the initial
configuration of only five C's and is not much affected by mutants.

In describing the above dynamics we used the rule ‘copy best average payoff’ (see the
literature given in footnote|2). We should note that this learning rule does not distinguish
between a players’ own experience and his neighbours’ experience. This is expressed in
the following hypothesis:

Hypothesis 1 A player learns as much from his neighbours’ experience as from his own.

We, furthermore, assumed that players would learn from payoffs of C' and D in the same
way, i.e. an increase in the observed payoff of C' would increase a player’s inclination to
play C' in the same way as a similar decrease in the observed payoff of D.

Hypothesis 2 Players learn from C and D in the same way.

Following the argument sketched in section [2/and discussed in detail in the literature (see
footnote 2), then the following should hold:

Hypothesis 3 We find more cooperation in populations with a spatial structure than in
populations without such a structure.

It is, however, not obvious, that hypothesis [1 and 2| should hold. In a spatial structure
players’ environments are not identical. Making no distinction between own experience
and one’s neighbours’ experience may, hence, be suboptimal.@ We summarise this in the
following hypothesis:

Hypothesis 4 Players learn relatively more from their own experience and less from
their neighbours’ experience the more local their interaction structure is.

Imitation is, as we have seen in the example above, a major driving force behind the
survival of cooperation in a spatially structured population. A player who looks only at
his own payoff in a prisoners’ dilemma will quickly learn that defection gives a higher
payoff. If hypothesis 4 holds, we might also find the following:

Hypothesis 5 Levels of cooperation are not higher in a spatial structure.

3 The experimental setup

In this paper we describe results from five different treatments which are based on 35
sessions run in Barcelona and Mannheim, involving 339 participantsﬁ . A list of these
sessions is given in appendix

50Once the cluster of Ds becomes small the payoff of the remaining Ds grows and the process stops
or enters a cycle. With standard imitation processes stable equilibria are often reached when clusters of
successful C's are separated by small clusters of equally successful Ds.

6See Kirchkamp (1999).

"Students of the UPF in Barcelona and Universitit Mannheim respectively.

6
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F1GURE 2: Neighbourhoods

In the current section we will give a description of the first two treatments. One of
them will be called a ‘circle’ treatment, the other ‘group’ treatment. The remaining three
treatments are modifications that are described in sections [4.2| and [4.3 below.

e In each session of the circle treatment we study a spatial structure of 18 players.
Participants are randomly seated in front of computer terminals that are networked
to create a neighbourhood structure (see left part of figure 2). Each player interacts
in each round with two neighbours to the left and two neighbours to the right. Player
xo in the figure is in interaction with xq, x9, and y;,ys. Player x5 is in interaction
with x3, x4, and xq,x9. Players are able to observe payoffs and strategies of their
four interaction neighbours. We ran five sessions of this treatment.

e In the group treatment we study groups consisting of five players each. Each member
of a group interacts in every round with all members of the group (see right part of

figure [2).

Thus, both in the group and in the circle treatment the number of interaction partners
is four. In each session we invited 15 players that were randomly divided into groups of
five. We conducted three sessions, thus involving nine independent groups.

During any session players always interact with the same neighbours. Sessions last for
80 periods. In each period participants play a prisoners’ dilemma against all members of
their neighbourhood/group as described in table [1.

During the course of play players observe their own payoff and action and the average
payoff for their neighbours’ actions C' and D as shown in table[3. This takes place in circles
and groups in the same way. The payoff matrix (table [I) is not known to participants.
Thus, only the information required by the evolutionary learning models® is available to
participants.

8See footnote [2.
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In the experiment strategies were called A and B. In some sessions A was the cooperative
strategy, in others B. Payoffs of Cs are shown in a , payoffs of Ds are shown in (gray .
In the experiment we use the colours red and blue.

TABLE 3: Representation of payoffs in the ‘less-information’ treatment

4 Results

4.1 Two baseline treatments

As baseline treatments we ran 4 sessions on a circle and 10 in groups, each lasting for 80
rounds. Players receive average payoff feedback as in table The players’ actions are
shown in appendix B.1 and

We will first study stage game behaviour and find that in contrast to the simple
imitation dynamics discussed in section 2/ and summarised in hypothesis (3| there is not
more cooperation in space (in circles) than without space (in groups). Then we relate
this observation to learning. We will see that, contradicting hypothesis [1, imitation is a
very weak force. Players’ behaviour is much more drive by their own experience (learning
through reinforcement) than by what they observe from their neighbours which is in line
with hypothesis 4.

4.1.1 Stage game behaviour

In figure I3 we show the relative frequency of cooperation in circles and groups. Levels
of cooperation decrease over time and are about the same in groups and in circles. In
circles the average relative frequency of cooperation over all 80 periods is 0.176, in groups
the level is 0.187. Neither a t—test@y (t = —0.47, Py = 0.646, allowing for correlations
within sessions) nor a two-sample Wilcoxon rank-sum test (z = 0.820, P, = 0.4120)
find a significant difference between groups and circles. They are similar to what is
found in other non-spatial experiments'’. Hence, we do not find support for hypothesis

9When calculating levels of standard deviations and levels of significance we have to take into account
that observations within any session may be correlated. We can, however, assume that covariances
of observations from different sessions are zero. Covariances of observations from the same session are
replaced by the appropriate product of the residuals (Rogers 1993). We will use this approach throughout
the paper to calculate standard errors.

OBonacich et. al. (1976) studied cooperation within groups of 3, 6, and 9 players in a game where
cooperation is less attractive than in our game. They found levels of about 30% of cooperation in groups,
which is close to the initial levels results in our experiment.
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FI1GURE 3: Frequency of cooperative players in circles and groups over time

Hypothesis 5] is, however, consistent with our observation.

4.1.2 Learning from own and others’ payoff

In this section start investigating hypothesis 1 and |4 and study players’ learning and
imitation behaviour. Since we can not directly observe the learning process but only its
outcomes, i.e. players’ choices, we have to use a statistical model of the learning process.
The logit model is perhaps the most common model that allows us to describe discrete
choices between two alternatives, here C' and D. To be consistent with the literature and
the simple model from section 2 we use differences in payoffs of C' and D as explanatory
variables of our model. A" := y&o"® — y4oWn g the difference between payoff from
cooperation and payoff from non cooperation as experienced by the player in period t¢.
Aother . — qeother g dother jg the difference between payoff from cooperation and payoff
from non cooperation as experienced by player’s neighbours in period t. To allow for some
inertia we include the current choice ¢; which we code as 1 if the player cooperates today,
and 0 otherwise. A more detailed model will follow in section [4.1.3l We estimate

Ple) = L(Bo+ B+ >, BA) (1)

i€{own,other}

where L(z) = €”/(1 4+ €), ¢t41 is 1 if a player cooperates tomorrow, and 0 otherwise,!!
The factor B,, captures, hence, reinforcement, Byner measures the amount of imitation,
(. measures inertia, and [y a general inclination to play C'.

When estimating the above model we have to take into account correlations within
variables. The dependent variable ¢, influences payoffs in the next period and, hence, the
explanatory variables AYY} and A", The AR(1) process can be estimated with the help

Fox and Guyer (1977) used a non-linear payoff scheme where sometimes cooperation was more attractive
than in our game. They found more cooperation (around 50%) in a game with groups of 3 and 12 players.

HTf a player does not cooperate in a given period ¢ the value of uy"**" can not directly be determined. In
. . c,own c,own . s
this case we recursively use u;’ :=u;"; until we reach a period where the player actually cooperated.

Generally we define recursively u” := u’"*| for s € {C, D} and i € {own, other}.

9



coeff. from Learning own and others’ payoff in circles

eq. (1) I6; o t Py 95% conf. interval
Be —.1527977 | .1097514 | —1.39 | 0.164 | —.3679064 | .062311
govm .0893514 | .0089972 | 9.93 |0.000 | .0717171 | .1069857
[gother 0302698 | .0121571 | 2.49 |0.013 | .0064423 | .0540972
Bo —1.079484 | .067418 | —16.01 | 0.000 | —1.211621 | —.9473476
coeff. from Learning from own and others’ payoff in groups
eq. (1) g o t Py 95% conf. interval
B 2.585381 |.1193796 | 21.66 |0.000 | 2.351402 | 2.819361
govm .0442708 |.0097167 | 4.56 |0.000 | .0252265 | .0633152
[gother 0664513 | .0192851 | 3.45 |0.001 | .0286532 | .1042494
0o —1.622957 | .1131753 | —14.34 | 0.000 | —1.844777 | —1.401138

TABLE 4: GEE population-averaged estimation of equation (1)

of a GEE population-averaged model|'? Results are shown in table 4. We find that in
circles Bown > Bother While in groups Bown < Botner- Players living in a spatial structure are
less sensitive to their neighbour’s payoffs than one in a non-spatial one. This is consistent
with hypothesis 4. In a spatial structure a neighbour’s success with a strategy may be
due to this neighbour’s neighbourhood and might not apply to the learning players. In
circles Bown is significantly larger than Soner (x?(1) = 10.49, P.,» = 0.0012). In groups
the difference is not significant (x*(1) = 0.82, Ps,2 = 0.3663). We can, hence, reject
hypothesis [1 in the spatial structure (in circles) but not in groups.

Remember that in section 2 we explained that survival of cooperation crucially depends
on imitation of neighbours. Finding only a small amount of cooperation in circles in
section [4.1.1 should, hence, not come as a surprise, given that imitation plays only a
limited role.

4.1.3 Differences in learning from C and D

When we estimated equation [1| we made the simplifying assumption that players are
equally sensitive to payoffs from the two strategies C' and D. Equation [2 describes an
approach which allows for different sensitivities.

Plegr) = L(Bo+ Bece + >, B7'u) (2)

se{C,D}
i€ {own,other}
Results are shown in table 5 and are again in line with hypothesis 4.

We first test the simplifying assumption that we made above in section 4.1.2. When we
estimated equation (1) we implicitly assumed that players are equally sensitive to payoffs
from the two strategies C' and D. If this were the case we should expect in equation
that coefficients Vi € {own, other} : 3% = —3%!. While, indeed, 3% are positive for
i € {own, other}and most %! are negative, sensitivities to payoffs from D as measured by

12See Liang and Zeger (1986). We use as a link function the logistic function and specify c;11 to be
binomially distributed.

10



coeff. from Learning from C and D in circles
eq. (2) 16} o t Py 95% conf. interval
Be —.3078639 | .16064 | —1.92 | 0.055 | —.6227125 | .0069846
[ 0909994 | .0108732 | 8.37 |0.000 | .0696884 | .1123104
pdown —.0849679 | .015454 | —5.50 | 0.000 | —.1152572 | —.0546786
[peother 0462106 |.0139529 | 3.31 |0.001 | .0188635 | .0735577
[Fhother —.0134582 | .0192408 | —0.70 | 0.484 | —.0511695 | .024253
Bo —1.257075 | .0987834 | —12.73 | 0.000 | —1.450687 | —1.063463
coeff. from Learning from C' and D in groups
eq. (2) 16} o t Py 95% conf. interval
Be 2.657546 | .1513503 | 17.56 | 0.000 | 2.360905 | 2.954187
[ 0725666 |.0131783 | 5.51 |0.000 | .0467377 | .0983955
pdown 0152466 |.0168734 | 0.90 |0.366 | —.0178246 | .0483179
eother 1177859 | .022863 | 5.15 | 0.000 | .0729753 | .1625966
[Fhother —.1191031 | .024038 | —4.95 | 0.000 | —.1662168 | —.0719894
Bo —1.822549 | .1188607 | —15.33 | 0.000 | —2.055512 | —1.589586

TABLE 5: GEE population-averaged estimation of equation

B4 for i € {own, other} are smaller in absolute terms. We use a Wald test to jointly test
Vi € {own, other} : %" = —3% and find for circles (x*(2) = 6.01, P.,» = 0.0496) and
for groups (x*(2) = 27.82, P.,2 = 0.0000) different absolute sensitivities. So, while the
simplifying approach from section [4.1.2 may help us gain a first insight, it seems justified
to abandon hypothesis 2/ and to attribute different strengths to learning from C' and D.

Let us next come back to comparing hypotheses [1 and 4. Do players learn equally
from their own and their neighbours’ experience (as assumed in hypothesis [1) or is own
experience more influential (as in hypothesis 4). We use a Wald test to jointly test
Vs € {C, D} : g*ovn = gsother - Again we find in circles that players are more sensitive
with respect to their own payoffs and less sensitive with respect to their neighbours’
payoff. This difference is significant (x*(2) = 8.91, P.,> = 0.0116). In groups we find
the opposite (when one has to learn in groups it is, indeed, rational to put more weight
on the average neighbours’ payoff than on a player’s own payoff since there is more than
a single neighbour). With this more general approach differences are also significant in
groups (x?(2) = 12.97, P.,» = 0.0015).

4.1.4 Learning and reciprocity

We will explore the different sensitivities in learning from C' and from D in more detail in
section 4.3. In this section we attempt to find some structure in the different sensitivities
peown gdown - geother - gdother 41 d relate them to two, sometimes diverging, effects: learning
and reciprocity.

If a player’s behaviour would learn as assumed in hypothesis 2 then higher payoffs for
C should increase, and higher payoffs for D should decrease his probability to cooperate
by the same rate. We should expect 0 < 3% = —3%¢ for ¢ € {own,other} (this was the
implicit assumption when we estimated equation (1)). If, however, a player’s behaviour

11



coeff. from Learning and reciprocity in circles
eq. (2) 16 o z P, | 95% conf. interval
Aovn 1759673 | .018847 | 9.34 | 0.000 | .1390278 |.2129068
pon 0060315 |.0189445| 0.32 [0.750 | —.031099 |.0431621
other 0596688 | .026113 | 2.29 |0.022| .0084883 |.1108494
pother 0327524 |.0211634 | 1.55 |0.122 | —.0087272 | .0742319
coeff. from Learning and reciprocity in groups
eq. 16 o z P..; | 95% conf. interval
Aovn 056732 1.0199049 | 2.88 |0.004 | .0183071 |.0963329
o 0878133 | .0228156 | 3.85 [0.000 | .0430956 | .132531
\other 2368891 | .042429 | 5.58 |0.000 | .1537298 |.3200483
pether —.0013172 | .0200217 | —0.07 | 0.948 | —.0405591 | .0379247

TABLE 6: Learning A and reciprocity p as estimated in the GEE estimation of equation

2)

was only characterised by reciprocity then higher payoffs for C' and D would both indicate
the presence of cooperative neighbours. We should then expect 0 < §%¢ = 3%,

To disentangle these two effects we study two measures. As a measure for learning
we take \' := 3" — 3% This expression should be positive for a player who only learns
and should be zero for a player who only reciprocates. Similarly we take as a measure
for reciprocity p' := 3%' + 3%¢. This expression should be zero for a player who only
learns and should be positive for a player who only reciprocates. Characteristics of these
expressions are shown in table 6l Jointly testing A = p° for i € {own, other} we find
that in this treatment learning is significantly stronger than the reciprocity (in circles
x?(2) = 75.60, P2 = 0.0000, in groups x?*(2) = 35.51, P-,» = 0.0000).

Following hypothesis 4 we should expect that players learn relatively less from their
neighbours in a spatial structure and relatively more in a spaceless structure. Our data
confirms this hypothesis. In circles we find A > \°ther (y2(2) = 8.60, P2 = 0.0034)
while in groups A" < A\°ther (12(2) = 10.86, P-,» = 0.0010).

To summarise this section, we can reject hypothesis [1/and [2l Neither do players learn
equally from their own and from their neighbours’ experience nor treat their C' and D
experiences equally. We also do not find support for hypothesis 3| i.e. we do not find
more cooperation in circles. Supported by our data are, however, hypotheses [4 and
Players put relatively more weight on their own experience the more spatial a structure
becomes. As a result the mechanism that would otherwise support growth of cooperation
in a spatial structure ceases to work.

4.2 Cooperation in seeded circles

In section 2| we explained how imitation of successful neighbours supports cooperation
in a spatial environment. This argument relies on the assumption of an initial cluster
of cooperators of sufficient size — with our payoffs we need at least five neighbouring
cooperators. But how does such a cluster appear? An evolutionary game theorist might
argue that we only have to wait long enough until such a cluster appears with a mutation.
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The five white dots indicate the position of computerised players that always play C. The
remaining dots indicate the position of the human players.

FIGURE 4: The structure of seeded circles

Sessions in our experiment, however, last only for a limited number of periods, and if the
cooperative cluster does not appear during this time cooperation might never get started.

To give cooperation in circles the best possible conditions we therefore seeded a circle
with a cluster of five computerised players. In figurel4 players xo, 21, o, Y1, Yo (the ‘seeds’)
are played by the computer and cooperate in every period.!> The remaining players are
human which obtain the same information as in the above treatment (section[3). Players
X3, T4, Y3, Ys do not know that their neighbours are computers. The detailed behaviour of
the human players is shown in appendix B.3.

4.2.1 Stage game behaviour in seeded circles

Figure |5/ shows the frequency of cooperation depending on the distance to the seeding
cooperative cluster. Players with a smaller distance to the seeding cluster cooperate
significantly more, (A Cuzick-Altman test finds z = 2.55, P5.; = 0.01). The four players
which are closest to the seed and who obtain information about the seeding cluster (z3,
T4, Y3, Ya in figure 4) cooperate more frequently (a t-test finds t = —2.68, P}y = 0.044,
a one sample Wilcoxon signed-rank test finds z = 2.201, P, = 0.0277). The average
frequency of cooperation in the whole seeded circle is slightly, but not significantly, higher
then in the unseeded circle (a t-test finds ¢ = 1.06, P~y = 0.303, a two-sample Wilcoxon
rank-sum test finds z = 0.702, P ;) = 0.4829). If we drop players 3, 24, y3, ya the average
frequency of cooperation in seeded circles is even slightly (but not significantly) lower than
in unseeded circles.

Figure |6 shows the development of cooperation in this treatment. The dotted line
shows, as a reference, the relative frequency of cooperative players in groups. The other
lines show the development in circles. For the seeded circle we show two lines. The upper
one shows all participants, including those that have immediate neighbours in the seeding

I3Participants were told that they would play a game with 18 players sitting round a circle. They could
see that only 13 players were present in the laboratory but in our experiment no participant missed the
other five.
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coeff. from Learning in seeded circles
eq. (2) I6; o z P 95% conf. interval
Be —.2013955 | .0923885 | —2.18 | 0.029 | —.3824737 | —.0203173
govn 1071798 | .0089123 | 12.03 | 0.000 | .0897119 | .1246476
[gother 0679119 |.0080964 | 8.39 |0.000 | .0520432 | .0837806
Bo —.7267049 | .0546413 | —13.30 | 0.000 | —.8337999 | —.6196098
TABLE 7: GEE population-averaged estimation of equation (1) for seeded circles
coeff. from Learning from C' and D in seeded circles
eq. (2) I} o z Py 95% conf. interval
Be —.6312252 | .128256 | —4.92 | 0.000 | —.8826023 | —.379848
[ 1071357 | .0111059 | 9.65 | 0.000 | .0853685 | .1289029
[phown —.1061983 | .0124075 | —8.56 | 0.000 | —.1305165 | —.0818801
[Feother .0844496 | .0114302 | 7.39 |0.000 | .0620468 | .1068523
[Fhother —.0336295 | .0134328 | —2.50 | 0.012 | —.0599573 | —.0073016
Bo —1.074731 | .1057231 | —10.17 | 0.000 | —1.281945 | —.8675178

TABLE 8: GEE population-averaged estimation of equation (2) for seeded circles

cluster. The latter cooperate more than those who are farther away from the cluster
of cooperators. When we exclude them, we obtain the lower line. If we compare the
average frequency of cooperation in seeded circles with the one in unseeded groups we
find no significant difference (a t-test finds ¢t = 0.68, P = 0.507, a two-sample Wilcoxon
rank-sum test finds z = 0.589, P ;| = 0.5557).

To summarise: even when we give players in circles the best possible starting conditions
we do not find support for hypothesis 3/ — players still do not cooperate more in circles
than in groups.

4.2.2 Learning in seeded circles

Theoretically we do not see any reason why learning behaviour in the seeded treatment
should differ from learning in the unseeded treatment. This is confirmed by our esti-
mations. Tables (7, [8, 19 show GEE estimates for seeded circles similar to tables 4, [5]
6/ for unseeded circles. Also in seeded circles we find A" > \other (y2(2) = 11.82,
P. 2 =0.0006).

4.3 Learning and reciprocity

The treatments described in sections|4.1/and 4.2 where designed to study learning. Indeed,
in the estimations of equation (2) learning was the predominant effect. Still, we have found
in the discussion of tables |6 and [9 that reciprocity might be another factor which was
small in circles but of more significance in groups. One reason for this difference might be
that in groups participants of the experiment understand the prisoners’ dilemma nature
of the game more easily. Having understood that a game is a prisoners’ dilemma allows
players to analyse the game strategically and to rely less on imitation or reinforcement.
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coeff. from Learning and reciprocity in seeded circles
eq. (2) 16 o z P, | 95% conf. interval
Aovm 213334 | .0178997 | 11.92 | 0.000 | .1782511 | .2484168
pon 0009374 | .0153027 | 0.06 | 0.951 | —.0290554 | .0309302
\other 118079 | .0163523 | 7.22 | 0.000 | .086029 | .150129
pether .0508201 | .0188356 | 2.70 | 0.007 | .013903 |.0877373

TABLE 9: Learning A and reciprocity p as estimated in the GEE estimation of equation
for seeded circles

History
Your strategy

and gains are
[10] |[20] [15] 14 9

The table shows payoff information as seen by player 1 from table [2]

Round

your neighbours received

TABLE 10: Example of payoff representation in the detailed information treatment

In the current section we want to control this parameter. We study a treatment where
players know all payoffs of the game, i.e. they are able to see that they are playing a
prisoners’ dilemma. Bosch-Domenech and Vriend (2001) show in a Cournot game that
the amount of imitation is not affected by the available information. We will see below
that in our setup the available information affects the degree of imitation considerably.

We will call the treatment the treatment with detailed information. Participants see
the payoff matrix on their screen as shown in table To ease comparison with this
table we present the information during the course of the session as shown in table
Players do not see average payoffs, as in sections|4.1/and 4.2 but payoffs of each individual
player. Consider player 1 from table 2 who has two neighbours with action C' and two
other neighbours with D. Information about payoffs in this round is presented as shown
in table Player 1’s own payoff is shown as , and displayed next to the player’s
own action C. The player has two neighbours with action C' and payoffs and
respectively. The two other neighbours choose action D and receive payoffs 14 and 9.
Payoffs obtained with either C' or D are displayed in different colours in the experiment.
The payoffs are shown in the rightmost column and ordered from highest to lowest. Thus,
it is not obvious to the player which of the player’s neighbours has chosen a certain action
and received a certain payoff.

4.3.1 Stage game behaviour in the detailed information treatment

In figure [7/ we show the relative frequency of cooperation in the detailed information
treatment as a solid line for circles and as a dotted line for groups. For comparison the
figure also shows results for the less information treatment with dashed lines.

With detailed information we find more cooperation than without detailed information
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FI1GURE 7: Frequency of cooperative players over time in the detailed information and in
the less information treatment

in circles and also in glrouszﬁ However, the increase in the frequency of cooperation

is not the same in the two structures. While without detailed information in section
we did not find a significant difference between circles and groups we find with
detailed information more cooperation in groups than in Circleg, i.e. an even stronger
contradiction of hypothesis (3| than what we found above. We will discuss a possible
explanation in the next paragraph.

4.3.2 Learning in the detailed information treatment

Similar to the estimations in sections [4.1.2/and 4.2.2 we estimate again equations and
(2). Results are shown in tables 12, and [13. We will concentrate on learning and
reciprocity as shown in table 13\ Players still learn more from their own experience in
circles (testing A\°"® > \°ther yields a y? = 18.45, P.,2 = 0.0000) and now even in groups
(2 = 27.80, P.,> = 0.0000 in groups).'

Above, in the treatment without detailed information, most reciprocity terms p where
not significantly different from zero. Now, in the treatment with detailed information,
they are. We also see that learning plays a larger role in circles than in groups while
reciprocity plays a larger role in groups. Since reciprocity helps achieving cooperation
we should not be surprised if players cooperate more in groups than in circles. Similarly,
since learning does not play a large role in this treatment, hypothesis [3, which is based

HFor circles we find in a t-test ¢ = 2.95, Py = 0.018, in two-sample Wilcoxon rank-sum test we
find z = —1.960, P ;| = 0.0500. For groups we find in a t-test ¢ = 3.65, P>y = 0.002, in two-sample
Wilcoxon rank-sum test we find z = —2.694, P, = 0.0071.

5In a t-test we find t = 2.89, Ps; = 0.006, in two-sample Wilcoxon rank-sum test we find z = 1.715,
P.. =0.0432.

16The negative estimation for Aother in groups is difficult to interpret. Technically this results from
a large value of 3%°ther je. players cooperate more when average payoffs of Ds are large. Stronger
reciprocity might be a reason, which should, a priori, affect 5%°t°" in the same way. However, since
there are more Ds than Cs in a neighbourhood, Ds average payoffs might be considered more reliable
information and, therefore, f%°the" might be larger.
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coeff. from Learning own and others’ payoff in circles
eq. (2) 16} o z P 95% conf. interval
B 3.019047 | .0658539 | 45.84 |[0.000 | 2.889976 | 3.148119
govn .0497975 |.0061767 | 8.06 |0.000 | .0376913 | .0619036
[gother 0139596 | .0079059 | 1.77 |0.077 | —.0015357 | .0294549
Bo —1.888248 | .0564207 | —33.47 | 0.000 | —1.99883 | —1.777665
coeff. from Learning from own and others’ payoff in groups
eq. (2) 16} o z P, 95% conf. interval
Be 2.560402 | .0862198 | 29.70 |0.000 | 2.391414 2.72939
govn 0294385 |.0065031 | 4.53 | 0.000 | .0166926 | .0421844
[gother —.0839884 | .015045 | —5.58 | 0.000 | —.113476 | —.0545007
Bo —2.239785 | .1129711 | —19.83 | 0.000 | —2.461205 | —2.018366

TABLE 11: GEE population-averaged estimation of equation (1) when detailed informa-
tion is given

TABLE 12: GEE population-averaged estimation of equation (2) with detailed informa-

tion

coeff. from || Learning from C' and D in circles with detailed information
eq. (2) 16} o z P, 95% conf. interval
Be 2.558246 | .0968281 | 26.42 | 0.000 | 2.368467 | 2.748026
peovn 0854751 |.0079583 | 10.74 | 0.000 | .0698772 | .1010731
phown —.0135855 | .0085466 | —1.59 | 0.112 | —.0303365 | .0031655
eother 0158278 |.0090937 | 1.74 |0.082 | —.0019956 | .0336512
[Fhother 0125569 | .0130059 | 0.97 |0.334 | —.0129342 | .0380479
Bo —2.465581 | .0916312 | —26.91 | 0.000 | —2.645175 | —2.285987
coeff. from || Learning from C' and D in groups with detailed information
eq. (2) I} o z Py 95% conf. interval
Be 1.662233 | .1150202 | 14.45 |0.000 | 1.436797 | 1.887668
peovn .009631 | .0094656 | 1.02 |0.309 | —.0089213 | .0281833
[Fhown —.061498 | .0111853 | —5.50 | 0.000 | —.0834207 | —.0395752
eother —.0039144 | .0175425 | —0.22 | 0.823 | —.038297 | .0304682
[Fhother 1197077 | .0173654 | 6.89 | 0.000 | .0856721 | .1537434
Bo —2.278528 | .1198936 | —19.00 | 0.000 | —2.513516 | —2.043541
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coeff. from || Learning and reciprocity in circles with detailed information
eq. (2) 16} o z P 95% conf. interval
Aovn .0990606 |.0123706 | 8.01 |0.000 | .0748148 | .1233065
po 0718897 |.0109419 | 6.57 |0.000 | .0504439 | .0933355
Nother 003271 | .0168562 | 0.19 | 0.846 | —.0297666 | .0363085
pother 0283847 | .0148177 | 1.92 | 0.055 | —.0006576 | .0574269
coeff. from || Learning and reciprocity in groups with detailed information
eq. I} o z Py 95% conf. interval
Aovn 071129 | .013689 | 5.20 | 0.000 | .044299 0979589
po —.051867 | .0155572 | —3.33 | 0.001 | —.0823585 | —.0213754
\other —.1236221 | .0312888 | —3.95 | 0.000 | —.184947 | —.0622973
pether 1157934 | .0154792 | 7.48 ]0.000 | .0854546 | .1461321

TABLE 13: Learning A and reciprocity p as estimated in the GEE estimation of equation
(2) with detailed information

on learning, does not hold in this context.

4.4 Learning how to learn

In the discussion in the previous sections we always assumed that learning and reciprocity
were constant over time. A more detailed analysis shows that, indeed, they are. In figure
we show results of estimating the GEE population-averaged model of equation (2) for
subsets of length 10 of all experiments without detailed information. To simplify the
figure we Show 3, (own othery A* @s an indicator for learning and 3¢ (own,other} 2 All major
results that we found above seem to hold during the whole experiment. Trends, if they
can be found at all, are weak and not significant.

5 Conclusion

In this paper we have tried to find out whether players imitate, i.e. learn from the ex-
perience of other players. The answer is — yes, players do imitate sometimes. However,
two other factors, learning from own experience and reciprocity, also influence players’
behaviour considerably. We studied two parameters that influence the relative strength
of imitation: Homogeneity of players’ environment and presentation of information.

When players are in a homogeneous environment (as they are in our group treatment)
then imitation plays a relatively larger role as compared to a heterogeneous environment
(as in our circle treatment). This is interesting for the literature that builds upon imitation
in local interaction models to explain cooperation. This literature explains very elegantly
how local interaction supports cooperation in an evolutionary model. The argument,
however, depends substantially on imitation. If, as we find in our experiments, players
imitate less in situations with local interaction, the overall effect becomes ambiguous —
in our experiments sometimes even negative.

Also the available information affects the amount of imitation in an intuitive way. The

19



without detailed information with detailed information

—— learning circle o reciprocity circle —— learning circle o reciprocity circle
————learninggroup reciprocity group ————learninggroup reciprocity group

0 20 40 60 80 0 20 40 60
time time

i : i
The figure show } ;¢ (oun other} A as & measure for learning and 3, ¢ (oum othery £° S @ mea-
sure for reciprocity.

FIGURE 8: Learning and reciprocity over time

more information is available the less players rely on imitation. Given that in other games
information is not affected by information (Bosch-Domenech and Vriend 2001) complexity
of the game might be a moderating factor. In the fairly complex game of Bosch and Vriend
players might disregard information altogether, always relying on imitation. In simpler
games, like the prisoners’ dilemma, information, if available, may be helpful and displaces
imitation.

There are other questions that we had to leave aside. The development of learning
over time (see figure [8) should be further explored. Also, disentangling of the parameters
of our regression into learning and reciprocity effects was helpful in the analysis but
lead to sometimes unexpected coefficients. Given the sheer number of coefficients that
we estimate this may be hardly surprising, still, we feel that more effects than learning
through reinforcement, imitation and reciprocity might be at work here.
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A List of Sessions

Overview:

Number of sessions in different treatments
information. ..

detailed | less

5 computerised cooperators

group 9110
circle 5| 5|6
Z

4
1


http://www.kirchkamp.de/
http://www.kirchkamp.de/

Parameters of each session:

: . computerised number of
structure | information
cooperators players
1. | Group less info 0 5
2. | Group less info 0 5
3. | Group less info 0 5
4. | Group less info 0 5
5. | Group less info 0 5
6. | Group less info 0 5
7. | Group less info 0 5
8. | Group less info 0 5
9. | Group less info 0 5
10. | Group detailed info 0 5
11. | Group detailed info 0 5
12. | Group detailed info 0 5
13. | Group detailed info 0 5
14. | Group detailed info 0 5
15. | Group detailed info 0 5
16. | Group detailed info 0 5
17. | Group detailed info 0 5
18. | Group detailed info 0 5
19. | Group detailed info 0 5
20. | Circle less info 0 14
21. | Circle less info 0 18
22. | Circle less info 0 18
23. | Circle less info 0 18
24. | Circle less info 5 13
25. | Circle less info 5 10
26. | Circle less info 5 13
27. | Circle less info 5 10
28. | Circle less info 5 13
29. | Circle less info 5 13
30. | Circle detailed info 0 18
31. | Circle detailed info 0 18
32. | Circle detailed info 0 18
33. | Circle detailed info 0 18
34. | Circle detailed info 0 18

B Raw data

In the following graphs each line represents the actions of a player from period 1 to period
80. Cooperation is shown as [, non cooperation as ® . Neighbouring lines correspond to
neighbouring players in the experiment. In all treatments without computerised coopera-
tors (sections B.4/to/B.2) the last line of each block of lines is in circles always a neighbour
of the first line of the same block. In these sections the display of circles is always rotated
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such that least cooperative players are found in the first and the last lines.
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C Instructions of the Experiment

Please sit down and read the following instructions. It is important that you read them
attentively. A good understanding of the game is a prerequisite of your success.

After having read the instructions you will continue with a little quiz on the computer
screen. There you will be asked questions that will be easy to answer once you have read
the instructions.

You may take notes but you may not talk to each other.

C.1 The structure of the neighbourhood

a:lyl Your gain depends on your decision and on the deci-

L2 Y2 sion of your two neighbours to the left and your two

L3 Ys neighbours to the right. These four neighbours re-
T4 Ya main the same during the course of the experiment.

You are connected through the computer with these

= & neighbours. We will not tell who these neighbours

L6 Ye are. Similarly your neighbours will not be told who
L7 Y7 you are.

T8 g Y In the diagram on the right side your four neighbours

are shown cross-hatched.

xlyl

x y
. ’ ? s Also your neighbours have neighbours. E.g. the neigh-
’ bours of y, are players vy, y3, y1 and you.
Ly Ya
L5 Ys
T Ye
L7 Y7
Ty Tg Ys
C.2 Rounds

In this experiment you play several rounds. In each round you take a decision. Depending
on your decision and on the decision of your neighbours you receive points that will be
converted to € at the end of the experiment.

C.3 Decision

In each round you choose among two decisions. You choose A or B. Your gain depends
on what you have chosen and on how many of your neighbours have chosen A or B.
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This relation between choices and gains is the same for all participants.
It will be shown on the screen in the form of a table.

Your neighbours play. . .

You play A

You play B ... Your gain ...

All players choose simultaneously, without knowing the decision of the others.
When all players have made their decision we continue with the next round.

C.4 Information after each round

In each round your receive information about your gain. Additionally you receive infor-
mation about the decision of your neighbours and their gain.

Round | Your Decision | Your Gain Decisions and gain in your neig-
bourhood, ordered by gain

In each row you obtain information about one round. You find your decision and your
gain the second and the third column.

On the right side we show for each of your neighbours the decision of the neighbour
and the obtained gain. The ordering of neighbours in this column depends on the gain
in this period. First comes the neighbour with the highest gain, then the one whose gain
was second, etc.. This implies that in each period a different person can be the first in
the right column.

C.5 Quiz

Please answer now the questions from the quiz on the computer screen. If you are unsure
how to answer a question, please consult your instructions.
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