
E¢cient Design with Interdependent Valuations

Philippe Jehiel and Benny Moldovanu¤

First version: January 1998,
This version: July 13, 1999

Abstract

We study e¢cient, Bayes-Nash incentive compatible mechanisms in a
social choice setting that allows for informational and allocative externali-
ties. We show that such mechanisms exist only if a congruence condition
relating private and social rates of information substitution is satis…ed. If
signals are multidimensional, the congruence condition is determined by an
integrability constraint, and it can hold only in non-generic cases such as
the private value case or the symmetric case. If signals are one-dimensional,
the congruence condition reduces to a monotonicity constraint and it can
be generically satis…ed.
We apply the results to the study of multi-object auctions, and we

discuss why such auctions cannot be reduced to one-dimensional models
without loss of generality.

1. Introduction

There exists an extensive literature on e¢cient auctions and mechanism design. A
lot of attention has been devoted to the case where each agent i has a quasi-linear
utility function that depends on the chosen social alternative, on information (or
signal) privately known to i, and on a monetary transfer, but does not depend
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on information available to other agents. In this framework, a prominent role
is played by the Clarke-Groves-Vickrey (CGV) mechanisms (see Clarke, 1971,
Groves, 1973, Vickrey, 1961). These are mechanisms that ensure both that an
e¢cient decision is taken and that truthful revelation of privately held information
is a dominant strategy for each agent. This result holds for arbitrary dimensions
of signal spaces and for arbitrary signals’ distributions1.
In this paper we study the case where each agent has a quasi-linear utility

function having as arguments the signals received by all agents and the chosen
social alternative. Hence, besides allocative externalities, we allow for informa-
tional externalities, and we speak of ”interdependent valuations”. Signals may
be multi-dimensional, but we assume that they are independently drawn across
agents. (Signal independence is the most seriously restrictive assumption; observe
though that this assumption is not required for the result in the one-dimensional
case of Section 5.)
Interdependent valuations naturally appear in many (two-stage) games studied

in applications. In those applications the role of the social alternatives is played
by possible allocations of property rights (such as licenses, patents, control rights
over …rms, etc...) at stage one. These allocations in‡uence then the interaction
among agents at stage two. For example, consider an oligopoly model with n
…rms producing an homogenous good. Each …rm i is characterized by a vector
of parameters ci0; which usually contains (possibly private) information about
…xed costs, marginal costs, etc... The pro…t of each …rm is given by a function
¦i(ci0; c

¡i
0 ): Assume now that an innovation appears such that a …rm licensed

to use the innovation will be characterized by a new vector ci; which is private
information. A social alternative can be described by the set L of licensed …rms.
The valuation of …rm i for alternative L is given by the change in pro…ts relative to
status-quo: ¦i((cj)j2L; (c

j
0)j =2L)¡¦i(ci0; c¡i0 ): Note how …rm i0s valuation depends

both on who else is licensed (allocative externalities), and on information available
to other …rms2.
Our model can be applied to the study of multi-object auctions. There are

many auction papers that go beyond the private values case (e.g., the literature
following Milgrom and Weber, 1982), but almost all of them restrict attention to

1It is well known that, generally, CGV mechanisms cannot simultaneously satisfy conditions
such as budget-balancedness and individual rationality (for example, Myerson and Satterthwait-
e’s (1983) impossibility result can be obtained as a corollary of this fact).

2The private information held by each …rm is typically multidimensional, since it includes
information about …xed costs, marginal costs, etc... Since …xed and marginal costs do not a¤ect
competition in the same way, they cannot be reduced to a one-dimensional parameter without
loss of generality. If several types of licenses were sold, the private information would include
cost parameters for each type of license thus increasing the dimensionality of the signal space
even further.
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situations where there is one object (or there are several identical units), signals
are one-dimensional, agents are ex-ante symmetric and do not care about what
other agents receive at the auction3. Applications of the present model to auctions
allow for several heterogenous objects, asymmetries among bidders, and both
allocative and informational externalities4.
In the social choice framework considered here, Williams and Radner (1988)

have shown that, in general, no e¢cient, dominant-strategy incentive compati-
ble mechanisms exist5. Important insights about auctions with informationally
interdependent valuations (but without allocative externalities) can be found in
Maskin (1992) and Dasgupta and Maskin (1998). Maskin (1992) considers an auc-
tion for an indivisible object and observes that no e¢cient, incentive-compatible
auction exists if a buyer’s valuation for that object depends on a multi-dimensional
signal (see further comments on this result in Section 4 below). Dasgupta and
Maskin (1998) study multi-object auctions where agents have one-dimensional
signals and where there are no allocative externalities. They construct a mecha-
nism that achieves e¢cient allocations (under appropriate conditions on marginal
valuations). Ausubel (1997) and Perry and Reny (1998) present speci…c bidding
procedures that achieve e¢cient allocations for a one-dimensional model with M
identical units and no allocative externalities. Ausubel assumes symmetry among
bidders and constant marginal valuations. Perry and Reny drop symmetry and
allow for decreasing marginal valuations.
This paper is organized as follows: In Section 2 we present the social choice

model. In Section 3 we obtain a characterization theorem for Bayesian incentive
compatible direct mechanisms. In Section 4 we exhibit impossibility results about
e¢cient, Bayesian incentive compatible mechanisms. We only require value maxi-
mization, and we completely ignore budget-balancedness and any other properties.
Hence, we show that providing incentives for truthful revelation of privately held

3Auction models emphasizing the role of allocative externalities in a one-object setup are
discussed in Jehiel and Moldovanu (1996) and Jehiel, Moldovanu and Stacchetti (1996, 1999).

4These features will, in general, give rise to multidimensional signal spaces, since the payo¤-
relevant part of the signal varies with the chosen alternative (e.g., with the acquired bundle or
with the entire distribution of objects among agents).

5Cremer and McLean (1985,1988) and McAfee and Reny (1992) have given conditions under
which a principal can extract the full surplus available when types are correlated. Full extraction
mechanisms are, in particular, e¢cient. Neeman (1998) shows that these results do not hold in
a model that can be interpreted as one where agents have multidimensional signals, and signals
have some private and some common components. Aoyagi (1998) presents a general existence
result of e¢cient, budget balanced and incentive compatible mechanisms when agents have
…nitely many correlated types. None of the above papers covers the present framework ( i.e., a
continuum of mutually payo¤ relevant multidimensional types), but we suspect that correlation
among types allows some possibility results. On the other hand, the mechanisms displayed in
the literature above are not very intuitive and require potentially unlimited transfers.
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information is not compatible even with a very weak e¢ciency requirement.
The logic behind the impossibility results is as follows: An incentive com-

patible mechanism generates for agent i a (convex) equilibrium expected utility
function Vi(¢) : Si ! < , where Si is the multidimensional type space of that
agent. By a well-known calculus result (Schwarz’s Theorem), the cross-derivatives
of such functions are equal6. This requirement implies several equalities involving
the conditional expected probabilities with which the various alternatives must
be chosen in incentive compatible mechanisms (these expected probabilities form
the gradient of Vi(¢))7. The impossibility results follow by showing that the con-
ditional expected probabilities generated by e¢cient mechanisms satisfy the re-
quired equalities only under very restrictive conditions.
The …rst result is obtained for situations where incentive compatibility implies

that an informational variable has a zero marginal e¤ect on some of the conditional
expected probabilities, while this variable is relevant for e¢ciency considerations.
Theorem 4.2 shows impossibility for the case where there is at least one agent
possessing essential information that a¤ects other agents, but does not directly
a¤ect the owner of that information. A similar argument is used in Example
4.3 which shows that e¢cient, incentive compatible mechanisms may not exist if
there exist an alternative k and an agent i such that agent i ´s signal a¤ecting
her valuation for alternative k is multidimensional (this corresponds to Maskin’s
(1992) example).
Our main impossibility result is Theorem 4.4 (which is signi…cantly di¤erent

from Maskin’s example and from other impossibility theorems identi…ed so far).
We consider there a framework where each agent i has a K¡dimensional signal
si. The coordinate sik is a one-dimensional signal a¤ecting the valuations of all
agents for alternative k: This framework is critical since, a-priori, all informational
variables may have a non-zero marginal e¤ect on the conditional expected prob-
abilities generated by incentive compatible mechanisms, and we cannot use the
method sketched above. The argument showing impossibility is now more re…ned:
the conditional expected probabilities generated by an e¢cient mechanism satisfy
the conditions implied by the equality of the cross derivatives only if a congru-
ence condition relating private and social rates of informational substitution is
satis…ed. The congruence condition holds only for a closed, zero-measure set of
parameters8.

6This is the mathematical statement of the pretty obvious fact that the net height covered
by climbing a mountain is independent of the path of ascent.

7A very similar phenomenon appears in the classical demand theory for several goods (see
Chapter 3 in Mas-Colell, Whinston and Green, 1995): the matrix of price derivatives for a
demand function arising from utility maximization must be symmetric.

8We show that the congruence condition is satis…ed in situations where either symmetry, or
the private values assumption hold.
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Since the constraints imposed by Schwarz’s Theorem apply as soon as signals
are multidimensional, results similar to Theorem 4.4 hold as soon as there is at
least one agent whose signal is of dimension d ¸ 2: In Section 5 we study the
remaining case where the signal spaces of all agents are one-dimensional. For
that case we construct a mechanism that is e¢cient and incentive compatible if a
monotonicity condition on marginal valuations is satis…ed. Our treatment is based
on the idea (which can be traced back to Pigou) that transfers should stand for
the cumulative e¤ect of one’s action (here a signal report) on all other agents. The
…rst illustration of this idea in an auction context with interdependent valuations
appears in Dasgupta and Maskin (1998).
The expected equilibrium utility functions Vi(¢) depend here on a real-valued

signal, and there are no cross-derivatives to consider. The implementability con-
dition reduces to a monotonicity constraint that can be satis…ed in non-trivial
cases.
Concluding comments are gathered in Section 6. In particular, we comment

on the di¢culty of …nding constrained e¢cient (i.e., second-best) mechanisms.

2. The Model

There are K social alternatives, indexed by k = 1; :::K and there are N agents,
indexed by i = 1; ::;N . Each agent i has a signal (or type) si which is drawn
from a space Si µ <K£N according to a continuous density fi(si); independently
of other agents’ signals. Each agent i knows si; and the densities ffj(¢)gNj=1 are
common knowledge. The idea is that the coordinate sikj of s

i in‡uences the utility
of agent j in alternative k9. We assume that the signal spaces Si are bounded
and convex10.
If alternative k is chosen, and if i obtains a transfer xi; then i0s utility is given

by V ik (s
1
ki; :::; s

n
ki) + xi; where V

i
k (s

1
ki; :::; s

n
ki) =

Pn
j=1 a

j
kis

j
ki, and where the scalar

parameters11 fajkig1·k·K;1·j;i·N are common knowledge. We assume throughout
the paper that 8i; 8k; aiki ¸ 0:

9We address below (see Example 4.3) situations where the signal of an agent i a¤ecting the
utility of agent j in alternative k is itself multidimensional.
10Convexity is assumed for convenience. If Si is simply connected all results go through

unchanged.
11The analysis directly extends to the case where the valuation functions include also a con-

stant, i.e., V ik (s
1
ki; :::; s

n
ki) =

Pn
j=1 a

j
kis

j
ki + b

i
k (because such constants do not a¤ect incentives).
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2.1. An Application to Auctions

Consider an auction where a setM of heterogenous objects is divided among n+1
agents (agent zero is the seller, the rest are potential buyers). An alternative is
a partition ¹ of M; ¹ = fMigNi=0 ; where Mi is the set of objects allocated to
bidder i; i = 1; 2; :::N and M0 is the set of unsold objects. Bidder i0s piece of
information si¹j summarizes, from the point of view of i; the important aspects
for j (say, attributes of the objects in Mj) given partition ¹:
This framework allows for informational and allocative externalities and for

asymmetric bidders. Particularly simple cases are: 1) The private values case
where V¹i(¢) is only a function of si¹i ; 2) The private values case without allocative
externalities where V¹i(¢) is only a function of si¹i; and V¹i(¢) = V i¹0(¢) for all
partitions ¹ and ¹0 such that i receives the same set of objects , etc... Even these
simple cases require, in general, multidimensional signals. In our introductory
licensing example both informational and allocative externalities emerge naturally.

3. Direct Revelation Mechanisms

By the revelation principle, we can restrict attention to direct, incentive compat-
ible mechanisms. We …rst de…ne Direct Revelation Mechanisms and then turn to
incentive compatibility.
Let S denote the Cartesian product

QN
i=1 S

i, with generic element s. De…ne
S¡i as the type space of agents other than i, with s¡i as generic element.
A function p : S ! <K such that 8k; s; 0 · pk(s) · 1 and 8s; PK

k=1 pk(s) = 1
is called a social choice rule. A social choice rule (SCR) is said to be e¢cient if

8s; pq(s) 6= 0 ) q 2 argmax
k

NX
i=1

V ik (s
1; ::sN) = argmax

k

NX
i=1

NX
j=1

ajkis
j
ki:

A direct revelation mechanism (DRM) is de…ned by a pair (p; x) where p is a
social choice rule, and x : S ! <N is a payment scheme: The term pk(s) is the
probability that alternative k is chosen if the agents report signals s = (s1; :::; sN);
and xi(s) is the transfer to agent i if the agents report signals s: ADRM is e¢cient
if the associated social choice rule is e¢cient12.
Given a payment scheme x and a social choice rule p, we now de…ne for each

agent i the conditional expected payment function yi : Si ! < and the conditional
expected probability assignment functions qi : Si ! <K associated with x and p :
12We ignore here (as in the CGV approach) the (ex post) ”budget balancedness” condition,

which imposes
P
i xi(s) · 0; 8s. In other words, we abstract from e¢ciency losses due to

potential external subsidies.
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yi(t
i) =

Z
S¡i
xi(t

i; s¡i)f¡i(s¡i)ds¡i

qik(t
i) =

Z
S¡i
pk(t

i; s¡i)f¡i(s¡i)ds¡i:

Assume that agent i believes that all other agents report truthfully and assume
that i reports type ti when his true type is si: Then, i0s expected utility is given
by:

Ui(t
i; si) =

Z
S¡i
[
X
k

(pk(t
i; s¡i) ¢

NX
j=1

ajkis
j
ki)]f¡i(s

¡i)ds¡i + yi(ti) =

X
k

aikis
i
kiq

i
k(t

i) +
X
k

Z
S¡i
[(pk(t

i; s¡i) ¢X
j 6=i
ajkis

j
ki)]f¡i(s

¡i)ds¡i + yi(ti):(3.1)

De…ne also

Vi(s
i) = Ui(s

i; si):

3.1. Incentive Compatible Mechanisms

A DRM is (Bayes-Nash) incentive compatible if:

8i; 8si; ti 2 Si; Ui(si; si) ¸ Ui(ti; si):

For the characterization of incentive compatible mechanisms we need two de-
…nitions.
A (possibly multivalued) mapping ª : Si ! <K£N is monotone if (x0 ¡ x1) ¢

(x¤0 ¡ x¤1) ¸ 0 for any set of pairs (xi; x¤i ); i = 0; 1, such that x¤i 2 ª(xi):13
A vector-…eld  : Si ! <K£N is conservative if

R
° = 0 for every closed

curve ° in Si: Conservativeness is a necessary and su¢cient condition for  to be
the gradient of a function ! : Si ! <:

Theorem 3.1. Let (p; x) be a DRM, and let fqi(¢)gni=1 be the associated con-
ditional probability assignments. For each agent i; let Qi(si) : <K£N ! <K£N
be the vector …eld, where, for each alternative k; the kith coordinate is given
by aikiq

i
k(s

i) and the kjth coordinate; j 6= i; is zero. Then (p; x) is incentive
compatible if and only if the following conditions hold:

13Note the analogy with the classical ”law of demand”.
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1. 8i; the vector …eld Qi(¢) is monotone and conservative.
2. 8i; 8si; ti 2 Si; Vi(si) = Vi(ti) + R si

ti Q
i(¿ i)d¿ i 1415

Proof. See Appendix.

4. Impossibility Results

In an incentive compatible mechanism (p; x) we have Vi(si) = maxti Ui(t
i; si):

The function Vi(¢) is convex (see the proof of Theorem 3.1), and hence twice
di¤erentiable almost everywhere. Assuming that Vi(¢) is di¤erentiable at si we
obtain by the Envelope Theorem that:

8k; @Vi
@siki

(si) = aikiq
i
k(s

i) (4.1)

8k; 8j 6= i; @Vi
@sikj

(si) = 0 (4.2)

Assuming that Vi(¢) is twice continuously di¤erentiable at si, we obtain by
Schwarz’s Theorem that the cross-derivatives at si must be equal. This implies :

8k; k0; aiki
@qik(s

i)

@sik0i
=

@Vi
@sik0i@s

i
ki

(si) =
@Vi

@siki@s
i
k0i
(si) = aik0i

@qik0(s
i)

@siki
; (4.3)

8k; k0;8j 6= i; aiki
@qik(s

i)

@sik0j
=

@Vi
@sik0j@s

i
ki

(si) =
@Vi

@siki@s
i
k0j
(si) = 0 : (4.4)

The idea behind the following impossibility results is to check whether e¢cient
mechanisms yield conditional expected probability assignment functions that sat-
isfy conditions 4.3 and 4.4.
Note that an e¢cient SCR is piece-wise constant. Hence, for e¢cient mecha-

nisms we obtain that the associated functions fqi(¢)gni=1 are everywhere continu-
ously di¤erentiable by assuming, for example, that the (convex) type spaces have

14The integral can be de…ned on any path connecting ti and si since the vector …eld Qi(¢) is
conservative. For example, we can choose a straight line, to obtainR si

ti
Qi(¿ i)d¿ i =

R 1
0
Qi((1¡ ®)ti + ®si)) ¢ (si ¡ ti):d®

15Note that the Theorem implies a ”Revenue Equivalence” result. The conditional expected
payment of agent i in any incentive compatible mechanism is solely a function of the associated
expected probability assignment, and of the expected utility of an arbitrary type. Any two
incentive compatible mechanisms with the same probability assignment yield, up to a constant,
the same conditional expected payments.
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a non-empty interior and a piece-wise smooth boundary, and that for all i and all
si 2 Si; fi(si) > 0:
We …rst focus on the simpler condition 4.4.

De…nition 4.1. Let p̂ be an e¢cient SCR, and let fq̂i(¢)gNi=1 be the associated
conditional expected probability assignments. The variable ŝikj is said to be es-
sential if there exist si; ti 2 Si such that:

1. sik0j0 = t
i
k0j0 for all (k

0; j0) 6= (k; j) .
2. sikj 6= tikj .
3. q̂ik(s

i) 6= q̂ik(ti):

Note that unless alternative k is always welfare-dominated (or always welfare
superior) or the density fi(¢) is degenerate (i.e., does not have full-dimensionality),
all variables ŝikj such that a

i
kj 6= 0 are essential16.

Theorem 4.2. Assume that i; j; k exist such that i 6= j; aiki 6= 0; and ŝikj is
essential. Then e¢cient, incentive compatible DRMs do not exist.

Proof. Let si; ti satisfy the conditions in De…nition 4.1, let (p; x) be an e¢cient,
incentive-compatible DRM with associated conditional expected probability as-
signments fqi(¢)gNi=1: By e¢ciency, we must have qi(ui) = q̂i(ui) for all ui 2 Si:
Since aiki 6= 0, we obtain by equation 4.4 and by the construction of si; ti; that
qi(si) = qi(ti): Since, by de…nition, q̂i(si) 6= q̂i(ti); we obtain a contradiction.
We next show that the simple phenomenon displayed in Theorem 4.2 has a

deeper consequence. So far we have assumed that ŝikj; agent i
0 s piece of infor-

mation a¤ecting the utility of agent j in alternative k, is one-dimensional. We
next look at an example where this requirement is not satis…ed. An impossibility
result in such situations has been observed by Maskin (1992). What we show here
is that Maskin’s result is a consequence of the phenomenon displayed in Theorem
4.2.

Example 4.3.

There are two agents i = 1; 2 and two alternatives k = A;B: Signals are
two-dimensional, si = (si1; s

i
2); i = 1; 2: Valuations are given by: V 1A(s

1; s2) =
s11 + a(s

1
2 + s

2
2) , V

1
B(s

1; s2) = 0; V 2A(s
1; s2) = 0 , V 2B(s

1; s2) = s21 + a(s
1
2 + s

2
2):

16Since an e¢cient SCR is uniquely de…ned almost everywhere, the de…nition of essentiality
does not depend on the speci…c SCR p̂ which is used.
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(Imagine an auction for an indivisible good where the components si1 , i = 1; 2;
are the private parts of the signals while the components si2 are common parts).
Consider the change of variables:

ti = (ti1; t
i
2) = (s

i
1 + as

i
2; s

i
2)

In the ti type space we obtain: V 1A(t
1; t2) = t11+at

2
2 ; V

1
B(t

1; t2) = 0; V 2B(t
1; t2) =

t21 + at
1
2 ; V

2
A(t

1; t2) = 0:
Hence, agent 1 has a signal t12 which does not a¤ect her utility (in particular

it does not a¤ect her utility in alternative A), but a¤ects the utility of agent 2
in alternative B: In incentive compatible mechanisms we obtain by condition 4.4
that agent 1’s interim expected probability for alternative A is independent of t12 ,
while t12 is essential for the determination of ex-post e¢ciency. The impossibility
result follows as in Theorem 4.2.
The example17 can be extended to the case where V 1A(s

1; s2) = s11 + as
1
2 + bs

2
2

and V 2B(s
1; s2) = s21+as

2
2+bs

1
2: Even when the dependence of an agent’s valuation

on the signal of another agent is very small (i.e., b is very close to zero), e¢ciency
cannot be attained.
Our results so far suggest that, in order to obtain generic existence of e¢cient

and incentive compatible mechanisms, it is necessary that 8i; j; i 6= j; 8k; sikj is
a function of the signals sik0i , k

0 = 1; :::K; and that each sik0i is one-dimensional.
Since we want to remain in the linear framework, we consider the case where
8i; j; i 6= j; 8k; sikj is a linear function of sik0i; k0 = 1; :::K. In order to make the
argument as transparent as possible, we simplify further by assuming below that
8i; j; i 6= j; 8k; sikj = siki:
Hence, we now look atK¡ dimensional type-spaces, and we denote by sik agent

i’s one-dimensional piece of information a¤ecting (possibly in di¤erent ways) the
utility of all agents in alternative k:
In this setup, the impossibility of e¢cient, incentive compatible mechanisms

is less immediate. The question is whether the conditional expected probability
assignment functions generated by e¢cient mechanisms satisfy the more complex
condition 4.3.
To be precise, recall that we have derived conditions 4.3 and 4.4 for signals of

dimension K £ N: For each K-dimensional signal eti; de…ne eVi(eti) ´ Vi(t
i) andeqik(eti) ´ qik(ti) , where ti is the K £N¡dimensional signal such that tikj = etik for

all k; j. Assuming that Vi(ti) is di¤erentiable at ti; we obtain by conditions 4.3
and 4.4 that:

8k; @
eVi
@etik (eti) =

X
j

@Vi
@tikj

(ti) = aikiq
i
k(t

i) = aikieqik(eti):
17Compte and Jehiel (1998) look at related examples in order to study the value of competition

in standard auctions.
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The equality of cross-derivatives implies that :

aiki
@ eqik(eti)
@eti
k0

= aik0 i
@eqi
k0 (
eti)

@etik (4.5)

In order to simplify notation, we drop from now on the ”tilde” and denote by
si = (si1; :::s

i
K) a K¡dimensional signal of agent i, yielding expected probability

assignments fqik(¢)gKk=1 , and equilibrium utility Vi(¢):
Theorem 4.4. Assume that (p; x) is an e¢cient DRM that is incentive compat-
ible for agent i: Let k; k0 be any pair of alternatives such that: 1) aik0i 6= 0 ; 2)
There exists a type ti such that qik(s

i) 6= 0; qik0(si) 6= 0 for all si in a neighborhood
of ti 18. Then it must be the case that

aiki
ai
k0 i
=

PN
j=1 a

i
kjPN

j=1 a
i
k0 j

: (4.6)

Proof. See Appendix19.
Condition 4.6 is a congruence requirement between private and social rates

of information substitution (see Example below for more intuition about these
terms). The implied algebraic relations among parameters cannot be generically
satis…ed20. Note that condition 4.6 is trivially satis…ed in two interesting and
much studied cases: the private values case where 8i; j; i 6= j;8k; aikj = 0; and the
symmetric case where 8i; j; k; aikj = aiki:
Example 4.5. 4 There are two agents i = 1; 2 and two alternatives k = A;B:
Signals are two dimensional, si = (siA; s

i
B); i = 1; 2: For i = 1; 2 let ¡i denote the

agent other than i: Valuations are given by:

V ik (s
i; s¡i) = aikis

i
k + a

¡i
ki s

¡i
k ; i = 1; 2; ; k = A;B

Assume that an e¢cient, incentive compatible DRM exists, and denote it
by (p; x): Let qik(¢) denote i0s interim expected probability that the mechanism
chooses alternative k:
We will …rst show that, as a consequence of equation 4.5, incentive compat-

ible mechanisms must yield the same vector of conditional expected probability

18Note that qik(t
i) 6= 0; qik0(ti) 6= 0 imply that

PN
j=1 a

i
k0j 6= 0 and that

PN
j=1 a

i
kj 6= 0.

19The Theorem has also converse: If condition 4.6 is satis…ed, and if an e¢cient SCR p yields,
for each agent i a monotone vector …eld Qi(¢) then there exists a payment schedule xi(¢) such
that (p; x) is incentive compatible for i.
20i.e., the set of parameters satisfying the condition is closed and has Lebesgue-measure zero.
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assignments for types of agent i; i = 1; 2; lying on lines with slope aiAi
aiBi
: We next

show that e¢cient mechanism yield the same vector of conditional expected prob-

ability assignments for types lying on lines with slope
aiAi+a

i
A¡i

aiBi+a
i
B¡i
: Hence, incentive

compatibility can be consistent with e¢ciency only if these two slopes are equal.
We know that

8i;8si; qiA(si) + qiB(si) = 1: (4.7)

Consider agent 1: Equation 4.5 yields

a1A1
@q1A(s

1)

@s1B
= a1B1

@q1B(s
1)

@s1A
: (4.8)

By taking the derivative with respect to s1A in identity 4.7, we get

@q1B(s
1)

@s1A
= ¡@q

1
A(s

1)

@s1A

By equation 4.8, we get:

a1A1
@q1A(s

1)

@s1B
+ a1B1

@q1A(s
1)

@s1A
= 0: (4.9)

Fix now t1 = (t1A; t
1
B) such that the assumptions in the Theorem are satis…ed,

and consider a line in the type space of agent 1 having the form s1 = s1(z) =

(t1A + z; t
1
B +

a1A1
a1B1

¢ z). By equation 4.9 we have:

dq1A(t
1
A + z; t

1
B +

a1A1
a1B1

¢ z)
dz

=
@q1A(s

1)

@s1A
+
a1A1
a1B1

@q1A(s
1)

@s1B
= 0: (4.10)

Hence, in incentive compatible mechanisms the function q1A(¢) is constant along
lines having the form (t1A + z; t

1
B +

a1A1
a1
B1
¢ z) (by equation 4.7 the same is of course

true for the function q1B(¢)).
We now turn to the consequences of e¢ciency. Alternative A is chosen by an

e¢cient DRM at reports (s1; s2) i¤

2X
i=1

2X
j=1

ajAis
j
A ¸

2X
i=1

2X
j=1

ajBis
j
B

This is equivalent to:

(a1A1 + a
1
A2)s

1
A ¡ (a1B1 + a1B2)s1B ¸ (a2B1 + a2B2)s2B ¡ (a2A1 + a2A2)s2A (4.11)
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E¢ciency implies that:

q1A(s
1) =

Z
¢(s1)

f2(s
2)ds2

where ¢(s1) = fs2 such that condition 4.11 is satis…edg:
Consider a line in agent 1’s type space having the form s1 = s1(z) = (t1A +

z; t1B +
a1A1+a

1
A2

a1
B1+a

1
B2
z): For any two signals µ1, ¿ 1; on this line, we have ¢(µ1) = ¢(¿ 1):

Therefore q1A(s
1(z)) does not depend on z: Taking the derivative with respect to

z; and multiplying by (a1B1 + a
1
B2) 6= 0; this yields :

(a1B1 + a
1
B2)
@q1A(s

1)

@s1A
+ (a1A1 + a

1
A2)
@q1A(s

1)

@s1B
= 0 (4.12)

Equations 4.10 and 4.12 yield together:

a1A1
a1B1

=
a1A1 + a

1
A2

a1B1 + a
1
B2

: (4.13)

The same reasoning yields an analogous condition for i = 2:
Two remarks regarding Theorem 4.4 follow.

Remark 1.

Technically, Theorem 4.4 applies to the case where the dimensionality of signal
spaces coincides with the number of alternatives K ¸ 2: But it should be clear
that the same type of results can be obtained whenever the integrability constraint
expressed by the equality of cross-derivatives bites (i.e., whenever, for at least one
agent, the dimensionality of the signal space is greater than one.) For signal
spaces of any dimension d; 1 < d · K; e¢ciency and incentive compatibility
imply together algebraic conditions on the parameters (analogous to condition
4.13) that cannot be generically satis…ed. An illustration is o¤ered in Example
7.1 in the Appendix.

Remark 2.

Dasgupta and Maskin (1998) suggest that the ”second best” mechanism for
a multidimensional model can be analyzed by performing a reduction to a one-
dimensional model for which an e¢cient mechanism can be sometimes constructed
(see next Section). The constructed mechanism is then ”constrained e¢cient” for
the original multidimensional model. Simple dimension reductions are indeed
available in two cases: 1) The only integrability constraints are of the form given
by condition 4.4, which implies that incentive compatible mechanisms cannot con-
dition on a variable ŝikj, j 6= i; if such a variable moves independently of (ŝik0i)k0
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. 2) There are only two alternatives. If the alternatives are k and k0 , then
qik(¢) = 1¡ qik0(¢) , and the integrability conditions expressed in equation 4.3 can
be written in terms of a unique function. In Example 4 we have exhibited the lines
along which conditional expected probability assignments in an incentive compat-
ible mechanism must be constant (and hence we have exhibited the appropriate
reduction to one dimension21).
If at least one agent perceives more than two payo¤ relevant alternatives22, the

constraints expressed by conditions 4.3 simultaneously a¤ect several functions,
and further dimension reductions become endogenous and impossible to perform
a-priori.
The above analysis sheds some light on the outcome of a multi-object auction

where the objects and the agents are heterogenous in a non-trivial way. If there are
informational externalities, and if signals are independent, whatever sale mecha-
nism is considered (including mechanisms that allow for ”combinatorial” bidding),
e¢ciency cannot be achieved.

5. One-Dimensional Signals

We now assume that agents have one-dimensional signals. Agent i’s payo¤ in
alternative k is given by

V ik (s
i; s¡i) =

NX
j=1

ajkis
j

where sj 2 [sj ; sj ] denotes the one-dimensional signal of agent j. Signals need
not be independently distributed, and the result below does not depend on the
signals’ distribution functions.
In order to avoid a tedious case di¤erentiation, we assume that, for each agent

i; there are no alternatives k , k0, k0 6= k; such that aiki = aik0i. Our result will rely
on the following assumption:

8i;8k; k0; aiki > aik0i )
nX
j=1

aikj >
nX
j=1

aik0j (5.1)

Condition 5.1 (referred below as the weak congruence condition) requires that the
sequence of alternatives obtained by ordering (in terms of magnitude) the impacts

21Similar reductions can be performed in models where there are possibly more than two
alternatives, but each agent perceives only two outcomes as payo¤ relevant. For example, in an
auction for one unit of an indivisible good without allocative externalities, an agent cares only
about ”winning” or ”losing”.
22This is the general case in auctions for several heterogenous objects or in auctions for one

object with allocative externalities.
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of i’s signal on i’s payo¤ is the same as the sequence obtained by ordering the
impacts of i0s signal on total welfare. Note the analogy with condition 4.6, but
note also the gained slack in the one-dimensional framework. This slack (i.e.,
required inequalities instead of equalities) allows the condition to be satis…ed for
an open set of parameters’ values.

Proposition 5.1. Assume that the weak congruence condition 5.1 is satis…ed.
Then there exists an e¢cient, Bayesian incentive compatible mechanism. More-
over, the associated transfers do not depend on the distribution of signals23.

Proof. See Appendix.

6. Conclusions

We have shown that e¢cient, incentive compatible mechanisms can exist only if a
congruence condition relating private and social rates of information substitution
is satis…ed. If signals are multi-dimensional, the congruence condition is deter-
mined by an integrability constraint, and it can be satis…ed only in non-generic
cases such as the private value case or the symmetric case. If signals are one-
dimensional, the congruence condition reduces to a monotonicity constraint and
it can be generically satis…ed.
Our impossibility theorems can be extended to more general speci…cations of

quasi-linear valuation functions - the integrability constraints expressed by the
equality of cross-derivatives will not generally agree with the requirements im-
posed by e¢ciency. We have chosen the linear formulation for ease of exposition,
and because it yields nice properties of equilibrium utility functions without fur-
ther assumptions on the used mechanisms (see Section 3).
The impossibility results in the multi-dimensional case suggest a quest for

the second-best (or constrained e¢cient) mechanisms. It is straightforward to
construct second-best mechanisms if the ine¢ciency is purely due to the fact that
some informational variables must have a zero marginal e¤ect on the expected
probability assignment in incentive compatible mechanisms. It is then possible to
reduce the dimensionality of the model (without loss of e¢ciency) by eliminating
such variables. If, after performing these reductions, it is still the case that the

23A similar result appears in Dasgupta and Maskin (1998), who were the …rst to exhibit the
basic intuition behind the construction. Technically, our result is not a special case of theirs
because Dasgupta and Maskin’s framework is, speci…cally, one of multi-object auctions (without
allocative externalities), while we study a general social choice problem. Dasgupta and Maskin’s
mechanism is more complex since it also elicits reports about valuation functions.
The general condition allowing implementation (condition 5.1) was …rst identi…ed in an earlier

version of this paper.
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payo¤-relevant information depends in a non-trivial way on the chosen alternative
(as it is the case, say, in a general multi-object auction), we are left in a framework
covered by Theorem 4.4 and further dimension reductions become endogenous.
The construction of a second-best mechanism is then equivalent to the di¢cult
problem of …nding a monotone and conservative vector …eld that maximizes the
(expected) welfare functional24. This will be the subject of future work.
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Appendix
Proof of Theorem 3.1
a) Assume …rst that a DRM (p; x) satis…es the conditions in the Theorem.

Choose any agent i: We must show that 8si; ti; Ui(si; si) ¡ Ui(ti; si) ¸ 0: We
obtain the following chain of equalities:

Ui(s
i; si)¡ Ui(ti; si) = Vi(s

i)¡ Vi(ti)¡Qi(ti) ¢ (si ¡ ti)
=

Z si

ti
Qi(¿ i) ¢ d¿ i ¡Qi(ti) ¢ (si ¡ ti)

=
Z 1

0
[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ (si ¡ ti)d®

The …rst equality follows by equation 3.1 and by the de…nition of Vi(¢): The
second equality follows by assumption. The last equality follows by choosing to
perform the integration on the straight line connecting ti and si:
The condition 8si; ti; Ui(si; si) ¡ Ui(ti; si) ¸ 0 is therefore equivalent to the

condition

8si; ti;
Z 1

0
[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ (si ¡ ti)d® ¸ 0:

It is enough to show that the integrand is non-negative for any ®, 0 · ® · 1: For
® = 0; the claim is obvious. Assume that ® > 0: We can write:

(si ¡ ti) = 1

®
((1¡ ®)ti + ®si ¡ ti):

We now obtain:
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[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ (si ¡ ti) =
1

®
[Qi((1¡ ®)ti + ®si))¡Qi(ti)] ¢ ((1¡ ®)ti + ®si ¡ ti) ¸ 0

The last inequality follows from the monotonicity of Qi(¢):
b) For the converse, assume that the DRM (p; x) is incentive compatible.

This implies that Vi(si) = Ui(s
i; si) = maxti Ui(t

i; si): The function Vi(¢) is the
supremum of a collection of a¢ne functions and it must be convex. Convex
functions are twice di¤erentiable almost everywhere25. The convexity of Vi(¢)
implies the monotonicity of the subdi¤erential map @Vi(si): At all points where
Vi(¢) is di¤erentiable (i.e., a.e.) the subdi¤erential @Vi(¢) consists of a unique
point, the gradient rVi(¢): Hence, the function rVi(¢) is well-de…ned, monotone
and di¤erentiable a.e. Assuming that Vi(¢) is di¤erentiable at si we obtain by
expression 3.1 and by the Envelope Theorem that:

8k; @Vi
@siki

(si) =
@Ui
@siki

(ti; si) jti=si= aikiqik(si) (7.1)

8k; 8j 6= i; @Vi
@sikj

(si) =
@Ui
@sikj

(ti; si) jti=si= 0 (7.2)

Hence, we obtain rVi(si) = Qi(si) whenever the gradient is well-de…ned (a.e.).
The integral representation is immediately obtained from the fundamental theo-
rem of calculus if Vi(¢) is everywhere di¤erentiable. Otherwise, the result follows
by noting that a convex function is (up to a constant) uniquely determined by its
subdi¤erential (see Rockafellar 1997, Theorem 24.9), and that it can be recovered
(up to a constant) by integrating any measurable selection from its subdi¤erential
map (see Krishna and Maenner, 1999).

Proof of Theorem 4.4: Let (p; x) be an e¢cient, incentive compatible DRM,
and let (qik(¢))Kk=1 be the associated vector …eld of interim expected probabilities
for agent i: Consider a type ti and two alternatives k and k0 such that qik(s

i) 6= 0
and qik0(s

i) 6= 0 for all si in a neighborhood of ti. We consider below signals si in
that neighborhood.
Since (p; x) is incentive compatible, the associated indirect utility function

Vi(¢) is twice-di¤erentiable a.e. Since (p; x) is e¢cient, the associated functions
(qik(¢))Kk=1 are continuously di¤erentiable.
By equation 4.5 we obtain for almost all si:

25This and all following properties of convex functions are listed in the classical text of Rock-
afellar, 1997.
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8k; k0 ; aiki
@qik(s

i)

@si
k0

= aik0 i
@qi

k
0 (si)

@sik
(7.3)

Since p is e¢cient, we obtain:

qik(s
i) = Prob f

NX
j=1

NX
g=1

ajkgs
j
k = max

k¤

NX
j=1

NX
g=1

ajk¤gs
j
kg =Z

¢k(si)
f¡i(s¡i)ds¡i (7.4)

where

¢k(s
i) = fs¡i j

NX
j=1

NX
g=1

ajkgs
j
k = max

k¤

NX
j=1

NX
g=1

ajk¤gs
j
kg (7.5)

An analogous expression holds for qi
k0 (s

i): De…ne now the set

k;k0 (s
i) = fs¡i j

NX
j=1

NX
g=1

ajkgs
j
k =

NX
j=1

NX
g=1

aj
k0gs

j

k0 = maxk¤

NX
j=1

NX
g=1

ajk¤gs
j
kg (7.6)

We will show that the derivative @qi
k
(si)

@si
k
0
involves only an integral over k;k0 (s

i)

multiplied by the ”rate of change” of this set with respect to si
k0 , which is given

by ¡(PN
g=1 a

i
k
0
g
).

To see this, consider an a¢ne, bijective change of variable in the space S¡i,
where x0 =

P
j 6=i

PN
g=1 a

j
kgs

j
k ¡

P
j 6=i

PN
g=1 a

j

k0gs
j

k0 is one of the new variables, and
s¡i;x0 denotes the set of the other variables. Such a change of variables exists
because x0 is not identically equal to zero (since qik(t

i) 6= 0 and qik0(ti) 6= 0): The
explicit change of variable may depend on the coe¢cients.
To …x ideas, suppose that the coe¢cients are such that for all alternatives

k00 there exists an agent j(k00) 6= i, such that aj(k
00)

k00j(k00) 6= 0. Consider then the

mapping fsjk00gj 6=i;k00 ! fxjk00gj 6=i;k00 where: 1) For k00 6= k; j = j(k00); xj(k
00)

k00 =P
j 6=i

PN
g=1 a

j
kgs

j
k ¡

P
j 6=i

PN
g=1 a

j
k00gs

j

k00 (observe that x
j(k0)
k0 = x0) ; 2) For all (j; k00)

such that k00 = k or j 6= j(k00), xjk00 = sjk00 .
Denote by J(s¡i) the Jacobian induced by this change of variable. Recalling

expression 7.5, observe that

¢k(s
i) = fs¡i j x0 ¸ ¡(

NX
g=1

aikg)s
i
k + (

NX
g=1

aik0g)s
i
k0 ^

NX
j=1

NX
g=1

ajkgs
j
k ¸

NX
j=1

NX
g=1

aj
k00gs

j

k00 for k
00 6= k0g (7.7)
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Note that variables x0 and sik0 appear only in the …rst inequality de…ning ¢k(s
i):

Moreover, the area in ¢k(si) where marginal variations of sik0 are relevant (i.e.,
where x0 = ¡(PN

g=1 a
i
kg)s

i
k+(

PN
g=1 a

i
k0g)s

i
k0 ) is precisely k;k0 (s

i): Hence, recalling
expression 7.4, we obtain:

@qik(s
i)

@si
k0

= ¡(
NX
g=1

aik0g)
Z

k;k

0 (si)
f¡i(s¡i)J(s¡i)ds¡i;x0 : (7.8)

The term
@qi
k
0 (si)

@si
k
is analogously computed (since the area in¢k0 (s

i) where marginal

variations of sik are relevant is also k;k0 (s
i)) :

@qi
k0 (s

i)

@sik
= ¡(

NX
g=1

aikg)
Z

k;k

0 (si)
f¡i(s¡i)J(s¡i)ds¡i;x0 : (7.9)

Combining equations 7.8 and 7.9 , we obtain that:

@qik(s
i)

@si
k0
(
NX
g=1

aikg) =
@qi

k0 (s
i)

@sik
(
NX
g=1

aik0g) (7.10)

Equations 7.3 and 7.10 yield together the wished result.

Example 7.1.

There are N agents and three alternatives denoted A1; A2 and B. The only
additional assumption (compared to those in Theorem 4.4) is that the signal
of one agent, say agent i; is always the same in alternatives A1 and A2, i.e.
siA1 = siA2 .We denote by s

i
A this common signal. Let s

i = (siA; s
i
B) denote the

two-dimensional signal of agent i. For an, incentive compatible DRM (p; x) de…ne
Vi(s

i) and qik(¢); k = A1; A2; B, in the usual way. At a type si where V i(¢) is
twice di¤erentiable, we have:

@Vi
@siA

(si) = aiA1iq
i
A1
(si) + aiA2iq

i
A2
(si) (7.11)

@Vi
@siB

(si) = aiBiq
i
B(s

i) (7.12)

By Schwarz’s Theorem we obtain:

aiA1i
@qiA1(s

i)

@siB
+ aiA2i

@qiA2(s
i)

@siB
= aiBi

@qiB(s
i)

@siA
: (7.13)
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We now turn to the consequences of e¢ciency. De…ne the sets ¢k(si), k;k0 (s
i)

as in the proof of Theorem 4.4. The derivative
@qiAr (s

i)

@si
B

, r = 1; 2; is computed as
before, i.e.,

@qiAr(s
i)

@siB
= (¡

NX
g=1

aiBg)
Z
B;Ar (s

i)
f¡i(s¡i)Jr(s¡i)ds¡i;xr

where xr ´ P
j 6=i

PN
g=1 a

j
Args

j
Ar ¡

P
j 6=i

PN
g=1 a

j
Bgs

j
B and Jr(s

¡i) stands for the Ja-
cobian of the change of variable in the S¡i space where xr is one of the new
variables and s¡i;xr the other ones. The derivative @qiB(s

i)

@si
A

is di¤erent, since it is
now composed of two parts:

@qiB(s
i)

@siA
=

X
r=1;2

[(¡
NX
g=1

aiArg)
Z
B;Ar (s

i)
f¡i(s¡i)Jr(s¡i)ds¡i;xr ]

To see this observe that¢B(si) = fs¡i j xr · ¡(PN
g=1 a

i
Arg)s

i
A+(

PN
g=1 a

i
Bg)s

i
B , r =

1; 2g. The formula follows because, when siA varies, the two relevant boundaries
of ¢B(si) are those where xr = ¡(PN

g=1 a
i
Arg)s

i
A + (

PN
g=1 a

i
Bg)s

i
B , r = 1; 2 (they

corresponds to Ar ;B(s
i); r = 1; 2; respectively) Combining the above expressions,

we conclude that e¢ciency implies:

NX
g=1

aiA1g
@qiA1(s

i)

@siB
+

NX
g=1

aiA2g
@qiA2(s

i)

@siB
=

NX
g=1

aiBg
@qiB(s

i)

@siA
: (7.14)

Finally, note that conditions 7.13and 7.14 are, in general, inconsistent.

Proof of Theorem 5.1: Since all aiki are assumed to be di¤erent, we can
re-order the alternatives so that the sequence (aiki)k is strictly increasing, i.e.
ai(k+1)i > aiki for k = 1; ::; K ¡ 1. Condition 5.1 implies then that the sequence
(
Pn
j=1 a

i
kj)k is also strictly increasing.

We construct an e¢cient, incentive compatible, DRM. For any reported signals
the mechanism chooses an e¢cient alternative given those reports. To specify
transfers, we proceed as follows. For …xed reports s¡i and i’s report ti;denote by
k¤(ti) the e¢cient alternative chosen as a function of ti; i.e.

k¤(ti) 2argmax
k

nX
j=1

V jk (t
i; s¡i):

Because the sequence (
Pn
j=1 a

i
kj)k is also strictly increasing , we can de…ne for

every vector s¡i; a non-decreasing sequence of agent i’s signals (si;k(s¡i))k with
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the property that, for any ti 2 (si;k(s¡i); si;k+1(s¡i)), the e¢cient alternative is
k¤(ti) = k.
For each vector s¡i we inductively de…ne a sequence of transfers, fxki (s¡i)gk ,

as follows: x1i (s
¡i) 2 < is an arbitrary constant, and for all k; 1 < k · K ¡ 1;

xk+1i (s¡i)¡ xki (s¡i) =
X
j;j 6=i

[V jk+1(s
i;k+1(s¡i); s¡i)¡ V jk (si;k+1(s¡i); s¡i)] (7.15)

If the vector of reports is (ti; s¡i), then i’s transfer is de…ned to be x¤i (t
i; s¡i) =

x
k¤(ti)
i (s¡i)26.
The logic underlying the speci…cation of the transfers is as follows. Fix

a vector of reports s¡i: Suppose that both intervals (si;k(s¡i); si;k+1(s¡i)) and
(si;k+1(s¡i); si;k+2(s¡i)) are non-empty. For si slightly above si;k+1(s¡i) the only
e¢cient alternative is k + 1. For si slightly below si;k+1(s¡i) the only e¢cient
alternative is k. At si = si;k+1(s¡i) both alternatives are e¢cient. The transfers
are adjusted so that, given s¡i; agent i with type si;k+1(s¡i) is made indi¤erent
between alternative k with transfer xki (s

¡i) and alternative k + 1 with transfer
xk+1i (s¡i):
We now show that it is optimal for agent i to report truthfully if all other

agents report truthfully.
Fix s¡i the (truthfully) reported signal of all agents other than i: In order to

have a more transparent notation, we omit below the dependence of si;k(¢) and
xki (¢) on the …xed s¡i.
Suppose without loss of generality that agent i’s true type si lies in

h
si;k; si;k+1

´
.

If agent i reports truthfully ti = si, his payo¤ is

Ui(s
i; s¡i) = V ik (s

i; s¡i) + xki :

For any report ti 2
h
si;k; si;k+1

´
, agent i gets the same payo¤. Suppose that agent

i makes a report ti 2
h
si;k+r; si;k+r+1

´
with r > 0. This non-truthful report yields

for agent i a payo¤ of

Ui(t
i; s¡i) = V ik+r(s

i; s¡i) + xk+ri :

26To avoid a cumbersome case di¤erentiation, we have assumed that, given s¡i; the set
fk¤(ti)gti2Si includes the entire set of alternatives. If this is not the case, then some of the
intervals (si;k(s¡i); si;k+1(s¡i)) may be empty. Transfers are then de…ned up to the arbitrary
value of the transfer in the …rst non-empty interval. Furthermore, if a signal si;k+1(s¡i) hits the
upper bound of agent i’s signal interval, then the transfer for all reports ti > si;k(s¡i) is set to
be equal to xki (s

¡i).
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Noting that xk+ri =
rP
l=1
(xk+li ¡ xk+l¡1i ) + xki and using expression 7.15, we obtain:

Ui(s
i; s¡i)¡ Ui(ti; s¡i) = V ik (s

i; s¡i)¡ V ik+r(si; s¡i)

¡
rX
l=1

0@X
j;j 6=i

[V jk+l(s
i;k+l; s¡i)¡ V jk+l¡1(si;k+l; s¡i)]

1A :
By the de…nition of si;k+l (at which both alternatives k + l ¡ 1 and k + l are
e¢cient), we obtain:

X
j;j 6=i

[V jk+l(s
i;k+l; s¡i)¡ V jk+l¡1(si;k+l; s¡i)] = ¡[V ik+l(si;k+l; s¡i)¡ V ik+l¡1(si;k+l; s¡i)]

Finally, we obtain that:

Ui(s
i; s¡i)¡ Ui(ti; s¡i) = V ik (si; s¡i)¡ V ik (si;k+1; s¡i)

+
r¡1X
l=1

[V ik+l(s
i;k+l; s¡i)¡ V ik+l(si;k+l+1; s¡i)] + V ik+r(si;k+r; s¡i)¡ V ik+r(si; s¡i) =

aiki
³
si ¡ si;k+1

´
+
r¡1X
l=1

[ai(k+l)i
³
si;k+l ¡ si;k+l+1

´
] + ai(k+r)i

³
si;k+r ¡ si

´
=

rX
l=1

³
ai(k+l¡1)i ¡ ai(k+l)i

´ ³
si ¡ si;k+l

´
¸ 0

The last inequality follows because each of the terms in the sum is non-negative:
by the assumption on the sequence (aiki)k; we have a

i
(k+l¡1)i¡ ai(k+l)i < 0; because

si lies in
h
si;k; si;k+1

´
; and because the sequence si;k is non-decreasing, we have

si ¡ si;k+l · 0:
The proof for a report ti 2

h
si;k+r; si;k+r+1

´
with r < 0 is completely analogous.

Note that the transfers de…ned above do not depend on the distribution of
signals, and our mechanism implements the e¢cient social choice rule no matter
how the signals of the various agents are distributed27

27In other words, truth-telling constitutes an ex-post equilibrium.
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