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1 Introduction

The empirical literature in financial markets has identified multiple paradoxes of asset pricing.

Bubbles, high volatility and predictability of returns seem to be common phenomena in real

markets, see e.g. Kindelberger (1978), Sunder (1995) on bubbles in financial markets, Jegadesh

(1990) on predictability of asset returns and Shiller (1981) on excessive volatility of asset prices.

The standard literature on asset pricing does not explain these phenomena, which contradict

the joint hypothesis of expected utility maximization and rational expectations. In this paper,

I provide a model in which traders causing asset prices to deviate from prices under rational

expectations can survive in a market populated by expected utility maximizers. Moreover, they

are able to influence equilibrium prices and cause excess volatility, bubbles and predictability of

returns. The model further shows that under certain conditions, the expected utility maximizers

can be driven out of the market for a finite period of time, during which an asset with a positive

fundamental value sells at a 0-price. Hence, it can provide an explanation for price crashes

occurring on assets with positive fundamentals.

I use the case-based decision theory proposed by Gilboa and Schmeidler (1995) to model in-

vestors whose behavior significantly deviates from expected utility maximization with correct

expectations. Case-based decision-makers are not assumed to have knowledge of possible states

of nature or of the distribution of state-dependent outcomes. Instead they learn from experience

and evaluate an alternative by the past performance of similar alternatives, taking into account

whether the past results have been satisfactory or not compared to a bench-mark called an aspi-

ration level.

In Guerdjikova (2003), it is shown that an asset market populated only by case-based investors

can exhibit 0-price equilibria and a price dynamic featuring excess volatility, bubbles and pre-

dictability of asset returns.

The current model applies these results to study the evolutionary dynamic of wealth in a market

populated by both case-based decision-makers and expected utility maximizers. The proportion

of the two types of investors and, therefore, their wealth share, evolve according to the relative

success of both groups. The higher the returns achieved by one type of investors, the higher

the share of the initial endowment, they receive in the subsequent period. This endogenizes the
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initial endowment of the investors and allows to address the issue of the relative performance of

these two strategies.

Two questions are of main interest:

First, whether and under which conditions case-based decision makers are able to retain a posi-

tive share in the market;

Second, whether the effects observed in a market populated solely by case-based decision makers

also transfer to a market with expected utility maximizers.

To analyze these issues, the paper will be organized as follows: section two surveys shortly

the literature on evolutionary finance. Section three gives a description of the economy. and

introduces the evolutionary dynamic of investor types. In section four the evolutionary dynamic

is analyzed in order to ask the question, whether case-based decision makers can survive in a

financial market. Section five discusses how empirically observed phenomena, such as bubbles

or price crashes can emerge in the presence of case-based decision makers in the market. Section

six concludes. The proofs of all propositions are stated in the appendix.

2 Survey of the Literature

In the last years, the problems of evolution in financial markets have been gaining attention in

the economic literature. As a starting point serves the common view, formulated by Friedman

(1953), that markets select for rational traders with correct beliefs.

Thorough analysis of this hypothesis, however, leads to ambiguous results. De Long, Shleifer,

Summers and Waldmann (1990, 1991) demonstrate that if the misperceptions of the noise traders

force them to choose a riskier portfolio than the one chosen by rational traders, then noise traders

dominate the market by achieving higher expected returns than traders with correct beliefs. In

a similar setting, but assuming a non-competitive market for assets, Palomino (1996) shows

that noise traders can dominate the market even if the evolutionary selection accounts for the

disutilities of risk-bearing.

These results opened a discussion on the criteria according to which investment strategies are

selected by the market. Several studies on this issue, see Blume and Easley (1992), Hens and

Schenk-Hoppé (2001), Evstigneev, Hens and Schenk-Hoppé (2002, 2003), show that the most
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successful strategy consists in maximizing a logarithmic expected utility function with correct

beliefs. Since the logarithmic function has the property to maximize the expected growth of

wealth, investors with such utility functions accumulate the whole market wealth over time and

drive other types of investors to extinction.

Should a logarithmic utility maximizer be absent from the market, Blume and Easley (1992)

show that the market selects for patient investors if relative risk-aversion is controlled for and

for investors with relative risk-aversion close to 1 if the discount factors are controlled for. The

influence of risk-aversion for survival is hence not unequivocal.

Correct beliefs are shown to be the only robust selection criterium in complete markets, see

Blume and Easley (2001) and in markets with perfect foresight, Sandroni (2000).

Although criteria for survival and dominance have been identified in the literature, I cannot aply

these results directly to the model at hand. The reason is that the assumptions used to derive the

results in the models cited above (such as short-lived assets, simple strategies, strategies inde-

pendent of the current price, perfect foresight and Pareto-optimality of the market equilibrium)

are not satisfied in the economy described in section 3.

Whereas the major part of the literature searches for the best strategy, there is still little research

into how different investment rules perform relative to each other. Sciubba (2001) analyzes the

relative performance of the CAPM rule as compared to logarithmic utility maximization with

correct beliefs and mean-variance utility maximization. She shows that CAPM-traders vanish,

whereas those maximizing a mean-variance utility imitate the logarithmic utility maximizers

and, therefore, survive.

Similarly, the current paper does not look for the most successful strategy in the market, but ad-

dresses the question of relative performance of the two strategies: expected utility maximization

versus case-based decision-making.

3 The Economy

I consider an economy, consisting of a continuum of investors, uniformly distributed on the

interval [0; 1]. Time is discrete: t = 0, 1.... In period t a proportion et of the investors are

expected utility maximizers, whereas the rest, ct = 1− et are case-based decision makers. No
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population growth is considered.

The model has an overlapping generations structure. Each investor lives for two periods. In-

vestors consume only in the second period of their life. Preferences are represented by a CRRA

utility function

uβ (x) = xβ , β ∈ (0; 1]
uβ (x) = lnx, β = 0,

which is identical for all investors. (1− β), therefore, denotes the coefficient of relative risk

aversion. There is one consumption good in the economy with price normalized to 1. The initial

endowment of the investors consists of one unit of the consumption good in the first period and

is 0 in the second period.

There are two possible ways to transfer consumption between two periods: either using a risk-

less storage technology b, or investing in a risky asset a. The storage technology b delivers

(1 + r) units of consumption good in period t for each unit of consumption good, stored in

period (t− 1). It is available in a perfectly elastic supply at a price of 1.

The supply of the risky asset a is fixed at A = 1. The payoff of one unit of the asset in period t

is:

δt =

�
δ with probability q
0 with probability 1− q

�
,

and is identically and independently distributed in each period. Its price is pt. New emissions

are not considered, since I am interested in the behavior of prices on the secondary asset market.

I assume, that the payoffs satisfy 1 > δ > r > 0.

Short sales are not permitted. Therefore, the set of available acts reduces to:

γit ∈ [0; 1] ,
where γ denote the share of initial endowment invested into the risky asset and i ∈ {eu; cb},
where eu and cb identify the expected utility maximizers and the case-based decision makers,

respectively. Since diversification is possible, I will assume that all investors of a given type

choose identical portfolios. This amounts to replacing each of the types by a representative

investor.

Given the act chosen by an investor of type i at time (t− 1), his indirect utility from consumption
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at time t can be written as:

vt
�
γit−1

�
= uβ

�
γit−1

�
pt
pt−1

+
δt
pt−1

�
+
�
1− γit−1

�
(1 + r)

�
. (1)

Note, that the utility derived, when choosing act a depends not only on the dividend of the risky

asset, but also on the price of a in t, therefore on the decisions of the young investors at time t.

3.1 Information and Individual Decisions

The individual decision-making process will predetermine the evolution of asset prices, as well

as of the shares of different investor types in the economy.

3.1.1 Case-Based Decision Makers

First consider the case-based decision makers, as introduced in Gilboa and Schmeidler (2001).

Their description of the situation contains the statement of the problem, they have to solve:

’’Invest your initial endowment in one of the two assets, a or b, so as to be able to consume

tomorrow’’, as well as the acts, which are available to them:

γcbt ∈ [0; 1] .
Unlike expected utility maximizers, case-based decision makers do not use information about

possible states of nature, state-contingent outcomes and their probability distribution. Therefore,

they can only base their decisions on the experience of previous generations, they know about.

This information is called memory. I assume that the memory consists only of the act chosen

and utility realized by the case-based investors in the previous generation. The experience of

the expected utility maximizers is not taken into account. Hence, the memory at time t can be

written as

Mt =
��
γcbt−1; vt

�
γcbt−1

���
The utility obtained from γcbt−1 is then compared to an aspiration level ū assumed to be identical

for all case-based investors and constant over the time. If an act is considered satisfactory, it is

chosen again, else, it is abandoned and a different act is chosen next.

The perceived similarity among acts allows the decision-maker to evaluate acts that weren’t cho-

sen before. Since the available acts are situated on the one-dimensional simplex, I assume that

similarity between two acts γ and γ�, s (γ; γ�), is a strictly decreasing function in the Euclidean

distance nγ − γ�n.
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Given these assumptions, each act is evaluated according to its cumulative utility:

Ut (γ) =
�
vt
�
γcbt−1

�− ū� s �γ; γcbt−1�
and

γcbt = arg max
γ∈[0;1]

Ut (γ) .

Hence, the decision of a single case-based investor takes the form:

γcbt =

�
γcbt−1 if vt

�
γcbt−1

� ≥ ū
argmaxγ∈[0;1] if vt

�
γcbt−1

� ≤ ū
�

. (2)

The following lemma obtains directly from (2).

Lemma 1 Let γcb0 ∈ (0; 1). If ū satisfies
uβ
�
γcb0 +

�
1− γcb0

�
(1 + r)

� ≥ ū,
then γcbt = γcbt−1 = γcb0 for all t. If

uβ
�
γcb0 +

�
1− γcb0

�
(1 + r)

�
< ū,

then γcbt ∈ {0; 1} almost surely holds for all t ≥ t̄ for some finite t̄.

To derive the share of the endowment of case-based investors invested into a, denote by p̃t the

price of a, for which the case-based investors are indifferent among all portfolios (if such a price

exists):

p̃t : uβ

�
γcbt−1

�
p̃t
pt−1

+
δt
pt−1

�
+
�
1− γcbt−1

�
(1 + r)

�
− ū = 0

As long, as p̃t > 0 and γcbt−1 ≥ 1
2

γcbt =

⎧⎨⎩ γcbt−1 if pt > p̃t�
0; γcbt−1

�
if pt = p̃t

0 if pt < p̃t

⎫⎬⎭ .

For γcbt−1 ∈
�
0; 1

2

�
,

γcbt =

⎧⎨⎩ γcbt−1 if pt > p̃t�
0; γcbt−1

�
if pt = p̃t

1 if pt < p̃t

⎫⎬⎭ .

For γcbt−1 = 0, p̃t exists only if 1 + r = ū:

γcbt =

⎧⎨⎩ 0 if 1 + r > ū
[0; 1] if 1 + r = ū
1 if 1 + r < ū

⎫⎬⎭ .

Figure 1 gives an illustration of γcbt (pt) for these three cases.

Note that γcbt (pt) is a non-empty, convex-valued, upper hemicontinuous correspondence.

The three cases demonstrate that the share of the endowment invested into the risky asset by case-

based investors is monotonically increasing in the price pt, except if γcbt−1 ∈
�
0; 1

2

�
. Since the
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pt pt

γcbt−1
1− γcbt−1

γcbt γcbt

.................

γcbt−1 ∈ (0; 12)γcbt−1 ≥ 1
2

0

1

γcbt

pt

1

γcbt γcbt

pt pt

ū < u(1 + r)ū > u(1 + r) ū = u(1 + r)

γcbt−1 = 0
p̃t p̃t

Figure 1

main interest will be on the case of relatively high aspiration levels, which imply that diversified

portfolios are held only for a finite number of periods, cases 1 and 3 will describe the demand of

case-based investors for assets. Hence, the relationship between pt and γcbt (pt)will be positive.

This will be the main difference between the case-based decision makers and the expected utility

maximizers, whose share of endowment invested into the risky asset will decrease in pt.

3.1.2 Expected Utility Maximizers

Now I turn to the description of the expected utility maximizers. I will assume, as usual, that

expected utility maximizers have expectations about the state-contingent payments of each of

the assets. Still, it will not be assumed, that these expectations are necessarily rational. Even if

an expected utility maximizer is informed about the correct distribution of the dividends of the

risky asset and of the returns of the safe technology, it is not clear, that he will be able to predict

the influence of the case-based decision makers on the asset prices. To do so, he would have to

take into account the constitution of the population, the case-based decision making process, as

well as the influence the evolution of types will have on prices and returns in the economy. I

will assume that expected utility maximizers neglect these issues. They act boundedly rational,

taking into account the information about the correct distribution of dividends and the correct

interest rate, but building their expectations about the price as if the economy consisted only of

expected utility maximizers, identical to themselves.
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Let peuβ denote the price which would emerge in a stationary equilibrium if only expected utility

maximizers were present in the market. To compute peuβ , write the maximization problem of an

investor given that the price today is equal to the price tomorrow3, p

max
γ̃eut ∈[0;1]

q

��
1 +

δ

p

�
γ̃eut + (1 + r) (1− γ̃eut )

�β
+ (1− q) [γ̃eut + (1 + r) (1− γ̃teu)]

β

where γ̃eut denotes the share of the initial endowment invested into a given these expectations

and observe that the first order condition simplifies to:

γ̃eut (p) =

(1 + r)

%�
(1−q)r
q( δp−r)

� 1
β−1
− 1
&

δ
p
+ r

%�
(1−q)r
q( δp−r)

� 1
β−1
− 1
& , (3)

which describes the optimal γ̃eut , as long as the term on the r.h.s. of (3) is between [0; 1]. If the

r.h.s. of (3) exceeds 1 or lies below 0, γ̃eut takes the values 0 and 1, respectively4:

γ̃eut (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
(1+r)

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦

δ
p
+r

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦ < 0

(1+r)

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦

δ
p
+r

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦ , if

(1+r)

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦

δ
p
+r

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦ ∈ [0; 1]

1, if
(1+r)

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦

δ
p
+r

⎡⎣# (1−q)r
q( δp−r)

$ 1
β−1

−1
⎤⎦ > 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Obviously, peuβ is the fixed point of γ̃eut (p):

γ̃eut
�
peuβ
�
= peuβ .

Two special cases are of interest. If u (x) = x then

peu1 = min

�
qδ

r
; 1

�
,

hence the price equals the fundamental value of the asset. If u (x) = lnx, then

peu0 = min
�
peulog; 1

�
with

3 The expressions are given for values of β ∈ (0; 1]. The respective equations for the logarithmic utility function
are derived analogously.
4 For the interior solutions, the no-arbitrage conditions are satisfied. For the corner solutions, the short sale
constraints prevent arbitrage even if the no-arbitrage conditions fail.
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peulog =
1 + r + δ −

t
(1 + r + δ)2 − 4qδ (1 + r)

2r
.

Since the expected utility maximizers perceive peu to be the ’’true’’ price of the risky asset5, the

share of their endowment invested into the risky asset γeut is determined as a solution to

max
γeut ∈[0;1]

q

��
peuβ + δ

pt

�
γeut + (1 + r) (1− γeut )

�β
+ (1− q)

�
peuβ
pt

γeut + (1 + r) (1− γteu)

�β
and is decreasing in the price pt. Differently from the case-based decision makers, expected

utility maximizers, therefore, hold the risky asset only if its price is relatively low. Note that if

peuβ = 1, then the expected utility maximizers will invest their whole endowment into the risky

asset, irrespectively of the price pt.

γeut (pt) is a continuous function for β ∈ [0; 1), whereas for β = 1 it is a non-empty, convex-

valued and upper hemicontinuous correspondence. The value of demand for a of the whole

population is obtained as:

dt (pt) = etγ
eu
t (pt) + (1− et) γcbt (pt) .

It is a correspondence, which also has the characteristics stated above and maps the interval [0; 1]

into [0; 1].

3.2 The Evolution of Investor Types

After describing the decision process of the investors in the economy, I now introduce the se-

lection dynamic. I measure the fitness of a given type of investors by the actual average returns

they achieve relative to the average returns of the society as a whole. This gives rise to a repli-

cator dynamic, in which the share of the type of investors who perform better grows. A higher

wealth share for a particular type of investors in the economy then implies greater influence on

market processes6.

An overlapping generations structure does not allow for a natural wealth dynamic to arise as

in the works cited in section 2. Note, however that since each investor is born with the same

initial endowment of 1 unit of the consumption good, the share of a type of investors can be

5 Although expected utility maximizers do not need to have rational expectations in general, they do have rational
expectations in the limit, when e→ 1.
6 This property, which follows from the market clearing condition in this model, need not hold in general. See
for instance Kogan, Ross, Wang and Westerfield (2003) for a model, in which noise traders can influence the price
process, even though their share converges to 0 in the limit.
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identified with the total income of the investors of this type. Hence, the replicator dynamic can

be interpreted as a wealth dynamic in the model at hand.

3.2.1 Replicator Dynamic

Differently from the usual approach in evolutionary game theory, the replicator dynamic in

this model is applied not to the portfolio strategy chosen by an individual, but to the ’’meta’’-

strategies used by the two types of investors, hence to the performance of case-based decision-

making versus expected utility maximization7.

The following replicator dynamic is introduced, following Weibull (1995, pp. 124-125)8.

Denote by

ṽit = γit−1
pt + δt
pt−1

+
�
1− γit−1

�
(1 + r)

ṽt = et−1

�
γeut−1

pt + δt
pt−1

+
�
1− γeut−1

�
(1 + r)

�
+(1− et−1)

�
γcbt−1

pt + δt
pt−1

+
�
1− γcbt−1

�
(1 + r)

�
(4)

the average returns achieved by an investor of type i ∈ {eu; cb} and by the society as a whole.

The replicator dynamic is written as:

et =
ṽeut
ṽt
et−1 (5)

Hence, the equilibrium share of expected utility maximizers becomes:

e∗t =

k
p∗t (e∗t )+δt
pt−1

γeut−1 + (1 + r)
�
1− γeut−1

�l
et−1

p∗t (e∗t )+δt
pt−1

�
γeut−1et−1 + γcbt−1 (1− et−1)

�
+ (1 + r)

�
1− �γeut−1et−1 + γcbt−1 (1− et−1)

�� .

(6)

Note, that the numerator represents the wealth of the old expected utility maximizers at time t,

the denominator is the wealth of the old investors in the economy at t. Hence, the proportion of

young investors following a decision rule at time t is equal to the relative share of wealth held

by the old investors following the strategy. I therefore claim, that the replicator dynamic can

be interpreted as a relative wealth dynamic in the sense of Blume and Easley (1992, 2001) and

7 This approach is therefore similar to the indirect evolutionary approach initiated by Güth and Yaari (1992). In
their setup the genetic phenotype describes a decision rule for choosing a strategy in a game. The solution of the
game, computed in accordance with the proportions in which these phenotypes are present, determines the payoffs
and hence the evolution of decision rules (not of strategies) in the population. The present model differs however
from the work of Yaari and Güth by the fact that instead by a game the payoffs are determined by a market.
8 In this model the length of period is assumed to be 1 and the growth rate of the population is 0. This correspondes
to τ = 1 and β = 0 in the overlapping-generations model presented by Weibull.
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Hens and Schenk-Hoppé (2001), Evstigneev, Hens and Schenk-Hoppé (2002, 2003).

The analysis of γcb (p) in section 3 shows that if et−1 = 0, pt−1 = 0 might obtain, see figure 1.

To insure that e∗t is always well defined, compute the limit of (6) as et−1 and pt−1 converge to 0.

Obviously, pt−1 = γeut−1et−1 and γeut−1 = 1 will hold for prices near 0. Substituting in (6) gives:

lim
et−1→0

e∗t = lim
et−1→0

p∗t (e∗t )+δt
et−1

et−1
p∗t (e∗t )+δt
et−1

et−1 + (1 + r) (1− et−1)
=

p∗t (e
∗
t ) + δt

p∗t (e∗t ) + δt + 1 + r
,

which is well defined. This means, especially, that starting with et = 0 the mass of expected

utility maximizers may become strictly positive if expected utility maximizers hold an asset with

positive fundamental value, the price of which is 0. On the other hand, if the initial mass of the

case-based decision makers is 0, then it remains 0 in all subsequent periods.

3.2.2 Temporary Equilibrium With Replicator Dynamic

Given
�
et−1; γeut−1; γ

cb
t−1; pt−1

�
, a temporary equilibrium with replicator dynamic at time t is de-

fined as a vector:
�
e∗t ; γ

∗eu
t ; γ∗cbt ; p

∗
t

�
, such that:

(i) γ∗eut = γeut (p
∗
t )

(ii) γ∗cbt = γcbt (p
∗
t )

(iii) p∗t (e
∗
t ) clears the market for the risky asset given e∗t ;

(iv) e∗t is determined by the replicator dynamic:

e∗t =

k
p∗t (e∗t )+δt
pt−1

γeut−1 + (1 + r)
�
1− γeut−1

�l
et−1

p∗t (e∗t )+δt
pt−1

�
γeut−1et−1 + γcbt−1 (1− et−1)

�
+ (1 + r)

�
1− �γeut−1et−1 + γcbt−1 (1− et−1)

�� .

It is possible to show that such an equilibrium exists in each period as long as the initial state�
et−1; γeut−1; γ

cb
t−1; pt−1

�
is an equilibrium. The evolution of the system is therefore well defined.

4 The Evolution of Wealth

The definition of a temporary equilibrium with evolutionary dynamic, combined with the divi-

dend process determine the evolution of the system. I first discuss the stationary states.

4.1 Stationary states

Proposition 2 (i) e∗t = 1, p∗t = γeut = p
eu
β is a stationary state.

12



(ii) e∗t = 0, p∗t = γcbt = γcb0 is a stationary state, if γcb0 > 0 and
ū < uβ

�
γcb0 + (1 + r)

�
1− γcb0

��
hold.

If only expected utility-maximizers are present in the market, a rational expectations equilibrium

will emerge.

For the case e = 0, the price p∗t = γcb0 is constant over time, but need not coincide with peuβ . In

this case, arbitrage opportunities might remain unused in the market. However, only a relatively

low aspiration level that insures that γcbt > 0 holds for each t allows the case-based decision

makers to keep their mass at 1 in the market. As explained above, if p∗t = 0 holds in some

period of time, e∗T > 0 would almost surely obtain for some finite T > t. Hence, e = 0 would

not be stationary.

Proposition 3 Let
ū < uβ

�
peuβ + (1 + r)

�
1− peuβ

��
.

Then each e ∈ [0; 1] is a stationary state, if the portfolios held and the price of a fullfil:
γeut = γcbt = p

eu
β = p∗t

for all t ≥ 0.

Proposition 3 identifies stationary states, in which both types of traders coexist. The price coin-

cides with the price under rational expectations and both types of investors hold the same optimal

portfolio, given the market price. By imitating the expected utility maximizers, case-based de-

cision makers with relatively low aspiration levels are thus able to survive in a financial market.

However, they will not influence prices and it would not be possible to empirically reject the

hypothesis of rational expectations and expected utility maximization in such a market. It is,

therefore, interesting, whether a positive share of case-based decision-makers can survive if the

portfolio strategies of expected utility maximizers and case-based decision makers differ.

4.2 Can the Case-Based Investors Survive?

It has been shown, that case-based decision makers with a relatively low aspiration level can

survive in a market, without influencing prices. Now I shall look at the dynamics of the system

for case-based investors satisfying:

ū > uβ
�
γcb0 + (1 + r)

�
1− γcb0

��
13



If the aspiration level of the case-based decision makers is relatively high, their behavior might

influence prices. The price dynamic in a market populated only by case-based decision makers

is discussed in Guerdjikova (2003).

If

uβ (1 + r) > ū > uβ
�
γcb0 + (1 + r)

�
1− γcb0

��
,

p∗t = 0 in each period holds and all investors hold b in every period.

For relatively high aspiration levels,

uβ (1 + δ) > ū > uβ (1 + r) ,

the price process is a stochastic cycle with two states: ph = 1 and pl = 0. The Markov transition

matrix, describing this process is given by:
pt+1 = ph pt+1 = pl

pt = ph q 1− q
pt = pl 1 0

.

Of course, for e > 0 the price in state pl > 0, and (as long as peuβ < 1) ph < 1 will obtain

in equilibrium. Nevertheless, it is possible that similar cycles occur even in the presence of

expected utility maximizers in the market. In the current model, the magnitude of these cycles

depends positive on the mass of case-based decision makers in the economy. Therefore, such

cycles will persist, only if a positive mass of case-based decision makers survives.

In the following I examine the stability of the stationary state e = 1 to determine whether the

case-based investors survive and influence the prices in the market.

The further discussion will concentrate on the case, in which the stationary states in which case-

based investors are present in the market, as described in propositions 2 and 3 do not occur, i.e.

on

ū > uβ
�
γcb0 + (1 + r)

�
1− γcb0

��
for γcb0 > 0, since then the case-based investors will change their portfolio holdings over time

generating a non-trivial dynamic. The discussion of the results for asset markets without ex-

pected utility maximizers shows, that the dynamic of the system crucially depends on the aspira-

tion level of the case-based decision makers. Two cases will be of importance: ū ∈ (uβ (1 + r) ;uβ (1 + δ)),

referred to as high aspiration level and

ū ∈ �uβ �γcb0 + (1 + r) �1− γcb0
��
;uβ (1 + r)

�
,

14



the case of low aspiration level.

For

ū ∈ �uβ �γcb0 + (1 + r) �1− γcb0
��
;uβ (1 + r)

�
,

it is easy to see, that the return of b is satisfactory for the case-based decision makers, whereas

the return of a, given that the dividend is 0 and the price of a remains unchanged or falls is not

satisfactory. Hence, γcb = 0 obtains and holds forever.

For

ū ∈ (uβ (1 + r) ;uβ (1 + δ)) ,

the return of a is considered satisfactory, when the dividend is high and the price of a weakly

increases, whereas the return of b and the return of a if its dividend is low, are regarded as

unsatisfactory. Hence, the case-based decision makers will switch infinitely often between γcb =

1 and γcb = 0.

4.2.1 The case of high aspiration levels

Consider first the case of high aspiration level:

ū ∈ (uβ (1 + r) ;uβ (1 + δ)) .

Proposition 4 Let
ū ∈ (uβ (1 + r) ;uβ (1 + δ)) .

1. If

q ∈
%

r

r + (δ − r) (1 + δ)β−1
;
(1 + δ) r

(1 + r) δ

$
,

then for each β ∈ (0; 1], there exists an ẽ ∈ (0; 1), such that e∗t is a submartingale for

e∗t−1 < ẽ and a supermartingale for e∗t−1 ≥ ẽ.

2. For all values of β ∈ [0; 1] if
q ∈

�
(1 + δ) r

(1 + r) δ
; 1

�
,

e∗t is a submartingale for all et−1 ∈ [0; 1]. The case-based decision makers disappear with

probability 1.

Proposition 4 establishes conditions under which the stationary state e = 1 is not stable, in the

sense that the replicator dynamics does not converge to it with probability 1.
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To see the intuition behind the result, consider the case of linear utility functions. The condition

on q in the first part of proposition 4 insures that peu1 = 1, hence, the expected utility maximizaers

hold a in each period of time, independently of pt. The high aspiration level implies that the

case-based investors are constantly switching between γcb = 1 and γcb = 0. The replicator

dynamic of e∗t is concave in the returns of the expected utility maximizers. Therefore, it selects

for the less risky strategy, given that the expected returns of two strategies are identical. At

times, when the case-based decision makers choose γcb = 0, their portfolio is less risky, than the

portfolio of the expected utility maximizers, who choose γeu = 1. Moreover, as c → 0 in case

peu1 = qδ
r
= 1, the expected returns of both portfolios are the same and the replicator dynamic

selects for the less risky one — those of the case-based investors. By continuity, the same result

holds in some surrounding of e = 1 and in some surrounding of q = r
δ
. Hence, as long as q is

not very large, a positive share of case-based decision makers survives.

If, however, q exceeds (1+δ)r
(1+r)δ

, the excess return of the expected utility maximizers becomes

sufficiently high to compensate for the higher risk of their portfolio. In this case, they accumulate

the whole market wealth with probability 1. Note that in the case of a logarithmic utility function,

only this case is relevant and the case-based investors almost surely disappear. This result is

consistent with the findings in the literature cited in section 2.

Higher values of peuβ coincide with higher values of q ceteris paribus. The probability of high

dividends has two effects on the evolutionary dynamic. On the one hand, higher q implies higher

expected returns of the risky asset and therefore higher profits for the investors holding a, i.e.

for the expected utility maximizers. On the other hand, higher values of q cause the case-based

decision makers to switch less frequently between the two undiversified portfolios and to hold

the risky asset during a larger share of time, hence to behave in a less risk-averse manner9. These

two effects work in the same direction, making the strategy of the expected utility maximizers

more successful.

A result similar to the one of proposition 4 can be derived for lower fundamental values of the

risky asset, when the utility function is linear.

Proposition 5 Suppose that β = 1. Let the aspiration level satisfy
ū ∈ (1 + r; 1 + δ) .

9 See Guerdjikova (2003) for a derivation of the limit frequencies with which the case-based decision makers
choose γcb = 0 and γcb = 1.
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Then there is a critical value p̃eu1 ∈
�
1
2
; 1
�

such that E
�
e∗t+2 | e∗t

�
< e∗t holds for

e∗t ∈
%
max

+
peu1 ; 1− peu1 +

rpeu
2

1

1 + r

,
; 1

$
if peu1 ∈ (p̃eu1 ; 1).

Although the result is stated for the case of a linear utility function, the argument can be extended

to all coefficients of relative risk-aversion strictly smaller than 1. Indeed, because of proposition

4, we know that e = 1 is unstable at

q =
r

r + (δ − r) (1 + δ)β−1
.

Since the dynamic of the system is continuous with respect to the parameter q, it follows that

this property still holds in some surrounding of peuβ = 1 and especially for

q ∈
#
q̃;

r

r + (δ − r) (1 + δ)β−1

$
for some q̃ ∈

�
0; r

r+(δ−r)(1+δ)β−1
�

.

For lower values of peu1 (especially lower than 1
2
) the results are not clear. Whereas the expected

share of expected utility maximizers decreases, when the case-based decision makers hold a in

period t, (E
�
e∗t+2 | e∗t , γ∗cbt = 1

�
< 0 always holds near 1), their share increases in expectation,

when case-based decision makers hold b: E
�
e∗t+2 | e∗t , γ∗cbt = 0

�
> 0, as long as et is sufficiently

close to 1. It is, à priori, not clear which of these two effects will dominate. Nevertheless,the

intuition suggests that for sufficiently low fundamental values of the risky asset the case-based

decision makers will disappear. Indeed, imagine that e.g. δ = 0, so that peu1 = 0 holds, hence

the risky asset never pays a positive dividend. In this case, the case-based decision makers, who

hold a strictly dominated asset with positive frequency disappear in the limit. By continuity this

result holds in some surrounding of peu1 = 0 (δ = 0) and, therefore, case-based decision makers

with high aspiration level cannot survive for low fundamental values of the risky asset.

To summarize, if the fundamental value of the risky asset is neither too high, nor too low, there

is a positive probability that the case-based decision makers will not disappear from the market.

This result can be made even stronger:

Proposition 6 Suppose that e∗t is a supermartingale on some interval [ẽ; 1]. Then
Pr{e∗t → 1} = 0.

The share of case-based decision makers thus remains almost surely positive, as long as it can be
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shown, that e∗t is a supermartingale near 1. This result can be interpreted in terms of the definition

of survival and dominance introduced by Blume and Easley (1992). In their terminology survival

requires that the share of an investor type, say of case-based decision makers, fulfills:

Pr

�
lim sup

t→∞
ct > 0

�
= 1, (7)

whereas the case-based decision makers dominate the market, if

Pr
q
lim inf

t→∞
ct > 0

r
= 1 (8)

is satisfied. Proposition 6 implies that both (7) and (8) are fulfilled, as long as e∗t is a super-

martingale on some interval [ẽ; 1].

4.2.2 The case of low aspiration level

Now suppose that the case-based decision makers have an aspiration level which satisfies

uβ
�
γcb0 + (1 + r)

�
1− γcb0

��
< ū < uβ (1 + r) ,

implying that the case-based decision makers hold b in each period of time. Again, it is possible

to identify values of the parameters, for which the state e = 1 is not stable and the case-based

investors almost surely survive in positive proportion.

Proposition 7 If
ū ∈ �uβ �γcb0 + (1 + r) �1− γcb0

��
;uβ (1 + r)

�
and

1. q ∈
k

r

r+(δ−r)(1+δ)β−1 ;
(1+δ)r
(1+r)δ

�
, then for each β ∈ (0; 1], there exists a cut-off point ê ∈ (0; 1),

such that et is a supermartingale above ê and a submartingale below ê.

2. If q ∈
k
(1+δ)r
(1+r)δ

; 1
l
, for any β ∈ [0; 1], the share of the case-based decision makers converges

to 0 almost surely.

Note that with low aspiration levels the case-based decision makers survive for exactly the same

values of q, which were found in proposition 4. Although in the case of low aspiration level, q

influences the selection only by increasing the average return of the expected utility maximizers

and not through the less risk-averse behavior on the side of the case-based decision makers, in

the limit when c → 0, the conditions for survival of the case-based investors are identical in

both cases.

However, the cut-off values ẽ (as defined in proposition 4) and ê from proposition 7 reflect the
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fact that the strategy of the case-based decision makers is riskier in the case of high aspiration

level. Hence, case-based investors with low aspiration levels are likely to survive in a higher

proportion than case-based investors with high aspiration levels, as the following proposition

demonstrates:

Proposition 8 ẽ, as defined in proposition 4 and ê from proposition 7 satisfy:
ẽ > ê.

Proposition 9 Suppose that
ū ∈ �uβ �γcb0 + (1 + r) �1− γcb0

��
;uβ (1 + r)

�
Let

q <
r

r + (δ − r) (1 + δ)β−1
.

Then for all β ∈ (0; 1], e∗t is a supermartingale on an interval [ě (β) ; 1].

The result of proposition 6 applies in this case as well, implying that the share of case-based

decision makers remains positive with probability 1, as long as e∗t is a supermartingale in some

interval [ê; 1]. Note that as in the case of high aspiration levels, case-based investors cannot

survive in the presence of logarithmic expected utility maximizers.

5 Asset Prices in the Presence of Case-Based Decision Makers

The results of section 4 show that case-based investors can survive in strictly positive proportion

in the presence of expected utility maximizers. This section analyzes the effect of their behavior

on asset prices.

Consider first the case of high aspiration level. If peuβ < 1, the case-based decision makers can

influence prices and cause bubbles, excessive volatility and predictability of returns, as long as

their share is sufficiently high. Denote by

p̂euβ = min {p | γeu (p) = 0}
the minimal price at which the expected utility maximizers hold only bonds. Suppose now

that ct > p̂euβ holds. Since the case-based decision makers switch between a and b infinitely

often, the price of a will fluctuate depending on the share of case-based decision makers and

on their behavior, exhibiting excessive volatility10. Moreover, the returns of a are predictable.
10 In an overlapping generations model with constant initial endowments and no population growth the price of
the risky asset should remain constant over time, given rational expectations and expected utility maximization.
This is the case for e = 1.
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Especially, if in a certain period only expected utility maximizers hold a, an external observer

could predict, that the price of a in the next period will (weakly) rise, since the young case-based

decision makers will buy a in t, independently of the dividend paid by the risky asset.

Case-based investors can cause a bubble to emerge and to persist in the market for several peri-

ods. Suppose for instance, that the share of expected utility maximizers is lower than
�
1− p̂euβ

�
at some time t and that case-based decision makers choose γcbt = 1. Then the equilibrium price

of a will satisfy

p∗t = (1− e∗t ) > p̂euβ ≥ peuβ .

Moreover, if δt+1 = δ, then the returns of the case-based investors will exceed those of the

expected utility maximizers and e∗t+1 < e∗t will hold. Since the young case-based decision

makers choose γcbt+1 = 1,

p∗t+1 =
�
1− e∗t+1

�
> p∗t p̂

eu
β ≥ peuβ

holds in equilibrium. Hence, the price increases above the price under rational expectations, as

long as the dividend of the risky asset remains positive. In the first period t�, such that δt� = 0,

the bubble will burst, since the case-based decision makers will switch to γcb = 0 and their

share will decrease. Moreover, the price of the risky asset might even fall below the price under

rational expectations peuβ . For instance, in the case of a linear utility function this would happen,

if

(1− e∗t�) >
(peu1 − 1)2
peu1 (1 + r)

,

hence if the bubble has lasted long enough to decrease substantially the share of the expected

utility maximizers.

Now consider the case of low aspiration levels, hence, γ∗cbt = 0 holds for each t. It turns out

that case-based investors with low aspirations can drive the expected utility maximizersd out of

the market for a finite number of periods.

Denote by

p̌euβ = max {p | γeu (p) = 1} .

Let et ≤ p̌euβ so that γeut = 1, p∗t = e∗t and let the next period dividend be low, δt+1 = 0. The

equilibrium share of the expected utility maximizers is given by the solution of the equation:

e∗t+1 =

e∗t+1
e∗t
e∗t

e∗t+1
e∗t
et + (1 + r) (1− e∗t )

=
e∗t+1

e∗t+1 + (1 + r) (1− e∗t )
. (9)
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(9) has two solutions: e∗t+1 = 0 and

e∗∗t+1 = e
∗
t (1 + r)− r < e∗t

Hence, if the initial share of the expected utility maximizers is relatively small:

e∗t < min
�

r

1 + r
; 1− p̌euβ

�
,

e∗∗t+1 < 0 and e∗t+1 = 0 obtains in equilibrium.

The expected utility maximizers can vanish, if they hold the risky asset, hoping that it is valuable,

but if there are not enough of their type to prevent prices from falling, when the dividend of

the asset is low. This effect is similar to the noise trader risk identified by De Long, Shleifer,

Summers and Waldmann (1990). Although the expected utility maximizers don’t have rational

expectations in this model, they suffer from an undervaluation of the risky asset, caused by

the case-based decision makers. If further the returns of the expected utility maximizers are

relatively low compared to those of the population as a whole, then the share of the case-based

decision makers will increase causing the undervaluation of the risky asset to become even more

severe.

The effect arises, because of the dependence of the replicator dynamic on the price of the risky

asset and therefore indirectly on et itself. It shows, that even in markets, in which expected

utility maximizers are à priori present, the price of an asset with positive fundamental value

may fall to 0 and remain so for few periods.

The expected utility maximizers will, however, not disappear forever. Since they will hold an

asset with positive fundamental value, their share in the population will become positive in the

first period, in which the dividend of the risky asset becomes strictly positive. Hence, the price

of the asset becomes positive in finite time.

The results of this section imply that some of the phenomena empirically observed in finan-

cial markets could be attributed to the presence of case-based decision makers in the economy.

However, the emergence of bubbles or price crashes requires a relatively high proportion of

case-based decision makers in the market. Although the probability of such events is positive,

it is not clear, whether its analytical computation is possible. Future work will therefore have

to deal with simulations of the model, from which the frequency of such phenomena could be

estimated.
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6 Conclusion

The analysis of the model answers the two questions stated in the introduction by identifying

conditions under which case-based decision makers survive in the presence of expected utility

maximizers and discussing their influence on prices. It is shown that case-based investors can

survive for certain ranges of the parameters if the coefficient of relative risk aversion is less than

1. Case-based investors are shown to cause predictability of asset prices, high volatility and

bubbles, as well as price crashes when the share of expected utility maximizers in the market is

relatively low.

A final note has to be made on the issue of introducing expected utility maximizers with rational

expectations. It is straightforward to see, that in the case of a linear utility function, as long, as

the short-sale constraints are not binding, the expected returns of the two assets will be identical

at each period of time. Therefore, the replicator dynamic will select for the less risky strategy in

each period and the case-based investors would retain a positive proportion in the market. Since

the replicator dynamic and the demand of the investors are continuous with respect to β, it can

be expected that similar results will obtain in a surrounding of β = 1. Hence, the results about

the instability of the stationary state e = 1would remain valid at least for a range of coefficients

of relative risk-aversion close to 1.
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Appendix

Proof of Proposition 2(i) Let first et−1 = 1. It follows that (1− et−1) = 0. Since

e∗t =

k
p∗t (e∗t )+δt
pt−1

γeut−1 + (1 + r)
�
1− γeut−1

�l
et−1

p∗t (e∗t )+δt
pt−1

γeut−1et−1 + (1 + r)
�
1− γeut−1et−1

� = 1,
the claim of the proposition obtains.

(ii) If pt−1 > 0 and et−1 = 0, then e∗t =
ṽeut ·0
ṽt

= 0. Therefore, if it can be insured, that the demand

for a of the case-based decision makers is strictly positive over the time, the mass of the expected

utility maximizers will stay 0. Hence, a condition is needed, that insures that γ∗cbt > 0 for each

t. Assume, as in the proposition, that γcb0 > 0 and note that all case-based decision makers will

have the case
�
γcb0 ; vt

�
γcb0
��

in their memory, will observe a return of at least

uβ
�
γcb0 + (1 + r)

�
1− γcb0

��
> ū,

given that the price of the asset remains unchanged. Hence, if γcbt = γcb0 , then γcbt+1 = γcb0 and

γcbt = p
∗
t = γcb0

obtains in each period t.

Proof of Proposition 3:

The assumption

ū < u
�
peuβ + (1 + r)

�
1− peuβ

��
guarantees, that as long as the price of a remains constant over the time, none of the case-based

decision makers will ever switch away from the initially chosen portfolio. Indeed, if a case-based

decision maker remembers
�
γcb = peuβ ; vt

�
peuβ
��

,

vt
�
peuβ
� ≥ uβ �peuβ + (1 + r) �1− peuβ �� > ū

holds and γcbt = peuβ . Moreover, at peuβ , γeu
�
peuβ
�
= peuβ is the optimal choice of the expected

utility maximizers. Since both types of investors hold the same portfolio, their returns in each

period of time are equal and hence their shares in the population remain constant over time.

Proof of proposition 4

Lemma 10 If q ≥ r(1+δ)
δ(1+r)

, peuβ = 1 holds.

Proof of lemma 10
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Let first β = 0. Observe that peu0 is strictly decreasing in q and

peu0 (q) = 1

obtains at q = r(1+δ)
δ(1+r)

. It follows that peu0 ≥ 1 is equivalent to q ≥ r(1+δ)
δ(1+r)

. Hence, peu0 ≥ 1 is

inconsistent with the condition necessary for c∗t to be a submartingale.

Now assume β ∈ (0; 1]. Consider first the case of peuβ = 1 and note, that the value of q, for

which γeut = p
eu
β = 1 will still be an interior solution of (3) is given by:

(1 + r)

��
(1−q)r
q(δ−r)

� 1
β−1 − 1

�
δ + r

��
(1−q)r
q(δ−r)

� 1
β−1 − 1

� = 1,

which simplifies to

q =
r

r + (δ − r) (1 + δ)β−1
. (10)

Denote ⎛⎝ (1− q) r
q
�
δ
p
− r
�
⎞⎠ 1

β−1

=: z.

From ∂γ̃eut
∂z

> 0 and

∂z

∂q
=

1

β − 1

⎛⎝ (1− q) r
q
�
δ
p
− r
�
⎞⎠

2−β
β−1

(−r (δ − r))
q2 (δ − r)2 > 0

it follows that ∂γ̃eut
∂q

> 0 and since γ̃eut falls in price, it follows that the equilibrium price is

increasing in the probability of high dividend q. Therefore, for values of q, higher than (10), the

price under rational expectations (for a given β) is equal to 1, see figure 16.

Hence, for all current values of pt ≤ 1 the expected utility maximizers (who believe that pt+1 =

1) will invest their whole initial endowment into the risky asset. Therefore, the interval of values

q ∈
%

r

r + (δ − r) (1 + δ)β−1
; 1

&
corresponds to the case, in which the expected utility maximizers invest their whole initial en-

dowment into a, independently of the price.

Given the assumptions on q and ū, the dynamics of prices and asset holdings can be described

as follows:

γ∗eut = 1 for each t;
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peuβ , q
�, q��

γeut

p

peuβ , q q increases

q�� > q� > q

Figure 2

γ∗cbt =

⎧⎨⎩ 1, if γcbt−1 = 1 and δt = δ or
γcbt−1 = 0

0, if γcbt−1 = 1 and δt = 0

⎫⎬⎭ ;

p∗t =

⎧⎨⎩ 1, if γcbt−1 = 1 and δt = δ or
γcbt−1 = 0

e∗t , if γcbt−1 = 1 and δt = 0

⎫⎬⎭ .

Note that the average returns of the two types are identical, as long as both types hold a. There-

fore the population shares remain unchanged in such periods:

e∗t = e
∗
t−1, if γ∗cbt−1 = 1.

Hence, these periods do not influence the dynamic of population shares. It is, therefore, suffi-

cient to analyze how et changes in periods, in which the holdings of both types of investors differ.

In such periods the expected (since it depends on a random dividend payment) equilibrium share

of case-based decision makers is given by:

E
�
c∗t | c∗t−1

�
= q

(1 + r) ct−1
(1 + r) c∗t−1 +

(1+δ)
p∗t−1

e∗t−1
+ (1− q) (1 + r) ct−1

(1 + r)
�
1− e∗t−1

�
+ 1

p∗t−1
e∗t−1

.

Now note, that since in (t− 1) only the expected utility maximizers hold a, p∗t−1 = e∗t−1. There-

fore

E
�
c∗t | c∗t−1

�
= q

(1 + r) c∗t−1
(1 + r) c∗t−1 + (1 + δ)

+ (1− q) (1 + r) c∗t−1
(1 + r) c∗t−1 + 1

c∗∗t−1

⇔
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r (1 + δ) + r (1 + r) c∗t−1 − qδ (1 + r) (1 + δ) (1 + r) c∗t−1 + (1 + r)
2 c∗2t−1

r
�
1 + δ + (1 + r) c∗t−1

�− (1 + r) c∗t−1 �1 + δ + (1 + r) c∗t−1
�− qδ (1 + r) 0�

1 + δ + (1 + r) c∗t−1
� �
r − (1 + r) c∗t−1

�− qδ (1 + r) 0. (11)

It is clear, that for c∗t−1 ≥ r
1+r

, E
�
c∗t | c∗t−1

�
< c∗t−1, therefore c∗t is a supermartingale and since

e∗t + c
∗
t = 1 in each period, it follows that e∗t is a submartingale, if e∗t−1 ≤ 1

1+r
. On the other

hand, if c∗t−1 → 0, the l.h.s. of (11) becomes:

(1 + δ) r − qδ (1 + r) > 0, if q <
(1 + δ) r

(1 + r) δ
.

If q < (1+δ)r
(1+r)δ

, the continuity of the l.h.s. of (11) guarantees, that E
�
c∗t | c∗t−1

�
> c∗t−1 (and hence

a submartingale) for c∗t−1 close to 0. It follows, that for some c̃ ∈ �0; r
1+r

�
E
�
c∗t | c∗t−1 = c̃

�
= 0.

The assertion of the first part of the proposition now follows by defining ẽ = 1− c̃.

If q > (1+δ)r
(1+r)δ

, the l.h.s. of (11) is negative for all c∗t−1 ∈ [0; 1] and therefore E
�
e∗t | e∗t−1

�
> e∗t−1

for all et−1 ∈ [0; 1]. It follows, that e∗t is a submartingale on [0; 1]. Hence, the convergence

theorem for martingales applies, i.e. e∗t converges almost surely. It follows that on almost each

dividend path

lim
t→∞

e∗t
e∗t−1

= lim
t→∞

(1 + δt)

1 + (1− e∗t ) r + δt
= 1

must hold, which is only possible, if e∗t → 1 with probability 1.

It remains to show that the condition q < (1+δ)r
(1+r)δ

is consistent with the assumption that peuβ = 1

only for β ∈ (0; 1], but not for β = 0.

Lemma 11 q < (1+δ)r
(1+r)δ

and

q ≥ r

r + (δ − r) (1 + δ)β−1

can hold simultaneously only for β ∈ (0; 1], but not for β = 0.

Indeed,
r

r + (δ − r) (1 + δ)β−1
<
(1 + δ) r

(1 + r) δ
is equivalent to

(δ − r)
k
(1 + δ)β − 1

l
> 0,

which is always satisfied for β > 0. Note, that the logarithmic utility function represents the

limit case, β = 0, in which the equality holds.

26



Proof of proposition 5:

Assume that et ∈
k
max

q
peu; 1− peu + peur2

1−peu
r
; 1
�

.

The proposition will be proved separately for those periods in which the case-based decision-

makers hold a and those periods in which they hold b. First note that if γcbt = 1 holds, then the

case-based decision-makers continue to hold a at time t+ 1, iff δt+1 = δ so that in this case

pt+1 = pt = p
eu.

By assumption, the share of case-based decision-makers satisfies

c∗t = 1− e∗t ≤ 1− peu < peu,
since peu < 1

2
. If the price cannot rise higher than peu, the average return of the case-based

decision-makers is, therefore:

ṽcbt+1 = 1 +
δ

peu
,

whereas the average return of the population is given by

ṽt+1 = p
eu + δ + (1 + r) (1− peu) = 1 + r − rpeu + δ,

as long as e∗t+1 < peu holds. Furthermore, since 1 + δ
peu

> 1 + δ > ū, the young case-based

decision-makers invest in a as well so that γcbt+1 = 1.

Alternatively, if δt+1 = 0, then the highest return that the case-based decision-makers can

achieve from a is 1 < ū, therefore the young case-based decision-makers will choose b, achiev-

ing an average return of at most 1. Since this average return is smaller than the average return

of the population, given by:

ṽt+1 = p
eu + (1 + r) (1− peu) = 1 + r − rpeu,

the mass of the case-based decision-makers decreases, making it possible for the expected utility

maximizers to sustain the price of a at peu at time (t+ 1).

If δt+1 = δ, then the returns and the behavior of the investors in (t+ 2) is described exactly

as in (t+ 1), except in the case, in which the share of the case-based decision-makers has risen

above peu and does not allow the expected utility maximizers to reduce the price of the risky

asset to its fundamental value. This can happen, if the initial c∗t is relatively high, so that:

c∗t+1 =

�
1 + δ

peu

�
1 + r − rpeu + δ

c∗t > p
eu. (12)

It is, therefore, shown that if peu is sufficiently large, c∗t+1 < peu holds for all values of c∗t ∈
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(0; 1− peu). Indeed, rewrite (12) as

c∗t >
peu (1 + r − rpeu + δ)

1 + δ
peu

.

To exclude the case, in which the inequality in (12) holds, it is necessary that:
peu (1 + r − rpeu + δ)

1 + δ
peu

> 1− peu,
or that

− rpeu3 + peu2 (2 + r + δ)− (1− δ) peu − δ > 0. (13)

Note first that for δ = r
2q

(peu = 1
2
), the l.h.s. is negative and that for δ = r

q
(peu = 1), the l.h.s.

is positive. Using now the fact that peu = qδ
r

, rewrite (13) as:

q2δ2 (1− q) + δq (2q + qr + r)− r > 0
and since the l.h.s. of this expression is a convex quadratic function, there exists a δ̂, such that

for every δ > δ̂ (13) is satisfied.

The expected value of the share of the case-based decision-makers at time (t+ 2), given their

share at time t, can then be written as11:

E
�
c∗t+2 | c∗t , γcbt = 1

�
= c∗t q

�
1 + δ

peu

�
R+ δ

%
q
1 + δ

peu

R+ δ
+ (1− q) 1

R

&
+

+c∗t (1− q)
1

R

�
q
(1 + r)

R+ δ
+ (1− q) (1 + r)

R

�
,

where R = 1 + r − rpeu. Using simple algebra and the fact that peu = qδ
r

shows that

E
�
c∗t+2 | c∗t , γcbt = 1

�
> c∗t ,

if and only if

(q + r)R (R (1 + r) + δ (1− q)) + (1− q) (1 + r) (R+ δ (1− q)) (R+ δ) > (R+ δ)2R2

(14)

holds. If

peu =
qδ

r
= 1,

meaning that R = 1 and qδ = r, condition (9) simplifies to:

(1 + δ) r (δ − r + qr) > 0,

11 In fact, as above, it should be taken into account that the share of the case-based decision-makers might exceed
peu in (t+ 2) if the risky asset pays a high dividend. However, this will only increase the expected value of c∗t+2.
Since the argument relies on showing that the expected value of c∗t+2 exceeds c∗t , neglecting this effect has no
influence on the results.
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which is always satisfied, since δ > r holds by assumption. On the other hand, for

peu =
qδ

r
=
1

2
and, hence, R = 1 + r

2
and qδ = r

2
, (14) is equivalent to

qr

2
+
qr2

4
+
3r3

16
− 1
2
− r − δr − δ2r − δr2 > 0,

which is never satisfied, since
qr

2
<

r

2
<
1

2
qr2

4
< r2 < r

3r3

16
< r3 < r2 < δr

hold according to the assumption that δ > r, r ∈ (0; 1) and q ∈ (0; 1). Therefore,

E
�
c∗t+2 | c∗t , γcbt = 1

�
> c∗t

holds for δ = r
q

and since the expected value of c∗t+2 is continuous in δ, it follows that the process

c∗t , c∗t+2, c∗t+4... is a submartingale in some surrounding of δ = r
q
. At the same time,

E
�
c∗t+2 | c∗t , γcbt = 1

�
< c∗t

holds for δ = r
2q

. By continuity of the expected value of c∗t+2, there is, therefore, a value for δ,

δ̄ ∈
�
r
2q
; r
q

�
such that the expected value of c∗t+2 exceeds c∗t for δ > δ̄.

Now suppose that γcbt = 0. Similar arguments as those stated above allow to write the expected

value of c∗t+2 as:

E
�
c∗t+2 | c∗t , γcbt = 0

�
= c∗t q

(1 + r)

R+ δ

⎡⎣q
�
1 + δ

peu

�
R+ δ

+ (1− q) 1
R

⎤⎦+
+c∗t (1− q)

(1 + r)

R

⎡⎣q
�
1 + δ

peu

�
R+ δ

+ (1− q) 1
R

⎤⎦ .

Again, one should take into account that the mass of the case-based decision-makers could in-

crease above peu in period (t+ 1), when the dividend of the risky asset is low. However, this

would require that:
(1 + r)

1 + r − rpeu c
∗
t > p

eu,

or, equivalently

e∗t < 1− peu +
rpeu

2

1 + r
,
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which is excluded by the assumptions made.

Using simple algebra and the fact that peu = qδ
r

shows that

E
�
c∗t+2 | c∗t , γcbt = 0

�
> c∗t

holds if

(1 + r) [R (1 + r) + δ (1− q)] [R+ δ (1− q)] > (R+ δ)2R2 (15)

is satisfied. Note that for peu = 1, condition (15) is equivalent to

(1 + r) (1 + δ − r) > 0,
which is always satisfied. For peu = 1

2
, (15) becomes

3r2

8
+
r

4
+
r2δ

2
+
rδ

2
+

δ

2
> 0,

which is obviously satisfied for all positive values of r and δ. Since the expected value of c∗t+2 is

continuous in δ, it follows that there is a δ̌ ∈
k
r
2q
; r
q

�
such that

E
�
c∗t+2 | c∗t , γcbt = 0

�
> c∗t

for all δ > δ̌. Now choose the maximal of the three values δ̂, δ̌, δ̄ and denote it by δ̃. Let

p̃eu = qδ̃
r

. It follows that p̃eu ∈ �1
2
; 1
�

and that

E
�
c∗t+2 | c∗t

�
> c∗t ,

for peu > p̃eu and

et ∈
�
max

�
peu; 1− peu + peur2

1− peu
�
; 1

�
.

Since c∗t+2 and e∗t+2 sum to 1, it follows that

E
�
e∗t+2 | e∗t , γcbt = 0

�
< e∗t

E
�
et+2 | e∗t , γcbt = 1

�
< e∗t ,

if peu > p̃eu and

et ∈
�
max

�
peu; 1− peu + peur2

1− peu
�
; 1

�
are fulfilled simultaneously.

Proof of proposition 6:

In Lemma 19 in Sciubba (1999, p. 40) it is demonstrated, that a supermartingale bounded be-

tween [0; 1] and starting below 1 cannot converge to its upper boundary with probability 1. The

following argument follows closely the proof of Proposition 17 in Sciubba (1999, pp. 40-41).

Suppose that e∗t converges to 1 with strictly positive probability and denote the event on which
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this happens by Θ. Now consider e∗t on the event Θ and suppose that on Θ Pr{e∗t → 1} = 1.
Denote by Θ0 ⊆ Θ1 ⊆ ...Θt ⊆ ...Θ the natural filtration of Θ. Since Pr{Θ} > 0, and since the

process of the dividends is i.i.d., the law of large numbers applies and the distribution of divi-

dends on Θ coincides with the distribution of the dividends on Ω, the set of all possible dividend

paths. Especially, Pr{δt = δ | Θt−1} = Pr{δt = δ} = q. Therefore the process e∗t on Θ can

be described in exactly the same way, as the process e∗t on Ω and therefore e∗t is a supermartin-

gale on Θ. But, according to Lemma 19 in Sciubba (1999, p. 40) Pr{e∗t → 1 | Θ} 9= 1, since e∗t
is a supermartingale bounded above by 1. Therefore, there is no event with positive probability,

on which e∗t → 1 occurs almost surely. Hence, Pr {e∗t → 1} = 0 and the case-based decision

makers survive with probability 1.

Proof of proposition 7:

As was demonstrated in lemma 10, the condition

q ≥ r

r + (δ − r) (1 + δ)β−1

implies that peuβ = 1 and the expected utility maximizers will choose γeu = 1 in each period.

The case-based decision makers will always hold b, since their aspiration level is between 1 and

(1 + r). Therefore the price of awill be p∗t = e∗t = 1−c∗t for each t. The return of the case-based

decision makers is (1 + r) in each period, whereas the average return of the population is given

by

ṽt = e
∗
t + δt + (1− e∗t ) (1 + r) = 1 + δt + c

∗
t r.

Hence E
�
c∗t+1 | c∗t

�
can be written as:

E
�
c∗t+1 | c∗t

�
=

�
q
(1 + r)

1 + c∗t r + δ
+ (1− q) (1 + r)

1 + c∗t r

�
c∗t c∗t

This simplifies to:

(1− c∗t ) r (1 + c∗t r + δ)− q (1 + r) δ 0. (16)

For ct → 0 the left hand side becomes:

r (1 + δ)− q (1 + r) δ > 0, iff q <
(1 + δ) r

(1 + r) δ
.

For c∗t = 1, the left hand side is negative. Since the left-hand side of (16) is a quadratic function

with a negative coefficient in front of c∗2t , it follows that for q < (1+δ)r
(1+r)δ

, there exists a unique

ĉ ∈ (0; 1), for which the left hand side of (16) is 0. For c∗t > ĉ, c∗t is a supermartingale and vice

versa. Now denote by ê = 1− ĉ the share of expected utility maximizers corresponding to the

share ĉ of case-based decision makers. It follows that e∗t is a supermartingale for e∗t > ê and a
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submartingale for e∗t < ê.

If q ≥ (1+δ)r
(1+r)δ

, then c∗t is a supermartingale on the whole interval [0; 1]. Therefore e∗t is a sub-

martingale on [0; 1]. Hence, the convergence theorem for martingales applies, i.e. e∗t converges

almost surely. It follows that on almost each dividend path

lim
t→∞

e∗t
e∗t−1

= lim
t→∞

(e∗t+δt)
e∗t+δt+(1+r)(1−e∗t−1)

(e∗t−1+δt−1)
e∗t−1+δt−1+(1+r)(1−e∗t−2)

= 1.

must hold. Let e∗t = e∗t−1 = e∗t−2, then it follows that:

lim
t→∞

(e∗t + δt)

e∗t + δt + (1 + r) (1− e∗t )
= lim

t→∞
(e∗t + δt−1)

e∗t + δt−1 + (1 + r) (1− e∗t )
.

Note, however, that since δt is a stochastic process, this equality can only hold, if e∗t → 1 with

probability 1, hence if the average return of the expected utility maximizers coincide with the

average return of the society in each period of time.

The fact that q < (1+δ)r
(1+r)δ

is consistent with peuβ = 1 only for β (0; 1], but not for β = 0 is analogous

to the one given in lemma 11.

Proof of proposition 8:

Rewrite conditions (11) and (16) as:

− (1 + r)2 c∗2t − (1 + r) c∗t (1 + δ − r) + (1 + δ) r − qδ (1 + r)
and

−r2c∗2t − (1 + r) c∗t (1 + δ − r) + (1 + δ) r − qδ (1 + r) ,

respectively. One easily sees that

− (1 + r)2 c∗2t − (1 + r) c∗t (1 + δ − r) + (1 + δ) r − qδ (1 + r)
< −r2c∗2t − (1 + r) c∗t (1 + δ − r) + (1 + δ) r − qδ (1 + r)

always holds. Hence, the sole positive root of (11) ẽ is always greater than the sole positive root

of (16), ê.

Proof of proposition 9:

Consider first the case of β = 1. Note that for each peu1 it is possible to choose the initial mass of

expected utility maximizers e∗t to be sufficiently high so as to support the price of a at peu1 in the

next period. The restrictions on the aspiration level of the case-based implies that they will hold

b in each period. Their average return is therefore ṽcbt = (1 + r), whereas the average return of
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the population is ṽt = 1 + δt + r − rpeu1 . Hence E
�
c∗t+1 | c∗t

�
can be written as:

E
�
c∗t+1 | c∗t

�
=

�
q

(1 + r)

1 + r − rpeu1 + δ
+ (1− q) (1 + r)

1 + r − rpeu1

�
c∗t c∗t

This easily simplifies to:

− q (1 + r) δ −rpeu1 (1 + r − rpeu1 + δ) (17)

and by using the fact that peu1 =
qδ
r

one obtains that c∗t is a submartingale, if

qδ2 (1− q) > 0,
which is always satisfied for q and δ ∈ (0; 1)12. Since c∗t is a submartingale and since e∗t = 1−c∗t ,
it follows, that e∗t is a supermartingale on

�
max

�
peu1 ;

peu1 (1+r−rpeu1 )
(1+r)

�
; 1

�
.

Now suppose that β ∈ (0; 1]. Now it is no longer possible to choose the mass of the case-based

investors in such a way that the equilibrium price equals peuβ . Indeed, to support the price at peuβ
in presence of a positive mass of case-based investors, the expected utility maximizers would

have to choose a higher γeu. But they would not be ready to do so, unless they could pay a

lower price for the risky asset than peuβ . However, it is easy to see that if the share of case-based

decision-makers in the market converges to 0, the equilibrium price will converge to peuβ . In the

limit, the condition for c∗t to be a submartingale is determined by equation (17) and is equivalent

to:

peuβ ∈
�
(1 + r + δ)−

s
(1 + r + δ)− 4qδ (1 + r); (1 + r + δ) +

s
(1 + r + δ)− 4qδ (1 + r)

�
.

Since peuβ is increasing in β and since peu1 satisfies this condition, it follows that

peuβ < (1 + r + δ) +
s
(1 + r + δ)− 4qδ (1 + r)

for all β ∈ [0; 1]. Moreover, for β = 0,

peu0 = (1 + r + δ)−
s
(1 + r + δ)− 4qδ (1 + r),

hence, for all β ∈ (0; 1], the condition is satisfied and c∗t is a submartingale in some surrounding

of ct = 0, implying that there exists an ě (β) ∈ (0; 1) such that e∗t is a supermartingale on

[ě (β) ; 1].

12 For qδ = 0 both the case-based decision makers and the expected utility maximizers hold only asset b and
achieve therefore identical returns in each period of time. The mass of the case-based decision makers thus remains
constant.
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