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Abstract

Agents in a large population are randomly matched to play a ma-
terial payoff game. They may have preferences that are different from
the material payoffs. Agents learn equilibrium strategies according to
their preferences before evolution changes the preference distribution
in the population according to fitness. When agents know the pref-
erences of the opponent in a match, only efficient symmetric strategy
profiles of the material payoff game can be stable. When agents do
not know the preferences of the opponent, only Nash equilibria of the
material payoff game can be stable. For 2 × 2 symmetric games I
characterize preferences that are stable.
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1 Introduction

The goal of this paper is to analyze the stability of strategies and preferences
in symmetric games under two-speed evolution when the set of admissible
preferences is not restricted. Two-speed evolution refers to the case when the
evolution of behavior for given preferences is much (infinitely) faster than the
evolution of preferences. Two-speed evolution is an extension of the indirect
evolution approach of Güth and Yaari (1992) to multiple equilibria that are
stable under evolution of strategies.

Indirect evolution works on preferences through equilibrium strategies.
A game is given by a function that for each strategy profile specifies the
material payoff (fitness) to the players. Each player, however, is supplied
with genetically programmed preferences over strategy profiles, represented
by a von Neumann-Morgenstern utility function that does not necessarily
coincide with the material payoff function. When matched, players play
the game given these preferences. Players arrive at an equilibrium of this
subjective game by a learning process and therefore only ’stable’ equilibria are
possible.1 The evolutionary success of the players is determined by the fitness
they receive from playing equilibrium strategies. Different preferences lead
to different strategies and, generally, to different fitness. Evolution selects
preferences with higher fitness. I am interested in certain stable stationary
points of this process.

Some work using the indirect evolution approach has been done before
for certain games. For example, evolution of trust (Güth and Kliemt, 1998),
evolution of fairness (Huck and Oechssler, 1999), evolution of reciprocity
(Sethi and Somanathan, 2001), and evolution of preferences for sales in
duopoly (Dufwenberg and Güth, 1999) have been analyzed. However, the
set of admissible preferences in those papers is usually assumed to be a one-
dimensional subset of all possible preferences. This restriction may lead to
results that are not robust to an enlargement of the set of admissible pref-
erences (see Bester and Güth, 1998; Bolle, 2000; and Possajennikov, 2000).
Therefore, it is important to consider as large a set of admissible preferences
as possible. I consider as admissible any preferences that can be represented
by a von Neumann-Morgenstern expected utility function.

I define a population state as a distribution of preferences and distribu-

1Güth and Yaari (1992) analyzed a game in which ’stable’ equilibrium was unique.
Here I do not require a ’stable’ equilibrium to be unique.
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tions of strategies in each subpopulation with given preferences, and I check
for stability of population states against particular perturbations. Prefer-
ences that are present in a stable population state are called indirectly sta-
ble. A population state induces a strategy profile. Strategy profiles that
are induced by a stable population state are considered indirectly stable. I
am interested in the following questions. Which preferences are stable for a
given game? Are selfish preferences, that is, preferences whose utility func-
tion coincides with the material payoff function, stable? Is a stable strategy
profile an equilibrium of the material payoff game? Is it efficient from the
material payoff point of view? For the first question, I give a relatively com-
plete answer only for 2× 2 games, since in larger games the set of admissible
preferences is too large. Other questions can be answered quite generally.

I analyze two informational assumptions. In the complete information
case agents in a match know the preferences of the opponent. With in-
complete information they know only the distribution of preferences in the
population. The results are strikingly different: with complete information
only efficient strategy profiles can be stable, while with incomplete informa-
tion only Nash equilibria of the material payoff game can be stable. Selfish
preferences are not necessarily stable with complete information, while with
incomplete information they are (almost) always stable.

These results are in line with the results of similar models of Ely and Yi-
lankaya (2001), Ok and Vega-Redondo (2001), and Dekel et al. (1998). The
last paper has the model closest to mine as it also considers an infinite pop-
ulation playing a symmetric game, discrete distribution of preferences, and
a static stability concept with respect to evolution of preferences. The main
difference of my model is the consideration of two-speed evolution, that is,
the requirement that the equilibrium is ’stable’ with respect to learning. To
my knowledge, only in Sandholm (2001) two-speed evolution was explicitly
considered, but the analysis was restricted to certain 2 × 2 games and cer-
tain preferences. Another difference is in the formulation of stability in the
incomplete information case, where I allow for small changes in the strategy
of incumbents in the post-entry population. Compared with the results of
Dekel et al. the first difference leads to a stronger condition for stability of
strategy profiles, while the second one leads to a weaker condition. These
differences are illustrated on examples.

I formulate the model of two-speed evolution in symmetric games in Sec-
tion 2. Section 3 analyzes the complete information case and Section 4 the
incomplete information case. Section 5 concludes.
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2 The Model

2.1 Games

2.1.1 General Games

The basis for the analysis is a given two-player symmetric finite game G =
(N, S, u), N = {1, 2}, u : S × S → R2, u(si, sj) = u1(si, sj) = u2(sj, si).
The payoff function u(·) is the material payoff function and the game G is
the material payoff game. The material payoff function represents fitness
on which evolution works. The mixed strategy extension ∆S of the set
S is denoted by Σ. Let |S| = m, σi = (pi

1, . . . , p
i
m) ∈ Σ and let σ =

(σ1, σ2) ∈ Σ × Σ be a strategy profile. The material payoff function u(·)
extends to the set of mixed strategy profiles u(σ) =

∑m
i=1

∑m
j=1 p1

i p
2
ju(si, sj).

A strategy profile σ = (σ1, σ2) is symmetric if σ1 = σ2. A symmetric strategy
profile σ is efficient if for any other symmetric strategy profile σ′ u(σ) ≥
u(σ′). A symmetric strategy profile σ is strongly efficient if for any other
strategy profile σ′ ∈ Σ (not necessarily symmetric) u(σ) ≥ u(σ′). A correlated
strategy profile σc specifies the probability with which each pair of pure
strategies is played, that is, σc ∈ ∆(S × S), while a usual strategy profile
σ ∈ ∆S ×∆S.

For a given strategy σj of player j the best response BRi(σj) of player i
is the set of strategies σi such that for any other strategy ρi ∈ Σ u(σi, σj) ≥
u(ρi, σj). The best response correspondence BR maps each strategy profile
σ = (σ1, σ2) to the set BR(σ) = BR1(σ2) × BR2(σ1). A strategy profile σ
is Nash equilibrium if σ ∈ BR(σ). A Nash equilibrium σ is symmetric if σ
is symmetric. A strategy σi is neutrally stable strategy if ∃ε∗ > 0 such that
(1−ε)u(σi, σi)+εu(σi, σj) ≥ (1−ε)u(σj, σi)+εu(σj, σj) ∀σj ∈ Σ ∀ε ∈ (0, ε∗).

2.1.2 2× 2 Games

Some of the results in the paper are for 2 × 2 games. A 2 × 2 symmetric
material payoff game is given by the symmetric bimatrix

s1 s2

s1 α, α β, γ
s2 γ, β δ, δ

I focus on games where one symmetric pure strategy profile is more ef-
ficient than the other, that is, α > δ. The analysis is easily adapted for
the case α = δ but it adds an extra case without much additional insight.
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By adding a constant to all payoffs and multiplying all payoffs by a positive
constant, the game can be transformed into

s1 s2

s1 1, 1 b, c
s2 c, b 0, 0

where b = β−δ
α−δ

, c = γ−δ
α−δ

. These transformations do not affect efficiency of
strategy profiles, the equilibria of the game and the notion of stability I use.

The following lemma is useful. I identify a mixed strategy σi = (p, 1− p)
with the probability p of playing s1.

Lemma 1 If b + c ≤ 2 the symmetric efficient strategy profile is (1, 1) with
fitness 1; otherwise the symmetric efficient strategy profile is (p, p), where

p = b+c
2(b+c−1)

, with fitness (b+c)2

4(b+c−1)
.

Proof. The material payoffs of both players in a symmetric strategy
profile (p, p) is p2 + p(1 − p)(b + c). The maximum of this expression with
respect to p ∈ [0, 1] is achieved at p∗ = 1 if b + c ≤ 2, and at p∗ = b+c

2(b+c−1)

if b + c > 2. Substituting the values p∗ into the expression for the material
payoffs leads to the fitness in the formulation of the lemma.

The class of symmetric 2 × 2 games can be divided into two subclasses
according to whether the efficient symmetric strategy profile is pure or mixed.
Further division can be done, according to the best reply correspondence.

1. b + c > 2. The efficient symmetric strategy profile is mixed.

(a) 1 ≥ c, b > 0. The unique symmetric equilibrium is (s1, s1).

(b) 1 < c, b ≤ 0. The unique symmetric equilibrium is (s2, s2).

(c) 1 < c, b > 0. The unique symmetric equilibrium is mixed, but
is generally not equal to the efficient symmetric strategy profile.
They are equal only when b = c.

2. b + c ≤ 2. The efficient symmetric strategy profile is (s1, s1).

(a) 1 ≥ c, b ≥ 0, at least one inequality is strict. If b > 0 the unique
symmetric equilibrium is (s1, s1), otherwise (s2, s2) is also an equi-
librium.

(b) 1 > c, b < 0. Coordination Problem: two pure strategy symmetric
equilibria (s1, s1), (s2, s2) and one mixed.
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(c) 1 ≤ c, b ≤ 0, at least one inequality is strict. If 1 < c it is
Prisoners’ Dilemma: the unique equilibrium is (s2, s2). Otherwise
(s1, s1) is also an equilibrium.

(d) 1 < c, b > 0. Chicken type game. The unique symmetric equilib-
rium is mixed.

(e) 1 = c, b = 0. Any symmetric strategy profile is an equilibrium.

I want to find which combinations of preferences and strategy profiles are
stable for each type of games.

2.2 Preferences

2.2.1 General Games

Let a material payoff game G be given. Subjective preferences, which do not
have to coincide with the material payoffs, are similarly defined on the set
of strategy combinations S × S. Preferences of agent i can be represented
by a utility function vi : S × S → R. Preferences are assumed to satisfy
the axioms of expected utility of von Neumann and Morgenstern. Then the
utility function vi(·) extends to the set of mixed strategy profiles Σ×Σ in the
straightforward way, vi(σ

1, σ2) =
∑m

j=1

∑m
k=1 p1

jp
2
kvi(sj, sk). Preferences are

determined by the values of the utility function representing these preferences
on pure strategy profiles. The set of admissible preferences WG for a given
game G is equivalent to the set Rm2

. In what follows I identify preferences
with the utility function representing them.

Analogously with best responses with respect to the material payoffs,
best responses with respect to subjective preferences are defined. For a given
strategy σk ∈ Σ the best response BRi(σ

k) of a player with preferences vi is
the set of strategies σi ∈ Σ such that for any ρi ∈ Σ vi(σ

i, σk) ≥ vi(ρ
i, σk).

2.2.2 2× 2 Games

In 2 × 2 games it is convenient to divide admissible preferences into the
following types:

1. (St1): vi(s1, s1) ≥ vi(s2, s1), vi(s1, s2) ≥ vi(s2, s2), at least one inequal-
ity is strict;

2. (CO): vi(s1, s1) > vi(s2, s1), vi(s1, s2) < vi(s2, s2);
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3. (NC): vi(s1, s1) < vi(s2, s1), vi(s1, s2) > vi(s2, s2);

4. (St2): vi(s1, s1) ≤ vi(s2, s1), vi(s1, s2) ≤ vi(s2, s2), at least one inequal-
ity is strict;

5. (BB): vi(s1, s1) = vi(s2, s1), vi(s1, s2) = vi(s2, s2).

Preferences vi belong to type k if vi satisfies the inequalities for type k.
Players with type (St1) preferences perceive the game as having (possibly
weakly) dominant strategy s1, while players of type (St2) think that s2 is
dominant. Type (CO) players (COordinators or COnformists) perceive that
s1 is best reply to s1 and s2 on s2, while type (NC) (NonConformists) players
prefer to play s1 on s2 and s2 on s1. Finally, there are preferences of type
(BB) (”Big Bores”) for which the strategies are equivalent. The players with
such preferences are indifferent between strategies for any strategy of the
opponent and therefore can play any strategy in equilibrium.

An interpretation of having different preferences can be seen on the exam-
ple of Prisoners’ Dilemma. Some agents may have selfish preferences while
others might not like to let their opponents down and therefore have a higher
subjective utility from mutual cooperation than from defecting against a co-
operator. Yet others can be heroic unconditional cooperators who derive a
higher utility even from being defected upon, that is, they prefer to sacrifice
themselves in favor of the other player.

The subjective utility functions can represent many preferences. It is
clear from the definition of types that such preferences as biases towards a
particular strategy (Sandholm, 2001), the desire to conform, and the desire to
differ can be represented. Altruistic and spiteful preferences (Possajennikov,
2000) can be represented as well since one can compute the sums (or the dif-
ferences) of the material payoffs for each strategy combination. Furthermore,
preferences represented by any well behaved function of material payoffs are
admissible too. Note that the preferences of a player are independent of the
preferences of the opponent; thus the reciprocal preferences of Levine (1998)
and Sethi and Somanathan (2001) are not directly considered in this setup.
However, their main property of being able to use in equilibrium different
strategies against opponents with different preferences who nevertheless play
the same strategy can be imitated by (BB) preferences.

Though the agents know their preferences, they do not need to know what
the material payoffs are. Evolution, described in the next subsection, will
choose those preferences that have higher fitness.
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2.3 Evolution

There is a large (infinite) populations of agents randomly matched each pe-
riod to play the given symmetric material payoff game G. The agents are
characterized by the subjective preferences they have, and by strategies they
play. Both the distribution of preferences in the population and strategies
used by agents evolve. The change in strategies is, however, much faster, and
is referred to as learning, while the change in the distribution of preferences
is truly evolutionary.

With respect to the strategies of the players I consider two models differ-
ing in informational assumptions. In a match, the individuals either know the
preferences of the opponent or they do not. The models differ significantly
to deserve to be described separately in the following sections, though they
have some common features. The differences also influence the evolution-
ary process on preferences, but in this section I highlight common points of
evolution of preferences that are independent of informational assumptions.
Suppose for the moment that given the strategies played by the individu-
als one can calculate the expected fitness from a play of the material payoff
game.

I focus on states that contain finite number of different preferences
{v1, . . . , vn}. The state of the population at a given period of evolutionary
time can be described by the proportions of players with each preferences,
µ1, . . . , µn,

∑n
i=1 µi = 1. Due to evolution the proportions change over time.

Let the average (over different strategies employed in the subpopulations) ex-
pected material payoff in the population of players with preferences vi from
an encounter with a player with preferences vj be uij. Then the average
expected fitness of players with preferences vi is ui =

∑n
j=1 µjuij. The main

assumption on the evolutionary process is that it is monotone in the follow-
ing sense: the proportion of players with preferences vi increases relative to
the proportion of players with preferences vj iff ui > uj.

I do not specify the process further, but focus instead on stationary states.
A state is stationary if average fitness in all subpopulations is the same. I
check which stationary states are robust against the appearance of an arbi-
trarily small proportion of mutants with some other preferences, similar to
the concepts of evolutionarily and neutrally stable strategy. Before speci-
fying this evolutionary stability concept I formalize the learning process on
strategies.
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3 Complete Information

3.1 General Games

In this section the individuals in a match know the preferences of the op-
ponent. Therefore they can use different strategies against opponents with
different preferences. The state of the subpopulation of players with prefer-
ences vi is described by the proportions of players that use each strategy sk

against an opponent with preferences vj. Denote this proportion by xij
k . The

state of the population can be described by a 3-dimensional matrix
µ1 µ2 . . . µn

(x11
1 , . . . , x11

m ) (x21
1 , . . . , x21

m ) . . . (xn1
1 , . . . , xn1

m )
(x12

1 , . . . , x12
m ) (x22

1 , . . . , x22
m ) . . . (xn2

1 , . . . , xn2
m )

. . . . . . . . . . . .
(x1n

1 , . . . , x1n
m ) (x2n

1 , . . . , x2n
m ) . . . (xnn

1 , . . . , xnn
m )

where the first row represents the proportions of agents with different pref-
erences in the population, the column i under µi represents what strategies
players with preferences vi use against players with each of the other prefer-
ences, and the row j represents what strategies are used against players with
preferences vj. Let xij = (xij

1 , . . . , xij
m). The vector xij induces a mixed strat-

egy. Note that players cannot condition their strategies on the role in the
game (player 1 or 2) but only on the preferences of the opponent. Therefore
vectors xii induce a symmetric strategy profile in the symmetric game be-
tween players with preferences vi, while the pair of vectors {xij, xji} induces
a strategy profile in the asymmetric game between players with preferences
vi and vj. I refer to xii as the state of the game between players with pref-
erences vi and to the pair {xij, xji} as the state of the game between players
with preferences vi and vj. The state of the whole population is denoted as
{(µi)

n
i=1; (x

ij)n
i,j=1}, where µi 6= 0.

In each subpopulation with given preferences there is a learning process.
Due to this process the proportions of players using given strategies change
over time. The learning process operates on the subjective preferences of
the players. Learning in a match against a player with preferences vi is in-
dependent of learning in a match against a player with other preferences
vj. Therefore there are n one-population learning processes for each sub-

population and n(n−1)
2

two-population learning processes, one for each pair
of subpopulations. The learning processes are much faster than the evolu-
tionary process on preferences, thus µi’s are fixed from the point of view of
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learning.
The game between players with preferences vi and vj is a finite game

Gi,j = (N, S, {vi, vj}). The best response correspondence maps each strategy
profile σ = (σi, σj) to BRi,j(σ) = BRi(σ

j)×BRj(σ
i). A strategy profile σ is

a Nash equilibrium in the game Gi,j if σ ∈ BRi,j(σ). For a set X of strategy
profiles BRi,j(X) = ∪σ∈XBRi,j(σ).

I use the following (weak) notion of stability with respect to the learning
process. First, if the learning process in not in a Nash equilibrium, players
will be tempted to change strategies. Therefore only Nash equilibria can
be learning stable. Second, players may change occasionally to alternative
best replies. Learning should be able to lead back to the original state. The
notion of the minimal set closed under rational behavior (curb), due to Basu
and Weibull (1991), fulfills these requirements.

Definition 1 A set X of strategy profiles is closed under rational be-
havior (curb) in the game between players with preferences vi, vj if X is the
product of nonempty compact subsets of strategy sets Σ and BRi,j(X) ⊂ X.
A minimal curb set is a curb set that does not contain any proper subset
that is a curb set.

For a given pair of preferences, the strategy profile used in the play be-
tween the subpopulations is learning stable if it is a Nash equilibrium and
belongs to a minimal curb set. The idea is that if an equilibrium does not
belong to a curb set, occasional use of alternative best replies will lead out
of the set and the play will never come back. For a game between players
with the same preferences, that is, for a one-population learning process the
additional requirement is that the Nash equilibrium is symmetric.

Definition 2 The state xii of the game between players with preferences vi

is learning stable if xii induces a strategy profile that is a symmetric Nash
equilibrium and belongs to a minimal curb set in this game.

Definition 3 The state {xij, xji} of the game between players with prefer-
ences vi and vj is learning stable if {xij, xji} induce a strategy profile that
is a Nash equilibrium and belongs to a minimal curb set in this game.

I will sometimes call an equilibrium strategy profile that belongs to a
minimal curb set ’learning stable equilibrium’.

Now consider the whole population. The population state is learning
stable if all games in it reached learning stable states.
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Definition 4 A population state {(µi)
n
i=1; (x

ij)n
i,j=1} is learning stable if

xii is learning stable ∀i and pairs {xij, xji} are learning stable ∀i, j, i 6= j.

Given the population state, the expected fitness of each subpopulation can
be calculated. The expected fitness of a player with preferences vi against a
player with preferences vj is uij =

∑m
k=1

∑m
l=1 xij

k xji
l u(sk, sl). Against a ran-

domly chosen opponent, the expected fitness of a player with preferences vi

is ui =
∑n

j=1 µjuij. This is the average expected fitness of the subpopulation
of players with preferences vi that is used for evolution.

Let the population state be {(µi)
n
i=1; (x

ij)n
i,j=1}. The set {v1, . . . , vn} is

called the support of the population state. A population state is station-
ary with respect to evolution if all subpopulations have the same average
expected fitness ui.

The evolutionary process alone does not bring new preferences to the pop-
ulation. Any monomorphic population, that is, a population where all agents
have the same preferences is stationary. Therefore I check the robustness of
a state against an invasion by mutants.

Definition 5 A stationary population state {(µi)
n
i=1; (x

ij)n
i,j=1} is indirectly

evolutionarily stable if

(i) it is learning stable;

(ii) ∀vk /∈ {vi}n
i=1∃ε∗ > 0 such that ∀ε ∈ (0, ε∗),∀i ∀xik, xki, xkk such that

xkk is learning stable and {xik, xki} are learning stable, ui > uk in the
population state {(1− ε)(µi)

n
i=1 + εµk, (x

ij)n
i,j=1, (x

ik)n
i=1, (x

ki)n
i=1, x

kk}.

The second part of the definition requires the state to be evolutionary
stable against an appearance of an arbitrarily small proportion of mutants
with arbitrary preferences, whose behavior, and the behavior of other players
against them is learning stable. This justifies the use of the term ’indirect’ in
the definition: stability with respect to evolutionary process is affected only
through learning stable behavior. Note that the relative proportions and
the behavior of the incumbents against each other do not change after the
appearance of the mutants. With probability (1−ε) an incumbent is matched
against another incumbent and gets on average the same fitness as before the
appearance of the mutants. The second condition in the definition can be
rewritten as (1− ε)u+ εuik > (1− ε)

∑
j µjukj + εukk ∀i for sufficiently small

ε, where u is the fitness incumbents get against each other (necessarily the
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same for all incumbents in a stationary state), uik is the fitness incumbents
i get against mutants, ukj is the fitness mutants get against incumbents j
and ukk is the fitness mutants get among themselves. Thus, one can compare
first the fitness of incumbents among themselves and the fitness of mutants
against incumbents, and only if they are equal, the fitness against mutants
counts.

Lemma 2 No population state with finite n is indirectly evolutionarily sta-
ble.

Proof. Consider mutants that are indifferent between all strategies.
There are infinite number of such preferences obtained by the linear transfor-
mations from one another. Therefore there are such preferences that are not
present in the population with finite number of preferences. The mutants can
mimic such equilibrium strategies in the population that bring the highest
fitness against particular incumbents (see the proof of Lemma 3). All these
equilibria in the games between incumbents and mutants are learning stable
since for mutants the unique minimal curb set is the set of all strategies. The
mutants then get not lower fitness than the incumbents.

One needs to relax conditions on stability in the flavor of neutral stability,
so that mutants can appear but they will not grow.

Definition 6 A stationary population state {(µi)
n
i=1, (x

ij)n
i,j=1} is indirectly

stable if

(i) it is learning stable;

(ii) ∀vk /∈ {vi}n
i=1,∃ε∗ > 0 such that ∀ε ∈ (0, ε∗),∀i ∀xik, xki, xkk such that

xkk is learning stable and {xik, xki} are learning stable, ui ≥ uk in the
population state {(1− ε)(µi)

n
i=1 + εµk, (x

ij)n
i,j=1, (x

ik)n
i=1, (x

ki)n
i=1, x

kk} .

The notion of indirectly stable state will be the central notion in the
paper. This notion of stability is a rather weak one, since it allows mutants
to appear (though not grow). Nevertheless, as will be shown, even this weak
notion of stability is often too restrictive.

A population state consists of preferences and strategies the players with
these preferences use. Below I formulate when given preferences are stable,
and when given strategies are stable.
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Definition 7 Preferences vk are indirectly stable if there exists an indi-
rectly stable population state {(µi)

n
i=1, (xij)

n
i,j=1} with vk in the support of this

state.

A given population state induces a symmetric strategy profile that may
be correlated. A pair of players with given preferences {vi, vj} is matched
with probability µiµj. This match induces strategy profile (xij, xji). Averag-
ing over all matches, the induced strategy profile in the population state is∑n

i=1

∑n
j=1 µiµj(x

ij, xji). A given pure strategy profile (sk, sl) is played with

probability pkl =
∑n

i=1

∑n
j=1 µiµjx

ij
k xji

l . Denote by x = (pkl)
m
k,l=1 the corre-

lated strategy profile induced by a population state.

Definition 8 A (correlated) strategy profile x = (pkl)
m
k,l=1 is indirectly sta-

ble if there exists an indirectly stable population state that induces this strat-
egy profile.

Compared with the definition of stable outcome in Dekel et al. (1998)
there is a couple of differences. First, I require that the state is learning
stable, that is, only equilibria that belong to a minimal curb set are played
while Dekel et al. allow for any equilibrium. This, taken by itself, would lead
to more stringent conditions for stability. But I also require that the mutants
play such an equilibrium among themselves, while Dekel et al. also allow for
any equilibrium. This would lead to weaker conditions for stability since some
equilibria are now unattainable for mutants. However, since the mutants
always can be of the type that is indifferent between strategies (see Lemma
2), for whom any equilibrium is learning stable, the latter requirement does
not restrict the mutants. Therefore, my stability requirement is stronger, and
the set of indirectly stable strategy profiles of this paper is a subset of stable
outcomes of Dekel et al. Furthermore, I consider the state of population as
the basic concept, while Dekel et al. focus on outcomes, i.e. strategy profiles.

Analogously with Dekel et al. one can show that in an indirectly stable
state the incumbents get the same fitness in any match.

Lemma 3 In an indirectly stable population state {(µi)
n
i=1, (xij)

n
i,j=1} ui =

uj = uij ∀i, j.

Proof. Let mutants be of the type that is indifferent among all strate-
gies. Suppose that players with preferences vi get the highest fitness against
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players with preferences vj, i.e. uij = maxk ukj. Let the mutants play against
the players with preferences vj the same strategy as players with preferences
vi do, and let the players with preferences vj play the same strategy against
mutants as they did against the preferences vi. This state of the game be-
tween mutants and players with preferences vj is learning stable. In the same
way let the mutant imitate against each incumbent the subpopulation that
plays a strategy that has highest fitness against this incumbent. Such states
of the games between mutants and incumbents are learning stable. Then the
mutants achieve fitness composed of maximal fitness against each incumbent,
and so, unless all other incumbents also achieve the same fitness, the mutants
have higher fitness than the incumbents. Thus, against a given incumbent
other incumbents should have the same fitness.

Suppose now that ∃vi, vj such that uij < ui. From the reasoning above
ujj = uij < ui. Consider again the mutants that are indifferent among all
strategies. Let the mutants play the same strategy against everybody as
players with preferences vj play, and let the mutants play among themselves
a strategy that players with preferences vk play among themselves, where
vk is such that ukk = uik > ui. The fitness of players with preferences vj

and the mutants against the incumbents is the same. Against the mutants
the players with preferences vj get ujj while the mutants get fitness equal to
uik > ui > ujj.

The lemma shows that in an indirectly stable state, either all incumbents
play the same strategy against each other, or, if they play different strategies,
they have the same fitness. Since in a population state players with given
preferences play among themselves a symmetric strategy profile, the fitness
in an indirectly stable state can be induced by a non-correlated symmetric
strategy profile.

Still following the line of reasoning of Dekel et al. (1998) one shows that
only efficient strategy profiles are indirectly stable, and that efficient strict
Nash equilibria are indirectly stable.

Lemma 4 If a symmetric strategy profile x is indirectly stable, then it is
efficient.

Proof. Suppose there exists an inefficient strategy profile that is indi-
rectly stable. Then there exists an indirectly stable population state that
induces this strategy profile. Consider again the mutants that are indifferent
among all strategies. Suppose they imitate the behavior of the incumbents
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everywhere, and play the efficient strategy profile among themselves. Such
mutants will have higher fitness than the incumbents, therefore the popula-
tion state is not indirectly stable, a contradiction.

Preferences that do not play the efficient symmetric strategy profile among
themselves cannot be stable. The questions posed in the introduction have
the following answers in the complete information case: selfish preferences
are not always stable (since they play a Nash equilibrium of the material pay-
off game and it is not necessarily efficient); stable strategy profiles are not
always Nash equilibria of the material payoff game (by the same argument);
stable strategy profiles are efficient.

Lemma 5 If a symmetric strategy profile x is efficient and it is a strict Nash
equilibrium of the material payoff game, it is indirectly stable.

Proof. Consider a monomorphic population of players for whom the
pure strategy of the efficient strategy profile is dominant. If mutants appear,
the incumbents continue to play the same strategy. Since it is a strict Nash
equilibrium, the mutants can achieve the same payoff against incumbents
only by playing the same strategy. Then both mutants and incumbents play
the same strategy and have the same fitness.

The indifferent preferences, so often used to upset an unstable population
state, can always play the efficient symmetric strategy profile. However, even
if they do so, they are not stable if there exists an asymmetric strategy profile
with a higher fitness at least for one player.

Lemma 6 Preferences that are indifferent among strategies are indirectly
stable iff the symmetric efficient strategy profile is strongly efficient and there
is no asymmetric strategy profile in which one player has the same fitness as
in the efficient symmetric strategy profile while the other not.

Proof. Consider a mutant that is also indifferent among all strategies.
All strategy profiles, including asymmetric ones, are learning stable equilibria
of the game between mutants and incumbents. Therefore, if the efficient
strategy profile is not strongly efficient, the mutants can achieve fitness of the
asymmetric strategy profile, higher that the incumbents are getting. If there
is no such asymmetric strategy the mutants cannot achieve fitness higher
than the incumbents. If there is asymmetric strategy with the same fitness
for one player but lower for the other, the mutants can achieve the same
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fitness as incumbents against incumbents and play the efficient symmetric
strategy profile among themselves. The incumbents then have lower fitness
against mutants and thus the state is not indirectly stable.

3.2 2× 2 Games

For 2× 2 symmetric games the notion of learning stability in one population
has following consequences. If one of the strategies is strictly dominant, the
unique Nash equilibrium is strict and therefore learning stable. If the game
has two pure strategy symmetric equilibria but one is in dominated strategies,
the dominated equilibrium is not learning stable. In coordination games the
two pure strict equilibria are learning stable, while the mixed equilibrium
is not. In chicken type games the unique symmetric mixed equilibrium is
learning stable. In games with equivalent strategies any symmetric strategy
profile is a learning stable equilibrium.

In previous section I divided preferences in 2×2 games into types. Players
with preferences of type (St1) always play strategy s1 in a one-population
learning stable state; analogously players of type (St2) always plays s2. A
mixed strategy can be played in a one-population learning stable state only
by players with preferences of types (NC) and (BB). Preferences of type
(BB), however, cannot be stable, if the symmetric efficient strategy profile
is not strongly efficient. Since only efficient symmetric strategy profiles can
be played in an indirectly stable state, I have to check only the states with
efficient strategy profiles.

Proposition 1 In symmetric 2×2 games following preferences are indirectly
stable:

1. If b + c > 2 no preferences are indirectly stable;

2. If b + c ≤ 2 then

(a) if 1 > c then

i. if b > 1 preferences of type (St1), and some preferences of
type (CO);

ii. if b = 1 preferences of types (St1) and (CO);

iii. if b < 1 preferences of types (St1), (CO), and (BB);

(b) if c = 1 then if b = 1 preferences of types (St1), (CO), and (BB);
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(c) otherwise no preferences are indirectly stable.

Proof. Consider first the case with b + c > 2. The symmetric efficient

outcome is mixed, with p = b+c
2(b+c−1)

and fitness (b+c)2

4(b+c−1)
. Since only the

efficient strategy profile can be stable, only preferences of types (BB) and

(NC) can be stable. When b + c > 2 it holds that either b > (b+c)2

4(b+c−1)
or c >

(b+c)2

4(b+c−1)
, therefore preferences of type (BB) cannot be stable. Mutants of type

(St1) get b against preferences of type (NC) in learning stable equilibrium,
and mutants of type (St2) get c against preferences of type (NC) in learning
stable equilibrium. Therefore preferences of type (NC) cannot be stable
either.

Consider now the case when b+c ≤ 2. Preferences of types (NC) and (St2)
cannot be stable because they never play the efficient symmetric strategy
profile (s1, s1). From Lemma 6 preferences of type (BB) are stable iff b <
1, c < 1 or b = 1, c = 1. In this case there is no possibility for a mutant to
get fitness higher than 1, or get fitness 1 while incumbents get less, therefore
preferences (St1) and (CO) that play (s1, s1) are indirectly stable as well.

In prisoners’ dilemma and chicken type games (c > 1) preferences of type
(St1) are not stable since mutants of type (St2) can appear and get c > 1
in a learning stable state. Let any preferences of type (CO) be parametrized
without loss of generality by the completely mixed strategy (σCO, 1 − σCO)
against which they are indifferent between s1 and s2 and analogously any
preferences of type (NC) by the mixed strategy (σNC , 1− σNC). The unique
equilibrium (σNC , σCO) of the game between players with preferences of type
(CO) and preferences of type (NC) is learning stable. In this equilibrium
the fitness of the players with preferences of type (NC) is σNC(σCO + (1 −
σCO)c) + (1− σNC)σCOb. Since c > 1, σCO + (1− σCO)c > 1 ∀σCO. But then
for σNC sufficiently close to 1 σNC(σCO + (1− σCO)c) + (1− σNC)σCOb > 1
and the mutants of type (NC) get the higher payoff than incumbents. If c =
1, b < 1 the mutants of type (BB) can appear and play against incumbents
of either type (St1) or (CO) the learning stable equilibrium (s1, σCO), and
efficient (s1, s1) among themselves. The mutants then have fitness 1 both
against incumbents and against themselves, while incumbents have σCO +
(1 − σCO)b < 1 against mutants. Thus no preferences are stable in such
games.

Consider now the case when b ≥ 1, c < 1. Players with preferences (St1)
with v(s1, s1) > v(s2, s1) either play s1 in equilibrium, or the opponent play s2
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Figure 1: Indirectly stable preferences and strategy profiles

in equilibrium. In either case the mutants can get only a convex combination
of 1, c, and 0, which is not higher than 1, and if it is 1 then the incumbents
also get 1 against mutants. In a game of incumbents with preferences (CO)
with mutants of type (BB) (s2, σCO) is a learning stable equilibrium. In it
mutants have fitness σCOb. Therefore if σCO > 1

b
mutants have higher fitness

than the incumbents. When σCO = 1
b

incumbents get σCOc < 1 against
mutants, while mutants can get 1 among themselves, so such preferences of
type (CO) are not indirectly stable. When σCO < 1

b
, preferences of type

(CO) are indirectly stable, since in any equilibrium mutants have fitness not
higher than 1 against them, and if it is 1 the incumbents also have fitness 1
against mutants.

The proposition is illustrated in Figure 1. The figure shows, for each type
of the material payoff game, symmetric Nash equilibria of it, preferences that
are indirectly stable, and the strategy profiles that are indirectly stable. For
example, in region III (1 > c, b > 0) where the game is a chicken type game,
the unique symmetric equilibrium is mixed, no preferences are indirectly
stable, and no strategy profiles are indirectly stable. In Prisoners’ Dilemma
(region IV, 1 > c, b < 0) (s2, s2) is the unique equilibrium while no preferences
and no strategy profiles are stable. In coordination games (region II, 1 <
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c, b < 0) there are three symmetric equilibria, and preferences of types (St1),
(CO), and (BB) that play the efficient equilibrium (s1, s1) are stable. Finally,
in region I (1 > c, b > 0) if (s1, s1) is efficient symmetric strategy combination
some preferences playing it (types (St1) and (CO)) are stable. If there exists a
mixed strategy combination that is more efficient than (s1, s1) no preferences
and no strategy profiles are indirectly stable.

There are several differences from the analysis of Dekel et al. (1998). In
distinction from Dekel et al. I do not have cooperation as a stable outcome
in Prisoners’ Dilemma. Dekel et al. found that cooperation can be supported
by preferences of type (St2) that are indifferent between strategies when the
opponent plays s1. Then (s1, s1) was also an equilibrium for them. In my
model, however, such equilibrium is not learning stable. Small amount of
experimentation inside the population of such players will upset this equilib-
rium and the play will never return back. The same holds for the result of
Dekel et al. that in chicken type games with b = c the mixed efficient equi-
librium can be supported by players of type (CO). This equilibrium again
is not learning stable. I consider it more natural to have, along with the
possibility of mutations, also the possibility of experimentation. Arguably,
experimentation with strategies happens more often than mutations in pref-
erences. Cooperation in Prisoners’ Dilemma is upset either by mutants who
defect by ’conviction’, or by experimentators who try defection as alternative
best reply.

It is hard for a population state to be indirectly stable. Since I consider all
possible preferences, there are often mutants that upset a population state.
More often than not there is no stable state or strategy profile. In this case
simulations can help to see what could be the possible outcomes. I analyze
this in the companion paper Possajennikov (2002).

4 Incomplete Information

4.1 General Games

If agents do not know the preferences of the opponent in a match, they
cannot condition their strategy on them. The state of the subpopulation
with preferences vi is described by a distribution of strategies that are used
in any match, xi

1, . . . , x
i
m. The state of the population is described by a

matrix
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µ1 µ2 . . . µn

x1
1 x2

1 . . . xn
1

x1
2 x2

2 . . . xn
2

. . . . . . . . . . . .
x1

m x2
m . . . xn

m

where the first row is the proportion of preferences, column i corresponds to
the distribution of strategies players with preferences vi use, and row j shows
how often strategy sj is used. The state of the population will be denoted
{(µi)

n
i=1; (x

i)n
i=1} with µi 6= 0.

Again, in each subpopulation there is a learning process that operates
on subjective preferences vi. However, all these processes are interconnected
into one one-population learning process. Each match corresponds now to a
two-player symmetric Bayesian game with incomplete information, in which
players can be of n types v1, . . . , vn, a player knows own type and the distri-
bution of opponent’s types µ1, . . . , µn, and the players simultaneously choose
a strategy from Σ. I call the distributions of strategies (xi)n

i=1 the state of the
Bayesian game. The population state induces a symmetric mixed strategy
profile (x, x) in an obvious way, x =

∑n
i=1 µix

i. Since the players cannot
condition their strategy on their role, only symmetric states are possible.
Learning is much faster than evolution, thus from the point of view of learn-
ing µi’s are fixed.

Analogously with the complete information case, I use the following weak
notion of learning stability. If the play is not in a Bayesian-Nash equilibrium
of the game, players in at least one of the subpopulations change strategy. If
players experiment with alternative best replies, there should be a possibility
for a play to come back to the original equilibrium. The notion of curb
sets, used in the complete information section, can be easily extended to
incomplete information games.

Let the distribution of types (µi)
n
i=1 be given. Let {z = (z1, . . . , zn)} = Σn

be the set of strategy combinations, with the interpretation that strategy zi

is used by players of type vi. For a given type vi and a given z the incom-
plete information best response BRin

i (z) is the set of strategies that are best
responses to the mixed strategy induced by the proportions of types in the
population, i.e. the set of strategies σ ∈ Σ such that σ ∈ BRi(

∑n
j=1 µjz

j).
The incomplete information best response correspondence maps a given z
to BRin(z) = ×n

i=1BRin
i (z). A strategy combination z is a Bayesian-Nash

equilibrium if z ∈ BRin(z). For a set Z of strategy combinations BRin(Z) =
∪z∈ZBRin(z). A subset Z ⊂ Σn is closed under rational behavior in the in-
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complete information game (curbin) if Z is the product of non-empty convex
subsets of Σ and BRin(Z) ⊂ Z. A minimal curbin set is the curbin set that
does not contain any proper subset that is a curbin set.

For a given distribution of preferences (µi)
n
i=1 a strategy combination

(xi)n
i=1 is learning stable if it is a symmetric Bayesian-Nash equilibrium and

belongs to a minimal curbin set of the game. I sometimes will refer to learning
stable strategy combination as learning stable equilibrium. The population
state is learning stable if the strategy profile in it is learning stable given the
distribution of preferences in the state.

Definition 9 A population state {(µi)
n
i=1; (x

i)n
i=1} is learning stable, if the

state (xi)n
i=1 of the Bayesian game is symmetric Bayesian-Nash equilibrium

of the game and belongs to a minimal curbin set, given (µi)
n
i=1.

The evolutionary process uses the expected fitness of the players. Players
with preferences vi, if matched with players with preferences vj, get in ex-
pected terms uij =

∑m
k=1

∑m
l=1 xi

kx
j
l u(sk, sl). Before matching, the expected

average fitness of players with preferences vi is ui =
∑n

j=1 µjuij. The pro-
portion µi of players with preferences vi increase relative to the proportion
µj of players with preferences vj iff ui > uj. A population state is stationary
with respect to the evolutionary process if all subpopulations have the same
expected average fitness ui.

Like in the complete information case, any monomorphic population is
stationary. Therefore I again check the robustness of a state against an
invasion by mutants.

Compared with the complete information case, an additional issue arises
in defining the indirect stability in the incomplete information case. With
complete information, the incumbents did not need to change their strategies
in games between themselves, therefore for small proportion of mutants the
strategy profile in a perturbed state was close to the strategy profile of the
original state. With incomplete information, even with small proportion
of mutants, incumbents may change their strategy considerably in a new
learning stable equilibrium. The definition should take care of this possibility.

Consider two (mixed) strategies x = (x1, . . . , xm) and y = (y1, . . . , ym).
Let the distance between the two strategies be defined as d(x, y) :=

∑m
j=1 |xj−

yj|.

Definition 10 A population state {(µi)
n
i=1; (x

i)n
i=1} is indirectly evolu-

tionarily stable with incomplete information if
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(i) it is learning stable;

(ii) ∀vk /∈ {vi}n
i=1,∃a < ∞,∃ε∗ > 0 such that ∀ε ∈ (0, ε∗) ∃(yi)n

i=1, y
k

such that the strategy combination (yi)n
i=1, y

k is learning stable with
(1 − ε)(µi)

n
i=1 + εµk and d(yi, xi) ≤ aε ∀i. For any such (yi)n

i=1, y
k

ui > uk ∀i in the state {(1− ε)(µi)
n
i=1 + εµk; (y

i)n
i=1, y

k}.

The idea in the second part of the definition is that after the appearance
of the mutants there exists a new learning stable strategy combination where
incumbents play strategies close to their original strategies. In each such new
learning stable state of the game the incumbents should receive higher fitness
than the mutants.

As in the complete information case no state with finite number of pref-
erences can be evolutionarily stable.

Lemma 7 No population state with finite n is evolutionarily stable.

Proof. Consider a mutant of the type that is indifferent between all
strategies. Suppose that in the new learning stable state of the game mutants
play the strategy corresponding to the induced symmetric strategy profile
x, and the incumbents play the same strategies as before. Such a state is
learning stable since incumbents face the same distribution of strategies and
therefore old strategies are still best responses, for the mutants all strategies
are best responses, and the distance between new learning stable equilibrium
and the old one is 0 for all incumbents. The mutants in such a state receive
the same expected fitness as the incumbents.

Relaxing the definition in the flavor of neutral stability, I get

Definition 11 A population state {(µi)
n
i=1, (x

i)n
i=1} is indirectly stable

with incomplete information if

(i) it is learning stable;

(ii) ∀vk /∈ {vi}n
i=1,∃a < ∞,∃ε∗ > 0 such that ∀ε ∈ (0, ε∗) ∃(yi)n

i=1, y
k

such that the strategy combination (yi)n
i=1, y

k is learning stable with
(1 − ε)(µi)

n
i=1 + εµk and d(yi, xi) ≤ aε ∀i. For any such (yi)n

i=1, y
k

ui ≥ uk ∀i in the state {(1− ε)(µi)
n
i=1 + εµk; (y

i)n
i=1, y

k}.
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In an indirectly stable state the mutants may get the same fitness as the
incumbents but they cannot get higher fitness.

Analogously with the complete information case, I define indirectly stable
preferences and indirectly stable strategy profiles.

Definition 12 Preferences vk are indirectly stable with incomplete in-
formation if there exists an indirectly stable with incomplete information
population state {(µi)

n
i=1, (x

i)n
i=1} with vk in the support of this state.

Definition 13 A symmetric strategy profile x is indirectly stable with
incomplete information if there exists an indirectly stable with incomplete
information population state {(µi)

n
i=1, (x

i)n
i=1} that induces x.

Compared with the definition in Dekel et al. (1998), there is the same
difference as in the complete information case: I allow only for learning
stable equilibria. There is also another difference. Dekel et al. do not allow
in a post-entry population for equilibria in which incumbents play a strategy
different from the one they played before the entry. I allow for small changes
in the strategy of the incumbents, which is, in my view, an assumption that
is more in line with the complete information case, when incumbents had
time to learn the equilibrium strategy against the mutants. Though Dekel
et al. mention this possibility, they do not elaborate on its implications. I
will comment in the end of the section about the possibility of relaxing the
informational assumptions further that would lead to the same results as in
Dekel et al.

The definition is similar to the one of the complete information case and
suffers from the same drawback as it allows mutants have the same fitness as
the incumbents. Perhaps more important, since stability of the preferences is
defined through stability of population states that takes into account stability
of strategies, it may lead to counterintuitive results, as I discuss at the end
of the section. But for the moment I stick to the current definition.

Lemma 8 Suppose a symmetric strategy profile x is indirectly stable with
incomplete information. Then it is a Nash equilibrium of the material payoff
game.

Proof. Consider any population state {(µi)
n
i=1, (x

i)n
i=1} that induces x.

Suppose x is not a Nash equilibrium of the material payoff game. Then
there exists strategy y that has higher fitness against x than x against itself,
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u(y, x) > u(x, x). Suppose that mutants for whom strategy y is strictly
dominant appear. In any new learning stable state of the game the mutants
play the dominant strategy y. If there is no new learning stable strategy
combination in which the incumbents play strategies that are close to x,
then the population state {(µi)

n
i=1, (x

i)n
i=1} that induced x is not indirectly

stable.
Consider now any new learning stable strategy combination where the

incumbents play (possibly different) strategies zi such that d(zi, xi) ≤ aε ∀i.
The aggregate strategy of the incumbents is zi =

∑n
i=1 µiy

i. Then d(z, x) ≤
maε. By linearity of the material payoff function the mutants get fitness
um = (1−ε)u(y, z)+εu(y, y) = u(y, x)+[u(y, z)−u(y, x)]+ε[u(y, y)−u(y, z)],
and the incumbents get on average ui = (1− ε)u(z, z) + εu(z, y) = u(x, x) +
[u(z, z)−u(z, x)+u(z, x)−u(x, x)]+ε[u(z, y)−u(z, z)]. Then um−ui > 0 ⇔
u(y, x)−u(x, x) > [u(z, z)−u(z, x)]+ [u(z, x)−u(x, x)]+ [u(y, x)−u(y, z)]+
ε[u(z, y)−u(z, z)+u(y, z)−u(y, y)]. Since d(z, x) ≤ maε, for any strategy w ∈
Σ |u(w, z)−u(w, x)| ≤ umaxm

2aε and |u(z, w)−u(x, w)| ≤ umaxm
2aε, where

umax = max(s,t)∈S×S |u(s, t)|. The right hand side of the strict inequality
above can be written as dε, where d is a finite constant. For sufficiently
small ε < u(y,x)−u(x,x)

d
it holds that um − ui > 0, thus there exist incumbents

that have lower fitness than the mutants and so any state that induces x is
not stable.

Thus in terms of played strategy profiles, only Nash equilibria can be
observed in an indirectly stable population state. A sufficient condition for a
Nash equilibrium to be indirectly stable with incomplete information is that
it is in neutrally stable strategies.

Lemma 9 Suppose a symmetric strategy profile x is a Nash equilibrium of
the material payoff game in neutrally stable strategies. Then it is indirectly
stable with incomplete information.

Proof. Consider the population state {(µi)
n
i=1, (x

i)n
i=1} with n = 1, and

the only incumbent players have preferences of the type that is indifferent
among strategies. After appearance of mutants, there are new learning stable
states in which incumbents play x, thus one can take a = 0 in the definition
of indirectly stable state. If mutants plays strategy y different from x in a
new learning stable state, the expected fitness of the incumbents is ui = (1−
ε)u(x, x)+εu(x, y), while that of the mutants is um = (1−ε)u(y, x)+εu(y, y).
Clearly, ui ≥ um for sufficiently small ε by the definition of neutral stability. If
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mutants play x, then the incumbents and the mutants have the same fitness,
so the population state and the induced strategy profile x are indirectly
stable.

Not all Nash equilibria are stable, and the result cannot be strengthened
to the result of Dekel et al. that only neutrally stable strategy profile can be
stable, as examples below show.

Example 1 Nash equilibria of the material payoff game that are not indi-
rectly stable with incomplete information.

Consider the symmetric game
s1 s2 s3

s1 1, 1 0, 1 1, 0
s2 1, 0 1, 1 0, 1
s3 0, 1 1, 0 1, 1

.

Symmetric pure strategy combinations (si, si), i = 1, 2, 3 are Nash equilibria
but none of them is in neutrally stable strategies (Weibull, 1995, Ch.2). Con-
sider a population state that induces equilibrium (s1, s1). Consider a mutant
for whom strategy s2 is strictly dominant. If there is no new learning stable
state in which incumbents play a strategy close to s1, then the population
state is not stable. Consider therefore a new learning stable state where the
mutants play s2 while the incumbents play a strategy close to s1. If the
strategy of each incumbent is at the distance not more than aε from s1, the
average strategy of the incumbents is also in the aε-neighborhood of s1, and
can be written as (1−δ2−δ3)s1+δ2s2+δ3s3 for δ2+δ3 ≤ aε

2
. Then the expected

fitness of the mutants is um = (1− ε)(1− δ3)+ ε, while the expected average
fitness of the incumbents is ui = (1−ε)(1−δ2−δ3+δ2

2 +δ2δ3+δ2
3)+ε(δ2+δ3).

For given δ3 ≤ aε
2
, and for δ2 ∈ [0, aε

2
− δ3] ui reaches maximum at δ2 = 0.

Its maximum value is u∗i = (1− ε)(1− δ3) + (1− ε)δ2
3 + εδ3 < um for ε < 2

a

if 2
a
≥ 1 and for ε < 4

a2 if 2
a

< 1. Thus there are incumbents that have lower
fitness that mutants, and so any population state that induces equilibrium
(s1, s1) is not stable. Analogous reasoning with obvious modifications applies
to (s2, s2) and (s3, s3).

Example 2 Nash equilibrium of the material payoff game that is not in neu-
trally stable strategies but that is indirectly stable with incomplete informa-
tion.
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Consider 2 × 2 coordination game with 1 > c, b < 0. The mixed strat-
egy equilibrium is not neutrally stable strategy in this game. Consider the
population state {(µi)

n
i=1, (x

i)n
i=1} with n = 1, consisting of players with pref-

erences of type (NC) such that they play the mixed strategy equilibrium of
the material payoff game, σNC = b

b+c−1
. This population state is stable.

Consider mutants that in a new learning stable state play strategy σm. The
incumbents are indifferent between strategies if their own strategy σi is such
that (1−ε)σi +εσm = σNC . In the post-entry learning stable equilibrium the

incumbents play σi = σNC−εσm

1−ε
, with d(σi, σNC) = 2|σNC−σm|

1−ε
ε ≤ 4|σNC−σm|ε

for ε ≤ 1
2
. The fitness of the incumbents in the post-entry population is

ui = (1− ε)u(σi, σi)+ εu(σi, σm) = u(σi, σNC) and the fitness of the mutants
is um = (1−ε)u(σm, σi)+εu(σm, σm) = u(σm, σNC). Since σNC is completely
mixed equilibrium of the material payoff game, any strategy is best response
to it, and any strategy has the same fitness against it. Thus the incumbents
and the mutants have the same fitness, so the population state and the mixed
equilibrium it induces are indirectly stable.

In the model of Dekel et al. (1998) only neutrally stable strategy profiles
are stable. Example 2 shows, however, that Nash equilibria that are not
neutrally stable can be indirectly stable in the current model.

The following lemma shows when monomorphic population consisting
of players with indifferent preferences is indirectly stable with incomplete
information.

Lemma 10 The monomorphic population consisting of players that are in-
different among strategies is indirectly stable iff the players play neutrally
stable Nash equilibrium of the material payoff game.

Proof. By Lemma 9 if players that are indifferent among strategies
play a neutrally stable equilibrium x, the monomorphic population state is
stable. If they play x that is not neutrally stable, there exists y such that
(1 − ε)u(y, x) + εu(y, y) > (1 − ε)u(x, x) + εu(x, y). Consider mutants that
play strategy y in the new learning stable state. Their fitness is higher than
the fitness of the incumbents.

4.2 2× 2 Games

In this subsection I apply the results above to 2 × 2 games. It is difficult
to give complete characterization of indirectly stable preferences for poly-
morphic population states consisting of players with different preferences. I
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give results for monomorphic populations consisting of players all having the
same preferences.

Proposition 2 In symmetric 2×2 games following preferences are indirectly
stable in preference monomorphic population states:

1. If 1 ≥ c, b ≥ 0, at least one inequality is strict, preferences of types
(St1), (CO), and (BB);

2. If 1 > c, b < 0 preferences of any type;

3. If 1 ≤ c, b ≤ 0, at least one inequality is strict, preferences of types
(St2), (CO), and (BB);

4. If 1 < c, b > 0 preferences of types (NC) and (BB);

5. If c = 1, b = 0 preferences of any type;

Proof. When 1 ≥ c, b ≥ 0, (s1, s1) is neutrally stable Nash equilibrium.
For preferences of all three types that play this equilibrium (St1), (CO),
and (BB) choose a = 0 in the definition of indirectly stable population state.
Similar to the proof of Lemma 9 it follows that these preferences are indirectly
stable. Strategy profile (s2, s2) is an equilibrium if b = 0, but reasoning
similar to the one in Example 1 shows that it is not indirectly stable. The
situation in Prisoners’ Dilemma, when 1 ≤ c, b ≤ 0, is similar, only mirrored
with respect to pure strategies s1 and s2 and types (St1) and (St2).

In coordination games (1 > c, b < 0) preferences of types (St1), (CO),
(St2), and (BB) are indirectly stable when they play one of the pure equilibria
of the game because one can choose a = 0 in the definition of indirectly
stable population state. Example 2 shows that preferences of type (NC) are
indirectly stable when they play the mixed equilibrium of the coordination
game. The idea of the example works also for chicken type games (1 <
c, b > 0), thus preferences of type (NC) playing the mixed equilibrium are
indirectly stable in such games. The mixed equilibrium in chicken type games
is neutrally stable, so preferences of type (BB) playing this equilibrium are
indirectly stable by Lemma 10.

Finally, in games with equivalent strategies (c = 1, b = 0) all players
face the same distribution of strategies x. Since all strategies are equivalent,
independently of which strategy incumbents and mutants use their expected
fitness is the same, so any preferences are indirectly stable.
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Figure 2: Indirectly stable preferences and profiles under incomplete infor-
mation

The proposition is illustrated in Figure 2. The figure shows that in 2× 2
games any non-dominated Nash equilibrium can be supported by stable pref-
erences. Note that in the model of Dekel et al. (1998) the mixed equilibrium
of a chicken type game is not supported by the population of players with
preferences (NC) since there are mutants of type (St1), for example, af-
ter whose entry the equilibrium of the Bayesian game has incumbents play
slightly different strategy. In my model such population state is stable, but
then also some equilibria that are not neutrally stable, like the mixed equi-
librium in coordination games, become stable.

4.3 Discussion

4.3.1 Stability of Preferences

Consider again the game of Example 1. Consider a monomorphic popula-
tion of players with selfish preferences. The example showed that states that
induce pure strategy symmetric equilibria (si, si), i = 1, 2, 3 are not stable.
Consider a state that induces the only remaining equilibrium

(
1
3
, 1

3
, 1

3

)
. Af-

ter the appearance of mutants for whom strategy s1 is strictly dominant the
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unique equilibrium in which the incumbents play a strategy close to
(

1
3
, 1

3
, 1

3

)
is not learning stable. If a curbin set includes s3 for the incumbents, it also
includes s1, and then also s2. However, the set ∆(s1, s2) of mixed strategies
not including strategy s3 for the incumbents, together with the set {s1} for
the mutants, is a curbin set. Thus, the fully mixed equilibrium with incum-
bents’ strategy close to

(
1
3
, 1

3
, 1

3

)
does not belong to a minimal curbin set.

The monomorphic population consisting of players with selfish preferences is
not stable with incomplete information in this game.

In the model of this paper stability of preferences is defined through
stability of population states that also takes into account stability of strategy
profiles. Without the last requirement, an alternative definition could be as
following. Preferences are stable if there exists a population state so that after
the appearance of mutants in any learning stable equilibrium incumbents
have fitness not lower than the mutants. The difference is that now there is no
restriction on how far the new strategy profile is from the old one. With this
new definition the monomorphic population of players with selfish preferences
is always stable, since after the appearance of mutants both incumbents and
mutants face the same distribution of preferences in the population, and the
selfish incumbents maximize material payoffs, hence having fitness not lower
than the mutants.

With the original definition, however, the analysis in this section shows
that the answers to the questions from the introduction in the incomplete
information case are: selfish preferences are almost always stable (see the
example above when they are not; this is a non-generic case); stable outcomes
are Nash equilibria of the material payoff game; stable outcomes are not
always efficient.

4.3.2 Ignorance

The following informational assumption can justify the requirement of Dekel
et al. (1998) that the incumbents continue to play the same strategy in the
post-entry state. The incumbents had time to learn and has arrived to an
equilibrium x according to their subjective preferences. Suppose now that a
small proportion of the mutants appear but the incumbents are ignorant of
the arrival of the mutants. Since the incumbents were playing equilibrium x
of their subjective preferences game, they continue playing the same strategy
x. If the equilibrium x of the subjective preferences game was not neutrally
stable strategy of the material payoff game, there exists strategy y ∈ Σ
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and ε > 0 such that (1 − ε)u(y, x) + εu(y, y) > (1 − ε)u(x, x) + εu(x, y).
Consider mutants that play y. The left hand side in the inequality above is
the expected fitness of the mutants in the post-entry population, while the
right hand side is the expected fitness of the incumbents. Thus the mutants
have higher fitness than the incumbent and x is not stable. On the other
hand, if x is neutrally stable strategy, for any strategy y of the mutants
(1− ε)u(y, x) + εu(y, y) ≤ (1− ε)u(x, x) + εu(x, y), so x is stable. Therefore
a strategy profile x is stable under ignorance if and only if x is neutrally
stable strategy of the material payoff game, the same result as in the model
of Dekel et al.

5 Conclusion

The main message of the analysis in the paper is an old one and can be
found, for example, in Frank (1987): information about opponents improves
efficiency if one can commit to a cooperative action. Preferences provide
such commitment, therefore inefficient strategy profiles cannot be stable with
complete information. The paper shows that these results are of quite a
general nature in the realm of games played by randomly matched pairs.
The innovative feature of the paper is the introduction of learning together
with evolution that makes it more difficult to sustain efficient strategies than
in Dekel et al. (1998).

A very important limitation of the analysis, in my view, is the use of
static concepts of evolution. Moreover, it is further restricted to finite pref-
erence distributions and checked only against particular perturbations. It is
possible to formulate explicitly a dynamic process of evolution, together with
a dynamic process of learning of equilibrium, but the analysis is hard due
to the infinite space of possible preferences. With the help of simulations,
however, one can achieve some insight, particularly in the case when there
are no stable preferences, as in prisoners’ dilemma and chicken type games.
This possibility is developed in Possajennikov (2002).

Another limitation is the strong assumptions on information agents have:
either they observe opponent’s preferences perfectly, or do not at all. Instead
of such extreme cases one can consider the case with a given technology to
obtain (or hide) such information. The evolutionary process can then be
expanded to information acquisition. An analysis of such a model for a
simple trust game is given in Güth et al. (2000); it would be interesting to
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extend the analysis to other games.
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