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Abstract

We study a contest with multiple (not necessarily equal) prizes. Con-
testants have private information about an ability parameter that a¤ects
their costs of bidding. The contestant with the highest bid wins the …rst
prize, the contestant with the second-highest bid wins the second prize,
and so on until all the prizes are allocated. All contestants incur their re-
spective costs of bidding. The contest’s designer maximizes the expected
sum of bids. Our main results are: 1) We display bidding equlibria for
any number of contestants having linear, convex or concave cost functions,
and for any distribution of abilities. 2) If the cost functions are linear or
concave, then, no matter what the distribution of abilities is, it is optimal
for the designer to allocate the entire prize sum to a single ”…rst” prize. 3)
We give a necessary and su¢cient conditions ensuring that several prizes
are optimal if contestants have a convex cost function.

1. Introduction

In 1902 Francis Galton posed the following problem:

”A certain sum, say £100, is available for two prizes to be awarded
at a forthcoming competition; the larger one for the …rst of the com-
petitors, the smaller one for the second. How should the £100 be
most suitably divided between the two ? What ratio should a …rst
prize bear to that of a second one ? Does it depend on the number of
competitors, and if so, why ?” Galton (Biometrika, Vol.1, 1902)
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In his article Galton proposes a ratio of 3 to 1 to the above question. Since
Galton does not explicitly state what is the contest designer’s goal, his answer is
somewhat arbitrary. Nevertheless, his work is important for it pioneered both the
scienti…c literature on contests and the use of order statistics (The ratio 3 to 1
appears as the ratio of expected di¤erences involving the …rst three order statistics
for a large number of contestants whose abilities are normally distributed.)
Many economic, social and biological situations are contests where agents

spend resources in order to increase to probability of winning a prize. Several
well known examples are: rent-seeking and lobbying inside organizations; R&D
rivalry; sport competitions; arms races and other economic or biological …ghts and
”wars of attrition”; job promotion in labor markets; political campaigns; artistic
competitions such as piano or architectural contests.
Given the wealth of examples, it is not surprising that the economic literature

on contests is very large. Most of the literature has focused on the case of one
prize. Models with complete information about the value of the prize include:
Tullock (1980), Varian (1980), Rosen (1986), Hillman and Samet (1987), Baye
et al (1996). The last paper o¤ers a complete characterization of equilibrium
behavior. Models with incomplete information about the prize’s value to dif-
ferent contestants include Weber (1985), Hillman and Riley (1989), Amann and
Leininger (1996), and Krishna and Morgan (1997).
Clark and Riis (1998) study contests with multiple identical prizes under com-

plete information and focus on simultaneous versus sequential designs. Barut and
Kovenock (1998) and Glazer and Hassin (1988) allow for non-identical prizes in a
complete information model. The latter paper also includes a result for a model
with incomplete information (see below).
The use of contests in order to extract e¤ort under ”moral hazard” conditions

has been emphasized by, among others, Lazear and Rosen (1981), Green and
Stokey (1981) , and Nalebu¤ and Stiglitz (1983). A common assumption in these
papers is that (observed) output is a stochastic function of the unobservable e¤ort.
All agents have the same (known) ability. Lazear and Rosen derive the optimal
prize structure in a contest with two workers and two prizes (so that, in fact, only
the di¤erence in prizes matters) and compare it to optimal piece rates. They also
brie‡y discuss a model with heterogenous workers and the e¢ciency properties of
having contests where such workers mix.

In this paper we address Galton’s problem in the following framework: Sev-
eral agents engage in a contest where multiple prizes with known and common
values are awarded. Each contestant i submits a bid (or undertakes an observable
”e¤ort”): The contestant with the highest bid wins the …rst prize, the contestant
with the second-highest bid wins the second prize, and so on until all the prizes
are allocated. All contestants (including those that did not win any prize) incur
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a cost that is a strictly increasing function of their bid. This function is common
knowledge. We di¤erentiate among the cases where the cost function is, respec-
tively, linear, concave or convex in e¤ort. The cost function of contestant i also
depends on a parameter (say ”ability”) that is private information to that player.
The main assumption we make is one of separability between ability and bid in
the cost function. Abilities are drawn independently of each other according to
an arbitrary distribution function which is common knowledge. We assume that
each contestant chooses his bid in order to maximize expected utility (given the
other competitors’ bids and given the values of the di¤erent prizes).
The goal of the contest designer is to maximize the total expected e¤ort (i.e,

the expected sum of the bids) at the contest1. This …ts well in the tournament
literature. Good examples are sport competitions, promotions in organizations,
architectural contests and the grading of exams.
The designer can determine the number of prizes (i.e., the number of prizes

having positive value) and the distribution of the …xed total prize sum among the
di¤erent prizes.
It is worth to note here the theoretical distinction between having one prize (or

several equal prizes) and having several unequal prizes. If there is only one prize,
or if there are several equal prizes, each contestant perceives two payo¤-relevant
alternatives: I win a prize, or I win nothing. Hence, bids will be determined by
one variable - the di¤erence in expected payo¤ between those two alternatives.
(Note that the same logic applies if there are two unequal prizes but only two
contestants). In contrast, if there are at least two unequal prizes and at least
three contestants, each contestant perceives at least three payo¤ relevant alter-
natives (I win the …rst prize, I win the second prize,..., I win nothing). Bids will
be determined in a more complex way by several variables - the di¤erences in
expected payo¤ among the various alternatives2.
We display bidding equilibria for any number of prizes and contestants, for any

distribution of abilities, and for linear, concave or convex cost functions. In order
to have a less technical exposition, we focus however on the designer’s problem in
the case where she can award two (potentially unequal) prizes, and where there
are at least three contestants. As explained above, this case already displays the
main ingredient for complexity in bidding. Moreover, it will become clear that
none of our qualitative results changes if we allow for more than two prizes.

1In some models, the designer has other goals. For example, in a lobying model the contest
designer might not be the bene…ciary of the ”wasteful” lobying activities, and she might wish to
minimize them. Our analysis can be easily extended to other goal functions since we explicitly
display bidding equilibria.

2The complexity resembles the one appearing in multi-object auctions.
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Our answers to Galton’s questions are as follows: 1) We show that for any
number of contestants having linear or concave cost functions, and for any dis-
tribution of abilities, it is optimal for the designer to allocate the entire prize
sum to a single ”…rst” prize. 2) We give a necessary and su¢cient conditions
ensuring that (at least) two prizes are optimal if the contestants have convex cost
functions. Depending on the parameters, the optimal prize structure may involve
then several equal prizes or di¤erent prizes whose ratio can be easily computed.

Several related results appear in Barut and Kovenock (1998) and Glazer and
Hassin (1988). Barut and Kovenock study a multi-prize contest where players
have linear cost functions and have the same ability. In this symmetric, complete
information environment, they show that the optimal prize structure allows any
combination ofK¡1 prizes, whereK is the number of contestants. (In particular,
allocating the entire prize sum to a unique …rst prize is optimal.) Our result for
linear cost functions (that allows for private information, asymmetries among
contestants and is independent of the number of contestants) suggests that the
only robust optimal prize structure is the one involving a unique …rst prize.
Besides studying the symmetric equilibria of a complete information model as

above, Glazer and Hassin (1988) also propose an incomplete information model
that is more general than ours since it allows for both cost functions that are not
necessarily separable in ability and bid and for a concave prize-valuation function.
But they are not able to compute equilibria, and their indirect results (based on
several implicit and unproven assumptions) only deal with the case of a separable
and linear cost function, a linear prize-valuation function and a uniform ability
distribution such that the lowest ability type has an in…nite cost of bidding. With
these assumptions, they show that a unique …rst prize is optimal.

We now want to describe the intuition behind our main results. The equilib-
rium bid function for contestants with linear cost functions is a function of the
values of the di¤erent prizes and of the ability of that contestant. If there are p
prizes, this function involves the distribution of the …rst p order-statistics. More-
over, the equilibrium bid is increasing in ability. A nice property of the di¤erential
equation arising from the …rst-order condition of the contestants’ maximization
problem allows us to easily compute the equilibrium bid for contestants with gen-
eral (i.e., concave or convex) cost functions: this is simply equal to the inverse of
the cost function applied to the equilibrium bid for linear cost functions.
To simplify the exposition, we assume for the following descriptive details that

the contestants have linear cost functions.
The marginal e¤ect of the …rst prize on the equilibrium bid function is positive

for all possible abilities (or ”types”). Since a player with higher ability has a higher
chance to win the …rst prize, the marginal e¤ect of the …rst price is an increasing
function of ability.
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The marginal e¤ect of the second-prize is ambiguous. Consider, for example, a
player with the highest possible ability. If such a player is present at the contest, he
is sure to win the …rst prize. Subtracting a penny from the …rst prize and adding it
to the second prize lowers the expected utility of such a player (since he never gets
the second prize), and he will consequently bid less. Similarly, the marginal e¤ect
of the second prize on the equilibrium bid function is negative for players with high
enough abilities (and hence this e¤ect is lower that the marginal e¤ect of the …rst
prize for such types). The marginal e¤ect of the second price is, however, positive
for middle and low ability players. Moreover, for contestants with abilities below
a certain threshold, the (positive) marginal e¤ect of the second prize is higher
than the marginal e¤ect of the …rst prize, since these types of player have a higher
chance to get the second-prize.
Consider now the contest designer: She has to allocate a …xed prize sum among

the two prizes, and she wants to maximize the average (i.e., expected) bid of each
contestant. The relevant variable for the designer is then the average di¤erence
between the marginal e¤ects of the second prize and the …rst prize, respectively.
This average di¤erence is precisely the marginal e¤ect of the second prize on the
designer’s revenue (i.e., the change in the designer’s revenue if she subtracts a
penny from the value of the …rst prize and adds it to the value of the second-
prize). If the average marginal e¤ect of the …rst prize is higher than the average
marginal e¤ect of the second-prize then the average di¤erence is negative, the
designer’s goal function is a decreasing function of the value of the second-prize,
and the designer should award only a unique (…rst) prize - this turns out to be
the case for contestants with linear cost functions. To obtain the marginal e¤ect
of the second prize on the designer’s revenue for contestants with concave cost
functions, one multiplies the above di¤erence by a function that is increasing in
ability. Hence the terms where the …rst-prize is dominant (corresponding to high
ability types) get magni…ed in relation to the terms where the second prize is
dominant (low ability types). Given the result for the linear cost functions, the
designer’s revenue is also a decreasing function of the value of the second-prize, and
the designer should award only a unique (…rst) prize. The opposite happens for
convex cost functions: the terms where the second prize is dominant get magni…ed,
and two prizes may be optimal (since, by de…nition, the designer cannot award
only a second prize). In such cases, the optimal allocation of the prize sum among
the two prizes depends on the number of contestants, the distribution of abilities,
and the e¤ort cost function.

The paper is organized as follows: In Section 2 we present the contest model
with multiple prizes and private information about a parameter (e.g. ability)
entering cost functions. In Section 3 we focus on linear cost functions. We derive
the equilibrium bid functions and we formulate the contest designer’s problem .
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We then prove several properties that characterize the marginal e¤ects of the …rst-
and the second-prize on each type of contestant . Finally, we use these properties
to prove that it is always optimal to award a single prize. In Section 4 we use the
result obtained above in order to study the optimal prize structure for contestants
with concave and convex cost functions. Finally, we illustrate the (non-trivial)
optimal prize structure in an example with convex cost functions. In Section 5
we gather several concluding comments.

2. The Model

Consider a contest where p prizes are awarded. The value of the j ¡ th prize is
Vj, where V1 ¸ V2 ¸ ::: ¸ Vp . The values of the prizes are common knowledge.
We assume that

Pp
i=1 Vi = 1 - this is just a normalization.

The set of contestants is K = f1; 2; :::; kg. Without loss of generality we can
assume that k ¸ p (i.e., there are at least as many contestants as there are prizes).
At the contest each player i makes a bid xi: Bids are submitted simultaneously.

A bid xi causes a disutility (or cost) denoted by ci°(xi); where ° : R+ ! R+
is a strictly increasing function with °(0) = 0; and where ci > 0 is an ability
parameter3. Note that a low ci means that i has a high ability (i.e., lower cost)
and vice-versa.
The ability (or type) of contestant i is private information to i: Abilities are

drawn independently of each other from an interval [m; 1] according to the dis-
tribution function F (¢); which is common knowledge. We assume that F (¢) has a
continuous density F 0(¢) > 0: In order to avoid in…nite bids caused by zero costs,
we assume that m; the type with highest possible ability, is strictly positive4.
The contestant with the highest bid wins the …rst prize V1 . The contestant

with the second highest bid wins the second prize V2 , and so on until all the
prizes are allocated5. That is, the payo¤ of contestant i who has ability ci , and
submits a bid xi is either Vj ¡ ci°(xi) if i wins prize j; or ¡ci°(xi) if i does not
win a prize.
Each contestant i chooses his bid in order to maximize expected utility (given

the other competitors’ bids and the values of the di¤erent prizes.)
The contest designer determines the number of prizes having positive value

and the distribution of the total prize sum among the di¤erent prizes in order to

3The treatment of the case in which i0s cost function is given by ±(ci)°(xi) , where ±(¢)
is strictly monotone increasing, is completely analogous. The main assumption here is the
separability of ability and bid.

4The case where m = 0 can be treated as well, but requires slightly di¤erent methods.
The choice of the interval [m; 1] is a normalization.
5If h > 1 bids tie for a prize, each respective bidder gets the prize with probability 1

h :
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maximize the expected value of the sum of the bids
Pk
i=1 xi (given the contestants’

equilibrium bid functions).

3. Linear Cost Functions

In this Section we assume that the cost functions are linear, i.e., °(x) = x: As we
shall see below, both the equilibrium bid functions and the optimal prize structure
in this case will be very important for the derivations in the other cases.
The next Proposition displays the equilibrium bid when there are two prizes.

As mentioned in the introduction, if there are only two contestants, the situation
is isomorphic to the one where there is a unique prize whose value is equal to
the di¤erence between the two prizes. Hence, it is trivially true that awarding a
unique prize is optimal for the contest’s designer. Therefore, we assume below
that the number of contestants is at least three, i.e., k ¸ 3. In the Appendix we
also provide the general formula for the bid functions with p > 2 prizes.

Proposition 3.1. In a symmetric equilibrium, the bid function of each contestant
is given by b(c) = A(c)V1 +B(c)V2 where:

A(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡2F 0(a)da (3.1)

B(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡3[((k ¡ 1)F (a)¡ 1]F 0

(a)da (3.2)

Proof. See Appendix

3.1. The Designer’s Problem

Let V2 = ® and V1 = 1 ¡ ®, where 0 · ® · 1
2
(since the second prize must

be smaller than the …rst). By Proposition 3.1, each contestant’s equilibrium bid
function is given by

b(c) = (1¡ ®)A(c) + ®B(c) = A(c) + ®(B(c)¡ A(c)):
The average bid of each contestant is given byZ 1

m
(A(c) + ®(B(c)¡ A(c)))F 0(c)dc:

Since there are k contestants, the seller’s problem is:

max
0·®· 1

2

k
Z 1

m
(A(c) + ®(B(c)¡A(c)))F 0(c)dc
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The above problem is equivalent to:

max
0·®· 1

2

®
Z 1

m
(B(c)¡ A(c)))F 0(c)dc (3.3)

The solution to Problem 3.3 is extremely simple: if the integral is positive,
then the optimal ® is 1

2
(i.e., award two equal prizes). Otherwise, the optimal ®

is zero (i.e., award a unique prize).
The next Proposition shows that the integral appearing in Problem 3.3 is

negative. We also list several other properties of the marginal e¤ects, A(c) and
B(c); that are used in the proof and in other parts of the paper.

Proposition 3.2. Let b(c) = A(c)V1 +B(c)V2 be the symmetric equilibrium bid
function for contestants having linear cost functions. Then the following properties
hold:

1. A(1) = B(1) = 0

2. 8c 2 [m; 1); A(c) > 0; and A0(c) < 0
3. Let c¤ be such that F (c¤) = 1

k¡1 : Then B
0(c¤) = 0; B0(c) > 0 for all

c 2 [m; c¤) , and B0(c) < 0 for all c 2 (c¤; 1]
4. j B0(c) j>j A0(c) j for c in a neighborhood of 1:
5. B(m) < 0

6. For any k > 2;there exists a unique point c¤¤ 6= 1 such that A(c¤¤) = B(c¤¤):
7.
R 1
m(B(c)¡ A(c))F 0(c)dc < 0

Proof. See Appendix.
Proposition 3.2-7 shows that the solution to Problem 3.3 must be ® = 06:

Hence we have obtained:

Proposition 3.3. For any number of contestants with linear cost functions, and
for any distribution of abilities in the population, it is optimal to allocate the
entire prize sum to a single …rst prize.

6As noted in the introduction, we can easily deal with the case where the designer wants,say,
to minimize the the expected sum of bids. In that case it is obvious by the above analysis that
two equal prizes (® = 1

2) are optimal .
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The result above holds even if, a-priori, the seller is allowed to award more than
two prizes. Indeed, assume that the optimal prize structure is (V ¤1 ; V

¤
2 ; :::; V

¤
p ):

Let ¯ = 1 ¡Pp
j=3 V

¤
j : The marginal e¤ects of the …rst and second prizes on the

equilibrium bids do not depend on ¯ (this is similar to the fact that the marginal
e¤ect of the …rst prize does not depend on the value of the second-prize and vice
versa - see the general equilibrium bid formula in the Appendix). For any …xed ¯,
Proposition 3.3 shows that V ¤2 = 0: Since V

¤
j · V ¤2 for all j > 2; we obtain that

V ¤1 = 1 and that V
¤
j = 0 for all j ¸ 2:

The following example illustrates the above results. In particular, we give ex-
plicit formulas for the equilibrium bid functions for the case where the distribution
of abilities is uniform.

Example 3.4. Assume that F (c) = 1
1¡mc ¡ m

1¡m ; i.e., abilities are uniformly
distributed on the interval [m; 1]: We obtain that:

A(c) = (
1

1¡m)
k¡1(1¡ k)(

k¡2X
s=1

(1¡ c)s
s

+ ln c)

B(c) = (
1

1¡m)
k¡1(k ¡ 1)[

k¡2X
s=1

(1¡ c)s
s

+ ln c

+(1¡ c)k¡2 +m(k ¡ 2)(
k¡3X
s=1

(1¡ c)s
s

+ ln c)]

Assume now that k = 3; m = 1
2
and F (a) = 2a¡ 1 (i.e., uniform distribution

on the interval [1
2
; 1]).

The formulas above yield:

A(c) = ¡8 + 8c¡ 8 ln c:

B(c) = 16¡ 16c+ 12 ln c

Z 1

m
(B(c)¡ A(c))F 0(c)dc = 2

Z 1

1
2

(24¡ 24c+ 20 ln c)dc
= ¡14 + 20 ln 2 = ¡0: 137

:
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c
10.90.80.70.60.5

1.4

1.2

1

0.8

0.6

0.4

0.2

0
-0.2

A(c) - thick line ; B(c) - thin line; 1
2
(A(c) +B(c)) - dotted line

Note that the curve A(c) also describes the equilibrium bid when there is a
unique price V1 = 1: For comparison, we have also plotted the resulting equilib-
rium bid function when there are two equal prizes, V1 = V2 = 1

2
:

4. Concave and Convex Cost Functions

Assume now that bidder i with ability c has a cost function given by c°(¢) such
that °(0) = 0; °0(¢) > 0: Let g(¢) = °¡1(¢);and observe that g0(¢) > 0:

Proposition 4.1. In a symmetric equilibrium, the bid function of each contestant
is given by

b(c) = g[A(c)V1 +B(c)V2]

where A(c) and B(c) are de…ned by equations 3.1 and 3.2, respectively.
Proof. See Appendix.

4.1. The Designer’s Problem

Let V1 = 1 ¡ ®; and V2 = ® , where 0 · ® · 1
2
: Analogous to the case of linear

cost functions, the designer’s problem is given by

max
0·®· 1

2

k
Z 1

m
g[A(c) + ®(B(c)¡ A(c))]F 0(c)dc

The designer’s revenue as a function of the value of the second prize is:

R(®) = k
Z 1

m
g[A(c) + ®(B(c)¡A(c))]F 0(c)dc (4.1)
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Note that

R0(®) = k
Z 1

m
(B(c)¡ A(c))g0[A(c) + ®(B(c)¡A(c))]F 0(c)dc (4.2)

and that:

R00(®) = k
Z 1

m
(B(c)¡A(c))2g00[A(c) + ®(B(c)¡ A(c))]F 0(c)dc (4.3)

Observe also that

dg0[A(c) + ®(B(c)¡A(c))]
dc

= g00[A(c) + ®(B(c)¡A(c))] (4.4)

¢[(1¡ ®)A0(c) + ®B0(c)]
and that

(1¡ ®)A0(c) + ®B0(c) < 0 (4.5)

since this last term is the derivative of the equilibrium bid function for contestants
having linear cost functions. We can now prove the following:

Proposition 4.2. For any number of contestants with concave cost functions,
and for any distribution of abilities in the population, it is optimal to allocate the
entire prize sum to a single …rst prize.

Proof. The cost function of contestant i with ability c, c°(¢); has the additional
feature that °00(¢) · 0: Hence g00(¢) = (°¡1(¢))00 ¸ 0: By equations 4.4 and 4.5
we obtain that the positive function g0[A(c) + ®(B(c)¡ A(c))] is decreasing in c.
This means that in the integral de…ning R0(®); all negative terms B(c) ¡ A(c)
(corresponding to c 2 [m; c¤¤)) are multiplied by relatively high values of g0(¢) ,
while all positive terms B(c)¡A(c) (corresponding to c 2 (c¤¤; 1)) are multiplied
by relatively lower values. By Proposition 3.2-7, we obtain:

R0(®) = k
Z 1

m
g0[A(c) + ®(B(c)¡ A(c))](B(c)¡A(c))F 0(c)dc < 0 (4.6)

Hence, the designer’s payo¤ function has a maximum at ® = 0; and a single
prize is optimal.

Proposition 4.3. Consider a contest where contestants have convex cost func-
tions. A necessary and su¢cient condition for the optimality of two prizes is given
by Z 1

m
(B(c)¡ A(c))g0(A(c))F 0(c)dc > 0 (4.7)
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If condition 4.7 is satis…ed7 then it is either optimal to award two prizes V1 = 1¡®¤
and V2 = ®¤, where ®¤ > 0 is determined by the equation R0(®¤) = 0 , or to award
two equal prizes, V1 = V2 = 1

2
:

Proof. The cost function of contestant i with ability c, c°(¢); has the additional
feature that °00(¢) ¸ 0: Hence g00(¢) = (°¡1(¢))00 · 0: By equations 4.4 and 4.5
we obtain that the positive function g0[A(c) + ®(B(c) ¡ A(c))] is increasing in
c. This means that in the integral de…ning R0(®) all negative terms of the form
B(c)¡A(c) (corresponding to c 2 [m; c¤¤)) are multiplied by relatively low values
of g0(¢) , while all positive terms B(c) ¡ A(c) (corresponding to c 2 (c¤¤; 1)) are
multiplied by higher values. Moreover, for all ® 2 [0; 1

2
] we have

R00(®) = k
Z 1

m
(B(c)¡ A(c))2g00[A(c) + ®(B(c)¡A(c))]F 0(c)dc · 0

If condition 4.7 is satis…ed then we have:

R0(0) = k
Z 1

m
((B(c)¡ A(c))g0(A(c))F 0(c)dc > 0 (4.8)

Hence, the revenue function R(®) cannot have a maximum at ® = 0: It either
has a maximum at ®¤ such that R

0
(®¤) = 0 or at ® = 1

2
:

For the converse, assume that two prizes are optimal. This means that ® = 0
is not a maximum of R(®). If condition 4.7 is not satis…ed we obtain R0(0) · 0.
Together with R00(®) · 0 for all ® 2 [0; 1

2
] we obtain a contradiction.

Example 4.4. Let k = 3; m = 1
2
and F (a) = 2a ¡ 1 (i.e., uniform distribution

on the interval [1
2
; 1]). Let the cost function be c°(x) = cx2: We have °¡1(x) =

g(x) = x
1
2 and g0(x) = 1

2
x¡

1
2 : By the results in Example 3.4, we obtain:

A(c) = ¡8 + 8c¡ 8 ln c
B(c) = 16¡ 16c+ 12 ln c

B(c)¡A(c) = 24¡ 24c+ 20 ln c
g0(A(c)) =

1

2
(¡8 + 8c¡ 8 ln c)¡ 1

2Z 1

1
2

(B(c)¡ A(c))g0(A(c))F 0(c) =
p
2
Z 1

1
2

6¡ 6c+ 5 ln cq
(¡1 + c¡ ln c)

dc = 0: 19

7Note that the condition involves only primitives of the model: the distribution function, the
cost function, and the number of contestants.
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c
10.90.80.70.60.5

8

6

4

2

0

-2

B(c)¡ A(c) - thick line; g0(A(c)) - thin line

Numerical calculations reveal that ®¤ = 1
e
is (an approximate) solution to the

equation R0(®) = 0: Hence the optimal prize structure is V1 = 1¡ 1
e
¼ 0: 63, and

V2 =
1
e
¼ 0: 37. The ratio of prizes is V1

V2
= e¡1 ¼ 1: 71; and the di¤erence V1¡V2

is about one quarter of the prize sum.

5. Concluding Comments

We have studied the optimal prize structure in multi-prize contests where players
have private information about their abilities. In order to maximize the expected
sum of bids, the designer should award a single prize if contestants have linear or
concave cost functions. If the contestants have convex cost functions, then two
prizes (or more) may be optimal. The optimal proportion between the prizes’
values depends then on the number of contestants, the distribution of abilities in
the population, and on the exact form of the cost function.

What can we say about Galton’s proposal to have a …rst prize which is three
times higher than the second prize ? Assume that contestants have linear cost
functions. It can be easily shown that, when the number of contestants goes to
in…nity (this was the actual case envisaged by Galton) , the average di¤erence
between the marginal e¤ects of the two prizes goes to zero. Hence, the designer
becomes indi¤erent between awarding one prize or two prizes (in any proportion).
In particular, Galton’s 3 : 1 proportion becomes approximately optimal.

We see several avenues for future research: 1) Combine the model of private
information about abilities with the earlier models where output depend stochas-
tically on e¤ort, and only output can be observed. 2) Perform comparative static
exercises about the …ne e¤ects of changes in the distribution of abilities or in the
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form of the cost functions when these are convex. 3) Compare simultaneous con-
tests with sequential contests. 4) Conduct empirical studies about the optimal
prize structure in observed contests, such as architectural competitions.

Francis Galton concluded his article with the following remark:

”I now commend the subject to mathematicians in the belief that
those who are capable, which I am not, of treating it more thoroughly,
may …nd that further investigations will repay trouble in unexpected
directions” (Galton, 1902)

The challenge was immediately picked by the famous statistician Karl Pearson,
at that time editor of Biometrika. His notes at the end of Galton’s article contain a
complete solution of the statistical problem posed (calculate the ratio of expected
di¤erences among order statistics), but does not refer to the original question of
prize allocation in contests. It is now up to the reader to decide whether we,
humble economists, have made a contribution.
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7. Appendix

Proof of Proposition 3.1: Assume that all contestants in the set Knfig bid
according to b(¢) , and assume that the bid function is strictly monotonic and
di¤erentiable.
Player i’s maximization problem reads:

maxx[V1(1¡ F (b¡1(x)))k¡1 + (k ¡ 1)V2F (b¡1(x))(1¡ F (b¡1(x)))k¡2 ¡ cx]

Let y(¢) denote the inverse function of b(¢): Using strict monotonicity and
symmetry, the …rst order condition is:

1 = ¡(k ¡ 1)(V1 ¡ V2)y0 1
y
(1¡ F (y))k¡2F 0(y)¡

(k ¡ 1)(k ¡ 2)V2y0 1
y
F (y)(1¡ F (y))k¡3F 0(y)

Note that the right hand side of the FOC is a function of y only (i.e., this is
a di¤erential equation with separated variables).
A contestant with the lowest possible ability c = 1 can either never win a prize

(if k > 2) or wins for sure the second prize (if k = 2): Hence the optimal bid of
this type is always zero, and this yields the boundary condition y(0) = 1;
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The solution to the di¤erential equation with the boundary condition is given
by :

Z 0

x
dt = ¡V1((k ¡ 1))

Z 1

y

1

t
(1¡ F (t))k¡2F 0(t)dt+

¡V2(k ¡ 1)
Z 1

y

1

t
(1¡ F (t))k¡3[1¡ (k ¡ 1)F (t)]F 0(t)dt (7.1)

Denote

G(y) = V1((k ¡ 1))
Z 1

y

1

t
(1¡ F (t))k¡2F 0(t)dt+

V2(k ¡ 1)
Z 1

y

1

t
(1¡ F (t))k¡3[1¡ (k ¡ 1)F (t)]F 0(t)dt (7.2)

We obtain that x = G(y) = G(b¡1(x)); and therefore that b(¢) = G(¢): Thus, the
bid function of every player is given by b(c) = A(c)V1 +B(c)V2; where:

A(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡2F 0(a)da

B(c) = (k ¡ 1)
Z 1

c

1

a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

We now check that the candidate equilibrium function b(¢) is strictly monotonic
decreasing (it is clearly di¤erentiable). Note …rst that

A0(c) = ¡(k ¡ 1)1
c
(1¡ F (c))k¡2F 0(c) < 0

for all c 2 [m; 1):We have also

B0(c) = (k ¡ 1)1
c
(1¡ F (c))k¡3F 0(c)[(1¡ (k ¡ 1)F (c)]F 0(c)

Because V1 ¸ V2 we obtain for all c 2 [m; 1) :

b0(c) = A
0
(c)V1 +B

0(c)V2
· V2(A

0(c) +B
0
(c))

= ¡V2(k ¡ 1)(k ¡ 2)1
c
F (c)(1¡ F (c))k¡3F 0(c))

< 0
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Assuming that all contestants other than i bid according to b(¢); we …nally need
to show that, for any type c of player i; the bid b(c) maximizes the expected utility
of that type. The necessary …rst-order condition is clearly satis…ed (since this is
how we ”guessed” b(c) to start with). We now show that a su¢cient second-order
condition (called ”pseudoconcavity”) is satis…ed. Let
¼(x; c) = V1(1¡ F (b¡1(x))k¡1 + (k ¡ 1)V2F (b¡1(x))(1¡ F (b¡1(x))k¡2 ¡ cx be

the expected utility of player i with type c that makes a bid x:
We will show that the derivative ¼x(c; x) is nonnegative if x is smaller than

b(c) and nonpositive if x is larger than b(c): As ¼(x; c) is continuous in x; this
implies that ¼(x; c) is maximized at x = b(c).
Note that ¼x(x; c) = ¡(k ¡ 1)(V1 ¡ V2)db¡1(x)dx

(1¡ F (b¡1(x)))k¡2F 0(b¡1(x))¡
(k ¡ 1)(k ¡ 2)V2 db¡1(x)dx

F (b¡1(x))(1¡ F (b¡1(x)))k¡3F 0(b¡1(x))¡ c:
Let x < b(c); and let bc be the type who is supposed to bid x; that is b(bc) = x:

Note that bc > c since b(¢) is strictly decreasing.
Di¤erentiating ¼x(x; c) with respect to c yields ¼xc(x; c) = ¡1 < 0: That is,

the function ¼x(x; ¢) is decreasing in c. Since bc > c;we obtain ¼x(x; c) ¸ ¼x(x; bc)
Since x = b(bc) we obtain by the …rst order condition that ¼x(x; bc) = 0;and

therefore that ¼x(x; c) ¸ 0 for every x < b(c):
A similar argument shows that ¼x(x; c) · 0 for every x > b(c):

The symmetric equilibrium with p prizes:
Fix agent i; and let Fs(a); 1 · s · p; denote the probability that agent i

with type a meets k ¡ 1 competitors such that s ¡ 1 of them have lower types,
and k ¡ s have higher types. Recall that in equilibrium we expect i to bid more
than competitors with higher types (lower ability). Hence Fs(¢) is exactly the
probability of winning the s0th prize. We have then

Fs(a) =
(k ¡ 1)!

(s¡ 1)!(k ¡ s)!(1¡ F (a))
k¡s(F (a))s¡1

The corresponding derivatives are given by

F
0
1(a) = ¡(k ¡ 1)(1¡ F (a))k¡2 (7.3)

and by

F 0s(a) =
(k ¡ 1)!

(s¡ 1)!(k ¡ s)!(1¡ F (a))
k¡s¡1(F (a))s¡2F 0(a) (7.4)

¢[(1¡ k)F (a) + (s¡ 1)]
for s > 1.

17



Note that A(c) =
R 1
c ¡1

a
F

0
1(a)da and that B(c) =

R 1
c ¡ 1

a
F

0
2(a)da: Analogously

to the case of two prizes, the equilibrium bid for any number of prizes p , any
number of contestants k ¸ p with linear cost functions is given by:

b(c) =
pX
s=1

Vs ¢
Z 1

c
¡1
a
F

0
s(a)da (7.5)

Proof of Proposition 3.2: Recall that : A(c) = (k¡1) R 1c 1
a
(1¡F (a))k¡2F 0(a)da

and B(c) = (k ¡ 1) R 1c 1
a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

1. This is obvious by de…nition.

2. A(c) > 0 for c 2 [m; 1) is obvious by de…nition. Further we have A0(c) =
¡(k ¡ 1)1

c
(1¡ F (c))k¡2F 0(c) < 0 for all c 2 [m; 1) and A0(1) = 0:

3. B0(c) = (k ¡ 1)1
c
(1¡ F (c))k¡3F 0(c)[(1¡ (k ¡ 1)F (c)]

For c¤ such that F (c¤) = 1
k¡1 we obtain B

0(c¤) = 0: Moreover, B0(c) > 0 for
all c 2 [m; c¤) , and B0(c) < 0 for all c 2 (c¤; 1): Finally, B0(1) = 0:

4. For for all c 2 [c¤; 1) we obtain that

j B0(c) j ¡ j A0(c) j
= ¡B0(c) +A0(c)
= (k ¡ 1)1

c
(1¡ F (c))k¡3F 0(c)(kF (c)¡ 2)

For k > 2 we obtain that j B0(c) j ¡ j A0(c) j is positive for c close enough
to 1 (since kF (c) > 2 for such types.)

5. We have

B(m) = (k ¡ 1)(
Z c¤

m

1

a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

+(k ¡ 1)(
Z 1

c¤

1

a
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

< (k ¡ 1)
Z 1

m
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

The last inequality follows by noting that the integrand in the …rst integral
is negative and that the integrand of the second integral is positive. If we
multiply both integrands by the increasing function h(a) = a we strictly
increase the value of the sum of the two integrals. In order to prove that
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B(m) < 0 it is then enough to prove that
R 1
m(1 ¡ F (a))k¡3[(k ¡ 1)F (a) ¡

1]F
0
(a)da = 0: By the change of variable z = F (a);we obtainZ 1

m
(1¡ F (a))k¡3[(k ¡ 1)F (a)¡ 1]F 0

(a)da

=
Z 1

0
(1¡ z)k¡3[(k ¡ 1)z ¡ 1]dz = 0

6. This follows by combining all properties above.

7. We know that B(c)¡A(c) > 0 for all c 2 [m; c¤¤) and that B(c)¡A(c) < 0
for all c 2 (c¤¤; 1): This yields:

Z 1

m
(B(c)¡A(c))F 0(c)dc

=
Z c¤¤

m
(B(c)¡A(c))F 0(c)dc+

Z 1

c¤¤
(B(c)¡A(c))F 0(c)dc

= (k ¡ 1)
Z c¤¤

m
[
Z 1

c

(1¡ F (a))k¡3
a

(kF (a)¡ 2)F 0(a)da]F 0(c)dc+

(k ¡ 1)
Z 1

c¤¤
[
Z 1

c

(1¡ F (a))k¡3
a

(kF (a)¡ 2)F 0(a)da]F 0(c)dc

< (k ¡ 1) 1
c¤¤

Z c¤¤

m
[
Z 1

c
(1¡ F (a))k¡3(kF (a)¡ 2)F 0(a)da]F 0(c)dc+

(k ¡ 1) 1
c¤¤

Z 1

c¤¤
[
Z 1

c
(1¡ F (a))k¡3(kF (a)¡ 2)F 0(a)da]F 0(c)dc

= (k ¡ 1) 1
c¤¤

Z 1

m
[
Z 1

c
(1¡ F (a))k¡3(kF (a)¡ 2)F 0(a)da]F 0(c)dc

=
1

c¤¤

Z 1

0
[
Z 1

v
(k ¡ 1)(1¡ z)k¡3(kz ¡ 2)dz]dv = 0

The last equality follows by the changes of variables F (a) = z and F (c) = v
.

Proof of Proposition 4.1: Assume that all contestants in the set Knfig
bid according to b(¢) , and assume that the bid function is strictly monotonic and
di¤erentiable. Let y(¢) denote the inverse function of b(¢):
Player i’s maximization problem reads:

maxx[V1(1¡ F (b¡1(x)))k¡1 + (k ¡ 1)V2F (b¡1(x))(1¡ F (b¡1(x)))k¡2 ¡ c°(x)]
Using strict monotonicity and symmetry, the …rst order condition is:
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°0(x) = ¡(k ¡ 1)(V1 ¡ V2)y0 1
y
(1¡ F (y))k¡2F 0(y)¡

(k ¡ 1)(k ¡ 2)V2y0 1
y
F (y)(1¡ F (y))k¡3F 0(y)

Note that this is also an ordinary di¤erential equation with separated variables
(i.e. the left hand side of the …rst equation is a function of x only; while the right
hand side is a function of y only:
Integration and the use of the boundary condition y(1) = 0 yield °(x) = G(y),

where G(y) is de…ned exactly as in the proof of Proposition 3.1 (see equation 7.2)
Hence, we obtain that x = °¡1(G(y)) = g(G(b¡1(x))) and that b(¢) = g(G(¢)):
Note that the candidate equilibrium bid function b(c) = °¡1(A(c)V1+B(c)V2) =

g(A(c)V1 +B(c)V2) is strictly decreasing since, for all c 2 [m; 1); it holds:

dg

dc
(A(c)V1 +B(c)V2)

= g0(A(c)V1 +B(c)V2) ¢ (A0(c)V1 +B0(c)V2) < 0
The last inequality follows because g0(¢) > 0 by assumption, while A0(c)V1 +

B0(c)V2 < 0 since this is the derivative of the bid function with linear cost functions
(see proof of Proposition 3.1).
For the su¢cient second-order condition we proceed exactly as in the proof of

Proposition 3.1. Using the notation employed in that proof, we have
¼(x; c) = V1(1¡ F (b¡1(x))k¡1 + (k ¡ 1)V2F (b¡1(x))(1¡ F (b¡1(x))k¡2 ¡ c°(x)

and
¼x(x; c) = ¡(k ¡ 1)(V1 ¡ V2)db¡1(x)dx

(1¡ F (b¡1(x)))k¡2F 0(b¡1(x))¡
(k ¡ 1)(k ¡ 2)V2 db¡1(x)dx

F (b¡1(x))(1¡ F (b¡1(x)))k¡3F 0(b¡1(x))¡ c°0(x):
Di¤erentiating ¼x(x; c) with respect to c yields ¼xc(x; c) = ¡°0(x) < 0: That

is, the function ¼x(x; ¢) is decreasing in c, exactly as in the linear case. The proof
of pseudoconcavity is concluded as in that case.

Analogously to the case of two prizes, the equilibrium bid for any number of
prizes p , and any for number of contestants k ¸ p with cost functions of the form
c°(x) is given by:

b(c) = °¡1(
pX
s=1

Vs ¢
Z 1

c
¡1
a
F

0
s(a)da) (7.6)

where F
0
s(a) is given in formulas 7.3 and 7.4.
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