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Abstract

The paper discusses criteria for comparing risk aversion of decision
makers when outcomes are multidimensional. A weak concept, ”com-
modity specific greater risk aversion”, is based on the comparison of
risk premia paid in a specified commodity. A stronger concept, ”uni-
formly greater risk aversion” is based on the comparison of risk premia
regardless of what commodities are used for payment. Neither concept
presumes that von Neumann-Morgenstern utility functions are ordi-
nally equivalent. Nonincreasing consumption specific risk aversion is
shown to be sufficient to make randomization undesirable in an agency
problem with hidden characteristics.
Key Words: Multidimensional Risks, Risk Aversion, Risk Premia,

Randomization in Incentive Schemes.
JEL Classification: D81, D82

1 Introduction

The concept of risk aversion is one of the most important concepts in the
theory of decision making under uncertainty. Measures of risk aversion have
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been developed by Arrow (1965) and Pratt (1964) for choices involving uni-
dimensional outcomes. The measures permit a certain quantification of the
concept, providing a basis for the comparative analysis of the risk choices of
different people as well as the comparative-static analysis of the dependence
of risk choices on parameters such as wealth.

The present paper extends the Arrow-Pratt concept of absolute risk
aversion to choices involving multidimensional outcomes. It also provides
an application of the extended risk aversion measure in the analysis of an
incentive problem with hidden characteristics.

Measurement of risk aversion with respect to multidimensional outcomes
has previously been studied by Kihlstrom and Mirman (1974, 1981). To de-
fine the notion that one von Neumann-Morgenstern utility function on an
n-dimensional outcome space involves greater risk aversion than another,
they assumed that both utility functions induce the same preference or-
dering over outcomes, i.e. that utility functions differ only in the cardinal
representations of a given preference ordering. The approach developed in
this paper involves no such assumption. However, in those instances where
the Kihlstrom-Mirman assumption is satisfied, the notion of risk aversion
that is proposed here coincides with theirs.

A concept of ”greater risk aversion” that does not presume identical
preferences over the underlying outcome space is useful in the analysis of in-
centive problems with hidden characteristics. In situations involving hidden
characteristics incentive devices inducing self-selection are useful precisely
because people with different characteristics have different preference order-
ings over the given multidimensional outcome space. In these situations, the
Kihlstrom-Mirman approach is a priori inapplicable as a tool for comparing
the risk attitudes of different types. However, such a tool is needed if one
is to have a clear view of the notion that, because of differences in risk at-
titudes, it may be desirable to use randomized incentive mechanisms.1 The
measure proposed here serves precisely that purpose.

To some extent, the approach developed here confirms the view of Kihlstrom
and Mirman that differences in induced orderings over outcomes cause dif-
ficulties for the comparative assessment of risk aversion. However, the diffi-
culties are less serious than they suggested.

Going back to the approach of Arrow and Pratt, consider the assessment
of risk aversion in terms of risk premia, saying that one agent is more risk

1 Maskin and Riley (1984), Stiglitz (1982), Fudenberg and Tirole (1991). For settings
involving unidimensional outcomes, Maskin and Riley (1984) as well as Matthews and
Moore (1987) show that nonincreasing absolute risk aversion makes randomization unde-
sirable.
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averse than another if the amount that he is willing to pay in order to
be spared the randomness in a given lottery exceeds the amount that the
other agent is willing to pay for the same purpose. In a multidimensional
context, this approach raises the question of what it means to pay a certain
amount in order to be spared the randomness in a given lottery. Is the risk
premium to be paid in apples or in pears? If the von Neumann-Morgenstern
utility functions of the two agents in question induce different preference
orderings over the underlying outcome space, the means of payment can
make a difference. One agent is deemed to be more risk averse than another
if the risk premium has to be paid in apples and to be less risk averse if the
risk premium has to be paid in pears. The Kihlstrom-Mirman assumption
of identical preference orderings over the underlying outcome space serves
to exclude this paradox.

The approach developed here is based on the view that it is not neces-
sary to exclude the paradox in order to talk sensibly about comparisons of
risk aversion in a multidimensional context. First, if one is explicit about
the units in which the risk premium is to be paid, one obtains a concept of
”premium-specific greater risk aversion” which does not give rise to a para-
dox at all - and which turns out to be useful in studying incentive mecha-
nisms. Second, if one considers the notion of premium-specific greater risk
aversion to be too weak, one can define a concept of ”uniformly greater
risk aversion”, which applies if one has premium-specific greater risk aver-
sion regardless of the specification of the units in which the premium is
to be paid. Under the Kihlstrom-Mirman assumption of identical prefer-
ence orderings over the underlying outcome space, their concept of ”greater
risk aversion” coincides with the concept of ”uniformly greater risk aver-
sion” proposed here. However, the later concept has meaning even if the
Kihlstrom-Mirman assumption is not satisfied.

In the following, Section 2 introduces the concept of ”premium-specific
greater risk aversion” and provides an analogue of Pratt’s characterization
result for the unidimensional case. Section 3 indicates how the concept can
be useful in analysing incentive problems with hidden characteristics. Sec-
tion 4 discusses the role of premium specificity versus uniformity in risk
aversion. This section provides (i) an example where the comparison of risk
attitudes depends on the specification of the risk premium, (ii) a definition
and characterization result for the concept of ”uniformly greater risk aver-
sion”, and (iii) an example of utility functions that are comparable by the
criterion of ”uniformly greater risk aversion” even though they do not satisfy
the Kihlstrom-Mirman assumption of ordinal equivalence.
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2 Commodity Specific Risk Premia and Risk Aver-

sion

Consider a decision maker choosing between lotteries with outcome realiza-
tions x ∈ ℜn. Assume that the decision maker treats any one lottery as a
random variable x̃ on some underlying probability space (Ω,̥, ν) and that
he assesses lotteries according to the expected-utility functional

Eu(x̃) =

∫

Ω
u(x(ω))dν(ω), (2.1)

where u : ℜn → ℜ is a strictly increasing, concave and twice continuously
differentiable function with first derivatives u1, ..., un and Hessian D2u =
(uij).

For convenience, I refer to the different dimensions of the outcome vectors
as ”commodities”. For i = 1, ..., n, the i-risk-premium indicates the number
πi(x̃, u) of units of commodity i that the decision maker would be willing to
give up in order to avoid the randomness inherent in the lottery x̃. Formally,
πi(x̃, u) is defined to be the solution to the equation

Eu(x̃) = u(Ex̃1, ...Ex̃i − πi, ..., Ex̃n). (2.2)

A utility function u is said to exhibit i-premium specific weakly greater
risk aversion than an alternative utility function v, if and only if one has

πi(x̃, u) ≥ πi(x̃, v) (2.3)

for every lottery x̃. The utility function u is said to exhibit i-premium
specific strictly greater risk aversion than v if for every x̃ the inequality in
(2.3) is strict. The following result provides a multidimensional analogue of
Pratt’s theorem.

Theorem 2.1 For any i and any two von Neumann-Morgenstern utility
functions u and v, the following statements are equivalent:
(a) u exhibits i-premium specific weakly greater risk aversion than v;
(b) there exists a concave function ϕi such that for all x ∈ ℜ,

u(x) = ϕi(x1, ..., xi−1, v(x1, ..., xn), xi+1, ..., xn); (2.4)

(c) the matrix

Bi(x|u, v) = −

[
1

ui(x)
D2u(x)−

1

vi(x)
D2v(x)

]
(2.5)

is positive semidefinite for every x ∈ ℜ.
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Following Pratt’s line of argument, I will prove the implications (b) =⇒
(a) =⇒ (c) =⇒ (b). For clarity of exposition, each implication is stated as
a separate lemma. For the implications (b) =⇒ (a) and (c) =⇒ (b), the
lemmas also give the corresponding ”strict” versions. For the implication
(a) =⇒ (c), I have not found a ”strict” version that is simple to state, let
alone sufficient to establish an equivalence like the one obtained for the weak
version.

Lemma 2.2 (b) =⇒ (a). Moreover, if ϕi is strictly concave, then u exhibits
i-premium specific strictly greater risk aversion than v.2

Proof. For any nondegenerate lottery x̃, (2.4) implies

Eu(x̃) = Eϕi(x̃1, ..., x̃i−1, v(x̃1, ..., x̃n), x̃i+1, ..., x̃n). (2.6)

By the concavity of ϕi, it follows that

Eu(x̃) ≤ ϕi(Ex̃1, ..., Ex̃i−1, Ev(x̃1, ..., x̃n), Ex̃i+1, ..., Ex̃n). (2.7)

By the definition of πi(x̃, v), (2.7) is equivalent to the inequality

Eu(x̃) ≤ ϕi(Ex̃1, ..., Ex̃i−1, v(Ex̃1, ..., Ex̃i − πi(x̃, v), Ex̃n), Ex̃i+1, ..., Ex̃n),

so another application of (2.4) yields

Eu(x̃) ≤ u(Ex̃1, ..., Ex̃i−1, Ex̃i − πi(x̃, v), Ex̃i+1, ..., Ex̃n). (2.8)

By the definition of πi(x̃, u) and the monotonicity of u, it follows that
πi(x̃, u) ≥ πi(x̃, v). Thus, u exhibits i-premium specific weakly greater risk
aversion than v. If ϕi is strictly concave, the inequality in (2.7) and with it
all subsequent inequalities are strict.

Lemma 2.3 (a) =⇒ (c).

Proof. Fix x ∈ ℜ and, for any h > 0 and any random variable ỹ with
Eỹ = 0, consider the lottery x̃(h, ỹ) = x+ hỹ. Given that Eyj = 0 for all
j, the i-risk-premium πi(x̃(h, ỹ), u) is given by the equation

Eu(x+ hỹ) = u(x1, ..., xi − πi(x̃(h, ỹ), u), ..., xn). (2.9)

2 For lotteries taking the form x̃ = λ̃x1 + (1− λ̃)x2 and u, v satisfying u = ϕ ◦ v, with
ϕ strictly concave, this is the result of Kihlstrom and Mirman (1974).
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The left-hand side of (2.9) can be written as

Eu(x+ hỹ) = u(x) +
h2

2
E
[
ỹ′D2u(x)ỹ

]
+ o(h2), (2.10)

the right-hand side as

u(x1, ..., xi−πi(x̃(h, ỹ), u), ..., xn) = u(x)−πi(x̃(h, ỹ), u) ui(x)+o(πi(x̃(h, ỹ), u)),
(2.11)

where o(h2) and o(πi(x̃(h, ỹ), u)) are terms going to zero faster than h2

and πi(x̃(h, ỹ), u). By standard arguments, as in Pratt (1964), (2.9) - (2.11)
imply limh→0 πi(x̃(h, ỹ), u) = 0, limh→0 πi(x̃(h, ỹ), u)/h = 0, and

lim
h→0

1

h2
πi(x̃(h, ỹ), u) = −

1

2 ui(x)
E
[
ỹ′D2u(x)ỹ

]
. (2.12)

By the same reasoning, one also has

lim
h→0

1

h2
πi(x̃(h, ỹ), v) = −

1

2 vi(x)
E
[
ỹ′D2v(x)ỹ

]
,

so πi(x̃(h, ỹ), u) > πi(x̃(h, ỹ), v) for all h and ỹ implies

−
1

ui(x)
E
[
ỹ′D2u(x)ỹ

]
≥ −

1

vi(x)
E
[
ỹ′D2v(x)ỹ

]
(2.13)

for all ỹ. If ỹ is such that for some z ∈ ℜn, ỹ = z with probability 1
2 and

ỹ = −z with probability 1
2 , (2.13) becomes

−z′
1

ui(x)
D2u(x) z ≥− z′

1

vi(x)
D2v(x) z. (2.14)

If (2.14) is to hold for all z ∈ ℜn, the matrix (2.5) must be positive semi-
definite.

Lemma 2.4 (c) =⇒ (b). Moreover, if for every x0 and x0 in ℜn, the matrix
Bi(xλ|u, v) that is associated with the convex combination xλ = λx1 + (1−
λ)x0 is positive definite for a nonnull set of λ ∈ [0, 1], then ϕi is strictly
concave.

Proof. For any x ∈ ℜn and v = v(x), define

ϕi(x1, ..., xi−1, v, xi+1..., xn) = u(x). (2.15)
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Then ϕi is well defined on the set of vectors (x1, ..., xi−1, v, xi+1..., xn) such
that v = v(x1, ..., xi−1, xi, xi+1..., xn) for some xi. Moreover, ϕi is twice
continuously differentiable. Its first derivatives are computed as

ϕii =
ui
vi
, (2.16)

ϕij = uj − ϕiivj (2.17)

for j 
= i. The second derivatives of ϕi are found to satisfy

ϕiii =
1

v2i
[uii −

ui
vi
vii] =

ui
v2i

[
uii
ui
−
vii
vi

]
, (2.18)

ϕiij =
1

vi
[uij −

ui
vi
vij − ϕiiivivj] =

ui
vi

[
uij
ui
−
vij
vi

]
− ϕiiivj (2.19)

for j 
= i, and

ϕijk = ujk −
ui
vi
vjk − ϕiikvj − ϕiijvk − ϕiiivjvk (2.20)

for j 
= i and k 
= i. Upon writing

βijk := −

[
ujk
ui
−
vjk
vi

]
(2.21)

for the typical element of the matrix Bi(x|u, v), one finds that (2.18) - (2.20)
can be rewritten as

ϕiii = −
ui
v2i
βiii, (2.22)

ϕiij = −
ui
vi
βiij +

uivj
v2i

βiii (2.23)

for j 
= i, and

ϕijk = −u
i
iβ
i
jk +

ui
vi
βiijvk +

ui
vi
βiikvj +

ui
v2i
βiiivjvk (2.24)

for j 
= i and k 
= i. For any vector z ∈ ℜn, one therefore computes

n∑

j=1

n∑

k=1

zjϕ
i
jkzk = −

ui
v2i
βiii



z2i − zi
∑

j �=i

zjvj − zi
∑

k �=i

zkvk +
∑

j �=i

∑

k �=i

zjvjzkvk





−
ui
vi

∑

j �=i

zjβ
i
ij(zi−

∑

k �=i

zkvk)−
ui
vi
(zi−

∑

j �=i

zjvj)
∑

k �=i

zkβ
i
ik

−ui
∑

j �=i

∑

k �=i

zjβ
i
jkzk,
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or
n∑

j=1

n∑

k=1

zjϕ
i
jkzk = −ui

n∑

j=1

n∑

k=1

ẑj(z)β
i
jkẑk(z), (2.25)

where ẑi(z) = (zi −
∑
k �=i zkvk) and, for j 
= i, ẑj(z) = zj . If statement

(c) holds, the quadratic form
∑n
j=1

∑n
k=1 zjϕ

i
jkzk is nonpositive whenever

z 
= 0. It follows that ϕi is concave.
To obtain strict concavity, observe that, for any x0 and x1 = x0 + y in

ℜn, one has

ϕi(x1)− ϕi(x0) =

∫ 1

0

n∑

j=1

ϕij(x0 + αy)yj dα

=
n∑

j=1

ϕij(x0)yj +

∫ 1

0

∫ α

0

n∑

j=1

yjϕ
i
jk(x0 + λy)yk dλdα. (2.26)

If x1 
= x0 and if the matrix Bi(xλ|u, v) that is associated with the convex
combination xλ = λx1+(1−λ)x0 = x0+λy is positive definite for a nonnull
set of λ ∈ [0, 1], (2.26) and (2.25) imply

ϕi(x1)− ϕi(x0) <
n∑

j=1

ϕij(x0)yj =
n∑

j=1

ϕij(x0)(x1j − x0j). (2.27)

Thus, in this case, ϕi is strictly concave.

Theorem 2.1 suggests that the matrix

Ai(x|u) := −
1

ui(x)
D2u(x) (2.28)

be regarded as a quantitative local measure of i-premium specific risk aver-
sion, much like the measure −u′′/u′ of relative curvature measures absolute
risk aversion in the unidimensional case. The suggestion is supported by
the observation that, starting from x, by (2.12), for any mean-zero random
vector ỹ, the i-risk-premium associated with small lotteries in the direction
of ỹ satisfies

lim
h→0

1

h2
πi(x̃(h, ỹ), u) = −

1

2
E
[
ỹ′Ai(x|u)ỹ

]
= −

1

2

n∑

j=1

n∑

k=1

σjk
ujk
ui

, (2.29)
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where σjk = Eỹj ỹk for j = 1, ..., n and k = 1, ..., n. Locally, starting from
x, the i-risk-premium associated with small lotteries in the direction of ỹ
depends only on the size of the lottery, the variance-covariance matrix of ỹ,
and the risk aversion matrix Ai(x|u). Moreover the i-risk-premium increases
in the risk aversion matrix in the sense that if quadratic forms involving
Ai(x|u) exceed the corresponding quadratic forms involving Ai(x|v), then i-
risk-premia for a person with utility function u are greater than i-risk-premia
for a person with utility function v.

3 Decreasing Premium Specific Risk Aversion and

the Undesirability of Randomized Incentive Schemes

This section applies the concept of i-premium specific risk aversion to the
analysis of a principal-agent problem with hidden characteristics. Let n = 2
and interpret good 1 as consumption and good 2 as leisure of the agent. A
given pair (x1, x2) provides the agent with the utility u(x1, x2), where, as
before, u : ℜ2 → ℜ is a strictly increasing, concave and twice continuously
differentiable function with first derivatives u1, u2 and Hessian D2u = (uij).

A principal wants the agent to produce some output y in return for a
wage payment w. The principal has all the bargaining power in that he can
make an ultimatum offer which the agent can only accept or reject. However,
he does not have complete information: The agent is characterized by a
productivity parameter θ with the interpretation that the production of the
output y requires him to work y

θ hours, reducing his leisure to 1 − y
θ . The

principal cannot observe θ or the actual working time y
θ of the agent. He only

knows that θ is the realization of a random variable θ̃ with possible values
θ1, ..., θm, with prior probabilities p1, ..., pm. Without loss of generality, I
assume that θ1 < θ2 < ... < θm. The agent knows his own productivity
parameter. He also knows his payoff ū when he does not work for the
principal; this payoff is taken to be independent of θ.

Given his lack of information, the principal offers a menu of m contracts,
leaving the agent to choose whichever he likes best according to his type.
A deterministic-contract menu is simply a list {(wt, yt)}

m
t=1 of wage/output

combinations such that (wt, yt) is the wage/output combination intended for
the agent when his productivity parameter is θt. A stochastic-contract menu
is a list {(w̃t, ỹt)}

m
t=1of random wage/output combinations such that (w̃t, ỹt)

is the combination intended for the agent when his productivity parameter is
θt. The idea is that after the agent has chosen a pair (w̃t, ỹt), the randomness
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in this pair is resolved and the realization (w, y) of the random pair (w̃t, ỹt)
that is observed determines the actual wage that the agent will receive and
the actual output that he must provide.

Allowing for the possibility of offering stochastic-contract menus, the
principal’s problem is to choose the list {(w̃t, ỹt)}

m
t=1 so as to maximize his

own expected profit
m∑

i=1

ptE(ỹt − w̃t) (3.1)

subject to the incentive compatibility conditions that

Eu(w̃t, 1−
ỹt
θt
) ≥ Eu(w̃t′ , 1−

ỹt′

θt
) (3.2)

for all t and all t′ and subject to the individual-rationality conditions that

Eu(w̃t, 1−
ỹt
θt
) ≥ ū (3.3)

for all t.
In addition to the monotonicity, curvature, and regularity conditions that

have already been mentioned, I assume that the utility function u satisfies
the following assumptions:

(A1) Strict Single-Crossing Property: For all θ and all (w, y) and

(w′, y′) in ℜ2+ such that y′ > y, u(w, 1 − y
θ ) = u(w′, 1 − y′

θ ) implies

u(w, 1− y

θ̂
) < u(w′, 1− y′

θ̂
) for all θ̂ > θ.

(A2) Weakly Decreasing Consumption Specific Risk Aversion: For
any θ and θ′ > θ, the function (w, y)→ u(w, 1− y

θ ) exhibits 1-premium
specific weakly greater risk aversion than the function (w, y)→ u(w, 1−
y
θ′
).

Assumption (A1) is standard for problems of this type with hidden char-
acteristics. As discussed by Milgrom and Shannon (1994) and Edlin and
Shannon (1998), it is slightly weaker than the strict Spence-Mirrlees condi-
tion that the marginal rate of substitution between consumption and output
provision, u2/θu1 , be a decreasing function of θ. It implies, in particular, that
different values of the productivity parameter induce different preference
orderings over outcomes in (w, y)-space.

Given this difference in preference orderings, an assessment of differences
in risk aversion at different values of the productivity parameter cannot rely
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on the approach of Kihlstrom and Mirman (1974) which presumes iden-
tical orderings. As an alternative, Assumption (A2) uses the concept of
i-premium specific risk aversion of the previous section, postulating that
higher values of the productivity parameter go along with lower consump-
tion specific risk aversion.

Because the ratio u2/θ
u1

is a decreasing function of θ, Assumption (A2) is
actually weaker than the corresponding assumption for leisure specific (2-
specific) risk aversion. By Theorem 2.1, (A2) is equivalent to the assumption

that the matrix

(
u11
u1

−u12
u1θ

−u21
u1θ

u22
u1θ

2

)

be increasing in θ in the sense of state-

ment (c) in Theorem 2.1. The corresponding requirement for leisure specific

risk aversion would be that the matrix

(
u11θ
u2

−u12
u2

−u21u2
u22
u2θ

)

be increasing in θ.

Under (A1), this latter requirement is more restrictive than (A2).

Theorem 3.1 Assume (A1) and (A2) and let u be strictly concave. Then
any solution to the principal’s problem involves a deterministic-contract
menu, i.e., it is not optimal for the principal to offer nondegenerate ran-
domized contracts.

Theorem 3.1 provides a two-dimensional analogue of unidimensional re-
sults in Maskin and Riley (1984) as well as Matthews and Moore (1987). To
prove Theorem 3.1, I follow the strategy of Matthews and Moore (1987) and
consider the relaxed problem which is obtained if incentive compatibility is
weakened to the downward incentive compatibility requirement that (3.2)
has to hold for all t and t′ < t. In this relaxed problem, the principal chooses
a stochastic-contract menu {(w̃t, ỹt)}

m
t=1 so as to maximize (3.1) subject to

downward incentive compatibility and individual rationality. The following
lemma is straightforward.

Lemma 3.2 Assume (A1) and (A2) and let u be strictly concave. Then any
solution to the principal’s relaxed problem involves a deterministic-contract
menu.

Proof. Let {(w̃t, ỹt)}
m
t=1 be any solution to the principal’s relaxed prob-

lem. Consider the deterministic-contract menu {(w̄t, ȳt)}
m
t=1 such that for

any t, ȳt = Eỹt, and

u(w̄t, 1−
ȳt
θt
) = Eu(w̃t, 1−

ỹt
θt
). (3.4)
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Then trivially, for any t, the validity of (3.3) implies that u(w̄t, 1−
ȳt
θt
) ≥ ū.

The menu {(w̄t, ȳt)}
m
t=1 therefore is individually rational. By Assumption

(A2) and (3.4), one also has

u(w̄t, 1−
ȳt
θt̂
) ≤ Eu(w̃t, 1−

ỹt
θt̂
) (3.5)

for all t and all t̂ > t. For any t and any t′ < t, the validity of (3.2) and (3.4)
therefore imply

u(w̄t, 1−
ȳt
θt
) = Eu(w̃t, 1−

ỹt
θt
) ≥ Eu(w̃t′ , 1−

ỹt′

θt
) ≥ u(w̄t′ , 1−

ȳt′

θt
),

so the menu {(w̄t, ȳt)}
m
t=1 is also downward incentive compatible. By the

optimality of {(w̃t, ỹt)}
m
t=1, it follows that

m∑

i=1

ptE(ỹt − w̃t) ≥
m∑

t=1

pt(ȳt − w̄t)

and, since ȳt = Eỹt for all t, that

m∑

i=1

ptEw̃t ≤
m∑

t=1

ptw̄t.

By (3.4) and the strict concavity of u, it follows that (w̃t, ỹt) = (w̄t, ȳt) almost
surely for all t, so the contract menu {(w̃t, ỹt)}mt=1 is in fact degenerate.

The reasoning in the proof of Lemma 3.2 would not be available if one
had to worry about upward as well as downward incentive constraints. In
the principal’s relaxed problem upward incentive constraints play no role by
assumption. To complete the proof of Theorem 3.1 I will show that they
also play no role in the principal’s original problem. This is the point of the
following lemma, which is proved in the Appendix. The lemma rests on the
observation that, by Lemma 3.2, the analysis can be limited to deterministic-
contract menus in combination with standard properties of the principal’s
problem with such deterministic-contract menus.

Lemma 3.3 Assume (A1) and (A2) and let u be strictly concave. Then any
solution to the principal’s relaxed problem is upward incentive compatible as
well as downward incentive compatible and individually rational.

From Lemma 3.3, one easily derives:
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Lemma 3.4 Assume (A1) and (A2) and let u be strictly concave. Then
the principal’s relaxed problem and the principal’s original problem have the
same solutions.

Proof. Let {(w̃t, ỹt)}
m
t=1 be a solution to the principal’s relaxed prob-

lem. Given that the constraint set of the principal’s relaxed problem con-
tains the constraint set of his original problem, the value of the objective
function (3.1) at {(w̃t, ỹt)}

m
t=1 is no less than its value at any other contract

menu that is feasible and incentive compatible. Given that, by Lemma 3.3,
{(w̃t, ỹt)}

m
t=1 is incentive compatible as well as individually rational, it fol-

lows that {(w̃t, ỹt)}
m
t=1 is a solution to the principal’s original problem. Any

contract menu {(w̃′t, ỹ
′
t)}

m
t=1 that also solves the principal’s original problem

therefore provides the same value of the objective function (3.1) as the so-
lution {(w̃t, ỹt)}

m
t=1 to the principal’s relaxed problem. Because any such

alternative solution {(w̃′t, ỹ
′
t)}

m
t=1 to the principal’s original problem is also

downward incentive compatible and individually rational, it must also be a
solution to the principal’s relaxed problem.

Given the identity of the solutions to the principal’s relaxed and original
problems, Theorem 3.1 is a direct consequence of Lemma 3.2.

Although the principal-agent problem under consideration is quite spe-
cial, the argument generalizes to all problems with hidden characteristics in
which the solutions to the problem as posed are a subset of the solutions
to the relaxed problem which is obtained when only downward incentive
constraints are considered. In Hellwig (2004 a, 2004 b), I show that this is
the case for the optimal income tax problem of Mirrlees (1971, 1976). Un-
der an assumption of weakly decreasing consumption specific risk aversion
therefore, it is never desirable to use randomized income tax schemes. The
robust examples to the contrary that were presented by Stiglitz (1982) all
require the assumption that consumption specific risk aversion is not weakly
decreasing in the productivity parameter.

For problems in which upward as well as downward incentive constraints
are binding, the argument used to prove Lemma 3.2 breaks down so the
approach developed here has no bite. Presumably, in such problems, the
assertion that randomization is undesirable is not generally valid even if
utility functions exhibit monotonic consumption specific risk aversion.
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4 Specificity versus Uniformity in Risk Aversion

So far, this paper has introduced the concept of i-premium specific greater
risk aversion and shown that this concept is useful for studying the impact
of differences in attitudes towards risks when ordinal preferences over the
underlying outcome space are not identical. I now turn to the concern of
Kihlstrom and Mirman (1974) that, in such situations, the differences in or-
dinal preferences over the underlying outcome space would seem to vitiate
any comparative assessment of risk attitudes. The following example con-
firms and even sharpens their concern. The example shows that a compar-
ative assessment of risk attitudes on the basis of i-premium specific greater
risk aversion is sensitive to the choice of i, i.e. the choice of commodity in
which the risk premium is to be paid.

Example 4.1 Let n = 2, and consider the family of utility functions {uα}
such that

uαβ(x1, x2) = α lnx1 + β lnx2. (4.1)

Then for α1
β
1

< α2
β
2

, the function uα1β1 exhibits 1-premium specific weakly
greater risk aversion than the function uα2β2, and the function uα2β2 exhibits
2-premium specific weakly greater risk aversion than the function uα1β1 .

Proof. For any α > 0 and β > 0, one has

D2uαβ(x) =

(
−α 1

x2
1

0

0 −β 1
x2
2

)

.

Hence,

A1(x|uαβ) =

(
1
x1

0

0 β
α
x1
x2
2

)

and A2(x|uαβ) =

(
α
β
x2
x2
1

0

0 1
x2

)

.

If α1β
1

< α2
β
2

, one therefore has

B1(x|uα1β1, uα2β2) =

(
0 0

0
(
β
1

α1
− β

2

α2

)
x1
x2
2

)

(4.2)

and

B2(x|uα2β2 , uα1β1) =

(
(α2β

2

− α1
β
1

)x2
x2
1

0

0 0

)

, (4.3)
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so both, B1(x|uα1β1 , uα2β2) and B2(x|uα2β2 , uα1β1) are positive semidefinite.
By Theorem 2.1, it follows that uα1β1 exhibits 1-premium specific greater
risk aversion than uα2β2 , and uα2β2 exhibits 2-premium specific greater risk
aversion than uα1β1 .

In this example, curvature considerations are dominated by the differ-
ences in ordinal preferences that are induced by differences in the ratio α

β .
The finding that for α1

β
1

< α2
β
2

, the utility function uα1β1 exhibits 1-premium
specific weakly greater risk aversion and the utility function uα2β2 exhibits
2-premium specific weakly greater risk aversion seems to have more to do
with these differences in ordinal preferences than with risk attitudes, i.e. for
α1
β
1

< α2
β
2

, the person with utility function uα1β1 is relatively less concerned
about paying a risk premium in units of good 1 - and is therefore willing to
pay a higher risk premium - and the person with utility function uα2β2 is
relatively less concerned about paying a risk premium in units of good 2.

However, I do not see this finding as calling for a restriction of com-
parative assessments of risk aversion to situations in which the different
von Neumann-Morgenstern utility functions induce the same ordinal pref-
erences on the underlying outcome space. Theorems 2.1 and 3.1 suggest
that the concept of i-specific greater risk aversion is useful in the sense of
having a clearcut conceptual characterization and lending itself to applica-
tions in agency problems with the Single-Crossing Property. In my view
therefore, Example 4.1 should be interpreted as a warning to the user of
the concept rather than a reason for doing without it. The warning is that
in situations involving differences in ordinal preferences over the underlying
outcome space, the comparative assessment of risk attitudes through the
concept of i-premium specific risk aversion depends on the commodity i in
which risk premia are paid. Any analysis based on this concept must there-
fore make sure that the specification of the commodity for the payment of
risk premia is actually appropriate to the situation on hand.

In some contexts, it may not be appropriate to have an a priori specifica-
tion of one commodity for the payment of risk premia. In such contexts, one
may want to impose the requirement that the comparison of risk attitudes
be independent of how risk premia are paid. For this purpose, I introduce
the notion that risk aversion under one utility function is uniformly greater
than under another. Formally, I say that a utility function u exhibits uni-
formly weakly greater risk aversion than an alternative utility function v, if
and only if, for every lottery x̃ and every vector π ∈ ℜn+,

Ev(x̃) = v(Ex̃− π) implies Eu(x̃) ≤ u(Ex̃− π). (4.4)
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The utility function u exhibits uniformly strictly greater risk aversion than
v if the inequality in (4.4) is strict for every nondegenerate x̃ and every i.
The following result provides the analogue of Theorem 2.1 for this concept.

Theorem 4.2 For any two von Neumann-Morgenstern utility functions u
and v, the following statements are equivalent:
(a) u exhibits uniformly weakly greater risk aversion than v;
(b) for i = 1, ..., n, there exists a concave function ϕi such that for all

x ∈ ℜ,
u(x) = ϕi(x1, ..., xi−1, v(x1, ..., xn), xi+1, ..., xn); (4.5)

(c) the matrix

Bi(x|u, v) = −

[
1

ui(x)
D2u(x)−

1

vi(x)
D2v(x)

]
(4.6)

is positive semidefinite for every x ∈ ℜ and every i = 1, ..., n.

Proof. By Theorem 2.1, statements (b) and (c) are equivalent to each
other and to the additional statement

(â) for i = 1, ..., n, u exhibits i-premium specific weakly greater risk
aversion than v.

Therefore it suffices to prove that (â) is equivalent to (a). The implication
(a) =⇒ (â) is trivial. To prove the reverse implication, (â) =⇒ (a), I note
first that (â) implies the validity of (4.4) for every x̃ and every π ∈ ℜn+ that
takes the form π = πiei, where ei is the i-th unit vector. In particular, with
πi = πi(x̃, v), one has

Ev(x̃) = v(Ex̃− πi(x̃, v)ei) and Eu(x̃) ≤ u(Ex̃− πi(x̃, v)ei). (4.7)

I next show that, for every x̃ and every π ∈ ℜn+, under (â), Ev(x̃) =
v(Ex̃−π) implies u(Ex̃−π) ≥ mini u(Ex̃−πi(x̃, v)ei) and hence, by (4.7),
u(Ex̃−π) ≥ Eu(x̃), as required for the validity of (a). Equivalently, I claim
that for some i, the vector πi(x̃, v)ei minimizes u(Ex̃ − π) over the set of
π ∈ ℜn+ for which Ev(x̃) = v(Ex̃− π).

To establish this claim, I will show that for any π ∈ ℜn+ such that πi > 0
for more than one index i, there exists some π̂ ∈ ℜn+ such that the set
I+(π̂) := {i|πi > 0} of indices with strictly positive entries in π̂ is a strict
subset of the set I+(π) := {i|πi > 0} of indices with strictly positive entries
in π and, moreover, v(Ex̃− π̂) = v(Ex̃−π) and u(Ex̃− π̂) ≤ u(Ex̃−π). In
other words, u is not increased if one moves from π to a suitably chosen
point π̂ which yields the same v and which has at least one more zero than
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π. Upon repeating the operation, if necessary, one also finds that u is not
increased if one moves from π to a suitably chosen point π̌ which yields the
same v and which has no more than one nonzero entry, i.e. which takes the
form π̌ = πiei for some i.

To prove that, under (â), u is not increased if one moves from π to a
suitably chosen point π̂ which yields the same v and which has at least one
more zero than π, fix π ∈ ℜn+, and consider the map π̂j1 → π(π̂j1) which is
defined by setting

πi(π̂j1) = πi for all i 
= j1, j2, (4.8)

πj1(π̂j1) = π̂j1 , (4.9)

and
v(Ex̃− π(π̂j1)) = v(Ex̃− π), (4.10)

the component πj2(π̂j1) of the vector π(π̂j1) being implicitly defined by
(4.10). By the implicit function theorem, one has

dπj2(π̂j1)

dπ̂j1
= −

vj1(Ex̃− π(π̂j1))

vj2(Ex̃− π(π̂j1))
(4.11)

and

d2πj2(π̂j1)

dπ̂2j1
=

1

v2j2

[
vj2vj1j1 − vj1vj2j1 + (vj2vj1j2 − vj1vj2j2)

dπj2
dπ̂j1

]
, (4.12)

which is conveniently rewritten in the form

d2πj2
dπ̂2j1

=
1

vj2

[

vj1j1 + (vj2j1 + vj1j2)
dπj2
dπ̂j1

+ vj2j2

[
dπj2
dπ̂j1

]2]

. (4.13)

For the function π̂j1 → w(π̂j1) := u(Ex̃− π(π̂j1)), one obtains

dw

dπ̂j1
= −uj1 − uj2

dπj2
dπ̂j1

(4.14)

and

d2w

dπ̂2j1
= uj1j1 + uj2j1

dπj2
dπ̂j1

+ uj1j2
dπj2
dπ̂j1

+ uj2j2

[
dπj2
dπ̂j1

]2
(4.15)

−uj2
d2πj2
dπ̂2j1

.
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From (4.15) and (4.13), one obtains

1

uj2

d2w

dπ̂2j1
= +

1

uj2

[

uj1j1 + (uj2j1 + uj1j2)
dπj2
dπ̂j1

+ uj2j2

[
dπj2
dπ̂j1

]2]

(4.16)

−
1

vj2

[

vj1j1 + (vj2j1 + vj1j2)
dπj2
dπ̂j1

+ vj2j2

[
dπj2
dπ̂j1

]2]

.

Given the equivalence of statements (â) and (c), under (â), the difference
of quadratic forms on the right-hand side of (4.16) is nonpositive. The
function π̂j1 → w(π̂j1) := u(Ex̃ − π(π̂j1)) is therefore concave and attains
a minimum on the boundary, at π̂∗j1 satisfying π̂∗j1 = 0 or πj2(π̂

∗
j1) = 0. The

point π̂ = π(π̂∗j1) then has one more zero entry than the original point π and,
by construction, one has v(Ex̃−π̂) = v(Ex̃−π) and u(Ex̃−π̂) ≤ u(Ex̃−π).

At this point, the reader may wonder how the concept of uniformly
greater risk aversion relates to the analysis of Kihlstrom and Mirman (1974).
According to Kihlstrom and Mirman, a utility function u exhibits weakly
greater (strictly greater) risk aversion than a utility function v if one can
write u = ϕ ◦ v, where ϕ is a concave (strictly concave) function. Any two
functions u and v that are comparable by the Kihlstrom-Mirman criterion
thus satisfy statement (b) in Theorem 4.2 with ϕi = ϕ, independent of i. By
Theorem 4.2, it follows that if u exhibits weakly greater risk aversion than
v by the Kihlstrom-Mirman criterion, then u must also exhibit uniformly
weakly greater risk aversion than v by the criterion defined here.

However, the converse is not true. There are instances of utility func-
tions u and v such that u exhibits uniformly greater risk aversion than v and
yet, u and v are not comparable by the Kihlstrom-Mirman criterion. Com-
parability of risk aversion in the sense of Theorem 4.2 does not require the
von Neumann-Morgenstern utility functions to induce the same preference
ordering on the underlying outcome space. In the following example, utility
functions are comparable in the sense that one exhibits uniformly greater
risk aversion than the other and, yet, they are not ordinally equivalent. For
the comparison of risk attitudes to be independent of how risk premia are
paid one does not have to impose ordinal equivalence.

Example 4.3 Let n = 2, fix α > 0, β > 0, and consider the family of utility
functions {uγδ} such that

uγδ(x1, x2) = α lnx1 + β lnx2 + γx1 + δx2. (4.17)
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Then for γ1 < γ2 and δ1 < δ2, the utility function uγ
1
δ1 exhibits uniformly

strictly greater risk aversion than the utility function uγ
2
δ2.

Proof. For any γ and δ, one has

Duγδ(x) =

(
α
x1
+ γ

β
x2
+ δ

)

(4.18)

and

D2uγδ(x) =

(
−α 1

x2
1

0

0 −β 1
x2
2

)

. (4.19)

Therefore,

A1(x|uγδ) =
x1

α+ γx1

(
α 1
x2
1

0

0 β 1
x2
2

)

(4.20)

and

A2(x|uαβ) =
x2

β + δx2

(
α 1
x2
1

0

0 β 1
x2
2

)

. (4.21)

It follows that

B1(x|uγ
1
δ1 , uγ2δ2) =

(γ2 − γ1)x
2
1

(α+ γ1x1)(α+ γ2x1)

(
α 1
x2
1

0

0 β 1
x2
2

)

(4.22)

and

B2(x|uγ
1
δ1, uγ2δ2) =

(δ2 − δ1)x
2
2

(β + δ1x2)(β + δ2x2)

(
α 1
x2
1

0

0 β 1
x2
2

)

, (4.23)

so, if γ1 < γ2 and δ1 < δ2, both, B1(x|uγ
1
δ1 , uγ2δ2) and B2(x|uγ

1
δ1 , uγ2δ2)

are positive definite. By a straightforward adaptation of the reasoning yield-
ing the implication (c)⇒ (a) in Theorem 4.2, this implies that uγ

1
δ1 exhibits

uniformly strictly greater risk aversion than uγ
2
δ2 .

A Appendix: Proof of Lemma 3.3

By Lemma 3.2, any solution {(wt, yt)}
m
t=1 to the principal’s relaxed problem

is also a solution to the relaxed deterministic-contracts problem of choosing
{(wt, yt)}

m
t=1 to maximize

m∑

t=1

pt(yt −wt) (A.1)

19



subject to

u(wt, 1−
yt
θt
) ≥ ū (A.2)

for all t and
u(wt, 1−

yt
θt
) ≥ u(wt′ , 1−

yt′

θt
) (A.3)

for all t and all t′ < t. To prove Lemma 3.3, it is therefore sufficient to show
that any solution to the relaxed deterministic-contracts problem is incentive
compatible, i.e. satisfies (A.3) for all t and all t′ rather than just all t′ < t.
The argument proceeds in several steps. The overall proof strategy follows
Matthews and Moore (1987) or Hellwig (2004a).

Lemma A.1 Assume (A1) and (A2) and let u be strictly concave. Then
any solution {(wt, yt)}

m
t=1 to the principal’s relaxed problem satisfies

u1(wt, 1−
yt
θt
)− u2(wt, 1−

yt
θt
)
1

θt
≥ 0 (A.4)

for t = 1, ..,m.

Proof. Let {(wt, yt)}mt=1 be any solution to the principal’s relaxed prob-
lem. For any t let u∗t := u(wt, 1−

yt
θt
) and, relying on the strict concavity of

u, set
(w∗t , y

∗
t ) := arg max

u(w,1− y

θt
)=u∗t

(y −w) (A.5)

and
ŵt := min(w

∗
t , wt), ŷt := min(y

∗
t , yt). (A.6)

Under the given monotonicity assumptions, one has wt > w∗t if and only if
yt > y∗t , hence ŵt = wt if and only if ŷt > yt. It follows that

u(ŵt, 1−
ŷt
θt
) = u(wt, 1−

yt
θt
) (A.7)

for all t. Trivially then, for any t, the validity of (A.2) implies that u(ŵt, 1−
ŷt
θt
) ≥ ū. The deterministic-contracts menu {(ŵt, ŷt)}

m
t=1 is individually ra-

tional.
Given that ŷt ≥ yt, (A.7) in combination with the Single-Crossing Prop-

erty (A1) also implies that

u(ŵt, 1−
ŷt
θt̂
) ≤ u(wt, 1−

yt
θt̂
) (A.8)
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for all t̂ > t. For any t and any t′ < t, the validity of (A.3) and (A.7) therefore
imply

u(ŵt, 1−
ŷt
θt
) = u(wt, 1−

yt
θt
) ≥ u(wt′ , 1−

yt′

θt
) ≥ u(ŵt′ , 1−

ŷt′

θt
),

so the menu {(ŵt, ŷt)}mt=1 is also downward incentive compatible.
By the optimality of {(wt, yt)}

m
t=1 over the set of individually rational

and downward incentive compatible deterministic-contracts menus, it follows
that

m∑

i=1

pt(yt −wt) ≥
m∑

t=1

pt(ŷt − ŵt). (A.9)

Because the construction of {(ŵt, ŷt)}
m
t=1 implies ŷt − ŵt ≥ yt −wt for all t,

it follows that ŷt − ŵt = yt −wt for all t. Hence (wt, yt) ≤ (w
∗
t , y

∗
t ) for all t.

(A.4) then follows from the first-order conditions for (w∗t , y
∗
t ).

Lemma A.2 Assume (A1) and (A2) and let u be strictly concave. Then
any solution {(wt, yt)}

m
t=1 to the principal’s relaxed problem satisfies

u(wt, 1−
yt
θt
) = u(wt−1, 1−

yt−1
θt
) (A.10)

and
yt ≥ yt−1 (A.11)

for t = 2, ...,m.

Proof. The proof proceeds by induction on t. For t = 1, there is nothing
to prove. For t > 1, suppose that (A.10) and (A.11) have been verified
for t′ < t and consider the choice of the pair (wt, yt). By the induction
hypothesis, one has y1 ≤ ...yt−1, and by downward incentive compatibility,

u(wt−1, 1−
yt−1
θt−1

) ≥ u(wt′, 1−
yt′
θt−1

) (A.12)

for all t′ < t− 1. By the Single-Crossing Property (A1), it follows that

u(wt−1, 1−
yt−1
θt
) ≥ u(wt′, 1−

yt′
θt
) (A.13)

for all t′ < t − 1, so the downward incentive compatibility condition (A.3)
is satisfied for t and t′ < t if it is satisfied for t and t− 1. Similarly, by the
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monotonicity of u and the validity of (A.2) for t − 1, the individual ratio-
nality condition (A.2) for t is satisfied if downward incentive compatibility
is satisfied for t and t− 1.

Apart from the downward incentive constraints linking t̂ > t and t, the
downward incentive constraint for t and t−1 is thus the only constraint to be
considered in choosing (wt, yt). Given that a decrease in wt or an increase
in yt raises the value of the principal’s objective while leaving unaffected
the validity of the downward incentive constraints linking t̂ > t and t, the
downward incentive constraint for t and t−1 provides the only consideration
putting a stop to such a decrease in wt or an increase in yt. At the optimal
(wt, yt), this constraint must therefore be binding. Thus (A.10) must hold
for t as well as t′ < t.

As for the inequality (A.11), I note that, by Lemma A.1 applied to
(wt−1, yt−1) and by the Single-Crossing Property (A1), one has y − w <
yt−1 −wt−1 for all (w, y) such that y < yt−1 and

u(w, 1−
y

θt
) = u(wt−1, 1−

yt−1
θt
).

Thus (wt, yt) < (wt−1, yt−1) and (A.10) would imply that the principal can
raise his profits by replacing (wt, yt) for type t by (wt−1, yt−1). Since this
is inconsistent with the optimality of the menu {(wt, yt)}

m
t=1, it follows that

wt ≥ wt−1 and yt ≥ yt−1, i.e. (A.11) holds for t as well as t′ < t.

Lemma A.3 Assume (A1) and (A2) and let u be strictly concave. Then
any solution {(wt, yt)}

m
t=1 to the principal’s relaxed problem is upward in-

centive compatible.

Proof. By the Single-Crossing Property (A1), for any t, (A.10) implies

u(wt, 1−
yt
θt−1

) ≤ u(wt−1, 1−
yt−1
θt−1

). (A.14)

For any t and any t′ > t, one thus has

u(wτ , 1−
yτ
θτ−1

) ≤ u(wτ−1, 1−
yτ−1
θτ−1

) (A.15)

and, by (A.11), yτ ≥ yτ−1 for τ = t+ 1, ..., t′. By another application of the
Single-Crossing Property (A1), it follows that, for any t and any t′ > t, one
has

u(wτ , 1−
yτ
θt
) ≤ u(wτ−1, 1−

yτ−1
θt
) (A.16)
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for τ = t + 1, ..., t′. Upon combining these inequalities for τ = t + 1, ..., t′,
one obtains

u(wt′ , 1−
yt′

θt
) ≤ u(wt, 1−

yt
θt
), (A.17)

which is just the condition for upward incentive compatibility.
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