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Abstract

This paper modifies standard block Gauss-Seidel iterations used by
tatonnement methods for solving large scale deterministic heterogeneous
agent models. The composite method between first- and second-order
tatonnement methods is shown to considerably improve convergence both
in terms of speed as well as robustness relative to conventional first-order
tatonnement methods. In addition, the relative advantage of the modi-
fied algorithm increases in the size and complexity of the economic model.
Therefore, the algorithm allows significant reductions in computational
time when solving large models. The algorithm is particularly attractive
since it is easy to implement - it only augments conventional and intuitive
tatonnement iterations with standard numerical methods.
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1 Introduction

This paper modifies Gauss-Seidel iterations used to solve large-scale deterministic
heterogeneous agent models. Such models are increasingly used for analysis of
economic questions. Standard procedures use domain truncation methods and re-
sort to general methods for solving large systems of (nonlinear) equations. Three
types of such conventional solution methods can be distinguished: (i) Newton
based methods such as the L-B-J method1, (ii) the Fair-Taylor (extended path)
method2 and (iii) tatonnement methods3, see Judd et al. (2000). These conven-
tional methods have in common that they solve the model for each time t element
of all endogenous variables.4

This paper is concerned with traditional methods. Conventional first-order
tatonnement methods are commonly used to solve large-scale overlapping gen-
erations (OLG) models and the particular application chosen in this paper is a
standard OLG model in the tradition of Auerbach and Kotlikoff (1987). As a
composite of first- and second-order tatonnement methods, the algorithm devel-
oped here is a straightforward modification of such conventional methods. The
analysis shows that this hybrid method greatly improves convergence relative to
standard first-order methods.

While L-B-J and Fair-Taylor methods regard any perfect foresight general
equilibrium model simply as a system of (non-linear) equations including aggre-
gate and disaggregate variables and iterate over this entire system, tatonnement
methods break variables into aggregate and disaggregate variables. Outer loops
then proceed via block Gauss-Seidel algorithms using aggregate variables only,
whereas inner loops are used to solve for disaggregate variables in a (separate)
disaggregate model. Outer loops work as follows: Let P = S−1(Q) denote a
sequence of factor prices corresponding to sequences of factor supplies Q, where
S−1 denotes the inverse supply function. Equilibrium of tatonnement methods is
defined as a fixed point, Q = D(S−1(Q)), where D denotes the demand function.
S−1(Q) and D(P ) are solved by inner loops of the disaggregate model and by
aggregating individual decisions. The fixed point problem suggests to execute
the iteration Qk+1 = D(P k+1) = D(S−1(Qk)), which is the familiar hog-cycle
process, where k is the iteration number.5 Depending on the functional form of
S relative to D such iterations may however not converge. These convergence
problems force researchers to rely on ad hoc dampening factors such that the

1See Laffargue (1990), Boucekkine (1995), Juillard (1996) and Juillard et al. (1998).
2See Fair and Taylor (1983).
3See Auerbach and Kotlikoff (1987).
4More recently, Judd (2002) has proposed an alternative route. Rather than explicitely

solving for each time t element, Judd suggests to use prior information about the time path of
the endogenous variables and to approximate it by a functional form with a low-dimensional
parameter vector. Judd’s method can be regarded as a more modern approach.

5Since P k+1 and not P k is used to form an update of Qk+1 the iterations performed are
non-linear Block-Gauss-Seidel iterations.
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iteration rewrites as Qk+1 = Qk − w(Qk − D(S−1(Qk))) = Qk − w(Qk − Q̃k),
where w is the dampening factor, the relative weight w attached to Qk and Q̃k

respectively.6

Such modifications of standard Gauss-Seidel iterations have also been referred
to as fast Gauss-Seidel (FGS) iterations (Hughes Hallet 1984).7 Since only val-
ues of D(S−1(Qk)) are used to solve the fixed point problem and no additional
information on the functional form of D, respectively S, these methods belong
to the class of first-order iterative methods. While intuitive, convergence of these
methods is slow (linear at best) and they may not converge at all even after
various dampening factors have been tried out. As an alternative to using ad
hoc dampening factors, optimal dampening factors can be determined. However,
they are difficult to determine even for linear models, see, e.g., Hagemann and
Young (1981) and Judd (1999). Therefore, various adaptive techniques to update
dampening factors as the iteration proceeds have been suggested in the literature
(Hagemann and Young 1981; Hughes Hallet 1982).

As an alternative to such first-order iterations, second-order tatonnnement
methods may be used. Fixed point problems such as Q = D(S−1(Q)) can
be transformed to a root-finding problem which suggests to iterate as Qk+1 =
Qk − [J(Qk)]−1(Qk − D(S−1(Qk))) = Qk − [J(Qk)]−1G(Qk) where G(Qk) is a
system of simultaneous non-linear equations, Qk is the root of these equations
and J(Qk) is the Jacobi matrix. Such systems may be solved using standard non-
linear equation solvers, see, e.g., Feroli (2002) and Domeij and Floden (2003) for
applications in an OLG context using relatively simple models. Since the dimen-
sion of the Jacobi matrix is mT ×mT , second-order methods become costly as
the dimension of T or m, and therefore the complexity of the economic model,
increases.

Against this background, this paper suggests to use a composite of standard
first-order iterations and second-order methods by combining Gauss-Seidel iter-
ations with Quasi-Newton methods8. The algorithm will therefore by referred to
as Gauss-Seidel-Quasi-Newton method (GSQN). By economic insight the dimen-
sion of the Jacobi matrix is reduced for the system G(Qk) of non-linear equations
characterizing steady state situations. Since certain transformations of economic
variables in Q (and P ) are constant in the steady state of economic models, the
exact Jacobi matrix is shown to be given by J = W−1 ⊗ I where W is of di-
mension m × m. Since m is generally quite small - for a standard one sector
closed economy general equilibrium growth model with endogenous capital for-
mation and endogenous labor supply m equals 2 - the Jacobi matrix can easily be
determined by standard finite difference methods in fast steady state iterations.
For transition iterations, the matrix is used as an approximate Jacobi matrix

6Note that dampening factors play a similar role as adaptive expectations in the familiar
cobweb model.

7For convergent problems, w may also be set such as to accelerate convergence.
8An extensive treatment of similar methods can be found in Ortega and Rheinboldt (2000).

3



and updated by Broyden’s method as the iterations proceeds. Accordingly, the
matrix W may be interpreted as an approximate Jacobi matrix or as a matrix of
multiple dampening factors (Hughes Hallet 1984). The attractiveness of GSQN
stems from its simplicity: the intuitive appeal and relatively low computational
demands of tatonnement iterations are combined with standard Newton based
methods that are implementable at little extra cost.

As an illustration of the GSQN procedure, two economic models are devel-
oped. The first is a simple static hog-cycle model that is only used to shed light
on the strong economic restrictions implicit in one-parameter fixed dampening.
The second model is a large-scale dynamic multi-country overlapping genera-
tions (OLG) model with endogenous labor supply. It is used for simulations to
compare the relative performance of the fast Gauss-Seidel algorithm (FGS) with
the Gauss-Seidel-Quasi-Newton (GSQN) algorithm under various combinations
of structural model parameters. In addition, the dimension m is increased from
m = 1 (closed economy model with exogenous labor supply) to m = 4 (three
country model with endogenous labor supply). Previewing results, the simple
modifications suggested in this paper quite considerably improve convergence
when compared to standard FGS. For the latter, only relatively low values of
the dampening factor such as w = 0.1 lead to convergence for all cases consid-
ered. For higher values of w, robustness of FGS is found to decrease sharply:
for w = 0.3, FGS does not converge for up to 40 percent of cases. In contrast,
GSQN converges for all these simulations. For transition calculations, average
convergence speeds of GSQN are about two times higher than those of FGS with
w = 0.1 when m = 1 and about seven times higher when m = 4. Hence, GSQN
considerably improves convergence both in terms of speed and in terms of robust-
ness relative to standard FGS. The increase of the relative advantage of GSQN
relative to FGS as m increases is due to the fact that the restrictions on the
true Jacobi matrix of the system of equations G(Qk) imply constant (and equal)
elements along the diagonal and off-diagonal elements to be equal to zero. As
the dimension m increases, the loss of information implied by these restrictions
becomes more and more costly. Therefore, GSQN is of particular advantage for
large and therefore more complex models.

The paper proceeds as follows: Section 2 provides some general definitions
and a brief review of tatonnement methods. Section 3 develops the suggested
modification of the conventional Gauss-Seidel algorithm, GSQN. Section 4 con-
tains the above mentioned economic examples used to illustrate GSQN and its
differences to FGS. Section 5 compares the relative performances of FGS and
GSQN for the OLG model developed in Section 4. Section 6 concludes.
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2 Tatonnement Methods

Let Y = {yi}n
i=1 where yi = {yi,t}T

t=0 ∀i be a list of all endogenous variables of
the economic model. For example, yi includes wage rates and interest rates as
aggregate variables (ai) as well as disaggregate variables (bi) such as consumption
and assets of individual households, etc. Note that bi = {{bi,e,t}Ei

e=0}T
t=0 where

the number of disaggregate units e may differ across i. Collect A = (a1, a2, ...)
and B = (b1, b2, ...). For further reference, split A as A = (Q,P ) where Q
are aggregate factor supply variables such as the aggregate capital stock and
aggregate labor supply of an economy and P are the associated factor price
variables such as aggregate interest and wage rates and let Q = (q1, ..., qm) ∈ RmT

as well as P = (p1, ..., pm) ∈ RmT , compare Section 1. Further, let Z = (z1, z2, ...)
be a list of exogenous variables such as population data of cohorts living at time
t. Note that some zi may be disaggregate variables as well. Deterministic perfect
foresight heterogeneous agent models can be written in a general form as

F (Y, Z) = 0

yi,0 = ȳi,0, i = 0, 1, ..., ni, ni < n

yi,t bounded for all i (1)

where F (Y, Z) are nT equations of non-linear functions that represent equilib-
rium. Since Z are exogenous they will be dropped from here on. The equations in
(1) include Euler equations, asset accumulation equations, market clearing condi-
tions as well as any other equations that define equilibrium. Domain truncation
has been applied in equation (1) since the time horizon starts in period t = 0
departing from some initial conditions and is restricted to T .

Solution methods such as Fair-Taylor and L-B-J directly solve systems of
equations such as (1) for each element in yi,t by Gauss-Seidel iterations or Newton
based methods respectively. In contrast, tatonnement methods break the system
of equations in (1) into a factor supply and a factor demand model. Both require
inner loops to solve and to aggregate individual decision problems. A perfect
foresight OLG model of the form given in equation (1) can be re-written as

Supply model: P = S−1(Q)

Demand model: Q = D(P )

Aggregation: P = S−1(Q) = Σs(Bs(Q))

and Q = D(P ) = Σd(Bd(P )), (2)

where S−1 is the inverse aggregate supply function and D is the aggregate de-
mand function. Bs (Bd) are supply (demand) side disaggregate variables and
B = (Bs, Bd). The aggregators, Σd and Σs, are only used to indicate that ag-
gregate demand and supply functions are derived from individual decisions of
heterogeneous agents and will be ignored from here on. Combining the first two
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lines of equation (2) leads to the definition of equilibrium of a heterogeneous
agent model as a fixed point given by

Q = D(S−1(Q)), (3)

where Q −D(S−1(Q)) are m equations of non-linear functions that define equi-
librium.

The fixed-point equation in (3) suggests to use standard (block) Gauss-Seidel
iterations to solve for Q and hence to iterate over the system9

P k+1 = S−1(Qk)

Qk+1 = D(P k+1).

This simple form ignores updates of disaggregate variables. A more general case
will be discussed in Section 3.4.

Equation (4) can be more concisely written as a Gauss-Seidel fixed point
iteration

Qk+1 = D(S−1(Qk)). (4)

It is well-known that such iterations may not converge. Therefore, a damp-
ening factor may be applied. Gauss-Seidel iterations with one-parameter fixed
dampening with factor 0 < w < 1 iterate on

Qk+1 = Qk − w
(
Qk −D(S−1(Qk))

)
, (5)

compare Auerbach and Kotlikoff (1987, pp. 46-50). In case the fixed-point iter-
ation in equation (4) is convergent, w may be used to accelerate convergence in
which case w > 1. But even if such fixed-point iterations converge, convergence
is slow and linear at best.

An alternative to fixed point iterations is to transform equation (3) into a
root-finding problem as

G(Q) = Q−H(Q) = Q−D(S−1(Q)) = 0,

where H(·) is introduced as a shorthand notation for D(S−1)(·).
Applying a first-order Taylor series approximation to equation (2) leads to

the familiar Newton updating formula of Q given by

Qk+1 = Qk − J−1[Qk]G(Qk), (6)

where J [Qk] is the Jacobi matrix of the system of equations in (2) evaluated at
Qk. Recently, several authors have used general purpose rootfinding methods

9The - generally less efficient - (block) Gauss-Jacobi method may be used as an alternative
in which case P k+1 = S−1(Qk) and Qk+1 = D(P k). Hence, rather than using P k+1 resulting
from the first block, Gauss-Jacobi uses P k resulting from previous iterations to form an update
of Q in the second block.
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to solve such problems in the OLG context, e.g., Feroli (2002) and Domeij and
Floden (2003) for relatively simple models. However, as the complexity of the
economic model and therefore the dimension of m and T increases, such methods
become costly.

Rewriting equation (5) as

Qk+1 = Qk − w
(
Qk −D(S−1(Qk))

)
= Qk − wI(mT×mT )G(Qk)

then makes it obvious that Gauss-Seidel iterations with one-parameter fixed
dampening restrict the elements of the true Jacobi matrix J [Qk] to w−1I(mT×mT ).
These restrictions may be summarized as follows: first, the iteration matrix is
constant across all iteration steps k, second, elements along the diagonal are re-
stricted to be equal and third, off-diagonal elements are restricted to zero. An
economic interpretation of such restrictions for a stylized hog-cycle model is given
below in Section 4.1.

3 The Gauss-Seidel-Quasi-Newton Method

This paper suggests an alternative to pure first- or second-order tatonnement
methods by reducing the dimension of the Jacobi matrix in equation (6). For
further reference and in order to highlight the restrictions implied by standard
first-order methods, it will be useful to derive explicit expressions for the elements
of the Jacobi matrix. Recall that Q = {qi}m

i=1, where qi = {qi,t}T
t=1. Due to the

specific form of the functions G = {gi(Q)}m
i=1 where gi(Q) = {gi,t(Q)}T

t=0 in
equation (2), the elements of the Jacobi matrix given by

J [Qk] =




∂g1,0(Qk)

∂qk
1,0

∂g1,0(Qk)

∂qk
1,1

... ∂g1,0(Qk)

∂qk
1,T

∂g1,0(Qk)

∂qk
2,0

∂g1,0(Qk)

∂qk
2,1

... ∂g1,0(Qk)

∂qk
2,T

...

∂g1,1(Qk)

∂qk
1,0

∂g1,1(Qk)

∂qk
1,1

... ∂g1,1(Qk)

∂qk
1,T

∂g1,1(Qk)

∂qk
2,0

∂g1,1(Qk)

∂qk
2,1

... ∂g1,1(Qk)

∂qk
2,T

...

... ... ... ... ... ... ... ... ...
∂g2,0(Qk)

∂qk
1,0

∂g2,0(Qk)

∂qk
1,1

...
∂g2,0(Qk)

∂qk
1,T

∂g2,0(Qk)

∂qk
2,0

∂g1,0(Qk)

∂qk
2,1

...
∂g2,0(Qk)

∂qk
2,T

...

∂g2,1(Qk)

∂qk
1,0

∂g2,1(Qk)

∂qk
1,1

... ∂g2,1(Qk)

∂qk
1,T

∂g2,1(Qk)

∂qk
2,0

∂g1,1(Qk)

∂qk
2,1

... ∂g2,1(Qk)

∂qk
2,T

...

... ... ... ... ... ... ... ... ...




can be re-written as


1− ∂h1,0(Qk)

∂qk
1,0

−∂h1,0(Qk)

∂qk
1,1

... −∂h1,0(Qk)

∂qk
1,T

−∂h1,0(Qk)

∂qk
2,0

−∂h1,0(Qk)

∂qk
2,1

...

−∂h1,1(Qk)

∂qk
1,0

1− ∂h1,1(Qk)

∂qk
1,1

... −∂h1,1(Qk)

∂qk
1,T

−∂h1,1(Qk)

∂qk
2,0

−∂h1,1(Qk)

∂qk
2,1

...

... ... ... ... ... ... ...

−∂h2,0(Qk)

∂qk
1,0

−∂h2,0(Qk)

∂qk
1,1

... −∂h2,0(Qk)

∂qk
1,T

1− ∂h2,0(Qk)

∂qk
2,0

−∂h1,0(Qk)

∂qk
2,1

...

−∂h2,1(Qk)

∂qk
1,0

−∂h2,1(Qk)

∂qk
1,1

... −∂h2,1(Qk)

∂qk
1,T

−∂h2,1(Qk)

∂qk
2,0

1− ∂h1,1(Qk)

∂qk
2,1

...

... ... ... ... ... ... ...
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and may be partitioned as




Jk
1,1 Jk

1,2 ... Jk
1,m

Jk
2,1 Jk

2,2 ... Jk
2,m

... ... ... ...
Jk

m,1 Jk
m,2 ... Jk

m,m


 (7)

according to all the endogenous variables qi. Hence, each sub-matrix Ji,j, for i, j =
1, ..., m is of dimension T × T with each element given by

Ji,j,t,∆t =





1− ∂hi,t(Q
k)

∂qk
j,t+∆t

for ∆t = 0 and i = j

−∂hi,t(Q
k)

∂qk
j,t+∆t

else

for t = 0, ..., T,

where −t ≤ ∆t ≤ T − t (8)

For a heterogeneous agent model with finite life-times of each individual agent,

−∂hi,t(Q
k)

∂qk
j,t+∆t

= 0 for ∆t sufficiently large. Hence J [G(Qk)] is sparse. Despite, it is

generally quite costly to determine all non-zero elements of the Jacobi matrix
J [G(Qk)] as T (and m) become large.

3.1 The Steady State

Suppose now that variables in Q are transformed such that they are constant in
the steady state. E.g., q1 could be a time series of the capital to output ratio and
q2 of the labor supply ratio in a closed economy growth model with endogenous
labor supply (m = 2). Further, note that domain truncation imposes a restriction
on the equation system which is mirrored by a Jacobi matrix of finite dimension
and hence by the restriction on ∆t in equation (8) requiring that −t ≤ ∆t ≤ T−t.
This restriction is invalid if the economy is in steady state. For such a model the
restriction on ∆t is −T0 − t ≤ ∆t ≤ T0 − t, where T0 ≤ T , since, as noted above,

−∂hi,t(Q
k)

∂qk
j,t+∆t

may be zero for ∆t sufficiently large. Further, since the elements of

each {qi}m
i=1 are constant in the steady state, the partial derivatives in equation

(8) will be constant across time as well. The corresponding representation of the
elements of the actual Jacobi matrix in equation (8) is given by

JT0
i,j,∆t

=





1− ∂hi(Q
k)

∂qk
j,∆t

for ∆t = 0 and i = j

−∂hi(Q
k)

∂qk
j,∆t

else
where −T0− t ≤ ∆t ≤ T0− t, (9)

which only depends on ∆t and not on the time period t itself.
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Therefore each of the m2 different sub-matrices of the Jacobi matrix defined
in equation (7) can be written as

JT0
i,j =

(
T0−t∑

∆t=−T0−t

D∆t −
∂hi(Q

k)

∂qk
j,∆t

)
·IT×T , where

{
D∆t = 1 for ∆t = 0 and i = j

D∆t = 0 else
.

(10)
For steady state situations of the economic model the exact Jacobi matrix is

accordingly given by

Ĵk = [W−1]k(m×m) ⊗ I(T×T ) =




ωk
1,1I(T×T ) ωk

1,2I(T×T ) ... ωk
1,mI(T×T )

ωk
2,1I(T×T ) ωk

2,2I(T×T ) ... ωk
2,mI(T×T )

...
ωk

m,1I(T×T ) ωk
m,2I(T×T ) ... ωk

m,mI(T×T )


 . (11)

This structure of the Jacobi matrix is very different from a scaled identity
matrix and considerably relaxes the restrictions imposed by standard Gauss-
Seidel iterations. Note that m is generally small and hence W is of low dimension.

To summarize: The Jacobi matrix of a root-finding problem of an economic
model as represented in equation (6) is generally quite large. For example, for a
closed economy model with endogenous capital formation and endogenous labor
supply (m = 2) that is solved for T = 300 years - a standard time horizon for OLG
models solved at an annual frequency -, the Jacobi matrix consists of (mT )2 =
360, 000 elements. However, in the steady state of the model and if the elements
in Q are defined such that they are constant in the steady state, the actual
Jacobi matrix reduces to the Kronecker product of the low-dimensional W−1-
matrix and an identity matrix. Hence, for the above example, the exact Jacobi
matrix effectively consists of only m2 = 4 elements. This Jacobi matrix can easily
be determined by standard finite difference methods in the first tatonnement
iteration and can be updated by Broyden’s method as the iteration proceeds,
see Section 3.3 below. Hence, the final Jacobi matrix derived in steady state
iterations, J∗,ss is asymptotically optimal and convergence will be super-linear,
compare Press et al. (1992).

3.2 The transition

Since T is generally quite large, transition calculations may take considerable
time to compute. Against this background, the idea behind the implementation of
GSQN for transition calculations is to use the Jacobi matrix derived during (fast)
steady state calculations as an initial approximate Jacobi matrix for transition
calculations and to update it by Broyden’s method as the iteration proceeds, see
Section 3.3 below.10 The exact implementation of the algorithm during transition

10Note that applying different dampening factors for different time periods t is not reasonable
since it would create artificial kinks in the time paths of Q.
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calculations depends on the restrictions on the structure of the equation system
imposed by (initial and final) steady states or (and) arbitrary initial conditions.
Four different models can be distinguished:

• Model 1: The economy starts from an initial steady state and converges
to a final steady state. The final steady state has been calculated.

• Model 2: The economy starts from an initial steady state and converges
to a final steady state. The initial steady state has been calculated.

• Model 3: The economy starts from an initial steady state and converges
to a final steady state. Both steady states have been calculated.

• Model 4: The economy starts from arbitrary initial conditions and con-
verges to a final steady state. The initial conditions are known and the
final steady state has been calculated.

Permanent structural changes are implicit in the definitions of all models.
However, for temporary changes, the economy starts from the same steady state
as it converges to and hence such a specification is nested in model 3.

In terms of equations the four different models can be written as follows. For
ease of presentation it is assumed that m = 1. Recall that the variables in Q are
transformed such that they are constant in the steady state.

• Model 1:

q0 = q1

q1 = h1(Q)

q2 = h2(Q)

...

qT = qfss,

where fss stands for final steady state.

• Model 2:

q0 = qiss

q1 = h1(Q)

q2 = h2(Q)

...

qT = qT−1

where iss stands for initial steady state.

10



• Model 3:

q0 = qiss

q1 = h1(Q)

q2 = h2(Q)

...

qT = qfss

• Model 4:

q0 = q̄0

q1 = h1(Q)

q2 = h2(Q)

...

qT = qfss

For Models 1 to 2 it is assumed that the final (or initial) steady state is
calculated during the transition solution while the initial (or final) steady state is
already known from steady state calculations. The GSQN Jacobi matrix derived
during final (initial) steady state calculations, Jfss (J iss), is then used as initial
Jacobi matrix and updated by Broyden’s method using the information contained
in Qk

i,tss = {qi,tss}m
i=1 and G(Qk

i,tss) = {g(qi,tss)}m
i=1 where tss = 1 (tss = T ),

i.e., the information contained in the initial (final) steady state period (compare
Section 3.3 below).11 For Model 3 it is assumed that both steady states were
calculated during steady state calculations. GSQN is then implemented by using
the iteration matrix derived during these steady state calculations (either initial
or final), Jss, throughout all transition iterations. The procedure for Model 4 is
equivalent to Model 3.

To summarize: While the Jacobi matrix determined by the suggested method
is asymptotically optimal as Qk approaches Qss for steady state calculations, it is
a good approximation for transition calculations. The matrix W may therefore
be interpreted either as an approximate Jacobi matrix or as an m × m matrix
of multiple dampening factors that vary with the iteration number k, compare
(Hughes Hallet 1984).

3.3 Implementation of Gauss-Seidel-Quasi-Newton itera-
tions

This section summarizes the implementation steps of GSQN. It thereby makes
explicit that an application of GSQN just requires to augment intuitive taton-

11Updating Jk by Broyden’s method is not necessary, but using the additional information
contained in each iteration step k is more efficient than using a constant approximate Jacobi
matrix throughout.
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nement iterations with standard and well-established numerical methods.
It is well-known that if G(Q) is continuously differentiable over a convex set

D containing the equilibrium values Q∗ with G(Q∗) = 0, then there exists an
open set C about Q∗ such that equation (6) converges at least linearly from any
Q0 ∈ C. If in addition the Lipschitz condition ‖Qk − Q∗‖ ≤ d|Qk−1 − Q∗‖
holds for Q0 ∈ C and some d > 0, the rate of convergence becomes quadratic.
However, if the starting values Q0 are not within C, then Newton iterations such
as equation (6) may not be convergent. In order to obtain an iteration scheme
that converges for almost any starting value, it is therefore reasonable to augment
the Newton iteration by a line search method to get

Qk+1 = Qk − skĴ−1[Qk]G(Qk), (12)

where sk is a standard variable step-size parameter and Ĵ is the GSQN (ap-
proximate) Jacobi matrix. Recall that Ĵ−1[Qk] = W−1

(m×m)[Q
k] ⊗ I(T×T ). A fast

algorithm for line searches is by backtracking, see e.g., Press et al. (1992). It
relies on a quadratic approximation of the (unknown) objective function given
by g(Qk) = 1

2
G(Qk)′G(Qk) and determines a step that minimizes this quadratic

approximation. If the resulting step is not acceptable, then the algorithm iterates
over a cubic approximation of the objective function until an acceptable step is
found.

However, since Ĵk is not the exact Jacobian, it is not guaranteed that the line
search algorithm will give a descent step direction. Hence, the Jacobian will be
re-initialized (by finite difference methods) in case the line search algorithm does
not return a suitable step (after a maximum of only three line search iterations
or when reaching a minimum value for sk). For transition calculations, both line
search algorithm and even more re-initializing the Jacobian can be costly in terms
of computational time. Therefore, restarts of iterations reset the Jacobi matrix
to the initial Jacobi matrix if line searches fail during transition iterations.

Moreover, it will be useful to re-initialize the Jacobian if the updated Jacobian

Ĵk fails to satisfy two conditions: (i) if Ĵk is ill conditioned12 and (ii) if some of the

elements of Ĵk do not satisfy certain criteria reflecting prior knowledge regarding
their value. E.g., for the applications considered in Section 5, it is required that
the diagonal elements of Jk are positive. Condition (i) is standard and condition
(ii) would automatically be fixed in the next iteration step by the methods just
described (it would result in a divergent process and hence the Jacobian would
be re-computed in the next iteration step). Making use of prior information is
therefore not necessary but may save iterations steps.

While the application of Broyden’s method is well-established it is useful to
more concisely summarize the GSQN algorithm as follows:

12For models where the Jacobian is ill-conditioned at equilibrium, Jk would not be further
updated in case Qk approaches Q∗. In case iterations are divergent, Jk would only be scaled
by line search methods.
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1. Chose some initial value Q0 and a stopping criterion ε. For steady state
calculations, Q0 consist of time series of any - but reasonable - constant
values and for transition calculations Q0 = Q∗,s, i.e., the equilibrium values
from steady state calculations (or other constant or non-constant values,
e.g., obtained during previous transition calculations).

2. Initialize the Jacobian, Ĵ0 = [W−1]0 ⊗ I. Use finite difference methods

for steady state calculations and Ĵ0 = Ĵ∗,s for transition calculations, i.e.
the last approximate Jacobi matrix of steady state iterations (or any other
initial matrix such as a scaled identity matrix).

3. For iteration k, determine Qk+1 by

Qk+1 = Qk − skĴ−1[Qk]G(Qk), for sk = 1

and evaluate G(Qk) as well as

g(Qk) =
1

2
G(Qk)′G(Qk)

• If g(Qk) < g(Qk−1) continue with step 4, else start a line-search al-
gorithm. Use a standard backtracking algorithm for line search that
stops if g(Qk) < g(Qk−1), if sk = smin or a maximum number of line
search iterations of only three is reached. A good choice for smin is
0.1, see Press et al. (1992) for details.

• If the line search algorithm is successful then continue with step 4,
else re-initialize Ĵk by finite difference methods in steady state itera-
tions and by setting Ĵk = Ĵ0, re-evaluate G(Qk) as well as g(Qk) and
continue with step 4.

4. If max(||G(Qk)/Qk||) < ε13 then stop and report success, else if ∆Qk > η,
where η is some small number, determine [Ŵ−1]k+1 by Broyden’s method
as

[Ŵ−1]k+1 = [Ŵ−1]k +
(∆Gtss(Qk

tss)− [Ŵ−1]k∆Qk
tss)(Qk

tss)′

(Qk
tss)′Qk−1

tss

,

where ∆Qk
tss = Qk

tss −Qk−1
tss and ∆Gtss(Qk

tss) = Gtss(Qk
tss)−Gtss(Qk−1

tss ). Do
not update if ∆Qk

tss ≤ η. tss denotes the steady state period of the model
with tss = 1 (tss = T ) for the initial (final) steady state, compare Section
3.2 and Qtss = (q1,tss , q2,tss , ..., qm,tss).
If

• [Ŵ−1]k+1 is ill-conditioned or

• [Ŵ−1]k+1 does not satisfy prior information regarding its structure

13Throughout the analysis, I use the relative error tolerance only.
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then re-initialize [Ŵ−1]k+1, otherwise proceed. Re-initialize [Ŵ−1]k+1 by
first-differences in steady state iterations and by resetting [Ŵ−1]k+1 =
[Ŵ−1]0 for transition iterations. Define Ĵk+1 = [Ŵ−1]k+1 ⊗ IT×T and con-
tinue with step 3.

3.4 Further considerations

For ease of presentation, suppose throughout this section that there is no growth
and hence that all variables are constant in the steady state. The assumption
underlying equation (4) is that disaggregate variables need not be updated as
the iteration proceeds. This is restrictive and will not be the case for most
applications. Often, important feedback effects exist between disaggregate and
aggregate variables in each iteration loop.

To formalize such relationships, rewrite the system of equations in (4) to the
modified system

P k+1 = S−1(Qk, Bd,k)

Bs,k+1 = Bs(P k+1, Qk, Bd,k)

Qk+1 = D(P k+1, Bs,k+1, Bd,k)

Bd,k+1 = Bd(P k+1, Bs,k+1, Bd,k). (13)

For ease of presentation, the fact that only subsets of the disaggregate vari-
ables Bs and Bd are important for the above mentioned circular relationships is
ignored here. Due to the block Gauss-Seidel structure, disaggregate variables of
the supply model, Bs, can be substituted out and the modified system can be
more concisely written as

Qk+1 = H1(Q
k, Bd,k)

Bd,k+1 = H2(Q
k+1, Bd,k). (14)

As an example for such disaggregate variables in an OLG context consider
the shadow value of leisure in a model with endogenous labor supply, compare
Section 4.2 below. For given aggregate wages and disaggregate shadow wages
households determine how much labor to supply. In case constraints are violated,
e.g. if leisure exceeds time endowment or if labor supply is positive even though
shadow wage rates are positive, then shadow wages need to be updated, compare
Auerbach and Kotlikoff (1987, p.31 and p.47). Hence, there is a feedback effect
between aggregate and disaggregate variables.14

14As an alternative to updating shadow wages as outer loops proceed, the household model
may be solved accurately - up to some tolerance bound - by a standard shooting algorithm
requiring a number of inner loop iterations per household and per outer loop. Yet, this is not
efficient since accuracy of inner loops will increase automatically as the number of outer loops
increases.
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Instead of applying Quasi-Newton methods to the entire system of equations
in (14), GSQN proceeds as follows. First, computational stability increases if
disaggregate variables are related to aggregate variables, e.g., shadow wages are
linked to the overall wage level. Let p ⊂ P denote aggregate net wages and
{bd

e}E
e=0 ⊂ Bd denote disaggregate shadow wage rates. Then by

{
re =

bd
e

p

}E

e=0

the time path of shadow wages of each age-group n is related to the overall wage
level p.

Define by R = (r1, r2, ...) where ri = {{ri,n,t}Ni
n=0}T

t=0 (the number of disag-
gregate units n may again differ across i) the set of all variables that involve
transformations of Bd and Q (or P ) respectively. Substituting out variables P
from these relationships, the above system of equations then rewrites as

Bd,k = V −1(Qk, Rk)

Qk+1 = H1(Q
k, Bd,k)

Bd,k+1 = H2(Q
k+1, Bd,k)

Rk+1 = V (Bd,k+1, Qk+1),

where V are all non-linear functions that transform Q and Bd to R. Note that up-
dating of the transformed variables R without dampening translates into damp-
ened updates of the original variables Bd.

Second, dampening of updated expressions for Qk proceeds as before. How-
ever, the circular relationships between aggregate and disaggregate variables add
further ”noise” to the updating of the Jacobi matrix of the reduced sub-system
of non-linear equations given by

G1(Q
k) = Qk −H1(Q

k, Bd,k) = 0,

due to the presence of the variables Bd. The elements of the corresponding
dampening factor matrix are given by

W−1 =

{
T0−t∑

∆t=−T0−t

D∆t −
∂h1,i(Q

k, Bd,k)

∂qk
j,∆t

−
L∑

l=1

El∑
e=0

∂h1,i(Q
k, Bd,k)

∂bd,k
j,∆t,l,e

∂bd,k
j,∆t,l,e

∂qk
j,∆t

}m

i,j=1

,

where

{
D∆t = 1 for ∆t = 0 and i = j

D∆t = 0 else
.

Here, L denotes the number of relevant disaggregate variables and El the dimen-
sion of disaggregate variable l.

For most applications the additional terms in the above expression will be
small and will not be determined during finite difference evaluations of the Jacobi
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matrix. Broyden’s updating automatically takes into account these additional
terms. The larger the additional terms, the more reasonable it will therefore be to
start with any initial guess of a Jacobi matrix rather than to determine it by finite
difference methods and to update it by Broyden’s method as before. Dealing with
disaggregate variables as described adds an additional channel through which
GSQN combines first-order with second-order methods.

4 Economic examples

This section describes two economic examples to illustrate the GSQN algorithm.
As a first example, the familiar hog-cycle model is used to highlight the restric-
tions implicit to first-order iterative schemes such as Gauss-Seidel. The second
example is a conventional large scale open-economy OLG model. The OLG model
is used for a simulation analysis regarding the relative performances of FGS and
GSQN, respectively. Results of this simulation analysis are presented in Section
5.

4.1 The hog-cycle model

The hog-cycle model is used to highlight the restrictions implicit in first-order
iterations such as Gauss-Seidel. To this end, the relationship between the approx-
imate Jacobi matrix and the actual Jacobi matrix implied by the the economic
model is reversed: the question asked here is what kind of restrictions must be
imposed on the economic model such that the Jacobi matrix implied by the fixed
dampening factor is the actual Jacobi matrix of the economic model.

4.1.1 One-good model

The familiar static one-good hog-cycle model consists of a demand and a supply
relationship. Suppose that

p = s−1(q)

q = d(p)

describes these economic relationships. As before these equations may be more
concisely written as

q = d(s−1(q)) ⇔
g(q) = q − d(s−1(q)) = q − h(q) = 0

and the (1× 1) Jacobi matrix is given by

J = 1− ∂h(q)

∂q
=

∂d(p)

∂p

∂s−1(q)

∂q
,
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which - among other things - depends on q. But a constant dampening factor w
restricts the Jacobi matrix to be independent of q which will be the case if the
inverse supply function, s−1(q), and the demand function, d(p), are linear.15

Suppose that

p = s−1(q) = a0 + a1q

q = d(p) = b0 + b1p

then

J = 1− ∂h(q)

∂q
= 1− ∂d(p)

∂p

∂s−1(q)

∂q
= 1− b1a1.

Then the restriction implied by J = w−1 is of course only correct if the relation-
ship between the slopes of the demand and supply curves satisfies

a1 =
1− w−1

b1

.

4.1.2 Two-goods model

Suppose that the above model is extended to a two good model and that (inverse)
supply and demand functions are linear and of the following form

s−1
1 (q1, q2) = p1 = a10 + a11q1 + a12q2

s−1
2 (q1, q2) = p2 = a20 + a21q1 + a22q2

d1(p1, p2) = q1 = b10 + b11p1 + b12p2

d2(p1, p2) = q2 = b20 + b21p1 + b22p2.

The corresponding functions h1(q1, q2) and h2(q1, q2) are accordingly given by

h1(q1, q2) = b10 + b11(a10 + a11q1 + a12q2) + b12(a20 + a21q1 + a22q2)

h2(q1, q2) = b20 + b21(a10 + a11q1 + a12q2) + b22(a20 + a21q1 + a22q2)

and the Jacobi matrix of the system of equations Q − S−1(D(Q)) = 0, where
Q = (q1, q2) becomes

J =

[
1− ∂h1(q1,q2)

∂q1
−∂h1(q1,q2)

∂q2

−∂h2(q1,q2)
∂q1

1− ∂h2(q1,q2)
∂q2

]
=

[
1− (b11a11 + b12a21) −(b11a12 + b12a21)
−(b21a11 + b22a21) 1− (b22a22 + b21a12)

]
.

If a11 6= 0, a22 6= 0, b11 6= 0 and b22 6= 0, then the off-diagonal elements of J will
only be zero iff

a12 = a21 = b12 = b21 = 0.

15Linearity of both curves is only a sufficient condition. For example, J will also be indepen-
dent of q if p = s−1(q) =

√
a0 + a1q and q = d(p) = b0 + b1p

2.
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This condition implies that cross-price elasticities of demand are equal to zero
and that supplier’s prices for good i are independent of supply of good j 6= i.

If these conditions hold, equality of off-diagonal elements of J further implies
restrictions on the relationship between demand and supply curves for each good
- just as in the above one-good example -, but also on the relationship across the
two goods, since then

1− a11b11 = 1− a22b22 = w−1 ⇔
a11b11 = a22b22.

A number of lessons can be learned from these simple examples. First, it is
obvious that all these conditions imply strong restrictions on both technology
and preferences and will likely not hold even for these very simple linear models.
Second, the restrictions are less likely to hold if the size of the model increases,
i.e., if additional markets are added. Furthermore, assume that an explicit rep-
resentation of the demand and supply functions does not exist for a linear model
as the one considered above. Newton based methods immediately converge for
linear models once the Jacobi matrix of the system is known. If it needs to be
evaluated, then GSQN would require m2 + 2 iterations to calculate the equilib-
rium (one iteration to calculate the initial values Qk+1 for a given starting value
Qk, m2 iterations to calculate the Jacobi matrix and one more iteration to calcu-
late the final solution). In contrast, FGS only needs 2 iterations if the economic
model meets the restrictions implicit in one-parameter dampening. Therefore,
third, in the unlikely event that the restrictions imposed by FGS are (approxi-
mately) valid, FGS will of course converge faster than GSQN. This is the more
unlikely the larger is the economic model.

4.2 The OLG simulation model

This section develops an OLG model which is used for comparison of the rel-
ative performance of FGS and GSQN in Section 5. The simulation model is a
three-country version of a multi-country OLG model developed by Börsch-Supan
et al. (2003) in the tradition of Auerbach and Kotlikoff (1987). Here, a simplified
version with stylized demographic data is used. The analysis in Section 5 dis-
tinguishes between four alternative scenarios by increasing m from one to four:
(i) one-country closed economy model with exogenous labor supply (m = 1), (ii)
one-country closed economy model with endogenous labor supply (m = 2), (iii)
two-country open economy model with endogenous labor supply (m = 3) and
(iv) three-country open economy model with endogenous labor supply (m = 4).
The macroeconomic simulation model is based on a stylized demographic model
used to simulate transitions which is described next.
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4.2.1 The demographic model

Demographic projections enter the simulation model via time-specific sizes of
living cohorts in year t denoted by Nt,a,i where a is age and i is the country
index. Sex is irrelevant for the economic model. Cohorts face mortality risk: ςt,a,i

denotes the age and time specific conditional survival probability and πt,a,i the
unconditional survival probability. There is no migration. The size of a living
cohorts is determined recursively by Nt+1,a+1,i = Nt,a,iςt,a,i for a = 1, ..., 80. Each
year the number of newborns is determined by age and time specific fertility
rates. Birth is given between the ages 20 − 40 where fertility rates are assumed
to be constant.

For all three countries, a demographic transition is assumed lasting for 100
years. The assumptions regarding the demographic transitions are arbitrary and
are only set to simulate heterogeneous transitions across countries. Departing
from an initially constant total population, the transition starts in year 100 and
is characterized by a steadily increasing life expectancy at birth from 50 to 60, 45
to 60 and 40 to 60 for countries one to three respectively.16 In addition, a fertility
transition is assumed for countries one and three. In country one, a baby boom is
simulated for years 100 to 150 - an increase of the total fertility rate (TFR) from
replacement level of about 2.1 to 3 - which is followed by a baby bust for years
151 to 200 being characterized by a steady decrease of TFR to 1. After the bust,
the TFR again starts to increase to replacement level of about 2.1.17 Country
two is assumed to face exactly the opposite demographic transition, namely a
baby bust followed by a baby boom. The timing of the transitional dynamics of
fertility in country three is assumed to be identical to country one but the baby
boom is stronger since total fertility rates are assumed to increase to 4.

4.2.2 The macroeconomic simulation model

General equilibrium of the overlapping generations model is constructed via the
production sector where, given factor inputs (capital and labor), output and
factor prices are determined. The production sector in each country consists of a
representative firm that uses a CES production function which is identical across
countries and given by

Yt,i = F (Ωt,i, Kt,i, Lt,i) =
(
αK−θ

t,i + (1− α) (Ωt,iLt,i)
−θ

)− 1
θ
, (15)

where α is the factor share and β = 1
1+θ

is the elasticity of substitution between
the two production factors. Kt,i denotes the aggregate capital stock, Lt,i the

16A different initial life-expectancy in each country is chosen such that variables across coun-
tries differ in the initial steady state.

17This is achieved by adjusting fertility levels each year such that population of age 1 is
constant from year to year.

19



aggregate labor force and Ωt,i is labor augmenting technological change (Harrod
neutral) growing at a constant rate g.

From static profit maximization and by the assumption of perfect capital
markets, the (world) interest rate is given by

rt = α
Yt,i

Kt,i

− δ, (16)

and the wage rate in each country is

wt,i = (1− α)
Yt,i

Lt,i

(17)

In order to determine aggregate consumption, optimal household behavior is
derived from intertemporal utility maximization. By choosing an optimal con-
sumption and labor supply path, each generation, economically active from period
t on, maximizes the sum of remaining discounted life-time utility taking interest
rates and wage rates as given from equations (16) and (17). The economic life of
a cohort begins at the age of 20, for which a = 1 below. The maximum economic
age people can reach is denoted by Z = 60. For the exogenous labor supply
mode, it is assumed that all households supply one unit of labor for a period of
40 years, a = 1, ..., 40, and are retired thereafter (supplying zero units of labor).
The endogenous labor supply mode does not restrict retirement age. If agents
decide to supply zero units of labor, then shadow wages are calculated, see below.
Households face the risk of prematurely dying with positive wealth. To rule out
accidental bequests it is assumed that one-period ahead perfect annuity markets
exist which perfectly insure agents against the event of early death.

In a given period a representative cohort of age a born in year t maximizes the
sum of discounted life-time utility. In order to insure a stationary steady state,
utility is assumed to be of the familiar Cobb-Douglas form and is given by

U(Ct,a,i, 1− lt,a,i) =
1

1− σ

(
Cφ

t,a,i(1− lt,a,i)
1−φ

)1−σ

, (18)

where Ct,a,i is consumption, lt,a,i is leisure, σ is the coefficient of relative risk
aversion and φ is a weight attached to leisure.18

A household born in time period t maximizes

max
{Ct+a,a,i,1−lt+a,a,i}Z

a=1

U =
Z∑

a=1

(
1

1 + ρ

)a−1

πt+a,a,iU(Ct+a,a,i, 1− lt+a,a,i), (19)

subject to a dynamic budget constraint given by:

At+a+1,a+1,i =
1

ςt+a,a,i

(At+a,a(1 + rt+a) + wt+a,ilt+a,a,i − Ct+a,a,i)

(20)

18As Auerbach and Kotlikoff (1987) point out a steady state does not exist under CES utility
if wages are growing, see also Altig et al. (2001) and Börsch-Supan et al. (2003).
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where the term 1
ςt+a,a,i

reflects the assumption of perfect annuity markets.19 A

second constraint requires
0 ≤ lt,a,i ≤ 1. (21)

Maximization yields the inter-temporal Euler equation of consumption,

Ct+a+1,a+1,i

Ct+a,a,i

= (β(1 + rt+a+1))
1
σ

(
vt+a+1,i

vt+a,i

) 1
σ

, (22)

and the intra-temporal Euler equation between consumption and leisure,

1− lt,a,i = ut,a,iCt,a,i, (23)

where

ut,a,i =
1− φ

φ

1

w̃t,a,i

, (24)

vt,a,i = u
(1−σ)(1−φ)
t,a,i (25)

and
w̃t,a,i = wt,i + µt,a,i. (26)

µt,a,i denotes shadow wages.
Equilibrium is constructed via aggregating all household’s assets and labor

supply decisions in any time period t. As described above, aggregate variables
which are stationary will be used to solve the fixed point problem of equation
(3). Due to the assumption of perfect world capital markets, the aggregate world
capital to output ratio is given by

ky
t =

∑R
i=1 At,i∑R
i=1 Yt,i

, (27)

where R denotes the number of countries considered and At,i =
∑Z

a=1 At,a,i. The
aggregate labor force participation rate in any country i is given by

lt,i =
Lt,i

Nt,i

, (28)

where Lt,i =
∑Z

a=1 lt,a,iNt,a,i. In terms of notation of Section 3, the variables P
and Q depend on the scenarios considered:

• Exogenous labor supply / closed economy:
P = {rt}T

t=1 and Q = {ky
t }T

t=1

19By the assumption of perfect annuity markets, end of period assets of households prema-
turely dying with positive (or negative) wealth are equally shared by the surviving members of
the same cohort.
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• Endogenous labor supply / closed economy:
P = ({rt}T

t=1, {wt}T
t=1) and Q = ({ky

t }T
t=1, {lt}T

t=1)

• Endogenous labor supply / two-country open economy:
P = ({rt}T

t=1, {wt,1}T
t=1, {wt,2}T

t=1) and Q = ({ky
t }T

t=1, {lt,1}T
t=1, {lt,2}T

t=1)

• Endogenous labor supply / three-country open economy:
P = ({rt}T

t=1, {wt,1}T
t=1, {wt,2}T

t=1, {wt,3}T
t=1) and

Q = ({ky
t }T

t=1, {lt,1}T
t=1, {lt,2}T

t=1, {lt,3}T
t=1)

In addition, shadow wage rates are updated by the methods described in
Section 3.4.

The model is calibrated with stylized demographic data as described in Section
4.2.1. Calibration of structural parameters is described in Section 5.

5 Results for the OLG model

This section compares the relative preformance of FGS and GSQN for an ac-
tual application of the large-scale OLG model presented above. The analysis
is grouped into two subsections. First, a steady state analysis is carried out to
determine starting values of Q, Q∗,ss and of J , J∗,ss, to be used for the transition
analysis. Second, the performance of the two algorithms is compared for the de-
mographic transition scenarios of Section 4.2.1. The transition analysis is carried
out by using Q0 = Q∗,ss and J0 = J∗,ss as starting values. In terms of notation of
Section 3.2, results reported below refer to model 2, i.e., I first solve for an initial
steady state and then use the initial steady state values as initial conditions for
the transition calculations.

The structural model parameters of the above OLG model are given by

Ψ = (Ω0, α, β, σ, ρ, δ, g, φ).

In order to compare the performance of the algorithms, three different values
parameters of a subset of these structural parameters, Ψ1 = (α, β, ρ, σ), are com-
bined with each other which results in 34 = 81 different parameterizations of the
OLG model per model simulation, see table 1.20 These parameterizations reflect
standard parameterizations chosen for OLG models in the literature. For steady
state simulations, the starting value of the capital to output ratio is constant at
three for the closed economy scenario with exogenous labor supply (m = 1). For
all other models (m > 1), the steady state capital to output ratio resulting from
previous models with m − 1 endogenous variables is used. The same procedure
is adopted for the choice of starting values regarding the labor supply ratio: it

20Except for Ω0 which is normalized in each iteration step by requiring the model to match
arbitrary GDP levels of 100 for all countries.
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is assumed constant at 0.5 for the closed economy model with endogenous la-
bor supply (m = 2) and equilibrium labor supply shares resulting from previous
computations are used for all subsequent models with m > 2. In addition, two
alternative dampening factors w1 = 0.1 and w2 = 0.3 will be compared for FGS.

The convergence criterion ε is set to 1e − 4 for steady state and to 1e − 3
for transition calculations21. This is an arbitrary choice. The relative advantage
of GSQN increases the lower the convergence criterion since it asymptotically
converges at a super-linear rate whereas FGS converges at a linear rate. No
convergence may occur under two cases: first, when Qk is divergent or exhibits
cyclical behavior and second, when max(|G(Qkmax

)/Qkmax|) > ε for some max-
imum number of iteration steps kmax. To rule out the latter case, kmax is set
to 200.22 The convergence properties of the two algorithms are evaluated along
two dimensions, number of cases without convergence as well as running time
(average and median) as the time it takes for convergent runs (in seconds). Since
running time per iteration step differs between the two algorithms, results for
the number of iterations it takes until convergence are only reported for sake of
completeness.23

5.1 The steady state analysis

Convergence results for the steady state analysis of the model are reported in
table 2. The table is organized in four panels in increasing order of m. The
first two rows of each section show results for FGS with w = 0.1 and w = 0.3
respectively. The third row shows results for GSQN. The last two columns of
each row show the relative cases without convergence respectively. GSQN always
converges whereas FGS may not converge for the higher value of the dampening
factor (w = 0.3). The fourth and fifth row of each panel show the relation between
running time (and number of iterations) between FGS (w = 0.1) and (w = 0.3)
and GSQN for the convergent runs of FGS respectively. For example, column
one shows the average running time it takes for convergent simulations of FGS
divided by the average running time of those GSQN simulations for which FGS
also converges.

Average convergence speed for w = 0.1 are about three times lower than
GSQN when m = 1 and about 1.8 times lower when m = 4. This reduction
in the relative performance of GSQN is due to additional computations required
for GSQN to calculate the Jacobi matrix. One might regard these differences as

21Setting a lower convergence criterion for steady state simulations is reasonable since a higher
degree of accuracy is required (steady state solutions are fixed during transition simulations),
but of course not necessary.

22For the scenarios considered here, this is sufficiently high since all non-convergent cases
reported below are due to cyclical or divergent behavior.

23Running time per outer loop differs between FGS and GSQN since GSQN requires addi-
tional iterations for evaluation of the Jacobi matrix and line searches, compare Section 3.3.
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marginal. However, the resulting good initial estimates of J contribute to quite
considerable differences in convergence speeds during the transition analysis, see
below. For FGS with w = 0.3 the algorithm fails to converge in quite many cases
(about 3.7 percent for m = 1 up to 27 percent when m > 1, but convergence
speed (of the convergent runs) is higher than for FGS with w = 0.1. Hence,
a higher value of the fixed dampening factor trades robustness for speed. If it
converges, FGS with w = 0.3 is even faster on average than GSQN for m = 4.
The table also shows median running times since some cases of difficulties in
convergence may be driven by outliers, but results do not look much different
according to this criterion.

5.2 The transition analysis

While these steady state results already show that FGS is clearly inferior, this
may not seem very compelling since there are no non-convergent cases of FGS
with w = 0.1 and absolute overall speed is high since steady state solutions are
fast to compute. But of course convergence speeds slow down a lot if larger
models are used during transition iterations. Hence, computational speed may
become relevant after all.

A standard weighting matrix W derived in steady state simulations is e.g.
given by

W4×4 =




0.205 −0.608 −0.426 −0.191
0.024 0.928 −0.051 −0.023
0.021 −0.062 0.956 −0.020
0.017 −0.051 −0.036 0.984


 (29)

which is far from a scaled identity matrix as in FGS. This multiple dampening
factor matrix results from a standard parameterization of the OlG model with
α = 0.4, β = 1, ρ = 0.01 and σ = 2. For this standard parameterization, all
three algorithms converged. However, while GSQN took only 22.8 seconds, FGS
took 64.353 (193.177) for w = 0.3 (w = 0.1).

More results for transition calculations are shown in table 3 where steady state
solutions for Q0 = Q∗,ss and Ĵ0 = Ĵ∗,ss are used as initial conditions throughout.
First, GSQN and FGS with w = 0.1 again always converge but the number of
non-convergent cases of FGS with w = 0.3 quite significantly increases to roughly
38 percent for m > 1. Second, compared to FGS with w = 0.1, GSQN is roughly
3 to 7 times faster than FGS and this speed advantage strictly increases in the
number m of endogenous variables Q. Third, the user may be lucky when using
FGS with w = 0.3 for m = 1 since the algorithm might converge even faster than
GSQN (if it converges). But for values of m > 1 GSQN is 3 to 5 times faster for
those cases when FGS with w = 0.3 converges.

These results are striking and suggest to use GSQN with good starting values
derived from steady state solutions of the simulation model or earlier transition
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iterations since GSQN is so much superior and since it is so easy to implement.
The most important aspect of GSQN is that these significant increases in run-
ning times relative to standard FGS are achieved at low costs since GSQN just
combines traditional fixed-point iterations with simple Newton based methods.
Therefore, existing sub-routines may be used for implementation.

6 Conclusions

This paper suggests to use Gauss-Seidel-Quasi-Newton (GSQN) instead of con-
ventional fast Gauss-Seidel (FGS) iterations for solving heterogeneous agent mod-
els. Standard Quasi-Newton based methods (Broyden’s method) are used to
determine elements of a low-dimensional approximation of a Jacobi matrix for
Gauss-Seidel iterations which considerably improves convergence both in terms
of speed as well as robustness of the iterations. This approximate Jacobi matrix
may also be interpreted as a matrix of multiple dampening factors (Hughes Hallet
1984). Through its use, the GSQN is a composite method of standard first-order
and second-order tatonnnement methods. The particular attractiveness of the
algorithm stems from the combination of low computational costs of conven-
tional tatonnement methods with the speed of Newton based methods. It only
requires augmenting these intuitive tatonnement methods with well-established
and simple numerical methods.

The simulation analysis shows, that GSQN increases convergence speed by
a factor of two to seven relative to FGS for transition simulations. This rela-
tive speed advantage strictly increases in the number of aggregate endogenous
variables, m, required for tatonnement iterations. Therefore, GSQN enables a
researcher to solve a larger simulation model within the same time frame as FGS
needs for a smaller model. This allows the researcher to investigate much more in-
teresting scenarios. Furthermore, computational speed is relevant for estimation
and sensitivity analysis (see Ludwig (2004a) for an application).

The idea behind the algorithm - constructing a composite between fixed-point
iterations and Quasi-Newton methods - can be applied to other economic models
and solution procedures. As shown in Ludwig (2004b), the same idea can be used
in fixed-point iterations to dampen coefficients that characterize polynomials used
to solve rational expectations models by standard projection methods.
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Table 1: Calibration parameters

Parameter Value
capital share α 0.3 0.4 0.5
substitution elasticity β 0.8 1 1.2
coefficient of relative risk aversion σ 1 2 3
discount rate ρ 0.01 0.02 0.03
growth rate g 0.015
depreciation rate δ 0.05
consumption share φ 0.6
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Table 2: Convergence of FGS and GSQN for the steady state

Running time Iteration number No convergence
Mean Median Mean Median Fraction

Closed economy, exogenous labor supply (m = 1)
FGS(w = 0.1) 4.16 3.97 20.31 20.00 0.00%
FGS(w = 0.3) 2.18 1.31 10.69 6.50 3.7%
GSQN 1.36 1.29 5.25 5.00 0.00%
FGS(w = 0.1)/GSQN 3.07 3.07 3.87 4.00
FGS(w = 0.3)/GSQN 1.61 1.02 2.04 1.30

Closed economy, endogenous labor supply (m = 2)
FGS(w = 0.1) 15.37 15.89 55.23 58.00 0.00%
FGS(w = 0.3) 6.72 4.98 24.10 18 27.16%
GSQN 3.87 2.79 6.59 6.00 0.00%
FGS(w = 0.1)/GSQN 3.98 5.69 8.38 9.67
FGS(w = 0.3)/GSQN 1.57 1.78 3.66 3.00

Two-country model, endogenous labor supply (m = 3)
FGS(w = 0.1) 23.81 23.42 44.49 44.00 0.00%
FGS(w = 0.3) 11.25 8.53 21.03 16.00 24.69%
GSQN 9.46 6.31 3.37 3.00 0.00%
FGS(w = 0.1)/GSQN 2.52 3.71 13.20 14.67
FGS(w = 0.3)/GSQN 1.09 1.35 6.24 5.33

Three-country model, endogenous labor supply (m = 4)
FGS(w = 0.1) 38.65 38.46 48.36 48.00 0.00%
FGS(w = 0.3) 14.81 12.93 18.56 16.00 24.69%
GSQN 21.52 15.08 3.83 3.00 0.00%
FGS(w = 0.1)/GSQN 1.80 2.55 12.64 16.00
FGS(w = 0.3)/GSQN 0.64 0.86 4.85 5.33

Notes: FGS: Conventional fast Gauss-Seidel algorithm with one-parameter dampening. GSQN:
Gauss-Seidel-Quasi-Newton algorithm. This table shows steady state convergence results of
FGS and GSQN for four different scenarios with 81 model simulations each. The last two rows
of each section show the relative performance of FGS and GSQN for convergent runs of FGS
only.
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Table 3: Convergence of FGS and GSQN for the transition

Running time Iteration number No convergence
Mean Median Mean Median Fraction

Closed economy, exogenous labor supply (m = 1)
FGS(w = 0.1) 22.78 23.20 16.60 17.00 0.00%
FGS(w = 0.3) 11.60 6.95 8.49 5.00 3.7%
GSQN 8.08 6.99 5.85 5.00 0.00%
FGS(w = 0.1)/GSQN 2.82 3.32 2.84 3.40
FGS(w = 0.3)/GSQN 1.47 0.99 1.45 1.00

Closed economy, endogenous labor supply (m = 2)
FGS(w = 0.1) 50.89 43.16 28.31 28.00 0.00%
FGS(w = 0.3) 36.13 21.43 17.98 10.00 39.51%
GSQN 11.84 9.26 5.84 5.00 0.00%
FGS(w = 0.1)/GSQN 4.30 4.66 4.85 5.60
FGS(w = 0.3)/GSQN 2.87 2.31 3.08 2.00

Two-country model, endogenous labor supply (m = 3)
FGS(w = 0.1) 151.44 120.81 40.96 40.00 0.00%
FGS(w = 0.3) 89.86 57.30 22.94 15.00 37.04%
GSQN 22.73 18.28 5.60 5.00 0.00%
FGS(w = 0.1)/GSQN 6.66 6.61 7.31 8.00
FGS(w = 0.3)/GSQN 3.57 3.14 4.09 3.00

Three-country model, endogenous labor supply (m = 4)
FGS(w = 0.1) 242.19 191.12 42.95 42.00 0.00%
FGS(w = 0.3) 172.37 92.11 28.32 16.00 38.27%
GSQN 34.45 27.57 5.86 5.00 0.00%
FGS(w = 0.1)/GSQN 7.03 6.93 7.32 8.40
FGS(w = 0.3)/GSQN 4.56 3.34 4.83 3.20

Notes: FGS: Conventional fast Gauss-Seidel algorithm with one-parameter dampening. GSQN:
Gauss-Seidel-Quasi-Newton algorithm. This table shows transition convergence results of FGS
and GSQN for four different scenarios with 81 model simulations each when results derived
from steady state calculations are used as starting values. The last two rows of each section
show the relative performance of FGS and GSQN for convergent runs of FGS only.
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