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1. Introduction 
Research into finding satisfactory parametric Lorenz models has progressed in 

recent years. Several good performing Lorenz models have been developed. 

Sarabia, Castillo and Slottje (1999) (hereafter, SCS, 1999) propose a basic 

Lorenz model along with a generalized Pareto family of Lorenz curves. In a 

later contribution, Sarabia, Castillo and Slottje (2001) (hereafter SCS, 2001) 

develop an exponential family of Lorenz curves. Wang, Ng and Smyth (2007) 

(hereafter WNS, 2007) provide the condition for the SCS (1999) basic model to 

be a Lorenz curve and present a few families of Lorenz curves. The purpose of 

this letter is to provide two new Lorenz curve families by using the SCS (1999) 

basic model. We present estimations which show that the models in our new 

families are very efficient when applied to data on income distribution for a 

range of countries from Shorrocks (1983). 

 
2. The ordered family of Lorenz curves 
A function )( pL  defined on ]1,0[  is a Lorenz curve if: 

0)0( =L , 1)1( =L , 0)0( ≥′ +L  and 0)( ≥′′ pL  for all ]1,0[∈p . 
 
The basic SCS (1999) Lorenz model is ηα )()(~ pLppL =  where )( pL  is a 

Lorenz curve. The main model in the SCS (1999) generalized Pareto family is: 

[ ]ηβα )1(1)(3 pppS −−=              (1) 
where β)1(1)(0 ppS −−=  is called the generating curve of the family. The 

following result from WNS (2007), which is a generalization of the results of 

SCS (1999), can be used to create more efficient Lorenz models:  

 
Theorem 1. Assume )( pL  is a Lorenz curve. ηα )()(~ pLppL =  is a Lorenz 

curve for any 0≥α  and 1≥η . Furthermore, if 0)( ≥′′′ pL  for all ]1,0[∈p , 

then )(~ pL  is a Lorenz curve if 0≥α , 21≥η  and 1≥+ηα . 
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The main model in the SCS (2001) exponential family of Lorenz curves is: 

η
λ

α )()( pLppS =               (2) 
where the generating model is 

1
1)(

−
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= λ

λ

λ e
epL

p

, 0>λ  

which is a Lorenz curve proposed by Chotikapanick (1993).  
 
3. Two new families of Lorenz curves 

We first describe some properties of )( pLλ . 
 
Lemma 1. )( pLλ  possesses the following properties： 

(a) For any 0≠λ , 0)( ≥pLλ  and 0)( ≥′ pLλ  on ]1,0[ . 

(b) For any ]1,0[∈p , 0)( ≥′′ pLλ  if 0>λ  and 0)( ≤′′ pLλ  if 0<λ . Therefore, 

)( pLλ  is convex if 0>λ , but is concave if 0<λ .  

(c) )()( pLpL λλ λ ′=′′  and, consequently, )()()( 2 pLpLpL λλλ λλ ′=′′=′′′ .  

(d) ppL =
→

)(lim
0 λλ

. 

 
Proof. 0)( ≥pLλ  (or 0)( ≥′ pLλ ) on ]1,0[  because its numerator and 

denominator will always have the same sign when 0>λ  and 0<λ . The 

definition of )( pLλ  implies that (c) is true and (b) can be implied by (c) and (a). 

Meanwhile, (d) can be verified using the L’Hospital’s rule. QED. 

 
To obtain another family, change the generating model of )( pS  from )( pLλ  

to 

β

λ
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         (3) 

We consequently obtain our first family of Lorenz curves which contains )(0 pT  

and 
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[ ]βλ
α )1(1)(1 pLppT −−=              (4) 

[ ]ηβ
λ )1(1)(2 pLpT −−=              (5) 

[ ]ηβ
λ

α )1(1)(3 pLppT −−=             (6) 

)(3 pT  is the main model in the family with the others being special cases. Note 

that 0)0( =iT  and 1)1( =iT  for 3,2,1,0=i  if 0≥α , 0>β , 0>λ  and 0>η . 

 
While )(3 pT  differs from )( pS , it is closely related to )(3 pS . The generating 

curve β)1(1)(0 ppS −−=  of )(3 pS  can only be a convex curve on ]1,0[  for 

any ]1,0(∈β . Since β

λ
)1(1)(lim 00

ppT −−=
→

 from Lemma 1, )(0 pT  includes 

)(0 pS  as a special case. However, )(0 pT  can be concave as well as convex 

on ]1,0[  from Lemma 1 and thus can be more flexible than )(0 pS . Thus, 

ηα )()( 03 pTppT =  is a generalization of ηα )()( 03 pSppS =  and is therefore more 

flexible. We expect that the performance of )(3 pT  will be at least as good as 

)(3 pS , which itself is a very good model as pointed out by SCS (1999). For the 

same reason, )(3 pT  must be more flexible than η
λ

α )()( pLppS = , since 

)( pLλ  must represent a convex curve. 

 
Lemma 2. Assume 0<λ . )(0 pT  is a Lorenz curve with 0)(0 ≥′′′ pT  if 

]1,0(∈β . 
 
Proof. Note that )(0 pT  satisfies 

)1()1()( 1
0 pLpLpT −′−=′ −

λ
β

λβ , 

[ ])1()1()1()1()1()( 22
0 pLpLpLpLpT −′′−−−′−−=′′ −

λλλ
β

λ ββ      (7) 

Lemma 1 implies 0)1( ≥− pLλ , 0)1( ≥−′ pLλ  and 0)1( ≤−′′ pLλ  if 0<λ . 



 5

Therefore, the two equations in (7) imply that )(0 pT  is a Lorenz curve if 

]1,0(∈β . 

 
Moreover, note that 

).1()1()1(3

)1()1()2)(1(
)1()1(

)( 222
3

0
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−−′
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λλ
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λββ
β      (8) 

Therefore, 0)(0 ≥′′′ pT  if ]1,0(∈β .  QED. 
 
Lemma 3. Assume ]ln,0( 1−∈ βλ . )(0 pT  is a Lorenz curve if )1,0(∈β . )(0 pT  

is a Lorenz curve with 0)(0 ≥′′′ pT  if ]21,0(∈β . 1ln −β  is the natural log of 

1−β . 

 
Proof. Because )1()1( pLpL −′=−′′ λλ λ  from Lemma 1, the term between the 

braces on the right-hand side of (7) is 

[ ] ( ))1(1
1

)1()1()1()1()1( pe
e

pLpLpLpL −−
−
−′

=−−−′−−′ λ
λ

λ
λλλ βλλβ . 

But )1(1 pe −− λβ  is non-negative on ]1,0[  if ]ln,0( 1−∈ βλ  and )1,0(∈β . 

Therefore, we have 0)(0 ≥′′ pT . Thus the first statement of the lemma is true. 

 
Furthermore, denoting the right-hand side of (8) as )( pf , we have 

).1(2)12)(1(

)1)(31()12)(1()(
)1(
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The right-hand side of this equation is non-positive if 0>λ  and ]21,0(∈β . 

This implies that )( pf  is a decreasing function on ]1,0[ . Therefore 0)( ≥pf  

and, consequently, 0)(0 ≥′′′ pT  on ]1,0[  because 0)0()2)(1()1( 2 >′−−= λββ Lf . 

Therefore the second statement of the lemma is also true.  QED. 
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Theorem 2. Assume 0≥α , 21≥η  and 1≥+ηα . )(3 pT  is a Lorenz curve 

if: 

]1,0(∈β , 0<λ               (9) 
or 

]21,0(∈β , ]ln,0( 1−∈ βλ              (10) 
 
Proof. Lemma 2, the second statement of Lemma 3 and Theorem 1 together 

imply that )(3 pT  is a Lorenz curve if (9) or (10) holds.   QED. 

 

Note that )(3 pT  is also a Lorenz curve if 0≥α , ]ln,0()0,( 1−−∞∈ βλ U , 

]1,0(∈β  and 1≥η . But the model with this parameterization appears inferior 

to the model with the parameter ranges given by Theorem 2. Using the 

concept of the hybrid model proposed by Ogwang and Rao (2000), we suggest 

another Lorenz family, which is a generalization of both )(3 pT  and )( pS : 

( ){ }ηλ
β

λ
α δδ )()1()1(1)(

1
pLpLppV −+−−= . 

Drawing on the result of Lemma 2, Lemma 3 and Theorem 1, we have: 

 
Corollary. Assume 0≥α , 21≥η , 1≥+ηα , ]1,0[∈δ  and 01 >λ . Then 

)( pV  is a Lorenz curve if β  and λ  satisfy either (9) or (10). 

 
There is one major difference between the cases where 0<λ  and 0>λ  in 

Theorem 2. λ  can be any negative number in (9). However, if λ  is positive, 

then its admissible range must depend on β  as described in (10). The 

parameter ranges for )(0 pT , )(1 pT  and )(2 pT  to be Lorenz curves, though, 

are much simpler since Lemma 2, the first part of Lemma 3 and Theorem 1 

imply: 
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Theorem 3: Assume ]1,0(∈β  and ]ln,0()0,( 1−−∞∈ βλ U . Then 

(1) )(0 pT  is a Lorenz curve. 

(2) )(1 pT  is a Lorenz curve for any 0≥α . 

(3) )(2 pT  is a Lorenz curve for any 1≥η . 

 

One drawback of )( pV  is that it does not have a Gini index formula with 

closed form. While the Gini index formula for )(3 pT  can be obtained in a 

similar manner to that described in SCS (2001) if 0<λ , the formula becomes 

tedious to calculate and, furthermore, a convergence problem emerges if 

0>λ . Thus we use numerical integral to obtain Gini indices in our estimation 

tests in the next section. 

 

4. Some empirical results 

We give results for models )(3 pT  and )( pV , imposing 21≥η . Following 

SCS (1999, 2001), we use MSE, MAE and MAXABS as error measures. The 

Levenberg-Marquardt algorithm (Dennis & Schnabel, 1983) is used to solve 

the nonlinear least square problem of minimizing the sum of residual squares 

to obtain parameter estimates for the models. Similar parameter 

transformations to those described in WNS (2007) are adopted to enforce the 

parameter constraints. 

 
Following SCS (1999, 2001) we use the Shorrocks (1983) income distribution 

data for a range of countries in the tests. The results are reported in Tables 1-3. 

Tables 2-3 contain the parameters of the two models, from which it can be 

seen that all the fitted curves satisfy the condition of the Lorenz curve. Table 1 
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shows that the fitted results for )(3 pT  and )( pV  are very good. The largest 

MSE values for both models are for the Norwegian data, being -61075.8 ×  for 

)(3 pT  and 61049.5 −×  for )( pV  respectively. Since the MAXABS values are 

all quite small for )( pV , we can conclude that each fitted curve is a good 

global approximation to the original data. We also tested the models by using 

US income distribution data from Basmann et al. (1993), where the sample 

size is larger, and also obtained satisfactory results. We do not report these 

results to conserve space, but they are available on request. 

 
5. Conclusion 

We have introduced two new families of Lorenz curves building on the models 

proposed in SCS (1999, 2001). The estimation tests show that the new 

families perform well in practice. The results presented here provide further 

evidence that the basic form suggested by SCS (1999) is very important and 

that the basic result of theorem 1 is useful in the creation of parametric Lorenz 

models. 
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Table 1. Error measures for )(3 pT  and )( pV  using Shorrocks’ (1983) income data 
 

 
Model )(3 pT                             Model )( pV  

MSE( 610−× )  MAE  MAXABS   Gini      MSE( 610−× )  MAE   MAXABS   Gini 
Brazil 
Columbia 
Denmark 
Finland 
India 
Indonesia 
Japan 
Kenya 
Malaysia 
Netherland
s 
N Zealand 
Norway 
Panama 
Sri Lanka 
Sweden 
Tanzania 
Tunisia 
UK 
Uruguay 

2.7074      0.0015   0.0030   0.6375         0.0463     0.0002    0.0005  
0.6381 

0.5256      0.0006   0.0013   0.5579         0.0532     0.0002    0.0004  
0.5589 

8.1865      0.0024   0.0058   0.3654         1.2141     0.0009    0.0018  
0.3658 

3.5935      0.0017   0.0032   0.4709         1.0652     0.0008    0.0021  
0.4711 

1.2945      0.0010   0.0023   0.4600         0.1676     0.0003    0.0009  
0.4604 

3.1508      0.0014   0.0032   0.4486         0.1849     0.0004    0.0009  
0.4490 

0.0924      0.0003   0.0005   0.3104         0.0639     0.0002    0.0004  
0.3105 

5.2351      0.0020   0.0036   0.6236         0.0374     0.0002    0.0004  
0.6244 

0.9506      0.0008   0.0022   0.5113         0.3310     0.0004    0.0016  
0.5124 

1.3393      0.0008   0.0029   0.4479         0.6706     0.0006    0.0021  
0.4486 

3.8703      0.0013   0.0053   0.3691         2.2961     0.0011    0.0040  
0.3695 

8.7450      0.0023   0.0066   0.3611         5.4869     0.0017    0.0063  
0.3605 

1.5025      0.0009   0.0032   0.4467         0.6712     0.0005    0.0024  
0.4474 

0.6430      0.0007   0.0016   0.4087         0.1206     0.0003    0.0005  
0.4090 

1.8838      0.0011   0.0030   0.3862         0.3623     0.0004    0.0016  
0.3865 

2.8785      0.0015   0.0025   0.5388         0.0426     0.0002    0.0005  
0.5391 

4.5335      0.0017   0.0042   0.5029         0.0185     0.0001    0.0003  
0.5022 

0.7523      0.0006   0.0022   0.3630         0.4288     0.0004    0.0018  
0.3633 

5.3492      0.0021   0.0038   0.4963         0.0277     0.0001    0.0003  
0.4968 

Note: 21≥η  is imposed for both )(3 pT  and )( pV . 
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Table 2. Parameter estimates for )(3 pT  using Shorrocks’ (1983) income data 
 

 α            β             λ              η  

Brazil 
Columbia 
Denmark 
Finland 
India 
Indonesia 
Japan 
Kenya 
Malaysia 
Netherland
s 
N Zealand 
Norway 
Panama 
Sri Lanka 
Sweden 
Tanzania 
Tunisia 
UK 
Uruguay 

   0.9038607      0.1956482     -2.3391257    
0.5000000 

   1.0984900      0.2871671     -1.4966379    
0.5025607 

   0.0000000      0.8178719     -0.5454835    
1.4227869 

   0.6222372      0.6247161     -0.0000051    
1.2260239 

   0.9781033      0.2270743      0.7741400    
0.5000000 

   0.8640722      0.1668873      1.7904335    
0.5000110 

   0.1106829      0.7341653     -0.4107163    
1.1252793 

   0.6570113      0.1811202     -2.4278433    
0.5000003 

   0.6253334      0.4713232     -0.0968370    
1.0224873 

   0.6030711      0.5543365     -0.0000162    
1.0319286 

   0.4678067      0.7183750     -0.0000003    
1.1612433 

   1.2545605      0.4999966      0.6880046    
0.5000116 

   0.6706023      0.5325137     -0.0000019    
0.9563373 

   0.0000000      0.7227005     -0.5051129    
1.3953376 

   0.0000002      0.7452864     -0.2143127    
1.4965412 

   0.6135106      0.2586841     -2.1928819    
0.5000000 

   0.0009171      0.6882983     -2.4256180    
0.9990832 

   0.7887904      0.4999999      0.2792676    
0.7002776 

   0.0000006      0.7653365     -1.5011102    
1.3426007 

Note: 21≥η  is imposed so that β  and λ  satisfy (9) or (10). 
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Table 3. Parameter estimates for )( pV  using Shorrocks (1983) income data 
 

 α           β            λ            1λ            δ            η  

Brazil 
Columbia 
Denmark 
Finland 
India 
Indonesia 
Japan 
Kenya 
Malaysia 
Netherland
s 
N Zealand 
Norway 
Panama 
Sri Lanka 
Sweden 
Tanzania 
Tunisia 
UK 
Uruguay 

0.7588379     0.1358719    -2.3861370     5.0800772     0.8437318   
0.5000000 

1.1250881     0.1945068     1.6372881     5.6692376     0.8000765   
0.6373440 

0.5515430     1.0000000    -0.5265505     9.6912929     0.8354492   
1.0103942 

1.5025968     0.5853923    -7.4462709     0.0000014     0.4808688   
0.5018076 

0.9500295     0.1595836     1.8351873     3.3527612     0.8350063   
0.5000002 

0.7831276     0.1064557     2.2400265     2.0972553     0.7846015   
0.5000403 

0.6341660     0.6478339    -1.8545616     0.0000529     0.7272617   
0.6280006 

0.0228880     0.1372374     0.2477313     2.9639857     0.6390415   
0.9771120 

1.1819108     0.2523612     1.3768940     6.4911370     0.7804873   
0.5826837 

1.2296029     0.3260155     1.1208101     6.8622157     0.7992656   
0.5053963 

1.1913785     0.6448899    -6.1424497     0.0000018     0.3433921   
0.5356541 

1.2305477     0.6644481    -9.9970779     0.0000031     0.2377121   
0.5504111 

1.2124715     0.3302206     1.1079939     7.1735019     0.8173589   
0.5160027 

0.9693821     0.6215003    -3.6374015     0.0000009     0.6720248   
0.5546455 

1.0839604     0.6626720    -5.0729627     0.0000004     0.4836789   
0.5462910 

0.5045214     0.1952060    -2.4014569     4.1872337     0.8232045   
0.5000000 

0.0000000     0.7443686   -11.9728817     2.3710046     0.2420133   
1.0397704 

1.0253910     0.3840919     0.9568732     5.9633874     0.8907825   
0.5005821 

0.0000000     0.8063398    -6.3830538     0.6346932     0.2316490   
1.6407687 

Note: 21≥η  is imposed so that β  and λ  satisfy (9) or (10). 
 


