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SCALING RELATIONSHIPS OF GAUSSIAN PROCESSES

Jonathan Batten*a, Craig Ellisb

Abstract

Asset returns conforming to a Gaussian random walk are characterised by the temporal

independence of the moments of the distribution. Employing currency returns, this note

demonstrates the conditions that are necessary for risk to be estimated in this manner.
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SCALING RELATIONSHIPS OF GAUSSIAN PROCESSES

1. Introduction

Under the random walk model, the temporal dimension of the risk of an asset is irrelevant.

The convention is for risk to be scaled at the square root of time, though due to the presence of

conditional heteroskedasticity, some financial time series do not conform to the linear scaling of

variances rule and require a more complicated function of variance (Diebold et al. 1998). A

Gaussian process may also be described in terms of the value of an exponent originally determined

by Hurst (1951). Combining the scaling properties of Gaussian series and the value of the Hurst

exponent implies a number of empirical conditions that provide an insight into the distributional

properties of time series. The objective of this note is to identify and explain, using an example from

currency returns, these empirical conditions. We begin by developing the principles of fractal

geometry.

2. Scaling and self-similarity

The concepts of standard Brownian motion (sBm) and fractional Brownian (fBm) motion

may be defined in terms of the relative level of dependence between successive increments. One

characteristic of these processes is their self-similar behaviour. Self-similarity and scale invariance

can be used to describe the relationship between the parts and the whole of the trail (plot) of a

function. Consider a function (S) made up of the points X = [X0, X1,..., Xn], where the probability of

incremental movement is unrestricted with respect to the direction of the movement. Changing the

length of the function by a common factor r<1, such that rX = [rX0, rX1,..., rXn], will yield a new

function rS, whose geometric length is less than that of the original function. For the appropriate

value of r, self-similarity implies the original function S can be recovered by N times contiguous

replications of the self-similar rescaled function rS

When the trail of the function is measured with respect to time (as in the case of the line-to-

line function) Mandelbrot (1977) shows that the function will instead be self-affine. Consider the

same function (S), measured now as a line-to-line function comprising the points X(t) = [X(t0),
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X(t1),..., X(tn)], in time t. Changing the time scale of the function by the ratio r<1, the required

change in scale of the amplitude (measured along the vertical axis) is shown to be rH for a self-affine

function, where the H-exponent is the statistic proposed by Hurst (1951).

Given the function S is a Brownian line-to-line function, the distance from X(t0) to a point

X(t0 + t) is shown by Mandelbrot (1977) to be a random multiple of √t. Setting t0 = 0 it follows for

t>t0 that

  (1) t e  |t-t) +t(|e  )tX(-t) +tX( 0.50.5
0000 ≈≈

where e is a random variable with zero mean and unit variance. Properly rescaled in time by r, and

in amplitude by √r, the increments of the self-affine rescaled function (rS)/√r will be

(2)
r

)tX(-rt) +tX( 00

For the correct choice of scaling factor, the two functions S and (rS)/√r are statistically

indistinguishable, such that they have the same finite dimensional distribution functions for all t0

and all r>0.

Self-affine Brownian line-to-line functions are described by Mandelbrot as exhibiting scale

invariance with the scaling factor √r = rH. Allowing for 0≤H≤1, H≠0.5 it follows that Equation (1)

can be generalised by

(3) t e  |t-t) +t(|e  )tX(-t) +tX( HH
0000 ≈≈

Equation (2) may be similarly generalised by

(4)       
r

)tX(-rt) +tX(
H

00

for a fractional line-to-line function.

Fractional Brownian line-to-line functions exhibit statistical self-affinity at all time scales.

Independent therefore of the incremental length (or frequency of observation) of X(t0 + t) - X(t0), the

relative level of positive dependence (1>H>0.5) or negative dependence (0<H<0.5) should remain
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constant. Modelling financial asset returns as line-to-line functions, the self-affine relation described

by Equation (3) and Equation (4) can be tested by an examination of the scaling relations between

the risk of long-interval returns (σk) and the risk of short-interval returns (σn)

(5) ])PP([nk = ])PP([ 0.5
ntt

2H0.5
ktt

2
−− −− σσ )/(

The constants k and n may take the values 1 (daily), 5 (weekly), 12 (fortnightly), 22 (monthly) and

252 (annual), where ∞ ≥ n ≥1 and ∞ ≥ k≥n. Pt are Pt-k are the natural logarithms of daily prices, and

H is the scale exponent necessary to estimate the long-interval risk of the asset from the observed

short-interval risk(s).

If the underlying return series exhibits conditional heteroskedasticity, linear rescaling by

Equation (5) will tend to overestimate the long-interval conditional standard deviations. Drost and

Nijman (1993) provide an alternate model to Equation (5) for series where the underlying form of

the returns (GARCH) process is known a priori. In the case of Gaussian processes, two Hypotheses

based upon Equation (5) are:

Hypothesis 1: The estimated risk of an asset (σq*) over a long time interval (k) is a linear function

of the observed risk over a shorter time interval (n) scaled at the square root of time

H0 : σq* = (k/n) 0.5 σ(Pt-Pt-n )

Ha : σq* ≠ (k/n) 0.5 σ(Pt-Pt-n )

Hypothesis 2: The estimated risk of an asset (σq*) over a long time interval (k) is a linear function

of the observed risk over a shorter time interval (n) scaled at the Hurst exponent of the returns series

H0 : σq* = (k/n) H σ(Pt-Pt-n )

Ha : σq* ≠ (k/n) H σ(Pt-Pt-n )

Implied standard deviations for each interval (k = 5, 12, 22 and 252) may be estimated from

the standard deviation of the daily yields series (k = 1), and the results compared to the observed

standard deviation of q interval yields. Implied daily yield ranges may be estimated from the q
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interval yield ranges using Equation (5) for H = 0.5 and the results compared to observed daily yield

ranges for each series. For these tests, the acceptance of the null hypothesis that the scale factor (r) is

r = 5, and that the appropriate scale exponent (H) is H = 0.5, will imply the series under observation

conforms to a random Gaussian distribution.

For the alternate hypotheses, imputed values of the scale exponent (H) for the standard

deviation and range may be estimated. The significance of the imputed scale exponent is that this

represents the value of H for which the implied weekly standard deviations (and daily yield ranges)

equals exactly their observed values. Observed values of H which are significantly different from H

= 0.5, will imply the rejection of the null hypothesis. An example of these tests is provided in the

following example.

2.1.   Example: Scaled currency returns

The process of linear rescaling may be illustrated by the comparison of two time-series: a

simulated Gaussian random walk; and a time-series of spot DMK/USD yields. Returns for each

series are calculated for intervals of k = 1, 2, ..., 252 periods and the standard deviation of returns

are then estimated. A summary of the log standard deviations over selected return intervals is

provided in Table I. Observed and implied standard deviations for both series over all return

intervals are also shown graphically in Figure 1. Implied standard deviations in the figure are

estimated by rescaling the observed one-period standard deviations using the Gaussian exponent

value H = 0.5. Comparison of the plot of observed versus implied standard deviations of the

simulated Gaussian random walk, suggests that the implied standard deviations of k-interval

DMK/USD returns consistently underestimate their corresponding observed values. An

implication of the results shown in Figure 1 is that linear rescaling of short-interval risk using H

= 0.5 may not be appropriate when the underlying series does not conform to Gaussian random

walk.

(Insert TABLE I and FIGURE 1 about here)

Using data such as provided in Table I, the scale exponent (H) may be estimated either

locally or globally. Local estimates of the scale exponent are estimated for individual pairs of
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standard deviations. Using observed daily and annual standard deviations to find the exponent

value for which daily risk scales to its annual equivalent is one example of estimating the value

of H locally. The estimation of local scale exponent values is analogous to solving Equation (5)

for the exponent value H and may be completed using a model of the general form

(6)
(k/n)

)/(
=H nk

log
log σσ

and assumes that the values of σk and σn are both known and observable. By substituting data in

Table I into Equation (6), Table II provides local estimates of H for the scaling of short-interval

risks into annual risk. Values in the table represent the rate at which the observed daily (n = 1) to

monthly (n = 22) risk estimates scale to the observed annual risk for the simulated Gaussian

series and spot DMK/USD yields. Local scale exponents for the Gaussian series are all

approximately equal to H = 0.5. For the DMK/USD, the higher scale exponent values imply that

scaling short-interval risk underestimates the real level of risk. One example of where linear

rescaling may be used to estimate annual standard deviation is option pricing. All other things

being equal, results from Table II suggest that premiums for DMK/USD currency options would

be under-priced if annual risk was estimated conventionally by multiplying the short-interval risk

by the square root of time (ie. H = 0.5).

(Insert TABLE II about here)

When the standard deviation of returns is known and observable over several consecutive

return intervals, a global estimate of the scale exponent can be estimated using an OLS

regression of the general form

(7) k)(+=)( k loglog βασ

where the beta coefficient is the scale exponent H. Global estimates of H for the simulated

Gaussian series and standard deviation of DMK/USD returns are given in Table III .

(Insert TABLE III about here)
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Consistent with local estimates provided in Table 2, the DMK/USD global scale

exponent value is higher than the equivalent value for the simulated Gaussian series. It should be

noted however that the problem of serial correlation between consecutive k-interval standard

deviations requires that the statistical significance of the estimated scale exponent (beta) cannot

be tested using standard parametric tests such as those shown in the table. As reported by Muller

et al. (1990), the use of overlapping versus contiguous data series in the estimation of

consecutive k-interval standard deviations has no real impact on the estimated scale exponent

(beta coefficient) itself.

3. Conclusion

The objective of this note was to identify and explain, using an example of currency returns,

the empirical conditions that are implied by combining the scaling properties of a Gaussian series

with the value of the Hurst exponent. The example of currency returns illustrates the process by

which linear rescaling may be used to estimate the risk of long-interval returns using observable

short-interval returns. However we conclude that such an approach may not be appropriate when

the return series under observation are not independent.
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TABLE I

LOG STANDARD DEVIATIONS BY RETURN INTERVAL

Return interval Log σ sBm log σ DMK/USD
1
2
3
4
5
:

22
:

252

-1.4989
-1.3440
-1.2576
-1.1955
-1.1481

:
-0.8342

:
-0.3102

-2.1590
-2.0046
-1.9196
-1.8609
-1.8128

:
-1.4774

:
-0.8766

FIGURE 1

OBSERVED AND IMPLIED STANDARD DEVIATIONS BY RETURN INTERVAL
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TABLE II

LOCAL H EXPONENT ESTIMATES FOR SCALING OBSERVED N-PERIOD RISK TO
ANNUAL RISK

Return interval (n) 1 2 5 22
SBm 0.4950 0.4922 0.4921 0.4948

DMK/USD 0.5340 0.5499 0.5499 0.5674

TABLE III

REGRESSION SUMMARY STATISTICS

sBm DMK/USD
R Square
Standard error
Observations
Degrees of
  Freedom
Intercept
Slope
(t-statistic)
p-value

0.9992
0.0057

252
251

-1.4650
0.5013

                     548.2941
0.0000

0.9989
0.0074

252
251

-2.1986
0.5405

482.5121
0.0000


