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COGNITION AND BEHAVIOR IN TWO-PERSON GUESSING GAMES: 

AN EXPERIMENTAL STUDY1

By Miguel A. Costa-Gomes, University of York, 

and Vincent P. Crawford, University of California, San Diego 

6 April 2004 

". . . professional investment may be likened to those newspaper competitions in which the 
competitors have to pick out the six prettiest faces from a hundred photographs, the prize being 
awarded to the competitor whose choice most nearly corresponds to the average preferences of 
the competitors as a whole; so that each competitor has to pick, not those faces which he himself 
finds prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all 
of whom are looking at the problem from the same point of view. It is not a case of choosing 
those which, to the best of one's judgment, are really the prettiest, nor even those which average 
opinion genuinely thinks the prettiest. We have reached the third degree where we devote our 
intelligences to anticipating what average opinion expects the average opinion to be. And there 
are some, I believe, who practice the fourth, fifth and higher degrees." 

 
—John Maynard Keynes, The General Theory of Employment, Interest, and Money 
 

This paper reports experiments that elicit subjects' initial responses to 16 dominance-

solvable two-person guessing games. The structure is publicly announced except for varying 

payoff parameters, to which subjects are given free access, game by game, through an interface 

that records their information searches. Varying the parameters allows strong separation of the 

behavior implied by leading decision rules and makes monitoring search a powerful tool for 

studying cognition. Many subjects' decisions and searches show clearly that they understand the 

games and seek to maximize their payoffs, but have boundedly rational models of others' 

decisions, which lead to systematic deviations from equilibrium. 

Keywords: noncooperative games, experimental economics, guessing games, bounded 

rationality, strategic sophistication, cognition, information search (JEL C72, C92, C51) 
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(Costa-Gomes) and the U.S. National Science Foundation (Crawford and Costa-Gomes) for financial support; and 
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technical assistance from lab administrators Kevin Sheppard and Maximilian Auffhammer; and in the University of 
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files at http://weber.ucsd.edu/~vcrawfor/#Guess. 
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1. Introduction 

Most applications of game theory assume equilibrium even in predicting initial responses 

to games played without clear precedents. However, there is substantial experimental evidence 

that initial responses often deviate systematically from equilibrium, especially in games where 

the reasoning that leads to it is not straightforward. This evidence also suggests that a structural 

model that allows for the possibility that players follow certain boundedly rational decision rules, 

in lieu of equilibrium, can out-predict equilibrium in applications involving initial responses. 

Such a model is likely to establish more robustly the conclusions of applications that now rely on 

equilibrium in simple games, where boundedly rational rules often mimic equilibrium; but also 

to challenge the conclusions of applications to games too complex for equilibrium to be plausible 

without learning, by predicting the deviations from equilibrium often observed in such games.2

The potential usefulness of a structural non-equilibrium model of initial responses is 

vividly illustrated by Nagel's (1995) and Ho, Camerer, and Weigelt's (1998; "HCW") "guessing" 

or "beauty contest" experiments, inspired by Keynes' famous analogy quoted in our epigraph. In 

their games, n subjects (15-18 in Nagel, 3 or 7 in HCW) made simultaneous guesses between 

lower and upper limits ([0, 100] in Nagel, [0, 100] or [100, 200] in HCW). The subject who 

guessed closest to a target (p = 1/2, 2/3, or 4/3 in Nagel; p = 0.7, 0.9, 1.1, or 1.3 in HCW) times 

the group average guess won a prize. There were several treatments, in each of which the targets 

and limits were identical for all players and games. The structures were publicly announced. 

Although Nagel's and HCW's subjects played a game repeatedly in the same group, their 

initial guesses can be viewed as responses to an independent play of the game if they treated 

their own influences on others' future guesses as negligible, which is plausible for all but perhaps 

the 3-subject groups. With publicly announced structures, it is also reasonable to assume 

complete information. With one exception (p = 4/3 with limits [0, 100]), this makes the games 

dominance-solvable in finite (limits [100, 200]) or infinite (limits [0, 100]) numbers of rounds, 

with unique equilibria in which all players guess their lower (upper) limit when p < 1 (p > 1). 

                                                 
2Camerer (2003), Camerer, Ho, and Chong (2004; "CHC"), and Kübler and Weizsäcker (2004) give examples of 
structural non-equilibrium analyses. Crawford (2003) gives a sample application to strategic communication. A 
common theme is that allowing structured bounded rationality can resolve puzzles that are intractable assuming 
equilibrium. Although we focus on initial responses, modeling them more accurately will also inform applications 
where players can learn to play an equilibrium from experience with analogous games. The mental models that drive 
initial responses also affect the structure of learning rules, distinguishing reinforcement from beliefs-based and more 
sophisticated rules. This, in turn, influences predictions of convergence and selection among multiple equilibria. 
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These equilibrium predictions depend only on rationality (in the decision-theoretic sense) 

and beliefs derived from iterated or common knowledge of rationality. Yet Nagel's subjects 

never made their equilibrium guesses initially, and HCW's rarely did so. Most initial guesses 

respected from 0 to 3 rounds of iterated dominance, in games where from 3 to an infinite number 

are needed to identify an equilibrium (Nagel, Figure 1; HCW, Figures 2A-H and 3A-B). 

These deviations from equilibrium are not adequately explained by social preferences, risk 

aversion, or failures of rationality. And while such deviations are often modeled as "equilibrium 

plus noise" or "equilibrium taking noise into account" in the sense of quantal response 

equilibrium ("QRE"; McKelvey and Palfrey (1995)), Nagel's and HCW's data resemble neither 

equilibrium plus noise nor QRE for any of the standard distributions, even making allowance for 

boundary effects and social preferences. Their data do suggest that the deviations have a 

coherent, partly deterministic structure. In Nagel's [0,100] games, for example, subjects' guesses 

have spikes that track 50pk for k = 1, 2, 3, … across the different targets p in her treatments 

(Nagel, Figure 1). Like spectrograph peaks that signal the existence of chemical elements, these 

spikes are evidence of a structure that is discrete and individually heterogeneous. 

Similarly structured deviations from equilibrium have been found in initial responses to 

matrix games by Stahl and Wilson (1994, 1995; "SW") and Costa-Gomes, Crawford, and 

Broseta (1998, 2001; "CGCB"), extensive-form alternating-offers bargaining games by Camerer, 

Johnson, Rymon, and Sen (1993, 2002; "CJ"), and other games (Crawford (1997, Section 4)), 

Camerer (2003, chapter 5), and CHC). As in the guessing games, subjects' responses are often 

"strategic" and they make undominated decisions with frequencies well above random, but they 

are less likely to rely on dominance for others (Beard and Beil (1994)), and reliance on iterated 

dominance seldom goes beyond 3 rounds. And in these experiments, subjects make equilibrium 

decisions less often in games where identifying them requires more rounds of iterated dominance 

or the fixed-point logic of equilibrium in non-dominance-solvable games (CGCB, Table II). 

The data from these experiments have been analyzed using a variety of boundedly rational 

strategic decision rules called types. Leading examples include L1 (for Level 1), which chooses 

its best response given a uniform prior over its partner's decisions; L2, which best responds to 

L1; L3, which best responds to L2; D1 (for Dominance 1), which does one round of deletion of 

dominated decisions and chooses its best response given a uniform prior over its partner's 
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remaining decisions; and D2, which does two rounds of iterated deletion of dominated decisions 

and best responds given a uniform prior over the remaining decisions. 

How do these types differ from an Equilibrium type that makes its equilibrium decision? 

Equilibrium, Lk, and Dk types are all rational and all have accurate models of the game. All are 

usually defined, as we shall do here, to satisfy subsidiary assumptions of self-interestedness and 

risk-neutrality, which imply expected-pecuniary-payoff maximization. Lk and Dk types' essential 

departures from equilibrium involve replacing its accurate model of others' decisions with 

simplified, boundedly rational models. Lk anchors its beliefs with a uniform prior and adjusts 

them via thought-experiments involving iterated best responses, without "closing the loop" as for 

equilibrium. Dk avoids closing the loop by starting with finitely iterated knowledge of rationality 

and invoking a uniform prior at the end. Both procedures yield workable models of others' 

decisions, while avoiding much of the cognitive complexity of equilibrium analysis.TP

3
PT 

Although Lk and Dk types have similar cognitive requirements by standard measures, and 

Dk types are closer to how theorists analyze dominance-solvable games, Lk types are usually 

taken as the natural specification of boundedly rational strategic reasoning.TP

4
PT However, both can 

explain the empirical relationship between equilibrium compliance and strategic complexity 

noted above: Because Dk respects k+1 rounds of dominance by construction, and Lk+1 respects 

k+1 rounds in many games, a suitably heterogeneous mixture of either kind of type will mimic 

equilibrium in games that are dominance-solvable in small numbers of rounds, while deviating 

systematically in some more complex games. Further, in Nagel's and HCW's games with target p 

< 1 and limits [0, 100], Dk's guess is ([0+100p P

k
P]/2)p ≡ 50pP

k+1
P≡ [(0+100)/2]pP

k+1 
P≡ Lk+1's guess, 

so both track the spikes in their data; but by the same token, both are perfectly confounded in 

those games. (They are only weakly separated in the other experiments mentioned above.) 

                                                 
TP

3
PTIn Selten's (1998) words: "Basic concepts in game theory are often circular in the sense that they are based on 

definitions by implicit properties…. Boundedly rational strategic reasoning seems to avoid circular concepts. It 
directly results in a procedure by which a problem solution is found. Each step of the procedure is simple, even if 
many case distinctions by simple criteria may have to be made." 
TP

4
PTKeynes' wording in our epigraph connotes finite iteration of best responses—albeit before the notions of iterated 

dominance and equilibrium were current—but anchored, as seems natural in the beauty contest, by true preferences 
rather than uniform priors. Crawford (2003, p. 139) briefly discusses the informal literature on deception, which also 
features decision rules based on finite iteration of best responses, in this case anchored by truthfulness or credulity. 
Nagel (1995) focuses on Lk types, citing her questionnaire responses (1993, pp. 14-15; private communication) in 
support. Her subjects were University of Bonn students, most with no prior knowledge of game theory; but some of 
her questionnaire data were from 20 subjects in a pilot at the London School of Economics, who were probably 
more sophisticated. The LSE subjects' first-period rationales give some evidence of Dk types: By our reading, they 
include 3 L2, 3 L1, 2 possibly Worldly (SW (1995)), one Equilibrium, one D2, one D1, and 9 unclassifiable. 



For these and other reasons, the structure of initial responses has not been identified as 

precisely or documented as convincingly as current methods allow. To move closer to that goal, 

this paper reports experiments that elicit subjects' responses to a series of 16 dominance-solvable 

two-person guessing games. The design suppresses learning and repeated-game effects to justify 

an analysis of subjects' behavior as initial responses to independent games. 

Our guessing games differ from Nagel's and HCW's in several ways. They have only two 

players, who make simultaneous guesses. Each player has a lower and an upper limit (either 

[100, 500], [100, 900], [300, 500], or [300, 900]), but players are not required to guess between 

their limits: guesses outside them are automatically adjusted up to the lower limit or down to the 

upper limit as necessary. Each player also has a target (0.5, 0.7, 1.3, or 1.5), and his payoff is 

higher, the closer his adjusted guess is to his target times his partner's adjusted guess.5

Within this common structure, which is publicly announced, the targets and limits vary 

independently across players and games, with the targets sometimes both less than one, 

sometimes both greater than one, and sometimes mixed. The target and limits are hidden, but 

subjects are allowed to search for them through a MouseLab computer interface, game by game, 

as often as desired but one at a time.6 Low search costs make the entire structure effectively 

public knowledge, to justify comparing subjects' behavior with predictions based on complete 

information. The games are asymmetric (with one exception) and, with complete information, 

dominance-solvable in 3 to 52 rounds, with essentially unique equilibria determined (not always 

directly) by players' lower (upper) limits when the product of targets is less (greater) than one.7

Studying two-person games allows us to focus sharply on the central game-theoretic 

problem of predicting the decisions of others who view themselves as a non-negligible part of 

one's own environment.8 Tracking behavior within subjects across 16 different games with large 

strategy spaces greatly enhances separation of the behavioral implications of Equilibrium and 

                                                 
5Thus a player's guess determines a continuous payoff rather than whether he wins an all-or-nothing prize, as a 
function of his partner's guess rather than a group average guess. This eliminates his need to predict how his guess 
affects an average. Like Nagel's and HCW's games, ours limit the effects of altruism, spite, and risk aversion. 
6Subjects were not allowed to write, and the search data suggest that there was very little memorization. MouseLab 
was developed to study individual decisions; see Payne, Bettman, and Johnson (1993, Appendix) and 
http://www.cebiz.org/mouselab.htm. CJ pioneered the use of MouseLab in games by studying backward induction in 
alternating-offers bargaining games in which subjects could look up the sizes of the "pies" to be divided in each 
period. CGCB used it to study matrix games in which subjects could look up their own and their partners' payoffs.  
7The equilibria are only essentially unique because all guesses that lead to the same adjusted guess are equivalent. 
8Grosskopf and Nagel (2001) report experiments with two-person guessing games in which subjects were rewarded 
for guessing closer to a target times the pair's average guess. With targets less than one, guessing the lower limit is a 
weakly dominant strategy, so their games do not fully address the issue of predicting others' decisions.   
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leading alternative types. Varying the targets and limits within an intuitive common structure 

makes it easier for subjects to understand the rules and focus on predicting others' guesses, which 

reduces the noisiness that is typical of initial responses. It also makes it impossible for subjects to 

recall the targets and limits from previous plays, and so makes monitoring subjects' searches for 

hidden information about them a powerful tool for studying cognition more directly.  

Our main goals are to use subjects' decisions and information searches, in the light of the 

cognitive implications of alternative theories of behavior, to better identify the decision rules and 

mental models that underlie their initial responses; and to learn to what extent monitoring search 

helps to identify subjects' types and predict their deviations from equilibrium decisions.9 Other 

goals include learning more about the relationship between cognition, search, and decisions, and 

comparing the cognitive difficulty of alternative rules. These will be the focus of a companion 

paper, which will analyze the search behavior of this study's and CGCB's subjects in more detail. 

Our theoretical and econometric framework follows CGCB's.10 We assume each subject's 

behavior is determined, with error, by one of a finite set of types, which determines his guesses 

and searches in all 16 games. Our types include L1, L2, L3, D1, D2, and Equilibrium, as defined 

above. These types were chosen a priori from general principles of strategic decision-making that 

have played important roles in the literature, with the goal of specifying a set large and diverse 

enough to do justice to the variety of subjects' behaviors but small enough to avoid overfitting.11  

To test whether any of our subjects have a prior understanding of others' decisions that 

transcends simple, mechanical decision rules, we add a type, CGCB's Sophisticated, to represent 

the ideal of a person who can predict the distributions of people's initial responses to games with 

                                                 
9The Baseline treatment just described is supplemented by seven subsidiary treatments (Section 2.A). An Open 
Boxes ("OB") treatment is identical to the Baseline except that each game's target and limits are continually visible; 
its purpose is to test whether subjects' guesses are affected by the need to look them up. There are also six Robot/ 
Trained Subjects ("R/TS") treatments, identical to the Baseline except that each subject is trained and rewarded as a 
specific type: L1, L2, L3, D1, D2, or Equilibrium; their purpose is to evaluate subjects' ability to implement our 
leading types' guesses, and to provide a benchmark against which to judge Baseline subjects' information searches. 
10CGCB's and our structural approach to modeling strategic behavior builds on the analyses of Holt (1999; 
circulated in 1990), SW (circulated in 1993), Harless and Camerer (1995), Nagel (1993, 1995), and Stahl (1996). 
11An ad hoc type could perfectly mimic a subject's decision history, but this would have no explanatory power. It is 
hard to dispense with a priori specification because there are multiple rationales for any history, but we link guesses 
and search via a procedural model whose implications depend not only on what guesses a type implies, but why. L1 
corresponds to SW's Level 1 or CGCB's Naïve, and is related to Level 1 or Step 1 in Nagel, Stahl, HCW, and 
CHC. L2 (L3) corresponds to CGCB's L2 (L3), and is related to L2 (L3) in SW, Nagel, Stahl, HCW, and CHC. 
Earlier work suggests that higher-order Lk and Dk types are empirically unimportant, and there is no evidence of 
them in our data. We also omit 3 types CGCB allowed but found empirically unimportant: Pessimistic (maximin), 
Optimistic (maximax), and Altruistic. Pessimistic and Optimistic do not distinguish among guesses in our games; 
and we judged the effects of own guesses on others' payoffs too weak and non-salient for Altruistic to be plausible. 
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various structures. In theory Sophisticated best responds to the probability distributions of its 

partners' decisions, but those distributions are part of a behavioral theory of games that is not yet 

fully developed. We therefore operationalize Sophisticated using the best predictions of the 

distributions now available: the population frequencies of our own subjects' guesses. 

A subject's guesses in our 16 games with large strategy spaces often yield a clear strategic 

"fingerprint," so that her/his type can be read with confidence directly from guesses. Of the 88 

subjects in our main (Baseline and OB) treatments, 43 made guesses that comply exactly (within 

0.5) with one of our type's guesses in 7-16 of the games (Table IX). These compliance levels are 

far higher than could plausibly occur by chance, given how strongly types' guesses are separated 

(Tables III-IV) and that guesses could take 200 to 800 different rounded values in each game. 

The remaining 45 subjects' fingerprints are blurred, at least when viewed through the lens of our 

types. But for all but 12 of them, violations of simple dominance occurred with frequency below 

20%, in games where random guesses would yield a frequency of about 40%. This suggests that 

most of those subjects' behavior was also coherent, though less well described by our types. 

We study all 88 subjects' behavior in more detail by conducting a maximum likelihood 

error-rate analysis of their guesses, subject by subject. Because our subjects made types' exact 

guesses so frequently, we use a simple "spike-logit" error structure in which, in each game, a 

subject has a given probability of making his type's guess exactly and otherwise makes errors 

that follow a logistic distribution over the rest of the interval between her/his limits.  

Our maximum likelihood type estimates based on guesses alone assign 43 subjects to L1, 

20 to L2, 3 to L3, 5 to D1, 14 to Equilibrium, and 3 to Sophisticated (Table IX). To evaluate the 

reliability of these estimates, given our a priori specification of types, we conduct a subject by 

subject specification test that compares the likelihood of our estimated type with those of 

estimates based on 88 pseudotypes, each constructed from one subject's guesses in the 16 games. 

Such comparisons help to detect whether any subjects' guesses would be better explained by 

alternative decision rules omitted from our specification, and sometimes help to identify omitted 

rules. They also give an indication of whether subjects' estimated types are credible explanations 

of their guesses or artifacts of overfitting via accidental correlations with irrelevant types. 

Our specification test and additional specification analysis generally support our a priori 

specification of types. After testing, 58 of our 88 subjects appear to be reliably identified from 

guesses alone: 27 as L1, 17 as L2, 11 as Equilibrium, and one each as L3, D1, or Sophisticated. 
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Our analysis of search calls 7 of these subjects' type identifications into question (one L1, which 

we ultimately affirm; 4 L2s; one D1; and one Equilibrium). But because our types specify precise 

guesses in large strategy spaces, 52 subjects' identifications show that they had accurate models 

of the games and acted as rational, self-interested expected-payoff maximizers. Our analysis also 

shows that the deviations from equilibrium of the 42 of those subjects whose types are reliably 

identified as other than Equilibrium can be confidently attributed to non-equilibrium beliefs 

based on simplified models of others, rather than to altruism, spite, confusion, or irrationality.12

Information search adds another dimension to our analysis. Following CGCB, we link 

search to guesses by taking a procedural view of decision-making, in which a subject's type 

determines her/his search and guess, possibly with error. Each of our types is naturally associated 

with algorithms that process information about payoff parameters into decisions. We use those 

algorithms as models of subjects' cognition, making conservative assumptions about how it is 

related to search that allow a tractable characterization of types' search implications. The types 

then provide a kind of basis for the enormous space of possible guesses and searches, imposing 

enough structure to make it meaningful to ask if they are related in a coherent way. 

Under our assumptions, our design separates types' search implications more strongly than 

previous designs, while making them almost independent of the game. This sometimes allows a 

subject's type to be read directly from her/his searches, without even considering guesses (Table 

XI). But subjects' searches are noisy and highly heterogeneous, and most of them less clearly 

identify a type. To extract the information from searches, we generalize our error-rate analysis to 

re-estimate all 71 Baseline subjects' types, using search compliance as well as guesses. 

Type estimates based on search only, or on guesses and information search, generally 

reaffirm estimates based on guesses alone. In addition to raising doubts about the 7 subjects 

whose types appeared to be reliably identified from guesses mentioned above, search helps to 

identify the probable types of 7 subjects for whom the evidence from guesses is unclear. The end 

result is that 27 subjects are reliably identified as L1 and another 2 are probable L1s; 13 are 

reliably identified as L2; 10 are reliably identified as Equilibrium; and one each is reliably 

identified as L3 or Sophisticated.13 Overall, 52 of our 88 subjects can be reliably identified based 

                                                 
12Compare Weibull's (2004) argument that rejections of equilibrium in game experiments that do not independently 
measure preferences are "usually premature". 
13The last 2 subjects are from our searchless OB treatment. Other subjects' low levels of compliance with 
Sophisticated's search requirements suggest that the very last identification might not survive monitoring search.      

 8



on guesses and search, and several more can be probably identified. Of those reliably identified, 

42—nearly half our sample—are identified as types other than Equilibrium. These results are a 

powerful affirmation of subjects' rationality and ability to comprehend complex games and 

reason about others' responses to them, but they are also a challenge to the use of equilibrium as 

a universal model of initial responses to games. The overwhelming predominance of Lk types 

once they are adequately separated from Dk and alternative types is particularly intriguing, given 

the leading role played by iterated best responses in informal analyses of strategic behavior.  

The rest of the paper is organized as follows. Section 2 describes our design. Section 3 

derives our types' implications for guesses and information search. Section 4 reports preliminary 

statistical tests and summarizes the results of R/TS treatments and Baseline subjects' compliance 

with iterated dominance and equilibrium. It then uses guesses alone to estimate the types that 

best describe Baseline and OB subjects' behavior, and discusses our specification test. Finally, it 

uses both guesses and search to re-estimate Baseline subjects' types. Section 5 is the conclusion. 

 
2. Experimental Design  

To test theories of strategic behavior, an experimental design must clearly identify the 

games to which subjects are responding. This is usually done by having a "large" subject 

population repeatedly play a given stage game, with new partners each period to suppress 

repeated-game effects, and using the results to test theories of behavior in the stage game. 

Such designs allow subjects to learn the structure from experience, which reduces the 

noisiness of their responses; but they also make it difficult to disentangle learning from 

sophistication, because even unsophisticated learning often converges to equilibrium in the stage 

game. Our design studies sophistication in its purest form by eliciting subjects' initial responses 

to 16 different two-person guessing games, with new partners each period and no feedback to 

suppress repeated-game effects, experimentation, and learning. This section describes our design, 

first its overall structure, then the games, and finally how they are presented to subjects. 

A. Overall structure 

All of our sessions were run either at the University of California, San Diego's (UCSD) 

Economics Experimental and Computational Laboratory (EEXCL) or the University of York's 

Centre for Experimental Economics (EXEC). In each case subjects were recruited from 

undergraduates and graduate students (Ph.D. or M.A.), with completely new subjects for each 

session. To reduce noise, we sought subjects in quantitative courses; but to avoid subjects with 
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theoretical preconceptions, we excluded graduate students in economics, political science, 

cognitive science, or psychology, and disqualified other subjects who revealed that they had 

formally studied game theory or previously participated in game experiments.14

Table I summarizes the overall structure of our experiment, which included four Baseline 

sessions, B1-B4, with a total of 71 UCSD subjects; one Open Boxes session, OB1, with 17 

UCSD subjects; and fifteen Robot/Trained Subjects sessions, R/TS1-R/TS15, with a total of 148 

subjects in mixed treatments: 37 UCSD subjects (7 L1, 9 L2, 11 D1, and 10 Equilibrium) and 

111 York subjects (18 L1, 18 L2, 18 L3, 19 D1, 19 D2, and 19 Equilibrium).15 All treatments 

used the same 16 games (Table II), which include eight player-symmetric pairs so that Baseline 

or OB subjects can be paired with other Baseline or OB subjects without dividing subjects into 

subgroups. The games include one perfectly symmetric pair, so that each subject plays one game 

twice, allowing a weak test of consistency of responses. All treatments presented the games in 

the same order, which was randomized ex ante, and which made their symmetries non-salient.  

We first describe the Baseline treatment and then explain how other treatments differed. In 

the Baseline, after an instruction phase and Understanding Test, groups of 13-21 subjects were 

randomly paired to play the 16 games, with new partners each period.16 Subjects received no 

feedback during the games. They could proceed independently at their own paces, but were not 

allowed to change their guesses once confirmed. These design features suppress learning and 

repeated-game effects, to justify an analysis of behavior as initial responses to each game. 

To control subjects' preferences, they were paid for their game payoffs as follows. After the 

session each subject returned in private and was shown her/his own and her/his partners' guesses 

and her/his point earnings in each game. S/he then drew five game numbers randomly and was 

paid $0.04 per point for her/his payoffs in those games.17 With possible payoffs of 0 to 300 

                                                 
14We also allowed approximately 4 non-faculty university community members, and a few other subjects who had 
been briefly exposed to game theory in undergraduate courses, Oscar-winning movies, etc.  
15The instructions are in Appendix A and our pilot experiments and how they influenced the design are described in 
Appendix B (http://weber.ucsd.edu/~vcrawfor/#Guess). Mixed R/TS treatments are theoretically acceptable because 
R/TS subjects did not interact with one another. The data exclude one L1 subject in R/TS1, because her/his guesses 
revealed clearly that s/he had copied from a nearby L2 subject. (R/TS subjects were not told whether the treatment 
was the same for all subjects in a session, but s/he assumed this. Comparing the guesses of all neighboring subjects 
in all treatments suggests that s/he was the only cheater.)         
16Some pairings among the 13 subjects in session B1 were repeated once, in a game unknown to them. The games 
took subjects 1-3 minutes each. Adding 1½ to 2 hours for checking in, seating, instructions, and screening yielded 
sessions of 2¼ to 2¾ hours, near our estimate of the limit of subjects' endurance for a task of this difficulty. 
17It is theoretically possible to control subjects' risk preferences using Roth and Malouf's (1979) binary lottery 
procedure, in which a subject's payoff determines his probability of winning a given monetary prize. We avoided the 
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points per game, this yielded payments from $0 to $60, averaging about $33. Including the $8 

fee for showing up at least five minutes early (which almost all subjects received) or the $3 fee 

for showing up on time, this made Baseline (OB) subjects' average total earnings $41.21 

($40.68). Subjects never interacted directly, and their identities were kept confidential. 

The structure of the environment, except the games' targets and limits, was publicly 

announced via instructions on subjects' handouts and computer screens. The Baseline 

instructions avoided suggesting guesses or decision rules. During the session, subjects had free 

access, game by game, to their own and their partners' targets and limits via a MouseLab 

interface as described below. Subjects were taught the mechanics of looking up targets and limits 

and entering guesses, but not information-search strategies. They were given ample opportunity 

for questions, and after the instructions they were required to pass an Understanding Test to 

continue. Subjects who failed were dismissed, and the remaining subjects were told that all 

subjects remaining had passed.18 Before playing the 16 games, Baseline subjects were required 

to participate in four unpaid practice rounds, after which they were publicly shown the 

frequencies of subjects' practice-round guesses in their session and told how they could use them 

to evaluate the consequences of their own practice-round guesses.19 After playing the 16 games, 

subjects were asked to fill out a debriefing questionnaire, in which they were asked how they 

decided what information to search for and how they decided which guesses to make.    

The OB treatment is identical to the Baseline treatment except that the 16 games are 

presented with the targets and limits continually visible, in "open boxes." Its purpose is to learn 

whether subjects' guesses are affected by the need to look up the targets and limits. We find only 

insignificant differences between Baseline and OB subjects' guesses (Section 4.A), suggesting 

that subjects' decisions are not seriously distorted by the need to look up payoffs. 

The R/TS treatments are identical to the Baseline treatment, except each subject is trained 

and rewarded as a specific type: L1, L2, L3, D1, D2, or Equilibrium. In addition to standard 

instructions as in the Baseline, each R/TS subject was taught how to identify her/his assigned 

                                                                                                                                                             
complexity of binary lotteries because risk preferences do not influence predictions based on iterated dominance or 
pure-strategy equilibrium, and results using direct payment are usually close to those using binary lotteries. 
18The dismissal rates (including a few voluntary withdrawals) were 20% for Baseline subjects, 11% for OB subjects, 
and 20% for R/TS subjects of all types. Table VII gives dismissal rates for R/TS subjects by assigned type.  
19The practice rounds used two player-symmetric pairs of games, in an order that made their symmetries non-salient, 
so that the guess frequencies could be generated within each session. The variation in frequencies across sessions 
appears to have had a negligible effect on subjects' behavior in the 16 games. The games had a balanced mix of 
structures, with different targets and limits than in the 16 games to avoid implicitly suggesting guesses. 

 11



type's guesses via programmed instruction on her/his screen and handout.20 S/he was rewarded 

for game payoffs as in the Baseline, except that s/he was paired not with other subjects but with a 

robot (framed as "the computer") that followed her/his type's model of others: guesses uniformly 

distributed between the partner's limits for L1, or on the set of (iteratively) undominated guesses 

for D1 (D2); L1 (L2) guesses for L2 (L3); equilibrium guesses for Equilibrium.21 The R/TS 

treatments also replace the Baseline's practice rounds, less relevant when subjects do not interact, 

with a second Understanding Test of how to identify the assigned type's guesses. Subjects were 

paid an extra $5 for passing this test, and those who failed were dismissed.22 As in the Baseline, 

all aspects of this structure were publicly announced, except the games' targets and limits. 

The R/TS instructions differed from the Baseline in one further way. The predicted 

behavior of Lk or Dk depends on best responses to uniform beliefs on intervals. We expected 

most R/TS Lk or Dk subjects to treat such beliefs as if concentrated on their means, identifying 

best responses via certainty-equivalence. To eliminate variation across subjects that is unrelated 

to our goals, we designed our guessing games to have this certainty-equivalence property, 

without regard to players' risk preferences (Observation 2, Section 2.B). The R/TS instructions 

also encouraged Lk or Dk subjects to use certainty-equivalence to identify best responses.23

The main purposes of the R/TS treatments are to learn to what extent Baseline subjects' 

deviations from equilibrium are due to cognitive limitations; and to learn what the information 

searches of Equilibrium and other types would be like, as a check on the model of cognition and 

search we use to analyze Baseline subjects' behavior. The R/TS results generally validate our 

simple model of cognition and information search (Section 3). Most if not all R/TS Equilibrium 

subjects can reliably identify equilibrium guesses, but there are significant, sometimes surprising 

differences in the apparent cognitive difficulty of our types: Lk types appear to be far less 

difficult than Equilibrium, and Equilibrium may be less difficult than Dk types (Section 4.B).  

                                                 
20Equilibrium subjects, for instance, were taught each of the three main ways to identify their equilibrium guesses: 
by direct checking for pure-strategy equilibrium, by best-response dynamics, and by iterated dominance. 
21We used realizations of random robot guesses rather than their means to minimize differences from the Baseline. 
22The average total earnings figures for UCSD R/TS L1, L2, D1, and Equilibrium subjects who finished the 
experiment were $45.22, $62.03, $51.74, and $50.93. York R/TS subjects were paid early and on-time show-up fees 
of £1 and £2, plus £2.50 for passing the second Understanding Test, but only £0.02 rather than $0.04 per point. With 
the pound averaging $1.63 during the York sessions, those fees, which seemed adequate, were roughly 70% of the 
UCSD fees. York R/TS L1, L2, L3, D1, D2, and Equilibrium subjects' average total earnings figures were £23.00, 
£29.76, £28.50, £27.08, £24.12, and £27.65. The fee for passing the second Understanding Test raises R/TS subjects' 
average earnings, relative to Baseline and OB subjects, but R/TS L1, D1, and D2 subjects' earnings were lower than 
other R/TS subjects', other things equal, because they faced uncertainty about their simulated partners' guesses. 
23The encouragement is implicit in the wording, and does not use the term certainty-equivalence (Appendix A). 
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B. Two-person guessing games 

In our guessing games, two players, i and j, make simultaneous guesses, x P

i
P and xP

j
P. We use i 

for the generic player and j for "not i". Each player i has a lower limit, a P

i
P, and an upper limit, bP

i
P, 

but players are not required to guess between their limits; guesses outside them are automatically 

adjusted up to the lower limit or down to the upper limit. Thus, player i's adjusted guess, yP

i
P ≡ 

R(a P

i
P,bP

i
P;xP

i
P) ≡ x P

i
P if x P

i
PB Bε [aP

i
PB,BbP

i
P], y P

i
P ≡ aP

i
P if x P

i
PB B< aP

i
P, or y P

i
P ≡ bP

i
P if x P

i
PB B> bP

i
P, or equivalently y P

i
P ≡ R(aP

i
P,bP

i
P;xP

i
P) ≡ 

min{b P

i
P, max{aP

i
P,x P

i
P}} ≡ max{aP

i
P, min{bP

i
P,x P

i
P}}. Each player i also has a target, pP

i
P. Writing e P

i
P ≡ 

|R(aP

i
P,bP

i
P;xP

i
P) – pP

i
PR(aP

j
P,bP

j
P;xP

j
P)| for the distance between player i's adjusted guess and p P

i
P times player j's 

adjusted guess, player i's point payoff, s P

i
P, is given by 

 
(1)    s P

i
PB B≡ max{0,200 – e P

i
P} + max{0,100 – eP

i
P/10} 

≡ max{0,200 – |R(aP

i
P,bP

i
P;xP

i
P) – pP

i
PR(aP

j
P,bP

j
P;x P

j
P)|} + max{0,100 – |R(aP

i
P,bP

i
P;xP

i
P) – pP

i
PR(aP

j
P,bP

j
P;xP

j
P)|/10}. 

 

With or without adjustment, the point payoff function in (1) is quasiconcave in player i's 

guess for any given distribution of player j's guess; and without adjustment it is symmetric about 

e P

i
PB B= 0.TP

24
PT The relationship between a player's guesses and his point payoff is not one-to-one, 

because all guesses that lead to the same adjusted guess yield the same outcome. We deal with 

this ambiguity by using a player's adjusted guess as a proxy for all guesses that yield that 

adjusted guess, describing a prediction as essentially unique if it implies a unique adjusted guess. 

The ambiguity could be eliminated by requiring players to guess between their limits. We 

do not do so because automatic adjustment enhances the separation of types' search implications. 

With quasiconcave payoffs, a subject can enter his ideal guess, the guess that would be optimal 

given his beliefs, ignoring his limits, and know without checking his own limits that his adjusted 

guess will be optimal. (Our instructions explain this, and most subjects' responses showed that 

they understood it.) In our design L1's ideal guess depends only on its own target and its partner's 

limits, while Equilibrium's depends on both players' targets and a combination of its own and its 

partner's lower or upper limits, and our other types' all depend on both players' targets and limits. 

Thus, by contrast with CGCB's and most other designs, where L1's decisions almost inevitably 

depend only on own payoff parameters, L1's search implications are sharply separated both from 

                                                 
TP

24
PTIt is not concave in player i's guess because the weight on eP

i
P in the second term is algebraically larger than in the 

first; this strengthens payoff incentives near i's best response while keeping them positive elsewhere despite a lower 
bound of 0 on a game's payoff. In exceptional cases like game α4β1 (Table II), it is theoretically possible for a 
player to guess more than 1000 units from his target times the other's guess, in the flat part of his payoff function. 



our other types' and from those of a solipsistic type that assumes only its own parameters are 

relevant. (We find a great deal of evidence of L1, but none of solipsism.) 

Because our design suppresses learning and repeated-game effects and makes the structures 

of our guessing games effectively public knowledge, our analysis will treat them as independent 

games of complete information. Players' guesses are in equilibrium if each player's guess 

maximizes his expected payoff, given the other player's. A player's guess dominates (is 

dominated by) another of his guesses if it yields a strictly higher (lower) payoff for each of the 

other player's possible guesses. A player's guess is iteratively undominated if it survives iterated 

elimination of dominated guesses. A round of iterated dominance eliminates all dominated 

guesses for both players. A game is dominance-solvable (in k rounds) if each player has a unique 

iteratively undominated adjusted guess (identifiable in k rounds of iterated dominance); those 

adjusted guesses are players' unique equilibrium adjusted guesses.25

We assume throughout that each player maximizes the expected utility of his total money 

payment from the 16 games. Because his total payment is proportional to his point payoffs in 

five randomly chosen games, a simple first-order stochastic dominance argument shows that 

when guesses have known consequences, such a player maximizes his point payoff in any given 

game. When guesses have uncertain consequences, however, a player's risk preferences are 

potentially relevant.26 We deal with this problem as follows. Observation 1 below shows that our 

games have essentially unique equilibria in pure strategies, so that risk preferences do not affect 

Equilibrium guesses. Observation 2 shows that best responses to uniform beliefs are certainty-

equivalent, so that risk preferences do not affect L1, D1, or D2 guesses, or L2 or L3 guesses, 

which are defined as best responses to L1 or L2 guesses. Sophisticated guesses, however, are 

normally best responses to non-uniform beliefs, and so are not covered by Observation 2. In 

characterizing them we assume that players are risk-neutral, and thus maximize their expected 

point payoffs, game by game. Each of our types then maximizes its expected point payoffs, game 

by game, given some beliefs; and each implies an essentially unique, pure guess in each of our 

games, except Sophisticated, for which this is generically true. 

We now establish two simple observations that are important in interpreting our results. To 

avoid trivialities, we assume that all limits and targets are strictly positive, as in our design. 

                                                 
25We distinguish the numbers of rounds a game's players need to identify their own iteratively undominated adjusted 
guesses; the number of rounds in which the game is dominance-solvable is the maximum of these.    
26Recall that our games do not have the binary lottery, winner-take-all structure of Nagel's and HCW's games. 
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Observation 1: Unless pP

i
PpP

j
PB B= 1, each guessing game in the above class has an essentially unique 

equilibrium, in pure strategies. If pP

i
PpP

j
PB B< 1, in equilibrium y P

i
P ≡ R(a P
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P,bP

i
P;xP

i
P) = aP
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PB Band y P

j
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PaP
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i
PaP
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j
PB B= aP

j
P iff pP
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PaP
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j
PB B> 1, 
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PB B= bP
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PB Band y P

j
PB B= max{aP

j
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P} iff pP

j
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i
PB B≤ bP

j
P; and yP

i
PB B= max{aP

i
P,pP

i
PbP

j
P} and y P

j
PB B= bP

j
P iff pP

i
Pb P

j
PB B≤ bP

i
P. 

 

Observation 1 shows that unless pP

i
PpP

j
P B B= 1, which is never true in our design, each game in 

the class from which our guessing games are drawn has an essentially unique equilibrium, in 

pure strategies, determined (but not always directly) by players' lower limits when the product of 

their targets is less than one, or their upper limits when the product is greater than one.TP

27
PT This is 

true without regard to risk preferences or dominance-solvability, although not all games in this 

class are dominance-solvable because for extreme parameter values there is no dominance. The 

proof is straightforward. If p P

i
PpP

j
P B B< 1, say, iterating best responses drives players' adjusted guesses 

down until one player's hits his lower limit and the other's is at or above his own lower limit. 

The discontinuity of the equilibrium correspondence when pP

i
PpP

j
PB B= 1 sharply separates 

Equilibrium guesses from other types': Games such as δ2β3 and γ2β4 (Table II) differ mainly in 

whether pBi BpBj Bis slightly below or above one; equilibrium responds strongly to this difference but 

boundedly rational rules, whose guesses vary continuously with the parameters, all but ignore it.  

 

Observation 2 establishes the certainty-equivalence property referred to above: 

 

Observation 2: Suppose that a guessing game's point payoff function is a symmetric, 

continuous, almost everywhere differentiable function s(x-pz) that is weakly decreasing in |x- pz|, 

where x is a player's guess; p is his target; and z, his partner's guess, is a random variable 

uniformly distributed on an interval [a,b]. Then for any player with a continuous, almost 

everywhere differentiable von Neumann-Morgenstern utility function u(·) that values only 

money (risk-neutral, risk-averse, or risk-loving), his expected-utility maximizing choice of x is 

x* = pEz = p(a+b)/2, and his expected-utility maximizing choice of x s.t. x є [c,d] is R(c,d; 

p(a+b)/2).  

                                                 
TP

27
PTIn game γ2β4 (Table II), for instance, players' targets are 0.7 and 1.5, whose product is 1.05 so the equilibrium is 

determined by players' upper limits. The γ2 player's equilibrium guess is at his upper limit of 500, but the β4 player's 
equilibrium guess is at 750, below his upper limit of 900. Moving some equilibrium decisions away from the 
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Proof: We show that x* = p(a+b)/2 solves ∫ −
b

ax dzpzxsu ))((max (ignoring the positive factor 

[1/(b-a)]). The integral in the maximand is differentiable because u(s(x - pz)) is continuous. Its 

derivative with respect to x, evaluated at x*, is (ignoring points of nondifferentiability) 

(2)  ∫∫ +

+
=−−+−−

b

ba

ba

a
dzpzxspzxsudzpzxspzxsu

2/)(

2/)(
,0)*('))*((')*('))*(('  

where the equality holds for x* = p(a+b)/2 by symmetry. Because u(·) is increasing and s(·) is 

weakly decreasing in |x - pz|, raising x above x* lowers the derivative below 0, and lowering x 

below x* raises it above 0; thus, the integral in the maximand is quasiconcave in x. Because x* = 

p(a+b)/2 satisfies the first-order condition for maximizing the integral, x* is optimal ignoring the 

constraint x ε [c,d] and R(c,d; p(a+b)/2) is optimal respecting the constraint.                      □     

 

Observation 2 shows that for a class of two-person guessing games including ours, and for 

any player with a continuous, almost everywhere differentiable von Neumann-Morgenstern 

utility function that is self-interested and values only money, best responses to uniform beliefs on 

an interval like those in the definitions of types L1, D1, and D2, and, indirectly, L2 and L3, equal 

the player in question's target times the midpoint of the interval, adjusted if necessary to lie 

within his limits. This result is independent of risk preferences, but it depends crucially on 

symmetry of the payoff function and uniformity of beliefs. 

We chose our games' limits and targets to make the design as informative as possible, given 

the need for a balanced mix of parameter values and strategic structures, with no obvious 

correlations across games or players. In each game, each player's lower and upper limits are 

either [100, 500], [100, 900], [300, 500], or [300, 900], and each player's target is 0.5, 0.7, 1.3, or 

1.5.TP

28
PT We identify a player's combination of lower and upper limits by a Greek letter: α for [100, 

500]; β for [100, 900]; γ for [300, 500]; or δ for [300, 900]. We identify a player's target by a 

number: 1 for 0.5; 2 for 0.7; 3 for 1.3; or 4 for 1.5. A game is identified by a combination such as 

β1γ2, in which player i has limits β for 100, 900 and target 1 for 0.5, and player j has limits γ for 

300, 500 and target 2 for 0.7. Recalling that our 16 games include eight player-symmetric pairs, 

game γ2β1 is the player-symmetric counterpart of β1γ2: β1γ2 from player j's point of view. 

                                                                                                                                                             
boundaries in this way allows clearer inferences than when equilibrium is always at the boundary. 
TP

28
PTThe possible values of the targets and limits were not publicly announced, to strengthen subjects' incentives to look 

up the ones they thought relevant to their guesses. Free access still makes the structures public knowledge.           



Table II summarizes our 16 games, ordered to emphasize structural relationships. It also 

lists the randomized order in which subjects played the games; whether the targets are both < 1 

(Low), both > 1 (High), or neither (Mixed); whether the equilibrium is determined by players' 

upper limits (High) or their lower limits (Low); the number of rounds of iterated dominance 

player i needs to identify his equilibrium guess (always finite in our design); whether dominance 

is alternating (A), simultaneous (S), or simultaneous in the first round but then alternating (S/A); 

and whether dominance initially occurs at both of a player's limits (Yes) or not (No). 

Table III lists the adjusted guesses implied for player i by the types L1, L2, L3, D1, D2, 

Equilibrium, and Sophisticated; and the ranges of guesses that survive 1-4 rounds of iterated 

dominance. Table IV summarizes the separation of implied guesses across types, measured as 

the number of guesses that differ by more than 0, or 25. L2 and D1 are separated much more 

strongly than in previous experiments. More generally, separation by more than 0 averages two-

thirds of the theoretical maximum for all six types (64/96) and 13/16 of the maximum excluding 

D2 and L3 (52/64); this is hard to improve upon within a simple overall structure like ours. 

The games with high numbers of rounds of iterated dominance, which result from a product 

of targets near one and limits far apart, are particularly well suited to separating types' guesses. 

The structural variations summarized in Table II stress-test our types by making their predicted 

guesses more subtle. They also play an important role in our specification test (Section 4.E), 

where, together with our large strategy spaces, they sometimes allow us to distinguish cognitive 

errors from intentional behavior by "reverse-engineering" subjects' guesses. 

We conclude this section by using the observed frequencies of Baseline and OB subjects' 

pooled guesses, which did not differ significantly, to estimate the strength of their incentives to 

make their types' guesses. Table V's rows give the expected monetary earnings in dollars over all 

16 games of a subject who made a given type's guesses, as a function of a hypothetical type that 

determines the subject's partners' guesses. The L0 column refers to a partners' type whose 

guesses are uniform random between its limits, as in L1's beliefs. The strength of an L1 subject's 

incentives to make L1's guesses can then be gauged by using the L0 column to compare the 

expected earnings of L1 guesses with those of other leading types. Similarly, the L1 (L2) column 

reflects L2's (L3's) beliefs; the R1 (R2) column refers to a type whose guesses are uniform 

random over guesses that survive 1 (2) rounds of iterated dominance, reflecting D1's (D2's) 
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beliefs; the Equilibrium column reflects Equilibrium's beliefs; and the B+OB column refers to 

Baseline and OB subjects' actual frequencies, reflecting Sophisticated's estimated beliefs. 

Using Table V to make the suggested comparisons shows that subjects whose beliefs 

correspond to types Equilibrium, L2, and L3 have strong incentives to make their type's guesses. 

Equilibrium, for instance, would earn $46.05 against Equilibrium, $12.05 more than the next 

most profitable type in the table, L3, which would earn $34.00. Similar calculations show that 

L2's and L3's earnings would be $10.25 and $6.90 higher than the next most profitable type's. 

Our other leading types have comparatively weak incentives by this conservative measure: $1.29 

for D2, $1.22 for L1, $0.85 for D1, and $0.46 for Sophisticated.29

C. Using MouseLab to present guessing games  

The games were displayed on subjects' screens via MouseLab. To suppress framing effects, 

a subject was called "You" and his partner was called "S/He," etc. A subject could look up a 

payoff parameter by using his mouse to move the cursor into its box and left-clicking; in Figure 

1 the subject has opened the box that gives his own ("Your") lower limit, 100. Before s/he could 

open another box or enter her/his guess, s/he had to close the box by right-clicking; a box could 

be closed after the cursor had been moved out of it. Thus both opening and closing a box 

required a conscious choice. Subjects were not allowed to write during the main part of the 

experiment.30 A subject could enter and confirm his guess by moving the cursor into the box 

labeled "Keyboard Input," clicking, typing the guess, and then moving the cursor into the box at 

the bottom of the screen and clicking. A subject could move on to the next game only after 

confirming her/his guess; after an intermediate screen, the cursor returned to the top-center. 

MouseLab automatically records subjects' look-up sequences, look-up durations, and guesses. 

Our design for the display reflects the fact that previous work has revealed a top-left bias in 

subjects' look-ups and a left-right bias in their transitions (CGCB). The effects of such biases can 

be transformed by reallocating parameters to boxes, but not eliminated. Our design seeks to 

minimize the ambiguity of interpretation such biases cause, by putting each player's parameters 

in a single row, putting Your parameters in the first row, and putting a player's targets between 

his limits. This makes looking up Her/His parameters, which is a hallmark of strategic thinking, 

                                                 
29Among our types, only L1 and Equilibrium are not fairly close substitutes for Sophisticated, given its beliefs. 
30Subjects were lent calculators to facilitate the arithmetic needed to determine their guesses. It is possible 
for subjects to record two parameters at a time in the memory and on the display of their calculators; but 
that is much less convenient than using the interface, and no subject appeared to use the calculator this way. 
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and adjacent lower-and-upper-limit pairs that are characteristic of L1, L2, and other leading 

theories (Section 3), less likely to occur for reasons unrelated to cognition.  

 
3. Types' Implications for Guesses and Information Search 

This section derives our types' implications for guesses and information search, seeking 

minimal restrictions to avoid imputing irrationality to subjects whose cognition we cannot 

directly observe. Recall that we take a procedural view of decision-making, in which a subject's 

type determines his search and guess, both with error. Under our assumptions, each of our types 

implies an essentially unique, pure adjusted guess in each game, which maximizes its expected 

payoff given beliefs based on some model of others' decisions. 

The leading role in the derivations is played by a type's ideal guesses, those that would be 

optimal given the type's beliefs, ignoring its limits. A type's ideal guess completely determines 

its adjusted guess in a game, and the resulting outcome, via the adjustment function R(aP

i
P,bP

i
P;xP

i
P) ≡ 

min{b P

i
P, max{aP

i
P,x P

i
P}}. A type's ideal guess also determines its minimal search implications, 

because a subject can enter his ideal guess and know that his adjusted guess will be optimal 

without checking his own limits (Section 2.B).  

Observation 1 for Equilibrium and Observation 2 for L1, L2, L3, D1, and D2 immediately 

yield expressions for those types' ideal guesses as functions of the game's targets and limits. We 

estimate Sophisticated's ideal guesses as risk-neutral best responses to the pooled distribution of 

Baseline and OB subjects' adjusted guesses (which did not differ significantly), game by game.TP

31
PT 

  Types' search implications are derived as follows. Under standard assumptions, an 

expected-payoff maximizing player looks up all costlessly available information that can affect 

his beliefs. We therefore require that if a type's guess depends on a parameter, that parameter 

must appear at least once in the type's look-up sequence. This is uncontroversial, but of limited 

use because most subjects satisfy it by chance for most types in most games. We supplement it 

by restricting the order of look-ups. Recall that each type is naturally associated with algorithms 

that process payoff information into guesses. These require series of arithmetic operations on 

parameters; we call operations that logically precede any other operation basic. 

Subjects' searches in our pilots, our R/TS treatments, and CJ's and CGCB's experiments 

suggest that most subjects perform operations one at a time via adjacent look-ups, starting with 

basic operations, remembering their results, and otherwise relying on repeated look-ups rather 
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than memory. We stylize these regularities by requiring that in each game, the basic operations 

needed to identify a type's ideal guess are represented at least once in the look-up sequence by 

adjacent look-ups, in any order, and that other operations are represented at least once by the 

associated look-ups, in any order, but possibly separated by other look-ups.TP

32
PT We call the look-

ups that satisfy these search requirements for a given type the type's relevant look-ups. 

Table VI lists the expressions for our types' ideal guesses and the associated relevant look-

ups, in our notation for limits and targets and in terms of the associated box numbers (Figure 1: 1 

for aP

i
P, 2 for pP

i
P, 3 for b P

i
P, 4 for aP

j
P, 5 for pP

j
P, 6 for bP

j
P) in which MouseLab records subjects' look-up 

sequences in our design. Basic operations are represented by the innermost look-ups, grouped 

within square brackets; these can appear in any order, but may not be separated by other look-

ups. Other operations are represented by look-ups grouped within parentheses or curly brackets; 

these can appear in any order, and may be separated by other look-ups. The look-ups associated 

with each type's operations are shown in the order that seems most natural to us, if there is one. 

An L1 player i, for instance, best responds to the belief that player j's guess is uniformly 

distributed between his limits. This yields a guess for j that is never adjusted, and averages 

[a P

j
P+bP

j
P]/2. By Observation 2, L1's ideal guess is pP

i
P[aP

j
P+bP

j
P]/2, which will be automatically adjusted, 

if necessary, to R(aP

i
P,bP

i
P; pP

i
P[aP

j
P+bP

j
P]/2) ≡ min{bP

i
P, max {aP

i
P, pP

i
P[aP

j
P+bP

j
P]/2}}. An L1 player i therefore has 

relevant look-up sequence: {[aP

j
P, bP

j
P] (to compute j's average guess), pP

i 
P(to identify i's ideal guess)] 

≡ {[4, 6], 2}. Thus, the look-ups aP

j
P ≡ 4 and bP

j 
P≡ 6 associated with the basic operation [a P

j
P+bP

j
P]/2 

must appear adjacently at least once, in any order; and the look-up pP

i 
P≡ 2 for the operation 

p P

i
P[aP

j
P+bP

j
P]/2 must appear at least once, possibly separated from [aP

j
P, bP

j
P] ≡ [4, 6], and in any order. 

An L2 player i best responds to the belief that player j is L1, taking the adjustment of j's 

guess into account. An L1 player j's adjusted guess is R(aP

j
P,bP

j
P; pP

j
P[aP

i
P+bP

i
P]/2), so an L2 player i's ideal 

guess is pP

i
PR(aP

j
P,bP

j
P; pP

j
P[aP

i
P+bP

i
P]/2), which will be adjusted to R(aP

i
P,bP

i
P; pP

i
PR(aP

j
P,bP

j
P; p P

j
P[aP

i
P+bP

i
P]/2)). An L2 

player i therefore has relevant look-up sequence: {([aP

i
P, bP

i
P], pP

j
P) (to predict j's L1 ideal guess), aP

j
P, bP

j
P 

(to predict j's L1 adjusted guess), pP

i
P (to identify i's ideal guess)] = {([1, 3], 5), 4, 6, 2}.TP

33
PT  

                                                                                                                                                             
TP

31
PTThese estimates are then rounded to the nearest integer for simplicity.  

TP

32
PTThese assumptions adapt CGCB's Occurrence and Adjacency assumptions to the current design. We stress that 

their motivation is empirical: In theory a subject could scan the parameters in any order and use memory to perform 
his type's operations, making the order of look-ups useless in inferring cognition. Real subjects seldom do that.   
TP

33
PTWith automatic adjustment, an L2 player i doesn't need to know his own limits to play the game or to think about 

the effects of his own guess being adjusted, but he does need to know them to predict j's L1 guess. By contrast, an 
L1 player i does not need to know his own limits, only j's. Because the possible values of the limits are not public 
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An L3 player i best responds to the belief that player j is L2, taking the adjustment of j's 

guess into account. An L2 player j's adjusted guess is R(aP

j
P,bP

j
P; pP

j
PR(aP

i
P,bP

i
P; p P

i
P[aP

j
P+bP

j
P]/2)), so an L3 

player i's ideal guess is pP

i
PR(aP

j
P,bP

j
P; pP

j
PR(aP

i
P,bP

i
P; p P

i
P[aP

j
P+bP

j
P]/2)), which will be adjusted to R(aP

i
P,bP

i
P; 

p P

i
PR(aP

j
P,bP

j
P; pP

j
PR(aP

i
P,bP

i
P; pP

i
P[aP

j
P+bP

j
P]/2)). An L3 player i therefore has relevant look-up sequence: {(([aP

j
P, 

bP

j
P], pP

i
P), aP

i
P, bP

i
P, pP

j
P) (to predict j's L2 ideal guess), aP

j
P, bP

j 
P(to predict j's L2 adjusted guess), pP

i 
P(to 

identify i's ideal guess)} = {(([4, 6], 2), 1, 3, 5), 4, 6, 2}. For minimal restrictions, with order 

within curly brackets unrestricted, this simplifies to {([a P

j
P, bP

j
P], pP

i
P), aP

i
P, bP

i
P, pP

j
P} = {([4, 6], 2), 1, 3, 5}.  

A D1 player i deletes one round of dominated guesses for player j and then best responds to 

uniform beliefs over j's remaining guesses. The first round of dominance reduces j's guesses to 

the interval [max{aP

j
P, pP

j
PaP

i
P}, min{pP

j
PbP

i
P, bP

j
P}]. Thus, a D1 player i's ideal guess is pP

i
P(max{aP

j
P, pP

j
PaP

i
P} + 

min{p P

j
PbP

i
P, bP

j
P})/2, which will be adjusted to R(aP

i
P,bP

i
P; pP

i
P(max{a P

j
P, pP

j
PaP

i
P} + min{pP

j
PbP

i
P, bP

j
P})/2)). A D1 

player i therefore has relevant look-up sequence: {(aP

j
P, [pP

j
P, aP

i
P]), (bP

j
P, [pP

j
P, bP

i
P]) (to delete j's 

dominated guesses), pP

i 
P(to identify i's ideal guess)] = {(4, [5, 1]), (6, [5, 3]), 2}.TP

34
PT D1's look-up 

implications differ somewhat from L2's, although both respond similarly to iterated dominance. 

A D2 player i deletes two rounds of dominated guesses for player j and best responds to 

uniform beliefs over j's remaining guesses. The first round reduces i's guesses to the interval 

[max{aP

i
P, pP

i
PaP

j
P}, min{pP

i
PbP

j
P, bP

i
P}] and j's guesses to [max{aP

j
P, pP

j
PaP

i
P}, min{pP

j
PbP

i
P, bP

j
P}]. The second round 

further reduces j's guesses to [max{max{aP

j
P, pP

j
PaP

i
P}, pP

j
Pmax{aP

i
P, pP

i
PaP

j
P}}, min{pP

j
Pmin{pP

i
PbP

j
P, bP

i
P}, min{pP

j
PbP

i
P, 

bP

j
P}}]. A D2 player i's ideal guess is therefore pP

i
P[max{max{aP

j
P, pP

j
PaP

i
P}, pP

j
Pmax{aP

i
P, pP

i
PaP

j
P}} + 

min{pP

j
Pmin{pP

i
PbP

j
P, bP

i
P}, min{pP

j
PbP

i
P, bP

j
P}}]/2, which will be adjusted to R[aP

i
P,bP

i
P; p P

i
P[max{max{aP

j
P, pP

j
PaP

i
P}, 

pP

j
Pmax{a P

i
P, pP

i
PaP

j
P}} + min{pP

j
Pmin{pP

i
PbP

j
P, bP

i
P}, min{pP

j
PbP

i
P, bP

j
P}}]/2]. A D2 player i therefore has relevant 

look-up sequence: {(aP

i
P, [pP

i
P, aP

j
P]), (bP

i
P, [pP

i
P, bP

j
P]) (to delete i's first-round dominated guesses), (aP

j
P, [pP

j
P, 

aP

i
P]), (bP

j
P, [pP

j
P, bP

i
P]), p P

j
P (to delete j's first- and second-round dominated guesses), pP

i 
P(to identify i's 

ideal guess)} ≡ {(1, [2, 4]), (3, [2, 6]), (4, [5, 1]), (6, [5, 3]), 5, 2}. 

An Equilibrium player i's ideal guess is pP

i
PaP

j
P if pP

i
PpP

j
P < 1 or pP

i
PbP

j
P if pP

i
PpP

j
P > 1. This guess can be 

identified by evaluating this formula (assuming that logical implications of things that are public 

knowledge are also public knowledge), or by equilibrium-checking, best-response dynamics, or 

                                                                                                                                                             
knowledge, an L2 player i cannot infer that adjustment of player j's ideal guess can occur only at his upper (lower) 
limit when  pP

j  
P> 1 (pP

j  
P< 1). An L2 subject who incorrectly infers this may omit a P

j 
P= 4 (bP

j 
P= 6) when pP

j 
P> 1 (pP

j 
P< 1). 

TP

34
PTWith automatic adjustment, a D1 player i needs to know his limits only to delete player j's dominated guesses, and 

need not otherwise consider the adjustment of j's guess. Also, when pP

j 
P> 1 (< 1), dominance for j usually occurs only 

near his lower (upper) limit (Table II). A D1 subject who incorrectly assumes that this is true in all of our games 
may omit (b BjB, [pP

j
P, bP

i
P]) = (6, [5, 3]) when pP

j
P > 1 or (aBjB, [pP

j
P, aP

i
P]) = (4, [5, 1]) when pP

j 
P< 1. 
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iterated dominance. Evaluating the formula yields the look-up sequence: {[pP

i
P, P

 
PpP

j
P] (to check if the 

product of the targets is greater or less than one), a P

j
P (to identify i's ideal guess when pP

i
PpP

j
P < 1)} = 

{[2, 5], 4} if p P

i
PpP

j
P < 1; or {[p P

i 
P,P

  
PpP

j
P], bP

j 
P(to identify i's ideal guess when p P

i
PpP

j
P > 1)] = {[2, 5], 6} if pP

i
PpP

j
P 

> 1. In principle, minimal restrictions for equilibrium-checking should allow for the possibility 

that a subject correctly conjectures whether his equilibrium guess is determined by players' lower 

or upper limits. If so, he need only identify his ideal guess and verify that it is consistent with 

equilibrium. This requires the look-up sequence: {pP

i
P, aP

j
P (to identify i's ideal guess, given his 

conjecture), p P

j
P (to verify that it is consistent with equilibrium for player j)} if pP

i
PpP

j 
P< 1 or {pP

i
P, bP

j
P (to 

identify i's ideal guess, given his conjecture), pP

j
P (to verify that it is consistent with equilibrium 

for player j)} if p P

i
PpP

j  
P> 1. These restrictions, [pP

i
P, aP

j
P, pP

j
P] = [2, 5, 4] if pP

i
PpP

j  
P< 1 or [pP

i
P,bP

j
P, pP

j
P] = [2, 5, 6] 

if pP

i
PpP

j  
P> 1, are less stringent than those for any other method of identifying equilibria. However, 

a subject cannot be sure of her/his conjecture without checking whether pP

i
PpP

j  
P> 1, and it seems 

more realistic to add the [2, 5] order requirement, as needed for evaluating the formula.TP

35
PT  

Finally, although we define Sophisticated's ideal guess as its best response to the 

distribution of its potential partners' guess, as estimated from our subjects' guesses, Sophisticated 

must deduce its beliefs from the structure of the game. We assume that this requires identifying 

both the game's equilibrium and the other player's guesses that survive two rounds of dominance 

for the other player and one for the subject. Because the search requirements for these are a 

subset of D2's, we take Sophisticated's relevant look-up sequence to be the same as D2's. TP

36
PT 

                                                 
TP

35
PTEven two rounds of iterated dominance implies more stringent restrictions; and best-response dynamics requires 

still more, {[aP

i
P, bP

i
P], [aP

j
P, bP

j
P], pP

i
P, pP

j
P} ≡ {[1, 3], [4, 6], 2, 5} just to identify a starting profile of guesses within the limits. 

Without the [2, 5] order requirement, Equilibrium's search implications are the only ones with no order restrictions, 
which makes them much easier to satisfy than other types' and obscures the implications of the search data, leading 
our econometric model to spuriously identify some subjects' searches as Equilibrium even though by inspection they 
are obviously more consistent with other types. Even with the order requirement Equilibrium's search implications 
are as simple as L1's and simpler than other boundedly rational types', unlike in CGCB's and CJ's designs. Our 17 
(of 29) highly successful R/TS Equilibrium subjects (those with 15-16 exact equilibrium guesses) violated 
Equilibrium's search implications with the order requirement 6% of the time, only 3 of them in more than 1 game. 
TP

36
PTWe stop at two rounds of dominance for the other player and one for the player himself because in previous work 

few subjects have responded to dominance beyond these levels. Because requiring more rounds, for either player, 
would make the search requirements for Sophisticated more stringent, and few subjects comply with them even as 
defined here, this assumption strengthens our ultimate conclusion that none of our subjects are Sophisticated.  



4. Statistical and Econometric Analysis of Subjects' Guesses and Information Searches 

This section presents a statistical and econometric analysis of subjects' guesses and 

information searches.37 Section 4.A reports preliminary statistical tests. Section 4.B summarizes 

the aggregate compliance of R/TS subjects' adjusted guesses with the implications of their 

assigned types, and Section 4.C summarizes the aggregate compliance of Baseline and OB 

subjects' adjusted guesses with iterated dominance and equilibrium. Section 4.D presents a 

maximum likelihood error-rate analysis of Baseline and OB subjects' guesses, estimating the 

types that best describe their guesses in the 16 games and the associated error distributions. 

Section 4.E discusses our specification test and analysis, and Section 4.F introduces our analysis 

of information search by describing R/TS and Baseline subjects' compliance with types' search 

implications. Section 4.F generalizes Section 4.D's analysis to use Baseline subjects' search 

compliance, with their guesses, to estimate their types and the associated error distributions. 

A. Preliminary statistical tests 

In this section we report tests for differences in subjects' adjusted guesses across the 

sessions of the Baseline treatment and the OB treatment. Because the tests compare data from 

independent samples with no presumption about how they differ, we use exact two-sample 

Kolmogorov-Smirnoff tests, pairing the five Baseline and OB sessions in all possible ways and, 

for each pair, conducting the tests separately for each game. This yields 11 p-values less than 5% 

in a total of 160 tests (five sessions taken two at a time, times 16 games per session), a bit more 

than one would expect by chance (11/160 = 6.9%) but distributed evenly across sessions and 

games. Similarly, comparing the four pooled Baseline sessions with the OB session yields one p-

value less than 5% in 16 tests.38 This suggests that subjects' guesses are not strongly affected by 

the need to look up payoff parameters, so our results should be representative of those obtained 

by standard methods. We conclude that differences across Baseline sessions or between Baseline 

and OB treatments are small enough to justify pooling the data on guesses across sessions.39  

                                                 
37Appendix C gives the complete data on guesses and the order, but not duration, data on look-up sequences. Figures 
2A-2P (also at http://weber.ucsd.edu/~vcrawfor/#Guess) graph the frequency distributions of adjusted guesses, game 
by game. Tables X-XI give selected R/TS and Baseline subjects' look-up sequences in the first 2-3 games. 
38Conducting the tests this way would be justified only if subjects' guesses were independent across games and 
session pairs, which is unlikely in the first case and impossible in the second; but correcting for the dependence is 
impractical. These tests are presented only as a way to gauge the differences across sessions and treatments. We also 
found no significant evidence that subjects' guesses in practice rounds differed across the Baseline and OB sessions. 
39Despite our failure to find significant aggregate differences, there are hints that OB subjects made high numbers of 
exact guesses for our types less often: OB subjects made up 19% of this subject pool, but only 11% of those who 
made 14-16 exact guesses and 7% of those who made 10-13; they were 30% of those who made 7-9 exact guesses. 
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http://weber.ucsd.edu/~vcrawfor/#Guess
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The tests also reveal no significant difference between Baseline and OB subjects' pooled 

guesses in the symmetric game, δ3δ3, when played third and twelfth in the sequence (Figures 

2G-2H). This suggests that the effects of learning without feedback and the order of play are 

small enough to justify analyzing the data without considering the order of play.      

B. R/TS subjects' aggregate compliance with assigned types' guesses  

Table VII summarizes the exact compliance (within 0.5) of R/TS subjects' adjusted guesses 

with their assigned types' guesses, along with the failure rates in the R/TS treatments' second, 

type-specific Understanding Test. Overall compliance is highest for Lk types, next highest for 

Equilibrium, and lowest for Dk types. Among Lk (or Dk) subjects, compliance falls with k as one 

would expect, with the exception that compliance is lower for L1 than for L2 and L3. TP

40
PT 

The Understanding Test failure rates tell a similar story about the relative cognitive 

difficulties of our types, except that Equilibrium failure rates are much higher than D1 and D2 

failure rates. This may be due to the greater stringency of our Equilibrium Understanding Test, 

which tests comprehension of the three different ways to identify equilibrium decisions subjects 

were taught (equilibrium checking, best-response dynamics, and iterated dominance; Appendix 

A) and may therefore screen out more subjects whose compliance would be low. However, the 

compliance rates, ranging from 55.6% to 70.3% for Equilibrium and Dk subjects, which are high 

for exact compliance, suggest that Baseline subjects' near-universal failure to make Equilibrium 

or Dk guesses is not due mainly to cognitive limitations. Nonetheless, the striking differences in 

compliance and failure rates between Lk, Equilibrium, and Dk R/TS subjects are probably an 

important clue in explaining the predominance of Lk and Equilibrium over Dk Baseline subjects. 

These aggregate results mask considerable individual heterogeneity. Many R/TS subjects 

implement their assigned type's guesses perfectly or almost perfectly, while others do no better 

than random. These variations will be studied in more detail in our companion paper.  

C. Baseline and OB subjects' aggregate compliance with iterated dominance and 

equilibrium  

We now examine the aggregate compliance of Baseline and OB subjects' adjusted guesses 

with iterated dominance and equilibrium. Table VIII reports Baseline, OB, and pooled Baseline 

and OB subjects' compliance with 0-3 rounds of dominance, and with Equilibrium adjusted 

                                                                                                                                                             
Perhaps the fact that our design makes models of others easy to express as functions of the targets and limits more 
strongly encourages Baseline than OB subjects to substitute such models for less structured strategic thinking. 
TP

40
PTThis inversion is due, we suspect, to a curious framing effect, in which some L1 R/TS subjects try to outguess the 
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guesses, both overall and in the games ordered as in Table II, with random compliance as a 

benchmark.TP

41
PT Aggregate compliance with 0-3 rounds of dominance is similar for Baseline and 

OB subjects game by game, and usually far higher than random. In both treatments subjects 

violate simple dominance at a rate (100 minus compliance with 0 rounds in Table VIII) less than 

random in each of the 13 games in which it is non-vacuous, by a factor from one-sixth to two-

fifths. Overall, subjects respect simple dominance 90% of the time, a typical rate for initial 

responses to games and much higher than random, which averages about 60% in our games. 

Compliance varies systematically across games, but there is no clear effect of structure beyond 

what determines random compliance.TP

42
PT Baseline and OB subjects' compliance with Equilibrium 

adjusted guesses are also similar game by game, also with no clear effect of structure per se. 

D. Econometric analysis of Baseline and OB subjects' guesses 

As explained in the Introduction, a large minority of our Baseline and OB subjects made 

guesses that conform so closely to one of our types that we can confidently assign the subject to 

that type by inspection, but most of our subjects' guesses are less compelling. In this section we 

conduct a maximum likelihood error-rate analysis of all 88 Baseline and OB subjects' guesses. 

Our goals are to summarize the implications of the data in a comprehensible way, to assess the 

strength of the evidence in favor of our types, and to identify those subjects whose guesses are 

not well explained by our types and guide the search for better explanations of their behavior. 

We analyze the data subject by subject.TP

43
PT Recall that in our model, each subject's behavior 

in all 16 games is determined, possibly with error, by one of the seven types. Index the types k = 

1,…,K and the games g = 1,…,G. In game g, denote subject i's lower and upper limits i
ga  and 

i
gb , his unadjusted and adjusted guess i

gx  and }},max{,min{)( i
g

i
g

i
g

i
g

i
g xabxR ≡ , and type k's 

adjusted guess k
gt . Write ),...,( 1

i
G

ii xxx ≡ and ))(),...,(()( 11
i
G

i
G

iiii xRxRxR ≡ . 

                                                                                                                                                             
computer but L2 or L3 subjects do not try to outguess their simulated partners' attempts to outguess the computer. 
TP

41
PTAppendix D gives the analogous results for our other types. Almost all of the zero compliance rates for iterated 

dominance are due to logical constraints rather than empirical tendencies. The rates seldom differ for within 0 and 
within 0.5, but when they do the tables give the latter. 
TP

42
PTBy contrast, the number of rounds of dominance has a strong effect on equilibrium compliance in CGCB's games. 

TP

43
PTCGCB (2001) used an aggregate mixture model that imposed stronger restrictions on subjects' type distributions, 

and studied cognition at the individual level by using an uninformative prior over the parameters to condition on 
individual histories. Estimating subject by subject without cross-subject restrictions is better suited to subjects' 
heterogeneous behavior, more robust to misspecification, and seems more appropriate because we believe cognition 
is best studied at the individual level. Comparing CGCB's (1998) subject by subject estimates with CGCB's (2001) 
estimates, however, suggests that the methods yield similar results. 
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Interpreting patterns of deviations from types' guesses requires an error structure. We 

assume that, conditional on a subject's type, his errors are independent across games. We use a 

spike-logit specification in which, in each game, a subject has a given probability of making his 

type's guess exactly and otherwise makes errors that follow a logistic distribution over the rest of 

the interval between his limits. Thus, in game g a type-k subject makes a guess that leads to type 

k's adjusted guess k
gt  within 0.5 with probability 1 - ε; but with probability ]1,0[∈ε , his error 

rate, his adjusted guess has conditional density )),(( λi
g

i
g

k
g xRd with precision λ.TP

44
PT 

In describing how payoffs affect the error density )),(( λi
g

i
g

k
g xRd , we assume for simplicity 

that subjects are risk-neutral. Let y and )),(( yxRS i
g

i
gg  be subject i's partner's adjusted guess and 

i's own expected monetary payoff in game g, given y and i's own adjusted guess )( i
g

i
g xR . Let the 

density )(yf k
g  represent the beliefs about y implicit in type k.TP

45
PT Subject i's expected payoff in 

game g for type k's beliefs can then be written:  

(3)   dyyfyxRSxRS k
g

i
g

i
gg

i
g

i
g

k
g )()),(())((

1000

0∫≡ .TP

46
PT  

Let ],[]5.0,5.0[ i
g

i
g

k
g

k
g

ik
g battU I+−≡ , the set of subject i's possible adjusted guesses in 

game g that are within 0.5 of type k's adjusted guess k
gt , and let ik

g
i
g

i
g

ik
g UbaV /],[≡ , the 

complement of  ik
gU  relative to ],[ i

g
i
g ba . The density )),(( ki

g
i
g

k
g xRd λ  then satisfies:  

(4)  
∫

≡

ik
gV

k
g

i
g

i
g

k
gi

g
i
g

k
g dzzS

xRS
xRd

)](exp[
))]((exp[

)),((
λ

λ
λ  for ik

g
i
g

i
g VxR ∈)( , and 0 elsewhere. 

The precision λ is inversely related to the dispersion of a subject's erroneous guesses: 

As ∞→λ  they approach a noiseless best response to his type's beliefs, and as 0→λ  they 

approach uniform randomness between his limits, excluding exact guesses. For a given value of 

λ, the dispersion declines with the strength of payoff incentives, evaluated for the type's beliefs. 

Because unadjusted guesses that lead to the same adjusted guess yield the same payoffs, the 

error structure treats them as equivalent, and the likelihood can be expressed entirely in terms of 

                                                 
TP

44
PTBecause the error rate, precision, and type are estimated jointly for each subject, there is no need to allow 

the error rate and precision to depend on type.  
TP

45
PTThe expectation in )),(( yxRS i

g
i
gg is taken only over the random selection of games for which subject i 

is paid. All of our types can be viewed as best responding to some beliefs about their partner's guesses.   
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a subject's adjusted guesses. For subject i, let ikN be the set of games g for which ik
g

i
g

i
g VxR ∈)( , 

and ikn be the number of games in ikN , so that the number of games for which ik
g

i
g

i
g UxR ∈)( is G 

- ikn . For a type-k subject i in game g, the probability of observing an adjusted guess 
ik
g

i
g

i
g UxR ∈)(  is )1( ε− , the probability of observing an adjusted guess ik

g
i
g

i
g VxR ∈)(  is ε , and 

the conditional density of an adjusted guess in ik
gV  is then )),(( λi

g
i
g

k
g xRd  as in (4).TP

47
PT Because 

errors are independent across games, the density of a sample with adjusted guesses 

))(),...,(()( 11
i
G

i
G

iiii xRxRxR ≡ for a type-k subject i is: 

(5)    ∏
∈

−−≡
ik

ikik

Ng

i
g

i
g

k
g

nnGiik xRdxRd )),(()1()),),(( )( λεελε , 

where products with no terms (if ikn  = 0 or G) are taken to equal 1. Weighting by kp , summing 

over k, and taking logarithms yields subject i's log-likelihood: 

(6)    ⎥
⎦

⎤
⎢
⎣

⎡
≡ ∑

=

),),((ln))(,(
1

K

k

iikkiii xRdpxRL λελε . 

It is clear from (6) that the maximum likelihood estimate of p sets kp = 1 for the 

(generically unique) k that yields the highest )),),(( λεiik xRd , given the estimated ε and λ. The 

maximum likelihood estimate of ε can be shown from (5) to be ikn /G, the sample frequency with 

which subject i's adjusted guesses fall in ik
gV . The maximum likelihood estimate of λ is the 

standard logit precision, restricted to guesses in ik
gV . 

The maximum likelihood estimate of subject i's type maximizes the logarithm of (5) over k, 

given the estimated ε and λ. When ikn  is between 0 and G, the maximand is: 

(7)  GGxRdnnnGnGxRd
ikNg

i
g

i
g

k
g

ikikikikiik ln)),((ln)ln()ln()()),),((ln −++−−≡ ∑
∈

λλε .  

When ikn  = 0 or G, after setting the products with no terms in (5) equal to 1, the maximand 

reduces to the sum over g on the right-hand side of (7). 

The likelihood takes the separation of types' guesses across games into account, favoring a 

type only to the extent that it explains a subject's guesses better than other types. It treats a guess 

                                                                                                                                                             
TP

46
PTIn our design entered guesses are restricted to the interval [0, 1000], which includes all possible limits. 

TP

47
PTThe conditional density could be allowed to extend to ik

gU , but our specification is simpler, and almost 
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as stronger evidence for a type the closer it is to the type's guess, because the payoff function is 

quasiconcave and the logit term increases with payoff; and it treats a guess that exactly matches a 

type's guess as the strongest possible evidence for the type, discontinuously stronger than one 

that is close but not within 0.5. If ikn is near 0 for only one k, that k is usually the estimated type. 

If ikn is nearly the same for all k, the estimated type is mainly determined by the logit term; and if 
ikn is near G for all k, the type estimate is close to the estimate from a standard logit model.    

The left-hand side of Table IX reports Baseline and OB subjects' numbers of dominated 

guesses and maximum likelihood estimates based on (7) of their types k, precisions λ, numbers 

of exact type-k guesses (which equal 16(1 – ε), where ε  is the error rate). Subjects are ordered 

by estimated type, in decreasing order of likelihood within type.TP

48
PT These estimates assign 43 

subjects to L1, 20 to L2, 3 to L3, 5 to D1, 14 to Equilibrium, and 3 to Sophisticated. Likelihood 

ratio tests reject the hypothesis ε ≈ 1, which approximates a standard logit model, at the 5% (1%) 

level for all but 7 (5) of our 88 subjects (110 and 213 at the 1% level, plus 109, 113, 212, 421, 

and 515 at the 5% level), so the spike in our specification is necessary.TP

49
PT The hypothesis λ = 0 is 

rejected at the 1% (5%) level for the 21 (34) subjects whose estimates are superscripted ** (*) in 

Table IX, so the logit model's payoff-sensitive errors significantly improve the fit over a spike-

uniform model like CGCB's for about a third of our subjects. The joint restriction ε ≈ 1 and λ = 0, 

which approximates a completely random model of guesses, is rejected at the 5% (and 1%) level 

for all but the 10 subjects whose type indicators are superscripted † in Table IX. 

E. Specification test and analysis 

These maximum likelihood type estimates cannot all be taken at face value. Some of them 

could be sensitive to our a priori specification of possible types, which might err by omitting 

relevant types and/or overfitting by including empirically irrelevant ones. We now conduct a 

specification test that addresses these issues, which we hope will prove useful in other settings. 

Subject by subject, the test compares the likelihood of our type estimate with the 

likelihoods of analogous estimates based on 88 pseudotypes, each constructed from one of our 

                                                                                                                                                             
equivalent given the near-constancy of payoffs within the narrow interval of exact guesses ik

gU .    

TP

48
PTTable IX's right-hand side reports estimates based on guesses and information search, discussed in Section 4.G. 

TP

49
PTWe report these tests only as a simple way to gauge the strength of the evidence provided by our data. Their 

standard justifications are unavailable, here and below, because the null hypotheses involve boundary 
parameter values. We approximated the test for ε = 1 using a non-boundary value of ε just below one. 



subject's guesses over the 16 games.50 Such comparisons help to detect whether any of our 

subjects' guesses are better explained by an alternative decision rule, omitted from our 

specification, or whether a subject's estimated type is a credible explanation of his guesses or an 

artifact of overfitting via accidental correlations with irrelevant types. 

First, imagine that we had omitted an empirically important type, say L2. Then the 

pseudotypes of subjects now estimated to be L2 would tend to outperform the non-L2 types we 

estimated for them, and would also make approximately the same (L2) guesses. Define a cluster 

as a group of two or more subjects such that: (i) each subject's pseudotype has higher likelihood 

than the estimated type for each other subject in the group; and (ii) subjects' pseudotypes make 

"sufficiently similar" guesses.51 Finding a cluster should lead us to diagnose an omitted type, and 

studying the common elements of its subjects' guesses may help to reveal its decision rule. 

Conversely, not finding a cluster suggests that there are no empirically important omitted types.52  

Appendix E summarizes the results of comparing the likelihoods of our estimated types 

with the likelihoods of the 88 pseudotypes. Subjects are associated with rows, ordered by type 

and likelihood as in Table IX but with types ordered alphabetically; pseudotypes are associated 

with columns; and the entries give likelihoods. Appendix F summarizes the results of the 

likelihood comparisons in part (i) of the definition of a cluster and lists the 25 subsets of 

pseudotypes and subjects who satisfy part (i).53 There are 5 (non-overlapping) subsets in which 

                                                 
50We are grateful to Jerry Hausman for suggesting the idea of this test. We allow spike-logit errors for the 
pseudotypes, as for the estimated types, to avoid biasing the tests against them. The logit term's dependence on 
expected payoffs means that to define a pseudotype's error density we must infer beliefs, because the pseudotypes do 
not come with "built-in" models of other players. We do this in the simplest possible way, by assuming that the 
pseudotypes' guesses are best responses and inferring point beliefs, game by game, from their subjects' guesses. For 
a dominated guess, which is not a best response to any beliefs, or for a guess at a limit that is a best response to 
multiple beliefs, we extend this definition by inferring the beliefs that bring the guess closest to maximizing payoff.  
51Requiring only higher (rather than significantly higher) likelihood in (i) prevents us from ruling out cluster 
candidates because their pseudotypes offer only slight improvements in fit; we find below that few of the 
comparisons are close. The "sufficiently similar" in (ii) could be made more precise, but we have found it more 
informative to consider possible clusters on a case by case basis. Finally, although logic of our definition allows 
overlapping but non-nested clusters, in our analysis this problem does not arise.  
52Because pseudotypes incorporate decision errors, they only approximate the omitted types we seek to identify. The 
qualification "empirically important" is necessary because there may be subjects who follow rules that differ from 
our types but are unique in our dataset. Such subjects are unlikely to repay the cost of constructing theories of their 
behavior, and it seems difficult to test for them. Our test makes the search for omitted types manageable within the 
enormous space of possible types, while avoiding a priori restrictions and judgment calls about possible types by 
focusing on patterns of guesses like those subjects actually made. Our notion of cluster is similar in spirit to notions 
that have been proposed elsewhere, but it imposes much more structure, in a way that seems appropriate here.    
53None of the likelihood comparisons are very close, except for 210's estimated type versus 302's pseudotype. We 
also made two exceptions to part (i) of the requirement: Subject 310 is included as a potential member of cluster A 
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subjects' guesses also appear close enough to warrant checking part (ii) of the definition. The 

subjects in these subsets are identified in the left-hand side of Table IX by superscript letters on 

their type identifiers, corresponding to the cluster labels in Appendix F and below. Appendix F 

also collects the guesses for subjects in those five subsets from Appendix C, and presents them 

along with the games' parameters and types' guesses in a way that facilitates the analysis below.  

We now discuss the similarities in subjects' guesses in each of these subsets, diagnosing 

misspecification by omitted decision rules and identifying the omitted rules when possible:  

A. Subjects 202, 310, and 417, all estimated to be Equilibrium: All made Equilibrium 

guesses in our 8 games without mixed targets, and 310 also did so in 3 of our games with mixed 

targets; there was no apparent pattern with respect to other aspects of the structures (Table II). 

202's and 417's deviations are always in the same direction, but to different guesses; all but one 

of 310's deviations in games without mixed targets was in the same direction, also to different 

guesses. This pattern of deviations is intriguing because the standard methods for identifying 

equilibrium guesses (Section 3) work equally well in games with and without mixed targets.54 

We judge 202's and 417's guesses similar enough to meet the definition of a cluster, but we are 

unable to tell how they were determined; we suspect that they were using "homemade" rules that 

happen to mimic Equilibrium in games without mixed targets. However, we provisionally accept 

310's identification as Equilibrium, which fits her/his guesses significantly better than 202's and 

417's pseudotypes do, despite their similarities. This cluster illustrates the potential empirical 

importance of the subtlety of the arguments needed to identify equilibrium decisions.  

B. Subjects 210 and 302, both estimated to be L3 (with Equilibrium a fairly close second 

for both): Both deviate from L3 guesses in 7 games, 6 of which have mixed targets; and 302 also 

                                                                                                                                                             
because her/his guesses are close to those of others in cluster A, and subject 204 is included as a potential member 
of cluster E because its likelihood is very close to the standard and its guesses are similar to other members' guesses.  
54Only one of our 29 Equilibrium R/TS subjects came at all close to these subjects' patterns (1203 with 11 exact 
guesses, 4 of them with mixed targets), and the rest made as many exact guesses with as without mixed targets. In 
our debriefing questionnaire, subject 417 explicitly distinguishes games with mixed targets, in which, s/he says, "I 
usually assumed my partner chose from fairly near the center of his/her range, assuming it would deviate from this 
appropriately based on the difference of our multipliers (i.e., that the average of our guesses would be near the 
median of the overlapping part of our ranges)." We take this to mean that s/he adjusted her/his beliefs upward 
(downward) when her/his own target was lower (higher), but only half of 417's deviant guesses are consistent with 
this. For games without mixed targets, 417 gives a clear definition of equilibrium: "I made a greedy choice, always 
assuming my partner also made a greedy choice…."; there is no clue why s/he did not also follow this rule with 
mixed targets. Subject 202's responses are too vague to be helpful. Subject 310 says (without distinguishing games 
with mixed targets), "Used what would be best for me and what was best for them" and then gives the formula for 
the equilibrium adjusted guess without mixed targets, illustrating the risks of taking subjects' questionnaire 
statements at face value. From now on we refer to questionnaire responses only when they are helpful. 
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has minor deviations in games 11 (also with mixed targets) and 14. There is no apparent pattern 

with respect to other aspects of the structures. 6 of the 7 common deviations are in the same 

direction, all to similar guesses. Both subjects make exactly the equilibrium guess in game 6, our 

only game without mixed targets in which Equilibrium is separated from L3. We are unable to 

tell how those subjects' guesses were determined, but we judge them similar enough to meet the 

definition of a cluster. Their decision rules appear to be hybrids of L3 and Equilibrium, perhaps 

switching from one to the other according to some cue in the structure that we cannot discern.  

C. Subjects 407, estimated to be L2; and 516, estimated to be L1: Both make L1 guesses in 

most (5 and 7, respectively) of the first 9 games played and L2 guesses in most (6 and 4) of the 

last 7. (L1 and L2 guesses are separated in all but game 9, in which both make the L1 and L2 

guess.) There is no apparent pattern in their deviations from L1 or L2 with respect to the 

structures. We judge their guesses similar enough to meet the definition of a cluster, but we do 

not believe these subjects followed an omitted hybrid type. The time pattern of deviations and 

the fact that most of their later guesses followed a more sophisticated rule suggest introspective 

learning during play, of a kind ruled out by assumption in our econometric analysis.55

D. Subjects 301 and 508, both estimated to be L1: These subject's pseudotypes are the only 

ones with higher likelihood than each other's estimated type. They have five common deviations 

from L1, always downward, though almost always to different guesses; and each subject also has 

one lone (upward) deviation.56 The common deviations have no apparent pattern with respect to 

timing or structures. Both lone deviations seem due to forgetting to multiply by own target and 

some common deviations also seem due to forgetting or interchanging targets or limits. We 

judge these subjects' guesses to be similar enough to meet the definition of a cluster, but we are 

not fully convinced that they followed an omitted type. There is a chance that they are just 

sloppy L1 subjects whose cognitive errors for some reason occurred mostly in the same games. 

                                                 
55Both subjects' questionnaires give fairly clear statements of L2, but no indication that they did not always follow it. 
It is interesting to compare their guesses with subject 108's, which mostly follow L2's guesses but deviate to L1's in 
games 2, 10, and 16. 108's L1 guesses are mostly late, and L2 fits her/his guesses significantly better than any 
pseudotype. 108's questionnaire also gives a clear statement of L2, but a vague discussion of the switches to L1. A 
few subjects give weaker evidence of introspective learning, also in the form of early-late L1 to L2 switches: 209 
makes L1 guesses in games 1 and 3 and L2 guesses in all other games but 10; 218 makes L1 guesses in games 1-3 
and L2 guesses in all other games but 4 and 10; and subjects 301, 504, 508, and 516 have similar, noisier patterns. It 
is particularly telling that 209 and 218 make L1 and then L2 guesses early and late in the symmetric games 3 and 12.         
56Curiously, 3 of subject 301's 6 deviations from L1 guesses are to equilibrium guesses (twice when they are 
separated from all other types' guesses), though there is no hint of Equilibrium in her/his questionnaire. 
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E. Subjects 204 and 313, both estimated to be D1, and 409, estimated to be L1: These 

subjects all made similar guesses, including 645s inexplicable by our types in the symmetric 

games 3 and 12 and, for 204 and 409, in asymmetric game 13. They are among the minority of 

subjects who explained their guesses clearly in their questionnaires: All 3 stated homemade rules 

that depart from standard decision theory (and so from our types) in different ways, but which, 

properly reinterpreted, explain most of their guesses.TP

57
PT Their guesses are superficially quite 

similar, but it is plain that they were not following L1, D1, or any single omitted type. 

The subjects in cluster E illustrate what seems to be a widespread tendency to invent rules 

by which to process the data of our games into decisions. We find it unremarkable that these 3 

subjects' rules deviate from standard decision theory. What is remarkable is the high frequency 

with which our other subjects' rules (mostly L1, L2, or Equilibrium) do conform to standard 

decision theory, even though most of them are best responses to non-equilibrium beliefs. 

With regard to overfitting, we take the position that for a subject's estimated type to be a 

credible explanation of his behavior it should perform at least as well against the pseudotypes as 

it would, on average, at random. TP

58
PT Suppose that a subject's behavior is random relative to our 

types and all pseudotypes other than his own, in the sense that their likelihoods are independent 

and identically distributed ("i.i.d."). Then for a pseudotype to have higher likelihood than our 

estimated type it must come first among our 7 types plus itself, which has probability 1/8. Thus, 

for a subject's estimated type to be a credible explanation of her/his guesses it should have higher 

likelihood than all but at most 87/8 ≈ 11 of the pseudotypes. Those subjects whose estimated 

                                                 
TP

57
PTSubject 204 says s/he first found the person whose "spread" (defined as own target times the difference between 

the partner's limits) was smaller. If her/his spread was smaller, s/he guessed the average of the range between her/his 
target times the partner's lower and upper limits; and if the partner's spread was smaller, s/he guessed the average of 
the analogous partner's range, thus without taking her/his own target into account, which makes no sense decision-
theoretically. In fact s/he adjusted the ranges according to the limits; with this adjustment the stated rule explains 
her/his guesses in 11/16 games. Subject 313 says that s/he guessed [max{a BiBpBjB, aBjBp BiB} + min{bBiBp BjB, bBjBpBiB}]/2 ("I multiplied 
my upper and lower limits w/ partner's target, then multiplied his/her upper and lower limits w/ my target. Then I 
chose the largest of the lowers and smallest of the uppers to find my new more refined range. Then I guessed the 
average of this range."). In fact s/he separately adjusted each term in the above formula to her/his own limits before 
averaging them (see her/his game 14 guess), which makes no sense decision-theoretically. With adjustment, the 
stated rule explains her/his guesses in 14/16 games. Subject 409 says that s/he guessed [max{aBiB, aBjBp BiB} + min{b BiB, 
bBjBp BiB}]/2 ("Basically, I took his/her lower limit and multiplied it by my target. If the resulting number was between 
my upper and lower limits, I kept that in mind. Otherwise I picked my lower limit. Then I took his/her upper limit 
and multiplied it by my target. Again, if the resulting number was within my range, I took it. Otherwise I picked the 
upper limit. Then I found the average of the two numbers." The stated rule explains her/his guesses in 13/16 games. 
TP

58
PTThis should hold even for pseudotypes associated with subjects of the same estimated type, because under the null 

hypothesis, another subject's deviations from that type should not help explain the subject's own deviations. This is 
plainly a weak test, which can be counted on to detect only the most obvious artifacts of overfitting. 



types have lower likelihoods than 12 or more pseudotypes have type identifiers superscripted + 

in Table IX; they include most subjects of each estimated type with the lowest likelihoods: 10 of 

those estimated L1, 2 estimated L2, and one each estimated D1, Equilibrium, and Sophisticated. 

Our type estimates, as modified by the test results, suggest that of the 43 subjects whose 

type estimate is L1, 27 are reliably identified as L1. The remaining 16 subjects (5 in clusters C, 

D, or E and 11 others whose estimated types do not do significantly better than randomness 

within our specification and/or better than enough pseudotypes) probably have spurious type 

estimates. Of the 20 subjects whose type estimate is L2, 17 are reliably identified. The remaining 

3 subjects (one in cluster C and 2 whose estimated types do not do better than enough 

pseudotypes) probably have spurious estimates. Of the 3 subjects whose type estimate is L3, only 

one appears reliably identified. The other 2 (both in cluster B) probably have spurious estimates. 

Of the 5 subjects whose type estimate is D1, only one appears reliably identified. The other 4 (2 

in cluster E and 2 whose estimated types do not do significantly better than randomness and/or 

better than enough pseudotypes) probably have spurious estimates. Of the 14 subjects whose 

type estimate is Equilibrium, 11 appear to be reliably identified. The remaining 3 subjects (2 in 

cluster A, omitting potential cluster member 310, and one whose estimated type does neither 

significantly better than randomness nor better than enough pseudotypes) probably have spurious 

estimates. Of the 3 subjects whose type estimate is Sophisticated, only one appears to be reliably 

identified. The other 2 subjects (one who does not do significantly better than randomness and 

one who does not do better than enough pseudotypes) probably have spurious estimates. 

Overall, 58 of our 88 subjects appear to be reliably identified from guesses alone: 27 as L1, 

17 as L2, 11 as Equilibrium, and one each as L3, D1, or Sophisticated. Our search analysis calls 

7 of these subjects' type identifications into question (one L1, which we ultimately affirm; 4 L2s; 

one D1; and one Equilibrium). But because our types specify precise guesses in large strategy 

spaces, 52 subjects' identifications show clearly that they had accurate models of the games and 

acted as rational, self-interested expected-payoff maximizers. Our analysis also shows that for at 

least the 42 of those subjects whose types are reliably identified as other than Equilibrium, their 

deviations from equilibrium can be confidently attributed to non-equilibrium beliefs based on 

simplified models of others, rather than confusion, altruism, spite, or irrationality. 

Despite the differences between our games and those in previous studies, our classification 

of subjects by type is quite close to Nagel's, HCW's, CGCB's, and SW's. There are two main 
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differences between previous classifications and ours. First, we find more Equilibrium subjects 

(12.5% of all Baseline and OB subjects, focusing on identifications we have argued are reliable) 

than most previous studies, including Nagel's and HCW's studies of guessing games; the main 

exceptions are SW's studies of matrix games. Second, SW (1995) used versions of L2, L3, etc., 

that depend on others' decision noise, represented by an estimated population parameter; and also 

included a Worldly type that best responds to a mixture of a noisy L1 and a noiseless Equilibrium 

with estimated weights.TP

59
PT Including Worldly led SW (1995) to identify many subjects as Worldly 

and correspondingly few as L2, by contrast with SW (1994), CGCB, CHC, and this paper. 

CGCB (Section 3.A) argued in favor of noiseless definitions of types like those of L2 and 

L3 used here and more generally against types that depend on parameters estimated from the 

population's behavior, like SW's Worldly or CHC's versions of Lk types that best respond to 

mixtures of lower-level Lk types. Because subjects do not observe others' behavior, such types 

implicitly assume that they have prior understandings of it. CGCB argued that the issue of prior 

understandings is more cleanly addressed, with less risk of overfitting, by including a type like 

Sophisticated, which represents the idea of worldliness without introducing additional 

parameters, imposing structural restrictions, or raising delicate specification issues. 

Our analysis adds evidence to this debate, in that our subjects' large numbers of exact L2 

(or in some cases L3) guesses by our noiseless definitions suggest that more complex definitions 

would not add to the model's ability to explain individual subjects' behavior. Our results are 

actually inconclusive with respect to CHC's versions of L2 and L3, which in our games, under 

risk-neutrality, are both behaviorally equivalent to our L2.TP

60
PT Our results are conclusive with 

respect to Worldly. By an argument like that sketched in footnote 60, in our games a risk-neutral 

best response to the mixture of L1 and Equilibrium by which SW define Worldly will completely 

ignore Equilibrium as long as its estimated frequency is less than 0.5, which is true of all such 

estimates that have been published. Given this, Worldly reduces to a best response to SW's noisy 

L1, which ranges from L0 to a noiseless L1 depending on estimated parameters. With our 

                                                 
TP

59
PTThe issue is not whether subjects' own decisions should be noisy, but whether they are assumed to respond to 

others' decision noise. SW's and CHC's definition of L1 as a best response to uniform beliefs is identical to ours.   
TP

60
PTCHC's L2 best responds to a mixture of L0 (uniform randomness) and L1 in the proportions 1:τ, which for τ > (<) 1 

puts more weight on L1 (L0). By a kind of "median-voter" result, our (not-everywhere-differentiable) payoff 
function makes it optimal to best respond to L1 alone if τ > 1, or to L0 alone if τ < 1. CHC argue that τ ≈ 1.5 in most 
applications, in which case their L2 is confounded with our L2. A similar argument shows that CHC's L3, which best 
responds to a mixture of L0, L1, and L2 in proportions 1:τ:τ P

2
P/2, is also confounded with our L2 when τ ≈ 1.5 

(because L1 is still the median type). These behavioral equivalences extend to search implications if one assumes (as 



quasiconcave payoff function, such a best response lies between a noiseless L1 and L2—strictly 

between them except for extreme parameter values that make Worldly equivalent to one or the 

other. Yet only one of our 88 subjects made guesses in that range in as many as 10 games, one in 

9, and 2 in 8.61 By contrast, 45 of our subjects made exact guesses for L1, L2, L3, or Equilibrium 

in 7 or more games and they and our other subjects' guesses appear random, relative to Worldly's. 

F. R/TS and Baseline subjects' compliance with types' search implications  

Table X gives the first two games' information search data for a sample of R/TS subjects 

chosen from those who played their assigned types' guesses with very high frequencies, but 

representative with regard to such subjects' search compliance (Appendix C gives the complete 

data). The table also gives Table VI's search implications and MouseLab box numbers for 

reference. The subjects' frequencies of making their assigned types' (and when relevant, alternate 

types') exact guesses are in parentheses after the assigned type. 

These R/TS subjects' look-up patterns conform closely to predictions based on our theory 

of cognition and search, with 2 exceptions: Our Equilibrium subjects search longer and in much 

more complex patterns than our theory suggests. And a number of D1 subjects made more 

(sometimes many more) L2 than D1 guesses, even after passing our D1 Understanding Test, in 

which L2 answers were incorrect. The table includes one of 7 (out of 30) D1 subjects who fit this 

pattern, 804; the others were 802, 809, 1213, 1401, 1509, and 1511). There was also one (out of 

19) D2 subject (1913) who made slightly more L3 than D2 guesses, but there was never any such 

"morphing" from Lk+1 to Dk. These results strongly suggest that Dk is less natural than Lk+1.62  

For comparison, Table XI gives the information search data from the first three games for a 

sample of Baseline subjects chosen, type by type, from those whose guesses most closely fit each 

type, but representative with regard to such subjects' search compliance (Table IX). The subjects' 

frequencies of making their apparent types' (and when they exist, alternate types') guesses are in 

                                                                                                                                                             
CHC's approach requires) that subjects have prior understandings of the population mixture of lower-level types. 
61On average, random guesses would fall in the range in 4.14 games. The 3 subjects with 8 or 9 guesses (115, 501, 
and 506) gave no useful information in their questionnaires, but the subject with 10 (517) stated a homemade rule 
like those in clusters A and E: "I took the midpt of my bound times his/her target, avg'd that with his/her midpt, then 
mult'd that number by my target, and finally avg'd that result with my midpt." However the ambiguities are resolved, 
this mechanical rule is inconsistent with Worldly. The prevalence of OB subjects in this group may seem significant, 
but there were no OB subjects among the 5 subjects with 7 guesses in the range (202, 219, 312, 401, and 416). 
62Some other R/TS subjects made more correct guesses within 0.5 and/or 25 for a type other than their assigned 
type (613, who made more L2 than L1 guesses; 801, who made more L1 than D1 guesses; and 1504, who made 
more L1 than Equilibrium guesses), but transitions from D1 to L2 are by far the most common. This phenomenon is 
probably an important clue regarding the predominance of Lk types in the Baseline treatment, which will be 
examined in more detail in our companion paper.         
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parentheses after their types. It is clear that these "naturally occurring" Baseline L1, L2, and 

possibly L3 or Equilibrium subjects have look-up sequences very close to those of their R/TS 

counterparts, suggesting that R/TS subjects' training did not have a large effect on their look-up 

sequences. Baseline look-up sequences also tend to validate our theory of cognition and search, 

except that estimated Equilibrium Baseline subjects had look-up patterns that, like our 

Equilibrium R/TS subjects', were longer and much more complex than our theory suggests.63

Two aspects of the search data, evident in Tables X and XI, are important in our 

econometric specification. First, many subjects (e.g. Baseline subjects 202 and 210 and R/TS 

subjects 704 and 904) consistently start with "123456" or some variation of this, and many of 

these and other subjects end with an optional "13," checking their own limits even when this is 

not required for their type (e.g. Baseline subjects 101 and 206 and R/TS subjects 1412 and 

1607). We make no attempt to filter out these patterns because subjects may use the information 

they yield, and the choice of how to filter them would involve hidden degrees of freedom. 

Second, individual look-up patterns differ widely in look-up style: Many successful R/TS 

subjects, and many Baseline subjects whose types are evident from their guesses, consistently 

look first at the relevant sequence needed to identify their type's guess, and then either continue 

looking at irrelevant sequences or stop and confirm a guess (e.g. Baseline subjects 108, 118, and 

206, and R/TS subjects 805, 1807, and 1811; Tables X-XI). A smaller number of such subjects 

consistently look at irrelevant sequences at first and then at the relevant sequence only near the 

end (e.g. Baseline subject 413 and R/TS subject 904). Still others return to the relevant sequence 

repeatedly throughout the sequence (e.g. Baseline subject 101 and R/TS subjects 1607 and 

1716). Thus one can identify three distinct styles, "early," "late," and "often"; but the data 

suggest that "often" subjects are almost always either well described as "early" or "late".64   

G. Econometric analysis of Baseline subjects' guesses and information searches 

In this section we generalize Section 4.D's model of guesses to obtain an error-rate model 

of guesses and information searches, and use it to re-estimate Baseline subjects' types. The 

model follows Section 4.D's model, avoiding unnecessary differences in the treatment of guesses 

                                                 
63Note however that Baseline subject 309, who made exact L2 guesses in 16 games, made enough look-ups to be 
sure of identifying them only in games 6-16; he made search errors in games 1-5, including the 3 shown here. R/TS 
L2 subject 2008, who also made exact L2 guesses in 16 games, and several other R/TS subjects whose compliance 
with their type's assigned guesses was very high, made similar search errors. 
64Table X gives subjective style estimates for the R/TS subjects mentioned in the text, and Table XI gives style 
estimates for Baseline subjects from Section 4.G's econometric analysis of search (Table IX).  
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and search. Our main goals are to summarize the implications of the search data and to assess the 

extent to which monitoring search modifies the view of behavior suggested by subjects' guesses.  

The main issue that arises in extending our analysis to search is measuring the extent to 

which subjects' look-up sequences comply with types' search implications (Section 3). We define 

compliance with a type's search implications as the density of the type's relevant look-ups in the 

look-up sequence (Section 3, Table VI). But because our subjects vary widely in where the 

relevant look-ups tend to be located in their sequences, we filter out some idiosyncratic noise 

using a binary nuisance parameter called style. Style is assumed constant across games, like type, 

and modifies type in a way that affects only its search implications. 

Specifically, we assume that each subject has either style s = e for "early" or s = l for "late" 

(Section 4.F). For a given game g, subject i, type k, and style s, we define search compliance as 

the density of relevant look-ups in the part of the sequence identified by the style. If s = e, we 

start at the beginning of the sequence for the game and continue until we obtain a complete 

relevant sequence for the type as characterized in Table VI. If we never obtain such a sequence, 

compliance is 0. Otherwise compliance is the ratio of the length of the type's relevant sequence 

to the number of look-ups that yields the first complete relevant sequence. If, for instance, the 

type's relevant sequence has length six, and the first complete sequence is obtained in eight look-

ups (with two optional or redundant look-ups interspersed), compliance is 0.75. The definition of 

search compliance is identical if s = l, but starting from the end of the sequence. Compliance for 

a given type is thus a number from 0 to 1, comparable across styles, games, and subjects.TP

65
PT  

To reduce the need for structural restrictions, we discretize search compliance as follows.TP

66
PT 

For each game, subject, type, and style, we sort compliance into three categories: CBH B≡ [0.667, 

1.00], CBM B ≡ [0.333, 0.667], and CBL B ≡ [0, 0.333], indexed by c = H, M, L. We call compliance c 

for type k and style s type-k style-s compliance c, or just compliance c when the type and style 

are clear from the context. All products over c below are taken over the values H, M, and L. 

                                                 
TP

65
PTThe compliance data are in Appendix G. For D1, D2, and Sophisticated we take the length of the relevant 

sequence to be 6, the minimum length with which it is possible to satisfy their requirements, for example via 
"153426" for D1, with requirements {(4,[5,1]),(6,[5,3]),2}; or for D2 or Sophisticated, with requirements 
{(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2}. Due to programming constraints we treat multiple sequential lookups as a 
single lookup; this makes little difference. Given Table VI's characterization of types' search requirements, our 
definition of compliance refines CGCB's Occurrence and Adjacency in a way that is appropriate for our search data.     
TP

66
PTCompliance is inherently discrete, but our discretization is coarser than necessary. This is a convenient place to 

correct a typographical error in CGCB's equation (4.3), where the summation (∑) should be a product (∏).   
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Recall that in our model, in each game a subject's type and style determine his information 

search and guess, each with error. We assume that, given type and style, errors in search and 

guesses are independent of each other in each game, and that each is independent across games. 

We describe the joint probability distribution of guesses and search by specifying compliance 

probabilities and guess error rates and precisions, given type and style.TP

67
PT Let IB  Bbe an indicator 

variable for style, with IBs B= 1 when the subject has style s (= e or l) and 0 otherwise. Given a 

subject's type and style, let cζ (assumed independent of type and style) be the probability that he 

has type-k style-s compliance c in any given game, where 1=∑
c

cζ , and let ),,( LMH ζζζζ ≡ . As 

in Section 4.D, in each game g, a subject i of type k and style s makes an adjusted guess in ik
gU  

with probability 1 - ε ; but with probability ]1,0[∈ε , his adjusted guess in ik
gV  has conditional 

density )),(( λi
g

i
g

k
g xRd with precision λ defined as in (4). Let isk

cM  be the set of games g for 

which subject i has type-k style-s compliance c, let ),,( isk
L

isk
M

isk
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isk MMMM ≡ , and let isk
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number of games in isk
cM , so Gm
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isk
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both type-k style-s compliance c and ik
g

i
g

i
g VxR ∈)( , let ),,( isk

L
isk
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isk
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cn be the 

number of games in isk
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c

isk
c

ik nn (for s = e or l) be the number of games g for which 

subject i has ik
g

i
g

i
g VxR ∈)( . With i.i.d. errors, the density of a sample with compliance iskM and 
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i
G
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G

iiii xRxRxR ≡  for a subject i of type k and style s is: 
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where products with no terms are taken to equal 1. Weighting by I BsB and kp , summing over s and 

k, and taking logarithms yields subject i's log-likelihood: 

(9) .)),,);(,,())(,,|,,,,(
1 ,
∑ ∑
= =
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k les

iiiskisksk
s
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TP

67
PTA natural generalization would allow search and guess errors to be correlated for a given game and subject, while 

remaining i.i.d. across games and subjects, as in CGCB. In our specification, this would amount to allowing 
compliance-contingent error rates and precisions. We dispense with this refinement for simplicity.    
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It is clear from (8) and (9) that the maximum likelihood estimate of p sets kp = 1 and IBs B = 1 

for the (generically unique) type k and style s with the highest )),,);(,,( ζλεiiiskisksk xRNMd , 

given the estimated ε, λ, and ζ . The maximum likelihood estimates of ε  and cζ , conditional on 

type k and style s, can be shown from (8) to be ikn /G and Gmisk
c / , the sample frequencies with 

which subject i's adjusted guesses fall in ik
gV  for that k and s/he has compliance c for that k and s. 

The maximum likelihood estimate ofλ is again the logit precision, restricted to guesses in ik
gV . 

The maximum likelihood estimate of subject i's type k maximizes the logarithm of (8) over 

k and s, given the estimated ε and λ. When ikn is between 0 and G, substituting the estimated 

cζ ,ε , and λ  into (8), taking logarithms, using Gm
c

isk
c =∑ , ik

c

isk
c nn =∑ , and ik

c

isk
c NN =U (all 

for s = e or l), simplifying and collecting terms, yields the maximand: 

≡)),,);(,,(ln ζλεiiiskisksk xRNMd  
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where )),),((ln λεiik xRd is the log-likelihood of the guesses-only model defined in (7). Thus 

search adds an additively separable term in search compliance, minus an additional GG ln term. 

As in Section 4.D's model, when ikn  = 0 or G, )),),((ln λεiik xRd reduces to the sum over g in 

the second-to-last line of (10). When isk
cn or both isk

cm  and isk
cn = 0 for some c ( isk

c
isk
c nm ≥  by 

definition), the corresponding terms drop out of (8) and their analogs are eliminated from (10). 

The model now has six independent parameters per subject: error rateε , precisionλ , type 

k, style s, and 2 independent compliance probabilities cζ . The maximum likelihood estimates of 

ε , cζ , and λ , given k and s, are ikn /G, Gmisk
c / , and the standard logit precision. The estimates 

of k and s maximize the expression in (10), given the other estimates. 

Guesses influence these estimates exactly as in Section 4.D's model, and unless the 

estimated k changes the estimates of ε andλ  are the same; but now the estimated k is influenced 



 40

by information search as well as guesses. The search term in the last line of (10) is a convex 

function of the isk
cm ; this favors k-s combinations for which the isk

cm  (or the estimated cζ ) are 

more concentrated on particular levels of c, because their search implications explain more of the 

variation in search patterns. Note that such combinations are favored without regard to whether 

the levels of c on which the isk
cm are concentrated are high or low. We avoid such restrictions 

because levels of search compliance are not meaningfully comparable across types and it would 

be arbitrary to favor a type just because its compliance requirements are easier to satisfy. 

Without them, however, the likelihood may favor a type simply because compliance is 0 in many 

or all games (0 compliance is independent of style). We deal with this as simply as possible, by 

ruling out types for which a subject has 0 (not just L) compliance in 8 or more games a priori.TP

68
PT 

The right-hand side of Table IX reports maximum likelihood estimates of each subject's 

type and style, error rate, precision, and rates of search compliance, first based on search only 

and then based on guesses and search combined. For the latter estimates we report separate as 

well as total log-likelihoods, to give a better indication of what drives the estimates. 

Most subjects' style estimates are early but there is a sizeable minority of late estimates, 

suggesting that our characterization of search compliance would distort the implications of some 

subjects' searches without the style parameter. Most subjects' type estimates based on search 

only, or on guesses and information search, reaffirm the estimates based on guesses, including 51 

of the 58 subjects whose types we described as reliably identified from their guesses.TP

69
PT Other 

subjects' type estimates change when search is taken into account, for one of two reasons. 

For some subjects there is a tension between guesses-only and search-only type estimates 

that is resolved in favor of a type other than the guesses-only estimate.TP

70
PT These include 105, 113, 

                                                 
TP

68
PTThe cutoff of 8 is a conservative response to the difficulty of specifying a precise model of search compliance. A 

more standard but more complex approach, in the spirit of CGCB's use of their Occurrence assumption in defining 
search compliance, would add a separate category for 0 compliance; estimate a subject's probability, given type and 
style, of having positive compliance; and require it to be sufficiently greater than 0. This would have a similar effect.   
TP

69
PTTies in the search-only or guesses-and-search type-style estimates are not rare due to our coarse categorization. 

When they occur we report the tied estimate closest to the guesses-only estimate, indicating the others in the notes.      
TP

70
PTThis happens despite the fact that with random behavior the guess part of the log-likelihood is nearly 6 times larger 

than the search part, and so imperfect compliance has considerably more weight in determining the estimates based 
on guesses and search combined. The difference in weights may seem counterintuitive, because our model avoids 
unnecessary differences in the treatment of guesses and search. It arises because our theory of behavior makes much 
sharper predictions about guesses than about search, which as implemented in the estimation are less likely to be 
satisfied by chance. We could try to put search on a more equal footing by making its predictions sharper, for 
example by requiring more precise levels of search compliance within a finer categorization, except for errors. But 
with the heterogeneity and noisiness of our subjects' searches, they would then satisfy types' search implications 



and 420, estimated as noisy L1 based on guesses but as Equilibrium or L3 based on search or 

guesses and search; 205, 306, 403, and 414, estimated as L2 based on guesses but as L1 or 

Equilibrium based on search or guesses and search (though for 414 the guesses and search 

estimate differs from the search-only estimate, L1); 302, estimated as L3 based on guesses but as 

Equilibrium based on search or guesses and search; and 312 and 313, estimated as D1 (312 

noisy) based on guesses but as L1 or L2 based on search or guesses and search. 

For other subjects the type estimate based on guesses has 0 search compliance in 8 or more 

games, and is therefore ruled out by our a priori constraint. These include 115, 204, and 401, 

estimated as D1 (401 very noisy) based on guesses but as Equilibrium or L1 based on search or 

guesses and search; 112, estimated as Equilibrium based on guesses but as L2 based on search or 

guesses and search; and 304 and 421, estimated as Sophisticated based on guesses but as 

Equilibrium or L1 based on search or guesses and search. This category also includes subject 

415, estimated as L1 based on 9 exact L1 guesses, but as D1 based on search or guesses and 

search. 415 has 9 games with 0 L1 search compliance due to no adjacent [4,6]'s; but her/his look-

up sequences are rich in 4,2,6's and 6,2,4's and across games, 0 search compliance is very weakly 

correlated with exact L1 guesses. We therefore count 415 as a reliably identified L1 subject who 

violated our assumption that basic operations are represented by adjacent look-ups (Section 3). 

Overall, taking search into account, 52 subjects are reliably identified: 27 as L1, 13 as L2, 

10 as Equilibrium, and one each as L3 or Sophisticated. In addition, several more subjects can 

now be probably identified, as L1, L2, L3, or Equilibrium. Thus, the search analysis reinforces 

our conclusion concerning the predominance of Lk types over all other types but Equilibrium.  

 

5. Conclusion 

This paper has reported experiments that elicit subjects' initial responses to 16 dominance-

solvable two-person guessing games, monitoring their searches for hidden but freely accessible 

payoff information along with their guesses. The design yields strong separation of the guesses 

and information searches implied by leading decision rules. Of our 88 Baseline and OB subjects, 

52 can be reliably identified as one of our types based on guesses and search. Because our types 

specify precise guesses in large strategy spaces, the identifications show that those subjects had 

                                                                                                                                                             
only rarely, and the stronger restrictions would cause severe specification bias. We have chosen to rely on weaker 
assumptions about how type determines search than about how it determines guesses, at the cost of extracting less 
information from subjects' searches than might be possible if we could confidently impose stronger restrictions. 
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accurate models of the games and acted as rational, self-interested expected-payoff maximizers. 

42 of those subjects—nearly half our sample—are reliably identified as types other than 

Equilibrium, so that given the specifications of our types, their systematic deviations from 

equilibrium can be attributed to non-equilibrium beliefs based on simplified mental models of 

others, rather than altruism, spite, confusion, or irrationality. 

Among our non-Equilibrium subjects, Lk types are overwhelmingly predominant. This, and 

the evidence from our R/TS treatments that Lk types are more natural than Dk and other types, 

lends support to the leading role given iterated best responses in informal analyses of strategic 

behavior. Together with the evidence presented in previous work on this topic, which suggests 

that the underlying behavioral principles will be descriptive of initial responses to a wide range 

of games, our results suggest that a structural model of initial responses that combines low-level 

Lk types with Equilibrium in the right proportions will reliably out-predict equilibrium.  

We close by noting that although our results directly concern only initial responses, they 

also suggest conclusions about the structure of learning rules. In particular, our subjects' 

comprehension of the games and their strong tendency to choose exact best responses to the 

beliefs implied by simplified mental models of others point clearly away from reinforcement 

learning and toward beliefs-based models such as weighted fictitious play or hybrids like 

Camerer and Ho's (1999) experience-weighted attraction learning. In future experiments we plan 

to use information search to discriminate among alternative theories of learning, whose search 

implications are often far more sharply separated than their implications for decisions. 
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Figure 1. Screen Shot of the MouseLab Display 

 
Table I. Overall Structure 

Session Date Location Subjects 
B1 1/31/2002 UCSD 13 
B2 4/19/2002 (a.m.) UCSD 20 
B3 4/19 2002 (p.m.) UCSD 17 
B4 5/24/2002 (a.m.) UCSD 21 

OB1 5/24/2002 (p.m.) UCSD 17 
R/TS1 2/1/2002 UCSD 13: 4 L1, 5 L2, 4 Equilibrium 
R/TS2 5/20/2002 (a.m.) UCSD 5 Equilibrium 
R/TS3 5/20/2002 (p.m.) UCSD 8 D1 
R/TS4 5/23/2002 UCSD 11: 3 L1, 4 L2, 3 D1, 1 Equilibrium 
R/TS5 4/25/2003 York 10 L3 
R/TS6 4/30/2003 York 11: 2 L3, 9 D2 
R/TS7 5/1/2003 York 11: 3 L2, 2 L3, 1 D1, 2 D2, 3 Equilibrium 
R/TS8 5/6/2003 York 8: 3 D1, 2 D2, 3 Equilibrium 
R/TS9 5/9/2003 York 12: 1 L2, 1 L3, 3 D1, 1 D2, 6 Equilibrium 
R/TS10 5/14/2003 York 12: 2 L2, 5 D1, 1 D2, 4 Equilibrium 
R/TS11 5/21/2003 York 10: 3 L1, 4 L2, 3 D1 
R/TS12 5/23/2003 York 5 L1 
R/TS13 5/28/2003 York 8: 4 L1, 4 L2 
R/TS14 5/30/2003 York 12: 3 L1, 2 L2, 2 L3, 2 D1, 3 D2 
R/TS15 6/10/2003 York 12: 3 L1, 2 L2, 1 L3, 2 D1, 1 D2, 3 Equilibrium 
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Table II. Strategic Structures of the Games
Game Order Targets Equilibrium Rounds of Pattern of Dominance at

i  j Played  Dominance Dominance Both ends
α2β1 6 Low Low 4 A No
β1α2 15 Low Low 3 A No
β1γ2 14 Low Low 3 A Yes
γ2β1 10 Low Low 2 A No
γ4δ3 9 High High 2 S No
δ3γ4 2 High High 3 S Yes
δ3δ3 12 High High 5 S No
δ3δ3 3 High High 5 S No
β1α4 16 Mixed Low 9 S/A No
α4β1 11 Mixed Low 10 S/A No
δ2β3 4 Mixed Low 17 S/A No
β3δ2 13 Mixed Low 18 S/A No
γ2β4 8 Mixed High 22 A No
β4γ2 1 Mixed High 23 A Yes
α2α4 7 Mixed High 52 S/A No
α4α2 5 Mixed High 51 S/A No

Notes: Limits are denoted α for [100, 500], β for [100, 900], γ for [300, 500], δ for [300, 900]. Targets are denoted 1 for 
0.5, 2 for 0.7, 3 for 1.3, 4 for 1.5. Patterns of dominance are denoted A for Alternating; S for Simultaneous; and S/A for 
Simultaneous in first round, then Alternating. 

 
Table III. Types' Guesses and Guesses that Survive Iterated Dominance 

Game Player i's guess for type Range of iteratively undominated guesses
 L1 L2 L3 D1 D2 Eq. Soph. 1 round 2 rounds 3 rounds 4 rounds

α2β1 350 105 122.5 122.5 122.5 100 122 100, 500 100, 175 100, 175 100, 100
β1α2 150 175 100 150 100 100 132 100, 250 100, 250 100, 100 100, 100
β1γ2 200 175 150 200 150 150 162 150, 250 150, 250 150, 150 150, 150
γ2β1 350 300 300 300 300 300 300 300, 500 300, 300 300, 300 300, 300
γ4δ3 500 500 500 500 500 500 500 450, 500 500, 500 500, 500 500, 500
δ3γ4 520 650 650 617.5 650 650 650 390, 650 585, 650 650, 650 650, 650
δ3δ3 780 900 900 838.5 900 900 900 390, 900 507, 900 659.1, 900 856.8, 900
δ3δ3 780 900 900 838.5 900 900 900 390, 900 507, 900 659.1, 900 856.8, 900
β1α4 150 250 112.5 162.5 131.25 100 187 100, 250 100, 250 100, 187.5 100, 187.5
α4β1 500 225 375 262.5 262.5 150 300 150, 500 150, 375 150, 375 150, 281.27
δ2β3 350 546 318.5 451.5 423.15 300 420 300, 630 300, 630 300, 573.3 300, 573.3
β3δ2 780 455 709.8 604.5 604.5 390 695 390, 900 390, 819 390, 819 390, 745.29
γ2β4 350 420 367.5 420 420 500 420 300, 500 315, 500 315, 500 330.75, 500
β4γ2 600 525 630 600 611.25 750 630 450, 750 450, 750 472.5, 750 472.5, 750
α2α4 210 315 220.5 227.5 227.5 350 262 100, 350 105, 350 105, 350 110.25, 350
α4α2 450 315 472.5 337.5 341.25 500 375 150, 500 150, 500 157.5, 500 157.5, 500

 
Table IV. Numbers of Games in which Types' Guesses are Separated by More than 0, 25 

 L1 L2 L3 D1 D2 Eq. Soph.
L1 - 15, 13 15, 12 12, 10 15, 12 15, 15 15, 14 
L2 15, 13 - 11, 9 13, 9 10, 8 11, 9 10, 8
L3 15, 12 11, 9 - 13, 12 8, 5 9, 6 9, 8
D1 12, 10 13, 9 13, 12 - 9, 7 14, 13 12, 10
D2 15, 12 10, 8 8, 5 9, 7 - 9, 8 9, 6
Eq. 15, 15 11, 9 9, 6 14, 13 9, 8 - 11, 9

Soph. 15, 14 10, 8 9, 8 12, 10 9, 6 11, 9 -
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Table V. Strength of Baseline and OB Subjects' Incentives to Make Types' Guesses 
 L0 L1 L2 R1 R2 Eq. B+OB 

L1 34.95 (100) 28.41 (55) 36.81 (76) 34.38 (83) 33.61 (78) 25.98 (56) 34.63 (85) 
L2 31.20 (89) 51.81 (100) 31.34 (65) 39.30 (94) 38.68 (90) 31.37 (68) 38.73 (96) 
L3 32.99 (94) 35.01 (68) 48.14 (100) 38.70 (93) 41.14 (95) 34.00 (74) 39.34 (97) 
D1 33.73 (97) 41.13 (79) 37.56 (78) 41.64 (100) 41.11 (95) 29.42 (64) 39.50 (97) 
D2 32.86 (94) 41.56 (80) 40.57 (84) 40.79 (98) 43.13 (100) 32.43 (70) 40.07 (99) 
Eq. 30.14 (86) 36.67 (71) 36.09 (75) 35.87 (86) 38.30 (89) 46.05 (100) 35.98 (89) 

Soph. 33.04 (95) 41.38 (80) 41.24 (86) 40.77 (98) 41.84 (97) 31.67 (69) 40.53 (100) 
Note: The entries are in US dollars, expressed as percentages of the column maximum in parentheses. 

 
Table VI: Types' Ideal Guesses and Relevant Look-ups 

Type Ideal guess Relevant look-ups 
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P},min{pP
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j
P,[pP
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P]),(bP
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P,[pP

j
P,bP
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P]),pP
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P,pP
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P} 

≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Eq. pP

i
PaP

j
P if pP

i
PpP

j
P < 1 or pP

i
PbP

j
P if pP

i
PpP

j
P > 1 {[pP

i
P,pP

j
P],aP

j
P} ≡ {[2, 5], 4} if pP
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PpP

j
P < 1 

or {[pP

i
P,pP

j
P],bP

j
P} ≡ {[2, 5], 6} if pP

i
PpP

j
P > 1 

Soph. [no closed-form expression; search 
implications are the same as D2's] 

{(aP

i
P,[pP

i
P,aP

j
P]),(bP

i
P,[pP

i
P, bP

j
P]),(aP

j
P,[pP

j
P,aP

i
P]),(bP

j
P,[pP

j
P,bP

i
P]),pP

j
P,pP

i
P} 

≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

 
Table VII. R/TS subjects' compliance with assigned type's guesses 

 L1 L2 L3 D1 D2 Eq. 
UCSD subjects 7 9 - 11 - 10 
% Compliance 77.7 81.3 - 55.1 - 58.1 
% Failed UT2 0.0 0.0 - 8.3 - 28.6 

       
York subjects 18 18 18 19 19 19 
% Compliance 80.9 95.8 84.4 66.1 55.6 76.6 
% Failed UT2 0.0 0.0 0.0 0.0 5.0 13.6 

       
UCSD + York subjects 25 27 18 30 19 29 

% Compliance 80.0 91.0 84.4 62.1 55.6 70.3 
% Failed UT2 0.0 0.0 0.0 3.2 5.0 19.4 
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Table VIII. B and OB Subjects' Aggregate Compliance with Iterated Dominance and Equilibrium Guesses 
Game Respects Respects Respects Respects Equilibrium Equilibrium

(#rounds) 0 rounds 1 round 2 rounds 3 rounds within 0 or 0.5 within 25 
 B, OB, B+OB B, OB, B+OB B, OB, B+OB B, OB, B+OB B, OB, B+OB B,OB, B+OB

All games 10,11,10 (39) 15,16,15 (20) 22,21,21 (7) 13,14,14 (8) 18,15,18 (0,0) 23,15,22 (3) 
α2β1 (4) 0,0,0 (0) 62,82,66 (81) 0,0,0 (0) 23,18,22 (19) 15,0,12 (0,0) 31,0,25 (0)
β1α2 (3) 21,24,22 (81) 0,0,0 (0) 62,65,63(19) 17,12,16 (0) 17,12,16 (0,0) 20,12,18 (2)
β1γ2 (3) 27,29,27 (88) 0,0,0 (0) 63,59,63(12) 10,11,10 (0) 10,12,10 (0,0) 28,24,27 (6)
γ2β1 (2) 0,0,0 (0) 55,59,56 (100) 45,41,44(0) 0,0,0 (0) 45,41,44 (0,0) 48,59,50 (0)
γ4δ3 (2) 18,24,19 (75) 14,0,11 (25) 68,77,69 (0) 0,0,0 (0) 68,76,69 (0,0) 72,76,73 (0)
δ3γ4 (3) 11,18,13 (57) 51,59,52 (32) 10,6,9 (11) 28,18,26 (0) 28,18,26 (0,0) 31,18,28 (8)
δ3δ3 (5) 4,0,3 (15) 4,12,6 (19) 23,12,21 (26) 42,53,44 (33) 25,18,24 (0,0) 27,24,26 (0)
δ3δ3 (5) 6,0,5 (15) 0,6,1 (19) 28,18,26 (26) 44,65,48 (33) 23,12,20 (0,0) 23,12,20 (0)
β1α4 (9) 31,24,30 (81) 0,0,0 (0) 37,35,36 (8) 0,0,0 (0) 6,0,5 (0,0) 6,12,7 (0)
α4β1 (10) 0,0,0 (12) 47,35,44 (32) 0,0,0 (0) 23,35,25 (23) 3,6,3 (0,0) 4,6,5 (13)
δ2β3 (17) 14,12,14 (45) 0,0,0 (0) 4,12,6 (9) 0,0,0 (0) 6,0,5 (0,0) 6,0,5 (0)
β3δ2 (18) 6,6,3 (36) 0,6,5 (10) 28,0,0 (0) 44,18,23 (10) 1,0,1 (0,0) 7,0,6 (6)
γ2β4 (22) 0,0,0 (0) 4,0,3 (7) 0,0,0 (0) 3,0,2 (8) 18,29,20 (0,0) 23,29,24 (0)
β4γ2 (23) 11,18,13 (62) 0,0,0 (0) 4,0,3 (3) 0,0,0 (0) 8,6,8 (0,0) 10,6,9 (6)
α2α4 (52) 9,18,10 (38) 0,0,0 (1) 0,0,0 (0) 0,0,0 (1) 13,6,11 (0,0) 20,6,17 (13)
α4α2 (51) 3,0,2 (12) 0,0,0 (0) 3,6,3 (2) 0,0,0 (0) 7,0,6 (0,0) 8,0,7 (0)
Note: The table gives compliance percentages rounded to the nearest integer, with random compliance percentages in parentheses. 
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Table IX. Type Estimates Based on Guesses Only, Search Only, and Guesses and  SearchP
 

  Guesses only   Search only   Guesses and search      
ID dom. ln L k exact λ ln L k BsB ζ BHB ζ BMB ln LBt B ln LBgB ln LBsB k BsB exact λ ζ BHB ζ BMB 

513 0 0.00 L1 16 - - - - - - - - - - - - - 
118 0 -9.62 L1 15 1.85 -7.41 L1BeB

 0.88 0.06 -17.03 -9.62 -7.41 L1BeB 15 1.85 0.88 0.06 
101 1 -10.27 L1 15 0.55 -9.94 L1BePB

‡
P
 0.69 0.31 -20.21 -10.27 -9.94 L1BePB

‡‡
P
 15 0.55 0.69 0.31 

104 0 -16.63 L1 14 2.20P

*
P
 -3.74 L1BeB 0.00 0.94 -20.37 -16.63 -3.74 L1BeB 14 2.20 0.00 0.94 

413 0 -17.81 L1 14 0.88 -6.03 L1Bl B 0.13 0.88 -23.84 -17.81 -6.03 L1Bl B 14 0.88 0.13 0.88 
207 0 -17.96 L1 14 0.42 0.00 L1BeB 1.00 0.00 -17.96 -17.96 0.00 L1BeB  14 0.42 1.00 0.00 
216 1 -25.41 L1 13 1.06 -11.25 L3BeB 0.75 0.19 -38.69 -25.41 -13.29 L1BeB 13 1.06 0.31 0.63 
402 0 -30.93 L1 12 5.65P

*
P
 -9.00 L1BeB 0.00 0.75 -39.93 -30.93 -9.00 L1BeB 12 5.65 0.00 0.75 

418 0 -42.23 L1 10 21.22 P

**
P
 -7.41 L2BeB 0.88 0.06 -52.16 -42.23 -9.94 L1BeB 10 21.22 0.00 0.69 

301 1 -45.84 L1P

D
P
 10 0.00 -3.74 L1BeB 0.06 0.94 -49.58 -45.84 -3.74 L1BeB 10 0.00 0.06 0.94 

508 0 -46.19 L1P

D
P
 10 2.05 - - - - - - - - - - - - 

308 3 -47.34 L1 10 0.00 -9.63 L3BeB 0.81 0.13 -60.65 -47.34 -13.30 L1Bel B 10 0.00 0.19 0.69 
102 4 -47.63 L1 10 0.00 -9.63 L2BeB 0.81 0.06 -57.57 -47.63 -9.94 L1BeB 

10 0.00 0.00 0.69 
415 1 -53.64 L1 9 0.88 -16.38 D1BeB 0.31 0.50 -107.28 -90.90 -16.38 D1BeB 2 0.76 0.31 0.50 
504 1 -56.97 L1 8 1.68 P

**
P
 - - - - - - - - - - - - 

208 6 -61.62 L1 8 0.00 -3.74 L1Bl B 0.06 0.94 -65.37 -61.62 -3.74 L1Bl B 8 0.00 0.06 0.94 
318 0 -62.61 L1 7 3.18P

*
P
 -3.74 L1BePB

‡
P
 0.00 0.94 -66.36 -62.61 -3.74 L1BeB 7 3.18 0.00 0.94 

512 0 -63.33 L1 7 1.56 - - - - - - - - - - - - 
502 1 -64.55 L1 7 1.01 - - - - - - - - - - - - 
516 1 -64.93 L1P

C
P
 7 1.10P

*
P
 - - - - - - - - - - - - 

409 0 -73.59 L1P

E
P
 4 9.90 P

**
P
 -10.59 L1Bl B 0.00 0.38 -84.18 -73.59 -10.59 L1Bl B 4 9.90 0.00 0.38 

106 0 -75.82 L1 5 1.19 -7.72 EqBeB 0.00 0.19 -85.75 -75.82 -9.94 L1Bl B 5 1.19 0.00 0.31 
305 3 -79.89 L1 5 0.37 -6.03 L1BeB 0.88 0.13 -85.92 -79.89 -6.03 L1BeB 5 0.37 0.88 0.13 
411 1 -80.58 L1 4 1.45 P

**
P
 0.00 L3BeB 1.00 0.00 -86.61 -80.58 -6.03 L1BeB 4 1.45 0.13 0.88 

509 1 -81.81 L1 4 0.86 - - - - - - - - - - - - 
203 4 -83.90 L1 4 0.00 -9.94 EqBeB 0.00 0.31 -94.49 -83.90 -10.59 L1BeB 4 0.00 0.00 0.63 
505 4 -84.13 L1 4 0.43 - - - - - - - - - - - - 
317 3 -86.58 L1 3 0.92P

*
P
 -3.74 L1BeB 0.94 0.06 -90.32 -86.58 -3.74 L1BeB 3 0.92 0.94 0.06 

416 1 -86.74 L1P

†
P 1 4.48 P

**
P
 -3.74 L1BePB

‡
P
 0.00 0.94 -90.48 -86.74 -3.74 L1BeB 1 4.48 0.00 0.94 

217 3 -87.12 L1 3 0.68 -10.59 L1BeB 0.00 0.38 -97.71 -87.12 -10.59 L1BeB 3 0.68 0.00 0.38 



219            3 -87.32 L1+ 3 0.89* -7.72 L1e 0.00 0.81 -95.04 -87.32 -7.72 L1e 3 0.89 0.00 0.81
501               1 -87.93 L1† 0 4.38** - - - - - - - - - - - - 
410            3 -89.18 L1 2 1.53** -7.72 L1el

‡ 0.00 0.19 -96.90 -89.18 -7.72 L1el 2 1.53 0.00 0.19
510                5 -89.60 L1 3 0.00 - - - - - - - - - - - - 
420            2 -89.68 L1+ 2 1.25** -3.74 Eql 0.00 0.06 -94.26 -90.52 -3.74 Eql 3 0.19 0.00 0.06
408            2 -89.71 L1+ 2 1.09* -6.03 L1e 0.00 0.88 -95.74 -89.71 -6.03 L1e 2 1.09 0.00 0.88
201            3 -90.26 L1+ 2 1.21** -3.74 L1e

‡ 0.00 0.94 -94.00 -90.26 -3.74 L1e 2 1.21 0.00 0.94
105            2 -90.58 L1+ 2 1.29** -9.00 Eqe 0.25 0.75 -102.56 -93.56 -9.00 Eqe 2 0.11 0.25 0.75
103           3 -90.61 L1+ 2 1.12* -6.03 L1e 0.00 0.13 -96.63 -90.61 -6.03 L1e 2 1.12 0.00 0.13
213            2 -95.57 L1†+ 0 1.19* -3.74 L2e 0.94 0.00 -100.34 -96.60 -3.74 L2e 0 0.62 0.94 0.00
515                4 -95.68 L1†+ 1 0.60 - - - - - - - - - - - - 
113             5 -96.61 L1†+ 1 0.07 -9.63 L3el

‡ 0.81 0.06 -108.49 -98.86 -9.63 L3el 4 0 0.81 0.06
109                8 -97.31 L1†+ 1 0.00 - - - - - - - - - - - - 
309             0 0.00 L2 16 - -9.94 L2el

‡ 0.69 0.00 -9.94 0.00 -9.94 L2el 16 0.00 0.69 0.00
405             0 0.00 L2 16 - -13.30 L3e 0.69 0.13 -14.40 0.00 -14.40 L2e 16 0.00 0.63 0.25
206             0 -10.07 L2 15 0.79 -7.41 L2e 0.88 0.06 -17.49 -10.07 -7.41 L2e 15 0.79 0.88 0.06
209              0 -25.51 L2 13 0.96 -9.00 L1e 0.00 0.75 -35.45 -25.51 -9.94 L2l 13 0.96 0.69 0.31
108           0 -25.88 L2 13 0.45* 0.00 L2e

‡ 1.00 0.00 -25.88 -25.88 0.00 L2e 13 0.45 1.00 0.00
214            2 -35.30 L2 11 2.73** -3.74 L1e 0.00 0.94 -41.33 -35.30 -6.03 L2e 11 2.73 0.88 0.13
307            1 -38.88 L2 11 1.04* -7.72 Eqe 0.00 0.19 -48.51 -38.88 -9.63 L2l 11 1.04 0.81 0.13
218              0 -40.54 L2 11 0.60 -7.72 L1e 0.00 0.81 -53.84 -40.54 -13.30 L2l 11 0.60 0.69 0.19
422             2 -55.79 L2 9 0.22 0.00 L1e 0.00 1.00 -61.82 -55.79 -6.03 L2e 9 0.22 0.88 0.13
316             1 -58.43 L2 8 0.73 -10.97 Eqe

‡ 0.00 0.44 -72.26 -58.43 -13.84 L2l 8 0.73 0.06 0.38
407            0 -60.98 L2C 8 0.44 -6.03 L2e

‡ 0.88 0.13 -67.00 -60.98 -6.03 L2e 8 0.44 0.88 0.13
306             2 -68.48 L2 7 0.18 -3.74 L1l 0.00 0.06 -75.68 -71.94 -3.74 L1l 6 0.71 0.00 0.06
412           0 -69.43 L2 6 1.05** 0.00 L2e

‡ 1.00 0.00 -69.43 -69.43 0.00 L2e 6 1.05 1.00 0.00
205              0 -72.81 L2 6 0.01 0.00 L1e 0.00 1.00 -75.80 -75.80 0.00 L1e 4 3.27 0.00 1.00
220              1 -72.96 L2 6 0.32 0.00 L1e 0.00 1.00 -76.70 -72.96 -3.74 L2e 6 0.32 0.94 0.06
403             0 -73.60 L2 6 0.50 -6.03 Eql

‡ 0.00 0.13 -86.91 -80.88 -6.03 Eql 4 0.84 0.00 0.13
517               0 -73.70 L2 5 0.98** - - - - - - - - - - - - 
503                3 -88.21 L2+ 3 0.00 - - - - - - - - - - - - 
414            4 -89.00 L2 2 0.78* -7.72 L1e 0.00 0.19 -102.56 -92.62 -9.94 Eqe 2 0.36 0.00 0.31
110              3 -92.51 L2+ 2 0.00 -9.00 L1l 0.00 0.75 -107.03 -98.03 -9.00 L1l 0 0.56 0.00 0.75
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 51

210 0 -51.13 L3P

B
P
 9 0.92P

*
P
 -10.59 L1BeB 0.00 0.38 -68.44 -51.13 -17.32 L3BeB 9 0.92 0.38 0.25 

302 0 -61.46 L3P

B
P
 7 1.11 P

**
P
 -6.03 EqBeB 0.00 0.13 -71.14 -65.12 -6.03 EqBeB 7 1.11 0.00 0.13 

507 0 -63.23 L3 7 0.94 P

**
P
 - - - - - - - - - - - - 

313 0 -79.12 D1P

E
P 2 2.68 P

**
P
 -6.03 L1BePB

‡
P
 0.00 0.88 -90.93 -84.90 -6.03 L1BePB

‡‡
P
 2 3.28 0.00 0.88 

312 0 -80.45 D1P

†
P
 3 5.85 P

**
P
 -3.74 L2BePB

‡
P
 0.94 0.06 -84.74 -81.00 -3.74 L2BeB 3 1.37 0.94 0.06 

204 2 -84.86 D1P

E
P 2 1.22 P

**
P
 0.00 L1BePB

‡
P
 0.00 1.00 -88.47 -88.47 0.00 L1BeB 2 1.59 0.00 1.00 

115 1 -86.10 D1 2 1.74 P

**
P
 -9.94 EqBeB 0.00 0.31 -107.99 -98.05 -9.94 EqBeB 0 0.39 0.00 0.31 

401 2 -91.99 D1P

† 0 1.58 P

**
P
 -6.03 EqBl B 0.00 0.13 -104.35 -98.32 -6.03 EqBl B 0 0.32 0.00 0.13 

310 0 -41.69 EqP

A
P
 11 0.00 -9.94 L1Bl B 0.00 0.31 -56.84 -41.69 -15.15 EqBel B 11 0.00 0.13 0.31 

315 0 -41.80 Eq 11 0.00 0.00 L3BePB

‡
P
 1.00 0.00 -50.80 -41.80 -9.00 EqBeB 11 0.00 0.00 0.75 

404 1 -54.69 Eq 9 0.03 -9.00 EqBePB

‡
P
 0.00 0.75 -63.69 -54.69 -9.00 EqBeB 9 0.03 0.00 0.75 

303 0 -59.93 Eq 8 0.41 -3.74 EqBePB

‡
P
 0.00 0.06 -63.68 -59.93 -3.74 EqBeB 8 0.41 0.00 0.06 

417 0 -60.52 EqP

A
P
 8 0.30 -10.97 L1BeB 0.00 0.44 -73.80 -60.52 -13.29 EqBeB 8 0.30 0.31 0.63 

202 0 -60.78 EqP

A
P
 8 0.10 -9.94 EqBeB 0.00 0.31 -70.72 -60.78 -9.94 EqBeB 8 0.10 0.00 0.31 

518 0 -66.38 Eq 7 0.61 - - - - - - - - - - - - 
112 2 -66.39 Eq 7 0.00 -16.64 L2BeB 0.25 0.25 -106.23 -89.60 -16.64 L2BeB 3 0 0.25 0.25 
215 0 -73.85 Eq 6 0.55 -3.74 L1BeB 0.00 0.06 -81.57 -73.85 -7.72 EqBeB 6 0.55 0.00 0.19 
314 5 -78.06 Eq 5 0.52 -9.94 EqBeB 0.00 0.69 -87.99 -78.06 -9.94 EqBeB 5 0.52 0.00 0.69 
211 3 -79.14 Eq 5 0.00 -7.72 EqBeB 0.00 0.19 -86.86 -79.14 -7.72 EqBeB 5 0.00 0.00 0.19 
514 8 -85.98 Eq 2 0.00 - - - - - - - - - - - - 
406 2 -86.73 Eq 3 0.59 -6.03 L1Bl B 0.00 0.13 -99.17 -86.73 -12.44 EqBl B 3 0.59 0.06 0.25 
212 5 -96.62 EqP

† 1 0.00 -6.03 L1BeB 0.00 0.88 -104.34 -96.62 -7.72 EqBeB 1 0.00 0.00 0.81 
506 0 -82.10 So 3 1.26 P

**
P
 - - - - - - - - - - - - 

304 5 -93.29 SoP

+
P
 2 0.25 0.00 EqBeB 0.00 1.00 -97.31 -97.31 0.00 EqBeB 1 0 0.00 1.00 

421 4 -96.78 SoP

†
P
 1 0.31 -10.59 EqBeB 0.00 0.38 -109.34 -98.38 -10.97 L1BeB 0 0.43 0.00 0.56 

Notes: A guesses-only type identifier superscripted † means that the subject's estimated type was not significantly better than a random model of guesses (λ = 0 
and ε ≈ 1) at the 5% (or 1%) level. A type identifier superscripted + means that the estimated type had lower likelihood than 12 or more pseudotypes in our 
specification test, more than expected at random. A type identifier superscripted A, B, C, D, or E indicates at least potential membership in a cluster identified in 
the specification test. An estimated λ superscripted ** (*) means λ = 0 is rejected at the 1% (5%) level. ln LBtB, ln LBgB, and ln LBsB refer to total, guesses-only, and 
search-only likelihoods. A type-style identifier subscripted el indicates that both styles have equal likelihoods and ζBc B. A search-only type-style identifier 
superscripted ‡ indicates alternatives with different types and/or ζ BcB: L1BlB  for subjects 101 and 404; L2Be Band L3Be B for 318 and 204, L3Be Bfor 416 and 201; L1 Be BandB BL3 BelB 
for 309; L1Be  Band L3Be B for 108; L1Be B for 316, 407, 403, and 315;  L1Be B, L3Be B, and EqBe B for 412 and 312;  L1BlB, D2Be B, and SoBe B for 313; and D1Be B for 303. A guesses and search 
type-style identifier superscripted ‡‡ indicates alternatives with different ζ Bc B: L1Bl B for subjects 101 and 313. No search estimates are reported for subject 109 because 
s/he had 0 search compliance in 8 or more games for every type.  



Table X. Selected R/TS Subjects' Information Searches and Assigned Types' Search Implications
    

     
       Types' Search Implications 

  MouseLab box numbers L1 {[4,6],2}
   a  b p L2 {([1,3],5),4,6,2}  
  You (i) 1  2 3 L3 {([4,6],2),1,3,5}  
  S/he (j) 4   5 6 D1 {(4,[5,1], (6,[5,3]),2}    
          D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
      Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1    
                

Subject             

     
               

              

 
    

     
           
           
         
          

                

 
 

    
        
           
          
           

904 1716 1807 1607 1811 2008 1001 1412 805 1601 804 1110 1202 704 1205 1408 2002 
Type(#rt.) L1 (16) 

 
L1 (16) 

 
L1 (16) 

 
L2 (16) 

 
L2 (16) L2 (16)

 
L3 (16) L3 (16) D1 (16)

  
D1 (16) 

 
D1 (3) D2 (14)

16)  
D2 (15)

 
Eq (16) Eq (16) Eq (16) Eq (16) 

 Alt.(#rt.) L2 (
Est. style late often early often early  early

 
 

Game   
1 123456 

 
146462 462513 

 
135462 

 
134446 111313 462135 146231 154356 254514 

 
154346

 
135464 246466 123456 123456 123123 142536 

 4623 134646
 

 1313
 

5213*4
 

131313
 

21364* 564623
 

423213
 

36231 5213 2646*1
 

135464 363256 424652 456445 125365
  23

 
6

 
5423 246231

 
1 2642

 
313

 
641321 565365 562525 632132

 
253616

 52
 

342462 626365 6352*4
 

11 361454
 422646 652651 65 613451
 124625 452262 213452

  5*1224 6526
 

 63
 654646

  
2 123456 

 
462462 

 
462132 

 
135461 134653 131313 462135 462462 514535 514653 

 
515135 135134 123645 123456 123456 123456 143625 

 4231
 

13 25
 

354621
  

 125642 566622
 

642562 546231 615364
 

6213 365462
 

642163 132462 525123 244565 456123 361425
 3 313562

 
333

 
223146 546231 23

 
 3 451463 426262 652625 565263 643524 142523

  52 2562*6
 

211136 241356 635256 212554 1 625656
  2  414262 462*13 262365 146662 3

  135362 524242 456
 

654251
  *14654

 
466135 44526*

   6 6462 31
Notes:  The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. A * 
in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it. 
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Table XI. Selected Baseline Subjects' Information Searches and Estimated Types' Search Implications 
         Types' Search Implications  
   MouseLab box numbers L1 {[4,6],2}

    a b p L2 {([1,3],5),4,6,2}
  You (i) 1 2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4   5 6 D1 {(4,[5,1], (6,[5,3]),2}   
    D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
      Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1   
     

Subject                

             
    

 
 
   
    
    
    
    

 

 
     
     
    

  
    
     

101 118 413 108 206 309 405 210 302 318 417 404 202 310 315
Type(#rt.) L1 (15) L1 (15) L1 (14) L2 (13) L2 (15) L2 (16) L2 (16) L3 (9) L3 (7) L1 (7) Eq (8) Eq (9) Eq (8) Eq (11) Eq (11)
Alt.(#rt.)        Eq (9) 

 
Eq (7) D1 (5) L3 (7) L2 (6) 

 
D2 (7)   

Alt.(#rt.) D2 (8) L2 (5) L3 (7)
Est. style early

 
early

 
late

 
early

 
early

 
 early/late

 
early 

 
early 

 
early 

 
early 

 
early 

 
early 

 
early 

 
early/late
 

early 
 Game 

1 146246 
 

246134 123456 135642
 

533146 1352 144652 123456 221135 132456 252531 462135 123456 123126 213465
 213

 
626241 545612 213 313312 123456 465645 465252 464656 464655 254613 544121 624163

 32*135
 

 3463*
 

546232 213456 213213 13242* 446531 645515 621342 565421 564121
 12512 254213 45456*

 
 1462

 
641252 21354* *525 254362 325466

 654 541 462121 135462 *21545
 3 426256 4*

 356234
 131354
 645

2 46213
 

246262 123564 135642
 

531462 135263 132456 123456 213546 132465 255236 462461 123456 123546 134652
 2131

 
 62213*

 
3 31 1526*2 253156 465562 566213 132*46

  
62*365 352524 445613 216326 124653

 *3 456545 231654 545463 2 243563 261315 255462 231456 656121
 463123 456*2 21*266 463562 513565 *62 3
 156562 54123 23
 62

3 462*46 
 

246242 264231 
  

135642 535164 135263 312456 123455 265413 134652 521363 462135 123456 123655 132465
 466413 53 2231 5231*1 645612 232145 1323*4

  
641526 215634 123562 463213 544163

 *426
 

 236545 3 563214 5263*6 *52 3 *3625
 5233** 563214 52
 513 523*65

     4123  
Notes:  The subjects' frequencies of making their apparent types' (and when relevant, alternate types') exact guesses are in parentheses after 
theassigned type. A * in a subject's look-up sequence means that the subject entered a guess there without immediately confirming it. 
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