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Abstract. “Strategy-proofness” is one of the axioms that are most frequently used in
the recent literature on social choice theory. It requires that by misrepresenting his pref-
erences, no agent can manipulate the outcome of the social choice rule in his favor. The
stronger requirement of “group strategy-proofness” is also often employed to obtain clear
characterization results of social choice rules. Group strategy-proofness requires that no
group of agents can manipulate the outcome in their favors. In this paper, we advocate
“effective pairwise strategy-proofness.” It is the requirement that the social choice rule
should be immune to unilateral manipulation and “self-enforcing” pairwise manipulation
in the sense that no agent of a pair has the incentive to betray his partner. We apply the
axiom of effective pairwise strategy-proofness to three types of economies: public good
economy, pure exchange economy, and allotment economy. Although effective pairwise
strategy-proofness is seemingly a much weaker axiom than group strategy-proofness, ef-
fective pairwise strategy-proofness characterizes social choice rules that are analyzed by
using different axioms in the literature.

1I thank Professors S. Barberà, T. Saijo, J. Schummer and anonymous referee for their useful com-
ments. I also thank W. Kureishi for his detailed comments and R. Serizawa her careful reading.



1 Introduction

When a collection of individuals has to choose an allocation, the procedure they use for
making their choice should take into account their preferences. Procedures are formally
represented as functions from the class of possible preference profiles into the feasible
set, and they are called social choice functions, or social choice rules. In this paper,
we call them rules for short. “Strategy-proofness” is one of the axioms that are most
frequently used in recent literature on social choice theory; it says that by misrepresenting
his preferences, no agent can manipulate the outcome of the rule in his favor2. “Group
strategy-proofness” is also often employed to obtain clear characterization results of rules.
This condition is a much stronger requirement than strategy-proofness in that a rule
must be immune to strategic misrepresentation of preferences by all kinds of coalitions
of agents. Since cooperation in such manipulation is difficult in many situations, group
strategy-proofness is considered to be unnecessarily demanding. Thus, one might suspect
that desirable properties of rules are unnecessarily sacrificed for the requirement of group
strategy-proofness.
In this paper, we advocate “effective pairwise strategy-proofness”. This condition

weakens group strategy-proofness by restricting manipulations to which rules must be
immune as follows. Cooperation in strategic misrepresentation is especially difficult for
large coalitions. Thus, effective pairwise strategy-proofness does not require that a rule
should be immune to manipulations by more than two agents. Note that in pairwise
manipulation, there is an incentive for an agent to betray his partner to increase his
utility further. If there is a chance of such betrayal, a pairwise manipulation is not “self-
enforcing”3, and the society may not have to worry about pairwise manipulations that
are not self-enforcing. Therefore, effective pairwise strategy-proofness neglects non-self-
enforcing pairwise manipulations. That is, effective pairwise strategy-proofness is a re-
quirement that a rule should be immune only to unilateral manipulation and self-enforcing
pairwise manipulation4. Accordingly, although effective pairwise strategy-proofness is
stronger than strategy-proofness, it is a reasonable requirement. We apply effective pair-
wise strategy-proofness to various kinds of economies, such as public good economies,
pure exchange economies, and allotment economies. As a result, we obtain new charac-
terizations of classes of rules those are analyzed in literature.
In their influential articles, Gibbard (1977) and Satterthwaite (1975) characterize

dictatorships5 to be the only strategy-proof rules on the universal domain6 where there
are at least three alternatives in the range. Since then, many authors employ strategy-
proofness to characterize various classes of rules in different kinds of models. For example,
Moulin (1980) and his successors identify the class of strategy-proof rules for economies
where the feasible set consists of only public alternatives and agents have single-peaked7

2In game theoretic terminology, a rule is strategy-proof if it is a weakly dominant strategy for each
agent to represent his true.

3This notion of self-enforcing is similar to self-enforcingness of Peleg and Sudhölter (1999).
4In this paper, we do not consider the private transfer between agents. Schummer (2000) independently

analyzes the joint manipulation of two agents when the transfer between agents is possible in economies
where preferences are quasi-linear.

5A rule is a dictatorship if there is some agent such that the outcome of the rule is always his most
preferred element in the feasible set.

6The universal domain is the class of all linear preferences on the feasible set.
7A preferences is single-peaked if there is some point, called ”peak”, and alternatives closer to the peak

are more preferred.
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preferences. However, when there is at least one private good, strategy-proofness alone
is not strong enough to obtain meaningful classes of rules. Thus, together with some
additional properties, conditions stronger than strategy-proofness are often required in
characterizing rules.
Moulin (1994) provides a remarkable example of public good economies. He applies

group strategy-proofness and symmetry8 to economies with one public good and one
private good. As a result, he obtains “equal cost share rules,” that is, rules where agents
equally share the cost of the public good, regardless of whatever preferences they may
have.
Barberà and Jackson (1995) also provide a notable example in pure exchange economies.

They employ “nonbossiness” introduced by Satterthwaite and Sonnenschein (1981) to-
gether with strategy-proofness. The condition of nonbossiness says that by changing his
announced preferences, no agent can change the other agents’ consumption bundles with-
out changing his own consumption bundle. When combined with strategy-proofness, the
requirement of nonbossiness implies a weak variant of group strategy-proofness called
“weak group strategy-proofness” on the class of classical preferences. Using this fact,
Barberà and Jackson succeed in identifying the class of strategy-proof, nonbossy, and
anonymous9 rules for pure exchange economies.
In this paper, first, we apply effective pairwise strategy-proofness to public good

economies where there are one private good and one pure public good. We assume that
the domain of preferences is classical or it is quasi-linear. We establish that if a rule is
effectively pairwise strategy-proof, then it is a “preference independent cost share rule”;
each agent shares the cost of the public goods according to his own cost share function
that depends only on the quantity of the public goods produced. When such cost share
functions are considered to reflect some social norm such as ability to pay, this result
supports the ability to pay doctrine against benefit doctrine. We also establish that ef-
fective pairwise strategy-proofness is equivalent to group strategy-proofness on the class
of classical preferences in public goods economies.
Second, we apply effective pairwise strategy-proofness to pure exchange economies

where preferences are classical, homothetic and smooth. We establish that there is no
effectively pairwise strategy-proof, Pareto-efficient, and nondictatorial rule. As corollaries
of this result on the class of classical, homothetic and smooth preferences, the same con-
clusions hold on any superdomain of the class of those preferences. It is also follows from
this result that effective pairwise strategy-proofness together with Pareto-efficiency imply
group strategy-proofness on the class of classical, homothetic and smooth preferences in
pure exchange economies
Third, we apply effective pairwise strategy-proofness to allotment economies where

there is a fixed amount of one private good that is not freely disposable, and prefer-
ences are single-peaked. We establish that a rule is effectively pairwise strategy-proof
and symmetric, and respects unanimity10 if and only if it is the “uniform rule (Benassy,
1982)”. We also establish that effective pairwise strategy-proofness together with respect

8A rule is symmetric if whenever two agents have the same preference, they receive the same con-
sumption bundle.

9A rule is anonymous if whenever the preferences of two agents are switched, their consumption
bundles are also switched.
10A rule in allotment economies respects unanimity if whenever the sum of agents’ preferred levels is

equal to the total endowment, agents receive their preferred levels.
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for unanimity imply group strategy-proofness on the class of single-peaked preferences in
allotment economies.
We organize the paper as follows: In Section 2, we describe the general model and

introduce basic notions. We state the results of the three types of economies, public good
economies, pure exchange economies, and allotment economies in Sections 3, 4, and 5
respectively. We gather the proofs of all results in Section 6.

2 The General Model and The Basic Notions

There are n ≥ 2 agents. We denote the set of agents by N = {1, 2, . . . , n}. A coalition
is a subset N 0 of N . Given a coalition N 0 ⊆ N and an agent i ∈ N , we denote the
coalition N\N 0 by −N 0 and the coalition N\{i} by −i. There are mX ≥ 1 private goods
and mY (pure) public goods, where mY is 0 or 1. Let m = mX + mY . We denote the
set of goods by M = {1, 2, . . . ,m}, and that of private goods by MX = {1, 2, . . . ,mX}.
Each agent i is faced with his consumption set Zi = X i × Y = Rm+ , where X i = RmX

+

is the set of agent i’s private good consumption bundles and Y = R+ is the set of the
public good levels. His consumption bundle zi = (zi1, . . . , z

i
m) = (xi, y) is an element of

Zi. The feasible set Z is a subset of X1× · · · ×Xn× Y, and is specified for various types
of economies in the following sections. An allocation z = (x1, . . . , xn, y) is an element of
Z. Let e = (e1, . . . , en, 0, . . . , 0) ∈ Z be the endowment point, where ei ∈ RmX

+ is agent
i’s endowment of the private goods. Let U0 be the class of preferences on Rm+ which are
represented by continuous utility functions. We shall often abuse language and identify
preferences with the continuous utility functions that represent them.

Definition. Let U00 ⊂ U0, and U = (U00)n. A rule on U is a function f from U to Z.
The set U is called the domain of f.

Definition. A preference ui ∈ U0 is classical if its utility function is continuous on Rm+ ,
and it is strictly quasi-concave and strictly monotonic on the interior of Rm+ .
We denote the class of classical preferences by UC , and call it the classical domain.

Other types of domains are introduced in subsequent sections. Although agent i’s
utility function ui(x1, . . . , xn, y) actually depends only on zi = (xi, y), we treat ui as a
function on Rn·mX+mY

+ when it simplifies notation without creating confusion. We write
U = U1 × · · · ×Un, where U i is the set of agent i’s utility functions. A preference profile
is an element of U . Given N 0 ⊆ N , let UN 0

=
Q
j∈N 0 U j. We denote generic elements

of U , UN
0
and U−i by u, uN

0
and u−i respectively. If u = (u1, . . . , un) ∈ U , N 0 ⊆ N,

and i ∈ N are given in advance, uN
0
denotes (uj)j∈N 0 and u−i denotes (uj)j∈N\{i}. Given

i ∈ N and u ∈ U , let the best element set Bi(u) = {z ∈ Z|∀z0 ∈ Z, ui(z) ≥ ui(z0)}.
Given a rule f : U → Z and a preference profile u ∈ U , we write f(u) = (f1(u), . . . , fn(u),
fy(u)), f

i(u) = (fi(u), fy(u)), and f
−i(u) = ((fj(u))j 6=i, fy(u)).

Definition. Given a u ∈ U , an allocation z ∈ Z is Pareto-efficient for u if for any
z0 ∈ Z,
[∃i ∈ N such that ui(z0) > ui(z)]⇒ [∃j ∈ N such that uj(z) > uj(z0)].
A rule f is Pareto-efficient if for any u ∈ U , f(u) is Pareto efficient for u.
Next we consider distributional requirements of rules. A rule is “individually rational”

if it never assigns an allocation which makes some agent worse off than he would be by
consuming his endowment. This condition requires that all the agents should share in the
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fruit of cooperation. A rule is “symmetric” if two agents receive the same consumption
bundle whenever they have the same preference; and it is “anonymous” if when the
preferences of two agents are switched, their assigned consumption bundles are switched
as well. These two conditions require a rule not to treat agents unfairly.

Definition. A rule f is individually rational if for any u ∈ U and any i ∈ N , ui(f(u)) ≥
ui(e).
It is symmetric if for any u ∈ U , any i ∈ N, and any j ∈ N,
ui = uj ⇒ fi(u) = fj(u).
It is anonymous if for any u ∈ U , any i ∈ N , any j ∈ N , any ûi ∈ U i, and any ûj ∈ U j,
[ûi = uj&ûj = ui]⇒ [f i(ûi, ûj, u−{i,j}) = f j(u) & f j(ûi, ûj, u−{i,j}) = f i(u)].

Definition. A rule f is dictatorial if there is an agent i ∈ N such that for any u ∈ U,
f i(u) ∈ Bi(u); otherwise f is nondictatorial.
The condition of “individual strategy-proofness” requires that a rule should be im-

mune to the strategic behavior of any single agent; no agent can increase his utility by
unilateral manipulation. Hereafter we call the condition of individual strategy-proofness
simply “strategy-proofness” for short. “Group strategy-proofness” is a stronger condi-
tion; it requires that by coalitional manipulation no coalition can increase the utility of
any member in the coalition without decreasing the utility of some other member in it.
“Pairwise strategy-proofness” is an intermediate condition; it is stronger than individual
strategy-proofness but weaker than group strategy-proofness. Pairwise strategy-proofness
requires that no pair of agents can increase the utility of any agent of the pair without
decreasing the utility of the other of the pair. A pairwise manipulation is “self-enforcing”
if the manipulation does not decrease the utility of either of the pair, increases the utility
of at least one of the pair, and neither of the pair has the incentive to betray the part-
ner. “Effective pairwise strategy-proofness” requires that no pair of agents should have
a self-enforcing manipulation in addition to strategy-proofness. Thus, effective pairwise
strategy-proofness is stronger than strategy-proofness, but weaker than pairwise strategy-
proofness.

Definition. A rule f is (individually) strategy-proof if for any u ∈ U , any i ∈ N , and any
ûi ∈ U i, ui(f(u)) ≥ ui(f(ûi, u−i)).
It is weak group strategy-proof if for any u ∈ U , any N 0 ⊆ N , and any ûN 0 ∈ UN 0

,
∃i ∈ N 0 s.t. ui(f(u)) ≥ ui(f(ûN 0

, u−N
0
)).

It is group strategy-proof if for any u ∈ U , any N 0 ⊆ N , and any ûN 0 ∈ UN 0
,

[∃i ∈ N 0 s.t. ui(f(ûN
0
, u−N

0
)) > ui(f(u))]⇒ [∃j ∈ N 0 s.t. uj(f(ûN

0
, u−N

0
)) < uj(f(u))].

Definition. A rule f is pairwise strategy-proof if for any u ∈ U , any N 0 = {i, j} ⊆ N ,
and any ûN

0 ∈ UN 0
,

[ui(f(ûN
0
, u−N

0
)) > ui(f(u))]⇒ [uj(f(ûN

0
, u−N

0
)) < uj(f(u))].

Definition. Given a rule f , a preference profile u ∈ U , and a pair of agents N 0 = {i, j},
a preference profile of the pair ûN

0 ∈ UN 0
is a self-enforcing manipulation if

(i) ui(f(ûN
0
, u−N

0
)) ≥ ui(f(u)) and uj(f(ûN 0

, u−N
0
)) ≥ uj(f(u)),

(ii) ui(f(ûN
0
, u−N

0
)) > ui(f(u)) or uj(f(ûN

0
, u−N

0
)) > uj(f(u)),

(iii) for any eui ∈ U i, ui(f(ûN 0
, u−N

0
)) ≥ ui(f(eui, ûj, u−N 0

)), and
(iv) for any euj ∈ U j, uj(f(ûN 0

, u−N
0
)) ≥ ui(f(euj, ûi, u−N 0

)).
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A rule is effectively pairwise strategy-proof if (i) it is strategy-proof, and (ii) no pair of
agents has a self-enforcing manipulation.

Generally we say that an agent is “bossy” if he intervenes in what he is not concerned
with. Since agent i’s preference depends only on zi, agent i is not concerned with z−i.
Thus here, “nonbossiness” implies that by changing his announced preferences, no agent
can change the other agents’ consumption bundles z−i without changing his consumption
bundle zi.

Definition. A rule f is nonbossy if for any u ∈ U , any i ∈ N , and any ûi ∈ U i,
f−i(u) 6= f−i(ûi, u−i)⇒ f i(u) 6= f i(ûi, u−i).
Nonbossiness is introduced in Satterthwaite and Sonnenschein (1981). They discuss its

economic motivation. This condition also plays a technically important role in our paper.
Propositions 1, 3, and 5 in subsequent sections state that nonbossiness is closely related
to effective pairwise strategy-proofness. In Section 4, however, we cite an example which
emphasizes that effective pairwise strategy-proofness is mathematically independent of
nonbossiness in pure exchange economies. That example also demonstrates that the two
conditions are also mathematically independent in allotment economies.

3 Public Good Economies

In this section, we consider economies where there are one private good and one public
good. Thus, mX = mY = 1 in this section. The public good is produced using the private
good as an input which is collected from agents. The cost function C of the public good
is an increasing function from R+ to R+. The feasible set Z in this section is the set
{z = (x1, . . . , xn, y) ∈ X1 × · · · ×Xn × Y | C(y) ≤ Pi∈N(e

i − xi)}. Given a rule f on
a domain U , we denote the production range of f by Yf , that is, Yf = {y ∈ Y | ∃u ∈ U
such that fy(u) = y}.
Definition. A preference ui ∈ UC is quasi-linear if there is a value function vi : R+ → R+
such that
∀zi = (xi, y) ∈ Zi, ∀ẑi = (x̂i, ŷ) ∈ Zi,
ui(zi) ≥ ui(ẑi)⇐⇒ vi(y) + xi ≥ vi(ŷ) + x̂i.
We denote the class of quasi-linear by UQ, and call it the quasi-linear domain.

How agents should share the cost of the public good has been discussed by even
classical economists or earlier. One of influential doctrines was “ability to pay doctrine”;
it insists that agents should share the cost of the public good according to their ability to
pay, not the benefit they receive from the public good. However, since Samuelson (1954)
analyzed the Lindahl mechanism, the modern economic theory pay most attention to rules
based on “benefit doctrine”; it insists that the cost share of agents should depend on the
benefit they receive.11 As we mentioned in the Introduction, Moulin (1994) employs the
condition of group strategy-proofness together with symmetry to obtain “equal cost share
rules,” that is, the rules where agents equally share the cost of the public good, regardless
of whatever preferences they may have. He establishes that if a rule is group strategy-proof
and symmetric, then it is an equal cost share rule. Equal cost share rules belong to the
class of “preference independent cost share rules.” The idea of preference independent

11See Musgrave (1985) for the details of the literature.
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cost share rule is similar to ability to pay doctrine. Under a preference independent cost
share rule, each agent has his own “norm cost share function”, which is mathematically
formulated as a function from Y to R+, and which assigns his cost share for any level
of the public good produced. Norm cost share functions are interpreted as reflecting the
ability to pay of agents or a certain kind of social norm. Preference independent cost
share rules are rules such that agents share the cost of the public good according to their
norm cost share functions.

Definition. A rule f is a preference independent cost share rule if there is a list of
norm cost share functions ti : Y → R+, i ∈ N , such that for any u ∈ U , C(fy(u)) ≤P

i∈N ti(fy(u)); and for any u ∈ U and any i ∈ N , fi(u) = ei − ti(fy(u)).
Under preference independent cost share rules, agents’ preferences have influence on

the levels of the public good produced, and thus the preferences have indirect influence
on the cost shares the agents need to pay. However, the change of the preferences has
no impact on the cost shares unless the level of the public good produced also changes.
Proportional cost share rules illustrated in Example 1 below are an example of preference
independent cost share rules.

Example 1 (Proportional Cost Share Rule). Let the number of agents n be odd, and let
α = (α1, . . . ,αn) ∈ Rn+ be such that

P
i∈N αi = 1. Consider a rule f such that for any

u ∈ U and any i ∈ N, fi(u) = ei−αi ·C((fy(u)). Then f is a preference independent cost
share rule. Assume further that C is convex, and that the production range, Yf , is convex.
Then agents’ classical and quasi-linear preferences induce single-peaked preferences on Yf ,
and the peaks are agents’ demands for the public good. If the public good production
level is determined by “the median voter scheme”, that is, if the public good is produced
as much as the median of the demands, then f is group strategy-proof.

Since equal cost share rules are considered to be based on ability to pay doctrine in
the case that all the agents have the equal ability to pay, Moulin’s (1994) result sup-
ports ability to pay principle from the view point of strategic behavior. Serizawa (1996,
1999), Ohseto (1997), Deb and Ohseto (1999) etc. succeed in strengthening his result by
using strategy-proofness. However, some additional conditions such as symmetry, budget-
balancing, individual rationality, nonbossiness, etc. are still required to obtain preference
independent cost share rules. In this section, we establish that effective pairwise strategy-
proofness alone is enough to obtain preference independent cost share rules. Our result
strongly supports ability to pay doctrine from the view point of strategic behavior. First
we show that effective strategy-proofness implies nonbossiness.

Proposition 1. Consider the public good economy with a private good and a public
good where the domain is classical, or it is quasi-linear. If a rule is effectively pairwise
strategy-proof, then it is nonbossy.

Proposition 1 holds even without resource-balance12. It is a special feature of the
type of economies analyzed in this section that effective pairwise strategy-proofness alone
implies nonbossiness.

Theorem 1. Consider the public good economy with a private good and a public good where

12An allocation is resource-balanced if all endowments are used up for the production of other goods
or consumed by some agents. A rule f is resource-balanced if for any u ∈ U , f(u) is resource-balanced.
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the domain is classical, or it is quasi-linear. If a rule is effectively pairwise strategy-proof,
then it is a preference independent cost share rule.

Theorem 1 implies that to be a preference independent cost share rule is a necessary
condition of effective pairwise strategy-proofness. However, to be a preference independent
cost share rule is not a sufficient condition of effective pairwise strategy-proofness, as
illustrated by Example 2 below.

Example 2. Assume that n = 3 and that C(y) = y for any y ∈ R+. Let t1 be such that
t1(y) = y/2 for any y ∈ [0, 2] and t1(y) = 1+(y−2)/n for any y > 2. For each i ∈ N\{1},
let ti(y) = [y − t1(y)]/(n − 1) for any y ∈ R+. When the level of the public good is
determined similarly to Example 113, the rule is not even strategy-proof.

Example 3. Assume that C, t1, and ti(y) for all i ∈ N\{1} are the same as Example 2.
If the public good is always produced as much as the demand of some prespecified agent,
for instance, if the public good is always produced as much as agent 2’s demand, then the
rule is group strategy-proof.

Whether a preference independent cost share rule satisfies strategy-proof requirements
or not depends on several factors. Examples 1, 2, and 3 imply that the shape of the norm
cost share functions, and the power of structure to decide the level of the public good
are important. It is well-known that if the production range, Yf , is convex, if the norm
cost functions are all convex, and if the public good production level is determined by the
median voter scheme, then the rule is group strategy-proof. Moulin (1980) generalizes
the median voter scheme, and identifies the class of strategy-proof schemes determining
public good production levels.14 Serizawa (1996, 1999) and Ohseto (1997) provide various
sufficient conditions for strategy-proof requirements.
Effective pairwise strategy-proofness is actually a strong condition in public goods

economies. It is equivalent to group strategy-proofness on the class of the classical pref-
erences, as Proposition 2 below says. However, it is an open question whether the same
equivalence holds or not on the class of quasi-linear preferences.

Proposition 2. Consider the public good economy with a private good and a public good
where the domain is classical. A rule is effectively pairwise strategy-proof if and only if it
is group strategy-proof.

4 Pure Exchange Economies

In this section, we consider pure exchange economies, that is, economies where there are
only private goods, and there is no production. Thus, mY = 0 in this section. The feasible
set Z in this section is the set {z = (x1, . . . , xn) ∈ X1 × · · · ×Xn |Pi∈N x

i ≤Pi∈N e
i}.

Definition. A preference ui ∈ U0 is homothetic if for any zi ∈ Zi, any bzi ∈ Zi, and λ
∈ R+,
ui(zi) ≥ ui(bzi)⇒ ui(λ · zi) ≥ ui(λ · bzi).

13The preferences of agents, j = 2, . . . , n, induce single-peaked preferences on Yf . However, the prefer-
ence on Yf induced by agent 1’s preference may have two peaks. In that case, we take the larger one as
agent 1’s demand, for example.
14Barberà, Massó, and Serizawa (1998) also study the case where there are several public goods and

the production range is compact.
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We denote the class of homothetic preferences by UH , and call it the homothetic
domain.

Definition. A preference ui ∈ U0 is smooth if for any zi ∈ Rm++, there is a unique vector
in the unit simplex {q ∈ Rm+ : kqk = 1} that generates a hyperplane supporting UC(ui, zi)
at zi.
We denote the class of smooth preferences by UM , and call it the smooth domain.

In his pioneering article, Hurwicz (1972) establishes that there is no strategy-proof,
Pareto-efficient, and individually rational rule for pure exchange economies with two
agents and two goods, provided that the domain includes a sufficiently wide class of clas-
sical preferences. However, he left open the many-agent case. By citing the following
example from Satterthwaite and Sonnenschein (1981), Zhou (1991) later demonstrates
that the results of the two-agent case may not extend to the many-agent case.

Example 4 (Satterthwaite and Sonnenschein, 1981). Suppose that there are two goods
and three agents, say, agents 1, 2, and 3. Agent 1 gets the whole endowment if agent 3’s
marginal rate of substitution at (1, 1) is greater than 1. Otherwise, agent 2 gets the whole
endowment.

The rule of Example 4 is strategy-proof, Pareto-efficient, and nondictatorial, although
Zhou (1991) proves the non-existence of such a rule in the two-agent case. He establishes
that in pure exchange economies with two agents and any finite number of goods, there is
no strategy-proof, Pareto-efficient, and nondictatorial rule on the class of classical pref-
erences. Schummer (1997) establishes the same conclusion as Zhou (1991) on the class
of classical and homothetic preferences in the two-agent case. Serizawa (2002) has re-
cently shown the parallel result of Hurwicz (1972) on the class of classical, homothetic,
and smooth preferences in the case of any finite number of agents and goods. Further-
more, Serizawa and Weymark (2003) strengthen Serizawa’s (2002) result. They replace
individual rationality by a weaker condition of “minimum consumption guarantee”; it
requires that there should be a positive constant ² such that for any preference profile,
the consumption of every agent is at least ² distance from the origin of his consumption
set.15

By employing effective pairwise strategy-proofness, we establish a new result for pure
exchange economies with any finite number of agents and goods. We show that in pure
exchange economies with any finite number of agents and goods, there is no effectively
pairwise strategy-proof, Pareto-efficient, and nondictatorial rule on the class of classical,
homothetic and smooth preferences. When compared with Hurwicz (1972), Zhou (1991)
and Schummer (1997), our result can be applied to pure exchange economies with any
finite number of agents. When compared with Serizawa (2002) and Serizawa andWeymark
(2003), individual rationality and minimum consumption guarantee are replaced with the
weaker condition of nondictatoriality. First we show that effective pairwise strategy-
proofness and Pareto-efficiency imply nonbossiness.

Proposition 3. Consider the pure exchange economy where there are at least two private
goods and two agents, and the domain is classical, homothetic and smooth. If a rule is

15To be precise, individual rationality implies minimum consumption guarantee in the case that every
agent has positive endowments of all goods. Otherwise, the two requirements are mathematically
independent.
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effectively pairwise strategy-proof and Pareto-efficient, then it is nonbossy.

We emphasize that in pure exchange economies, effective pairwise strategy-proofness
and nonbossiness are mathematically independent. Satterthwaite and Sonnenschein (1981)
explain that a Walrasian rule is nonbossy, but it is not even strategy-proof. Example 5
below illustrates that pairwise strategy-proofness alone does not imply nonbossiness.

Example 5. Consider a pure exchange economy with N = {1, 2, 3}, M = {1, 2}, and
e1 = e2 = e3 = (2, 2). Assume that the domain is classical, homothetic and smooth. Let
A = {(1, 3), (2, 2), (3, 1)}. Given u ∈ U , let Bi(u) be the set of agent i’s best elements
on A. The difference between Bi(u) and ei is considered to be agent i0s (net) demand
or supply. Note that #Bi(u) = 1 or #Bi(u) = 2.16 Also note that if #Bi(u) = 2, then
Bi(u) = {(1, 3), (2, 2)} or {(2, 2), (3, 1)}. We construct the “fixed price trading between
agents 1 and 2” as follows: We set f3(u) = e3 = (2, 2) for any u ∈ U . We fix the
relative price between goods 1 and 2 to be 1 so that the trades between agents 1 and 2
are constrained to A, that is, f(U) ⊆ A×A× {e3}. We choose the allocation depending
on the number of the agents whose Bi consist of two elements, #{i ∈ N : #Bi(u) = 2}.
Case I: #B1(u) = #B2(u) = 1. “The short side principle” is employed; it says that

the goods are traded as much as the smaller side of demand or supply. For example, if
B1(u) = {(1, 3)} and B2(u) = {(3, 1)}, then f(u) = ((1, 3), (3, 1), (2, 2)). Or if B1(u) =
{(1, 3)} and B2(u) = {(2, 2)}, then f(u) = ((2, 2), (2, 2), (2, 2)).
Case II: [#B1(u) = 1&#B2(u) = 2] or [#B1(u) = 2&#B2(u) = 1]. The tie of

Bi with #Bi(u) = 2 is broken in the way to minimize the difference between supply
and demand; and then the short side principle is applied. For example, if B1(u) =
{(1, 3), (2, 2)} and B2(u) = {(3, 1)}, then f(u) = ((1, 3), (3, 1), (2, 2)). Or if B1(u) =
{(1, 3), (2, 2)} and B2(u) = {(2, 2)}, then f(u) = ((2, 2), (2, 2), (2, 2)).
Case III: [#B1(u) = #B2(u) = 2]. Case III is divided into two subcases.

Subcase III-i: [B1(u) = B2(u) = {(1, 3), (2, 2)}] or [B1(u) = B2(u) = {(3, 1), (2, 2)}] or
[B1(u) = {(1, 3), (2, 2)}&B2(u) = {(3, 1), (2, 2)}]. We choose f(u) = ((2, 2), (2, 2), (2, 2))
for any such preference profile u ∈ U.
Subcase III-ii: [B1(u) = {(3, 1), (2, 2)}&B2(u) = {(1, 3), (2, 2)}]. In this subcase, we
use agent 3’s preference to choose the allocation. We set f(u) = ((3, 1), (1, 3), (2, 2)) if
u3(1, 3) ≥ u3(3, 1), and set f(u) = ((2, 2), (2, 2), (2, 2)) otherwise.
Then f is pairwise strategy-proof, and even group strategy-proof, but it is bossy in

Subcase III-ii.

Now we state the main result of this section.

Theorem 2. Consider the pure exchange economy where there are at least two private
goods and at least two agents, and the domain is classical, homothetic and smooth. There
is no effectively pairwise strategy-proof, Pareto-efficient, and nondictatorial rule.

Corollary. Consider the pure exchange economy where there are at least two private
goods and at least two agents. Let the domain U be a superset of the class of classical,
homothetic and smooth preferences. Then there is no effectively pairwise strategy-proof,
Pareto-efficient, and nondictatorial rule on U .

Proposition 4 also follows from Theorem 2 since dictatorships are group strategy-proof.

16Given a set D, we denote the cardinality of D by #D.
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Proposition 4. Consider the pure exchange economy where there are at least two private
goods and two agents, and the domain is classical, homothetic and smooth. If a rule is
effectively pairwise strategy-proof and Pareto-efficient, then it is group strategy-proof.

Remember the rule of Example 4. This rule is strategy-proof and Pareto-efficient, but
it is not effectively pairwise strategy-proof. Thus strategy-proofness and Pareto-efficiency
do not imply effective pairwise strategy-proofness. However, it is an open question whether
effective pairwise strategy-proofness alone implies group strategy-proofness or not in pure
exchange economies.

5 Allotment Economies

In this section, we consider the following allotment economies: There is only one private
good that is not freely disposable; agents have single-peaked preferences; and the total
endowment of the good is distributed among agents. Thus, in this section, mX = 1 and
mY = 0, and the feasible set Z is the set {z = (x1, . . . , xn) ∈ Rn+ |

P
i∈N x

i = Ω}, where
Ω is the total endowment of the private good.

Definition. A preference ui ∈ U0 on Zi = R+ is single-peaked if it has a unique best
element b(ui) (the “peak” of ui), and for any zi ∈ R+ and any bzi ∈ R+,
[zi < bzi ≤ b(ui) or zi > bzi ≥ b(ui)] =⇒ ui(bzi) > ui(zi).
We denote the class of single-peaked preferences by US, and call it the single-peaked

domain.

Throughout this section, we assume that the domain is single-peaked. Sprumont
(1991) cites several interesting economic situations, which induce allotment economies.
In this type of economies, he characterizes the “uniform rule (Benassy, 1982)” defined
below; he establishes that the uniform rule is the only rule that is strategy-proof, anony-
mous, and Pareto-efficient. Later Ching (1994) strengthens this result by substituting
anonymity by symmetry. That is, he establishes that the uniform rule is the only rule
that is strategy-proof, symmetry, and Pareto-efficient. When effective pairwise strategy-
proofness is applied to allotment economies, a new characterization of the uniform rule
obtains. In the characterization results above, if effective pairwise strategy-proofness is
employed instead of strategy-proofness, then Pareto-efficiency can be replaced by respect
for unanimity, a much weaker requirement.

Definition. A rule f on U = (US)n respects unanimity if for any u ∈ U , wheneverP
i∈N b(u

i) =
P

i∈N e
i, f(u) = (b(ui))i∈N .

We establish that the uniform rule is the only rule that is effectively pairwise strategy-
proof and symmetric, and respects unanimity. We also establish that effective pairwise
strategy-proofness together with respect for unanimity imply group strategy-proofness.
The uniform rule allocates the total endowment to agents as follows. When the sum of

agents’ preferred levels is greater than or equal to the total endowment, an agent gets his
preferred level if that level is less than the common upper bound; otherwise he receives the
common bound; and the common bound is chosen so as to satisfy the feasibility. When
the sum of agents’ preferred levels is less than the total endowment, the opposite principle
is applied, that is, an agent gets his preferred level if that level is more than the common
lower bound; and so on.
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Definition. The uniform rule F is the function from U = (US)n to Z such that for all
u ∈ U = (US)n and all i ∈ N ,

F i(u) =

½
min{b(ui),λ(u)} if Ω ≤Pi∈N b(u

j)
max{b(ui),λ(u)} otherwise,

where λ(u) solves
P

i∈N F
i(u) = Ω.

Proposition 5. If a rule in an allotment economy is effectively pairwise strategy-proof
and respects unanimity, then it is nonbossy.

Remember Example 5 of fixed price trading in Section 4. As Sprumont (1991) dis-
cusses, fixed price trading induces allotment economies. Since the trades of agents are
constrained to A, the rule in the example does not respect unanimity. Thus Example 5 also
demonstrates that effective pairwise strategy-proofness alone does not imply nonbossiness
in allotment economies.

Proposition 6. If a rule in an allotment economy is effectively pairwise strategy-proof
and respects unanimity, then it is Pareto-efficient.

Theorem 3 below follows from Proposition 6, and Sprumont (1992) and Ching (1994).

Theorem 3. A rule in an allotment economy is effectively pairwise strategy-proof and
symmetric, and respects unanimity if and only if it is the uniform rule.

It is obvious that “only if” Part of Theorem 3 does not hold when any of the three
requirements of effective pairwise strategy-proofness, symmetry, and respect for unanimity
is dropped. The “proportional rule” defined below satisfies symmetry and respect for
unanimity, but not effective pairwise strategy-proofness. The “queuing rule” defined
below satisfies pairwise strategy-proofness and respect for unanimity, but not symmetry.
The “equal distribution rule” satisfies pairwise strategy-proofness and symmetry, but
not respect for unanimity. However, it is an open question whether the uniform rule is
the unique rule that satisfies individual strategy-proofness, symmetry, and respect for
unanimity.

Definition. The proportional rule P is the function from U = (US)n to Z such that for
all u ∈ U = (US)n and all i ∈ N , P i(u) = (Ω · b(ui))/(Pj∈N b(u

j)).

Definition. The queuing rule Q is the function from U = (US)n to Z such that there is
a permutation π of N and for all u ∈ U = (US)n,
Qπ(1)(u) =Argmax{uπ(1)(z0) : z0 ∈ [0,Ω]},
Qπ(2)(u) =Argmax{uπ(2)(z0) : z0 ∈ [0,Ω−Qπ(1)(u)]},
Qπ(3)(u) =Argmax{uπ(3)(z0) : z0 ∈ [0,Ω−Qπ(1)(u)−Qπ(2)(u)]},
...
Qπ(n)(u) = Ω−Pj=n−1

j=1 Qπ(j)(u).

Definition. The equal distribution rule E is the function from U = (US)n to Z such that
for all u ∈ U = (US)n and all i ∈ N , Ei(u) = Ω/n.

Proposition 7. If a rule in an allotment economy is effectively pairwise strategy-proof
and respects unanimity, then it is group strategy-proof.
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Strategy-proofness and respect for unanimity do not imply group strategy-proofness,
as Example 6 shows.

Example 6. LetN = {1, 2, 3}. The following rule f is a variant of the queuing rule. Let u ∈
U be given. f1(u) = b(u1). If u1(Ω) > u1(0), then f2(u) =Argmax{u2(z0) : z0 ∈ [0,Ω−
f1(u)]} and f3(u) = Ω− f1(u)− f2(u). If u1(Ω) ≤ u1(0), then f3(u) =Argmax{u3(z0) :
z0 ∈ [0,Ω − f1(u)]} and f2(u) = Ω − f1(u) − f3(u). Then f is not effectively pairwise
strategy-proof or group strategy-proof, but it is strategy-proof and respects unanimity.

6 Proofs

In this section, we prove the results in Sections 3, 4, and 5. Subsection 6.1 introduces
a well-known notion of “Maskin Monotonic Transformation (Maskin, 1999),” and shows
the basic results of effective pairwise strategy-proofness. Subsections 6.2, 6.3 and 6.4 are
respectively devoted to the proofs of the results in Sections 3, 4, and 5.

6.1 Preliminary Results

Given zi ∈ Zi and ui ∈ U0, let the upper contour set UC(ui, zi) = {bzi ∈ Zi|ui(bzi) ≥
ui(zi)}, and the lower contour set LC(ui, zi) = {bzi ∈ Zi|ui(bzi) ≤ ui(zi)}. We say that
ûi ∈ U0 is a Maskin Monotonic Transformation17 of ui at zi if (i) UC(ûi, zi) ⊆ UC(ui, zi)
holds, and (ii) bzi ∈ UC(ûi, zi) and bzi 6= zi together imply that ui(bzi) > ui(zi). Let
M(ui, zi) be the set of Maskin Monotonic Transformations of ui at zi. Given ui ∈ U0
and z ∈ Z, we write UC(ui, z) = UC(ui, zi) and M(ui, z) = M(ui, zi) when it simplifies
notation without creating confusion. Fact 1 below is a well-known result.18

Fact 1. Let f be a strategy-proof rule. For any u ∈ U , any i ∈ N , and any ûi ∈
M(ui, f(u)), f i(ûi, u−i) = f i(u).

Lemma 1.1. Let f be an effectively pairwise strategy-proof rule. Let u ∈ U , i ∈ N, and
ûi ∈ U i be such that ui(f i(ûi, u−i)) = ui(f i(u)) and ûi(f i(ûi, u−i)) = ûi(f i(u)). Then for
any j 6= i, uj(f j(ûi, u−i)) = uj(f j(u)).
Proof of Lemma 1.1. Let j 6= i. First, we prove uj(f j(ûi, u−i)) ≤ uj(f j(u)). Suppose
uj(f j(ûi, u−i)) > uj(f j(u)). Then (ûi, uj) is a self-enforcing manipulation of the pair
N 0 = {i, j} at the preference profile u. To see this, note that if it is not, Condition (iii) or
(iv) of effective pairwise strategy-proofness must be violated. If Condition (iii) is violated,
ui(f i(eui, u−i)) > ui(f i(ûi, u−i)) for some eui ∈ U i. But, since ui(f i(ûi, u−i)) = ui(f i(u)),
this contradicts to individual strategy-proofness for agent i. If Condition (iv) is violated,
uj(f j(euj, ûi, u−N 0

)) > uj(f j(ûi, u−i)) for some euj ∈ U j. This also contradicts to individual
strategy-proofness for agent j. Therefore, uj(f j(ûi, u−i)) ≤ uj(f j(u)).
If uj(f j(ûi, u−i)) < uj(f j(u)), by the same way as above, we can show that (ui, uj)

is a self-enforcing manipulation of the pair N 0 = {i, j} at the preference profile (ûi, u−i),
which is a contradiction Therefore, uj(f j(ûi, u−i)) ≥ uj(f j(u)). Q.E.D.

Lemma 1.2 below directly follows from Lemma 1.1.

17To be precise, this is the definition of what is called “Strictly Maskin Monotonic Transformation”.
Here, we call this notion “Maskin Monotonic Transformation” for short.
18See, for example, Zhou (1991), Barberà and Jackson (1995), etc.
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Lemma 1.2. Let f be an effectively pairwise strategy-proof rule. Let u ∈ U , i ∈ N, and
ûi ∈ U i be such that f i(ûi, u−i) = f i(u). Then, for any j 6= i, uj(f j(ûi, u−i)) = uj(f j(u)).
Lemma 1.3 below follows from Fact 1 and Lemma 1.2.

Lemma 1.3. Let f be an effectively pairwise strategy-proof rule. For any u ∈ U , any
i ∈ N, any ûi ∈M(ui, f(u)), and any j 6= i, uj(f j(ûi, u−i)) = uj(f j(u)).
Proof of Lemma 1.3. Let u ∈ U , i ∈ N, ûi ∈ M(ui, f(u)), and j 6= i. Since f i(ûi, u−i) =
f i(u) by Fact 1, Lemma 1.2 implies uj(f j(ûi, u−i)) = uj(f j(u)). Q.E.D.

6.2 Proofs of Results in Section 3

In this subsection, we prove the results in Section 3.

Proof of Proposition 1. Let f be an effectively pairwise strategy-proof rule, and let
U = U1 × · · · × Un be the domain. The following argument holds whether U is classical
or U is quasi-linear and separable. Let u ∈ U , i ∈ N, and ûi ∈ U i be such that f i(u) =
f i(ûi, u−i). We want to show that f−i(u) = f−i(ûi, u−i). Suppose f−i(u) 6= f−i(ûi, u−i).
Since f i(u) = f i(ûi, u−i) implies fy(u) = fy(ûi, u−i), there is j ∈ N such that fj(u) 6=
fj(û

i, u−i). If fj(u) < fj(ûi, u−i), then uj(f(u)) < uj(f(ûi, u−i). If fj(u) > fj(ûi, u−i),
then uj(f(u)) > uj(f(ûi, u−i). This contradicts Lemma 1.2. Q.E.D.

Proof of Theorem 1. The following argument holds whether the domain U is classical,
or U is quasi-linear. Suppose that a rule f is not a preference independent cost share
rule. Then there are u ∈ U and bu ∈ U such that fy(u) = fy(bu) but fi(u) 6= fi(bu) for
some i ∈ N. Since fy(u) = fy(bu), for each agent j ∈ N, there is euj ∈ M(uj, f(u)) ∩M(buj, f(bu)). By Fact 1 and nonbossiness (Proposition 1), we have that f(u) = f(eu) = f(bu),
which is a contradiction. Q.E.D.

Proof of Proposition 2. Since “If” Part is trivial, we show only “Only if” Part. Let f be
an effectively pairwise strategy-proof rule. Suppose that f is not group strategy-proof.
We derive a contradiction. Note that there are u ∈ N, N 0 = C1 ∪C2 ⊆ N, and buN 0 ∈ UN 0

such that
(1) for any i ∈ C1, ui(f(buN 0

, u−N
0
)) = ui(f(u));

(2) for any i ∈ C2, ui(f(buN 0
, u−N

0
)) > ui(f(u)); and

(3) C2 6= ∅.
Let z = f(u) and bz = f(buN 0

, u−N
0
). Since the domain is classical, by (2), for each i ∈ C2,

there is eui ∈ M(ui, z) ∩M(bui, bz). Then, since z = f(u), by applying Fact 1 successively
for agents in C2 and nonbossiness (Proposition 1), we have (4) f(u

C1, euC2 , u−N 0
) = z.

Similarly, we have (5) f(buC1, euC2 , u−N 0
) = bz. If C1 = ∅, since (2) and (3) imply bz 6= z,

we already have a contradiction. Thus we assume C1 6= ∅. Without loss of generality, let
C1 = {1, . . . , c}.
Note that since the domain is classical, given ² > 0, there is eu1² ∈M(bu1, bz1)∩M(u1, bz1)

such that

(6) ∀z10 ∈ Z1 : [z10 ∈ UC(eu1² , z1)&°°z10 − bz1°° > ² & z10 6= z1]⇒ u1(z10) > u1(z1).

Figure 1 below illustrates the preference eu1² . Note that by (1), eu1² ∈ M(u1, bz1) implies
that (7) eu1²(bz1) > eu1²(z10) for any z10 ∈ LC(u1, z1)\{bz1}.
In this paragraph, we claim that for some ² > 0, f1(eu1² , u{2,...,c}, euC2, u−N 0

) = z1 or
f1(eu1² , u{2,...,c}, euC2 , u−N 0

) = bz1. Suppose not. Then, there is a sequence {²(k)}k=∞k=1 such
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that (8) ²(k) → 0 as k → ∞; and (9) for any k, f1(eu1²(k), u{2,...,c}, euC2, u−N 0
) 6= z1 and

f1(eu1²(k), u{2,...,c}, euC2, u−N 0
) 6= bz1. Note that by (4), strategy-proofness implies that (10)

f1(eu1²(k), u{2,...,c}, euC2 , u−N 0
) ∈ UC(eu1²(k), z1) ∩ LC(u1, z1) for any k. Note further that by

(6) and (8), the set [UC(eu1²(k), z1)∩LC(u1, z1)]\{z1} converges to {bz1} as k →∞. Thus,
it follows from (9) and (10) that f1(eu1²(k), u{2,...,c}, euC2, u−N 0

) → bz1 as k → ∞. Therefore,
it also follows from (7) and (9) that given k, there is K such that

eu1²(k)(f1(eu1²(K), u{2,...,c}, euC2 , u−N 0
)) > eu1²(k)(f1(eu1²(k), u{2,...,c}, euC2 , u−N 0

)),

contradicting strategy-proofness for agent 1. Accordingly, for some ² > 0, we have
f(eu1² , u{2,...,c}, euC2, u−N 0

) = z1 or f1(eu1² , u{2,...,c}, euC2, u−N 0
) = bz1.

Let ²1 > 0 be such that f
1(eu1²1, u{2,...,c}, euC2 , u−N 0

) = z1 or f1(eu1²1 , u{2,...,c}, euC2 , u−N 0
) =bz1. If f1(eu1²1, u{2,...,c}, euC2, u−N 0

) = bz1, then by Theorem 1, f(eu1²1 , u{2,...,c}, euC2 , u−N 0
) =bz. By (1), (2), (3), and (4), (eu1²1, euc+1) is a self-forcing manipulation by the pair of

agents 1 and (c + 1) at the profile (uC1, euC2, u−N 0
).19 This contradicts effective pairwise

strategy-proofness. Thus f1(eu1²1 , u{2,...,c}, euC2 , u−N 0
) = z1, and so by Theorem 1, we have

f(eu1²1 , u{2,...,c}, euC2, u−N 0
) = z.

By choosing ²i and eui²i similarly for i = 2, . . . , c, we obtain f(euC1² , euC2, u−N 0
) = z,

where euC1² = (eu1²1, . . . , euc²c). On the other hand, since eui²i ∈ M(bui, bzi) for each i ∈ C1,
it follows from (5), Fact 1, and nonbossiness (Proposition 1) that f(euC1² , euC2, u−N 0

) = bz.
This is a contradiction. Hence, f is group strategy-proof. Q.E.D.

FIGURE 1 ENTERS HERE.

6.3 Proofs of Results in Section 4

In this subsection, we prove the results in Section 4.

Proof of Proposition 3. Suppose not. Then without loss of generality, we may assume
that there are u ∈ U and û1 ∈ U1 such that f1(û1, u−1) = f1(u) and f2(û1, u−1) 6= f2(u).
Let f(u) = z and f(ûi, u−i) = ẑ. Lemma 1.2 implies that ui(ẑ) = ui(z) for any i ∈ N .
Let z̃ = (z + ẑ)/2. Then since preferences are strictly quasi-concave, it follows that
u2(z̃) > u2(z) and uj(z̃) ≥ uj(z) for j ∈ N . Because the convexity of Z implies z̃ ∈ Z,
this contradicts Pareto-efficiency. Q.E.D.

We introduce several lemmas before we prove Theorem 2.
Lemma 3.1 below says that if a rule is Pareto-efficient and if two agents have identical

preferences that are classical and homothetic, then the rule assigns them the proportional
bundles. This Lemma is based on the property of classical and homothetic preference
that the marginal rate of substitutions at two consumption bundles coincide if and only
if the two bundles are proportional. See Schummer (1997) for the proof of the lemma.

Lemma 3.1. Let f be a Pareto-efficient rule, and u0 ∈ UC ∩UH. Let i ∈ N , j ∈ N, and
u ∈ U be such that ui = uj = u0. If f i(u) 6= 0, then f j(u) is proportional to f i(u), that is,
there is λ ∈ R+ such that f j(u) = λ · f i(u).
19To see that (eu1²1 , euc+1) is a self-forcing manipulation, note that Conditions (i) and (ii) of self-forcing

manipulation follow from (1), (2), (3), and (4). Conditions (iii) and (iv) follow from strategy-proofness.
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Lemma 3.2 below says that if one agent, say agent 1, has classical preferences, and the
other agents all have the common preference that is also classical and homothetic, then the
locus of the Pareto-efficient allocations looks like a contract curve of a two-agent economy
from the viewpoint of agent 1. To treat the feasible sets and the sets of Pareto-efficient
allocations of economies with different number of agents, we introduce new notations.
Given Ω ∈ Rm+ and n0 ≤ n, let Z(n0,Ω) = {z ∈ Rm·n0+ |Pn0

i=1 z
i = Ω}; that is, Z(n0,Ω) is

the feasible set of the pure exchange economy with the resource bundle Ω and n0 agents.
Given Ω ∈ Rm+ , n0 ≤ n and a preference profile u ∈ (U0)n0 for n0 of agents, denote the set
of Pareto-efficient allocations for u on Z(n0,Ω) by P (u,Z(n0,Ω)), and the projection of
P (u,Z(n0,Ω)) on Zi by P i(u,Z(n0,Ω)). Note that the feasible set Z specified in Section
4 coincides with Z(n,

P
i∈N e

i). See Serizawa (2000) for the proof.

Lemma 3.2. Let Ω ∈ Rm+ , u0 ∈ UH, i ∈ N, and ui ∈ UC . Then P i(ui, u0, Z(2,Ω)) =
P i(ui, u0, . . . , u0, Z(n,Ω)).

Lemma 3.3 is a well known result in literature. For example, it is called “diagonality”
in Barberà and Jackson (1995). Thus, we omit its proof.

Lemma 3.3. Let f be a strategy-proof rule on U . Let u ∈ U , and z = f(u). Let i ∈ N
and bz ∈ Z be such that bzi < zi or bzi > zi. Then for any bui ∈ U i, bz 6= f(bui, u−i).
Lemma 3.4. Let f be an effectively pairwise strategy-proof and Pareto-efficient rule on
U . Let u0 ∈ UC ∩UH , u1 ∈ UC ∩UH , and z = f(u1, u0, . . . , u0). Let bu0 ∈M(u0,Pi=n

i=2 z
i)

∩UC ∩ UH . Then z = f(u1, bu0, . . . , bu0).
Proof. It follows from Lemma 3.1 that there is λ = (λ2, . . . ,λn) ∈ Rn−1+ such that

zi = λi ·Pj=n
j=2 z

j for any i ∈ N\{1}. Thus since u0 and bu0 are homothetic, for any i 6= 1,bu0 ∈ M(u0, zi). Since bu0 ∈ M(u0, z2), Fact 1 implies that z2 = f2(u1, bu0, u0, . . . , u0), and
so nonbossiness (Proposition 3) implies z = f(u1, bu0, u0, . . . , u0). Repeating this argument
for i = 3, . . . , n, we get the result that z = f(u1, bu0, . . . , bu0). Q.E.D.

In the rest of subsection, Ω denotes the total endowment, that is, Ω =
P

i∈N e
i.

Lemma 3.5. Let f be an effectively pairwise strategy-proof and Pareto-efficient rule on
U . Let u0 ∈ UC ∩ UH and bu0 ∈ UC ∩ UH. Let z = f(u0, . . . , u0) and bz = f(bu0, . . . , bu0).
Then bz = z.
Proof. By contradiction, suppose that bz 6= z. Note that by Lemma 3.1 and Pareto-
efficiency, there are λ = (λ1, . . . ,λn) ∈ Rn+ and bλ = (bλ1, . . . , bλn) ∈ Rn+ such that z =
(λ1Ω, . . . ,λnΩ) and bz = (bλ1Ω, . . . , bλnΩ). Also note that there is eu0 ∈ UC ∩ UH such
that eu0 ∈ M(u0,Ω) ∩M(bu0,Ω). Then for any i ∈ N, eu0 ∈ M(u0, zi) ∩M(bu0, bzi). By
successively applying Fact 1 and nonbossiness (Proposition 3), we have the result that
z = f(eu0, . . . , eu0) and bz = f(eu0, . . . , eu0). This is a contradict. Q.E.D.

Lemma 3.6. Let f be an effectively pairwise strategy-proof, Pareto-efficient, and non-
dictatorial rule on U . There is d ∈ Z such that d = (λ1Ω, . . . ,λnΩ) for some λ =
(λ1, . . . ,λn) ∈ [0, 1)n, and d = f(u0, . . . , u0) for any preference u0 ∈ UC ∩ UH .
Proof. It follows from Lemma 3.5. that there is d ∈ Z such that d = (λ1Ω, . . . ,λnΩ) for
some λ = (λ1, . . . ,λn) ∈ Rn+, and d = f(u0, . . . , u0) for any preference u0 ∈ UC ∩UH . Due
to the feasibility constraint, for any i ∈ N, λi ∈ [0, 1]. Thus we have only to show that for
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any i ∈ N, λi 6= 1.
By contradiction, suppose that for some i ∈ N, λi = 1. Without loss of generality, let

i = 1. We claim that agent 1 is a dictator, that is, for any u ∈ U, f(u) = (Ω, 0, . . . , 0),
where Ω =

Pn
i=1 e

i. Let u ∈ U. Let u0 ∈ UC ∩ UH , and bu = (u0, . . . u0). Note that f(bu) =
(Ω, 0, . . . , 0). Strategy-proofness for agent 1 implies that f1(u1, bu−1) = Ω. For other-
wise, u1(f(bu)) > u1(f(u1, bu−1)). Thus f(u1, bu−1) = (Ω, 0, . . . , 0). Then strategy-proofness
for agent 2 implies that f2(u1, u2, bu−{1,2}) = 0. For otherwise, bu2(f(u1, u2, bu−{1,2})) >bu2(f(u1, bu−1)). By nonbossiness (Proposition 3), we have f(u1, u2, bu−{1,2}) = (Ω, 0, . . . , 0).
Repeating this argument for j = 3, . . . , n, we get the result that f(u) = (Ω, 0, . . . , 0). This
is a contradiction to nondictatorship. Q.E.D.

Fact 2 below says that for any classical, homothetic, and smooth preference u0 and
any consumption bundle z0 in the interior of the consumption set, there exists a CES
type preference bu0 that has the same rate of substitution as u0 at z0 and that is also a
Maskin Monotonic Transformation of u0.

Fact 2. Let u0 be a classical, homothetic, and smooth preference, and let a ∈ Rm++ and
z0 ∈ Rm++. Given ρ ∈ (−∞, 1) and x ∈ Rm+ , let bu0(x; ρ) = A−1/ρ·[Pl∈M al·(z0l )1−ρ·(xl)ρ]1/ρ,
where A =

P
l∈M al · (z0l ). Then for any ρ ∈ (−∞, 1), the function bu0(·; ρ) on Rm+ is a

classical, homothetic, and smooth preference. If al = [∂u0(z0)/∂xl] · A for each l ∈ M,
then the following holds:
(i) ∂bu0(z0; ρ)/∂xl = ∂u0(z0)/∂xl for any l ∈M.
(ii) There is ρ0 ∈ (−∞, 1) such that for any ρ ∈ (−∞, ρ0), bu0(·; ρ) ∈M(u0, z0).

Proof of Theorem 2. Let f be an effectively pairwise strategy-proof, Pareto-efficient,
and non-dictatorial rule. We apply the above Lemmas to derive a contradiction. Let
d = (d1, , . . . , dn) = (λ1Ω, . . . ,λnΩ) be the one specified in Lemma 3.6. Since λi ∈ [0, 1)
for any i ∈ N, it follows that there is j ∈ N such that λj ∈ (0, 1). Without loss of
generality, let j = 1. The basic structure of the rest of the proof is similar to that of
the theorem of Schummer (1997) mentioned in Section 4, which establishes the same
nonexistence result in two-agent pure exchange economies.
Let u0(x1, . . . , xn) = x1 × · · · × xn, u1(x1, . . . , xn) = (x1)

2 × x2 × · · · × xn, and z =
f(u1, u0, . . . , u0). Since d = f(u0, u0, . . . , u0), by Lemma 3.3, it is not the case that z1 <
d1 or that z1 > d1. Since λ1 ∈ (0, 1) and since d1 = λ1 · Ω, z is off diagonal, and
z1 ∈ Rm++. Thus there is p ∈ Rm++ such that p · (z1 − d1) < 0. Since z1 = Ω −Pi=n

i=2 z
i

and d1 = Ω − Pi=n
i=2 d

i, we have p · (Pi=n
i=2 d

i − Pi=n
i=2 z

i) < 0. Given σ ∈ (0, 1) and
x ∈ Rm+ , let bu1(x) = [Pl∈M pl · (z1l )1−σ · (xl)σ]1/σ. Note that for any x ∈ [z1,Ω], the vector
q = (pl·(z1l )1−σ ·(xl)σ−1)l∈M generates a hyperplane supporting UC(bu1, x) at x. As a special
case, p generates a hyperplane supporting UC(bu1, z1) at z1. Thus since p · (z1 − d1) < 0,
there is σ close to 1 such that bu1(d) > bu1(z1). Let σ be so chosen. Given ρ ∈ (−∞, 1),
let bu0(·; ρ) be the preference specified in Fact 2 such that z0 = Pi=n

i=2 z
i. By Lemma

3.4, f(u1, bu0(·; ρ), . . . , bu0(·; ρ)) = z for any ρ < ρ0, where ρ0 is specified in Fact 2. Note
that as ρ −→ −∞, P 1(bu1, bu0(·; ρ), Z(2,Ω)) ∩ UC(bu1, z1) converges to [z1,Ω]. Also note
that f(bu0(·; ρ), bu0(·; ρ), . . . , bu0(·; ρ)) = d for any ρ, so that bu1(f(bu1, bu0(·; ρ), . . . , bu0(·; ρ))) ≥bu1(d) > bu1(z) for any ρ. Thus it follows from Pareto-efficiency and strategy-proofness that
there is ρ1 such that for any ρ < ρ1 , u

1(f(bu1, bu0(·; ρ), . . . , u0(·; ρ))) > u1(z). Therefore,
for ρ < min{ρ0, ρ1}, u1(f(bu1, bu0(·; ρ), . . . , bu0(·; ρ))) > u1(f(u1, bu0(·; ρ), . . . , bu0(·; ρ))). This
contradicts strategy-proofness. Q.E.D.
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Proof of Corollary. Suppose that there is an effectively pairwise strategy-proof, Pareto-
efficient, and nondictatorial rule f on U ⊇ (UC ∩ UH)n. Let bU = (UC ∩ UH)n, and letbf be the restriction of f to bU . Since f is strategy-proof and Pareto-efficient, bf is also
strategy-proof and Pareto-efficient on bU . Thus, by Theorem 2, bf is dictatorial. Without
loss of generality, we may assume that agent 1 is a dictator on bU , that is, for any u ∈ bU,bf(u) = f(u) = (Ω, 0, . . . , 0). We claim that agent 1 is a dictator on the whole U , that is,
for any u ∈ U, f(u) = (Ω, 0, . . . , 0).
Let u ∈ U , and bu ∈ bU . Since f(bu) = (Ω, 0, . . . , 0), strategy-proofness for agent 1 im-

plies that f1(u1, bu−1) = Ω. For otherwise, u1(f(bu)) > u1(f(u1, bu−1)). Thus f(u1, bu−1) =
(Ω, 0, . . . , 0). Then strategy-proofness for agent 2 implies that f2(u1, u2, bu−{1,2}) = 0. For
otherwise, bu2(f(u1, u2, bu−{1,2})) > bu2(f(u1, bu−1)). By nonbossiness (Proposition 3), we
have f(u1, u2, bu−{1,2}) = (Ω, 0, . . . , 0). Repeating this argument for j = 3, . . . , n, we get
the result that f(u) = (Ω, 0, . . . , 0). This is a contradiction to nondictatorship. Q.E.D.

Subsection 6.4 Proofs of Results in Section 5

In this subsection, we prove the results in Section 5. First, we introduce a useful notation
in allotment economies. Let Z0 = [0,Ω]. Given a single-peaked preference u0 ∈ US and
z0 ∈ Z0\{b(u0)}, there is at most one element bz0 of Z0\{z0} such that u0(bz0) = u0(z0),
and we denote that element by e(u0, z0) if it exists. The key condition of the proofs of
this subsection is also nonbossiness. Lemmas 4.1 and 4.2 below together explain what
will happen if a rule is effectively pairwise strategy-proof but not nonbossy. These two
lemmas will be employed to establish nonbossiness in Proposition 5.

Lemma 4.1. Let f be an effectively pairwise pairwise strategy-proof rule. Let u ∈ U ,
i ∈ N , and ûi ∈ US be such that ui(f i(ûi, u−i)) = ui(f i(u)) and ûi(f i(ûi, u−i)) = ûi(f i(u)).
Denote D = {j ∈ N |f j(ûi, u−i) 6= f j(u)} and D0 = {j ∈ N |f j(u) = b(uj)}. Then (i),
(ii), (iii), and (iv) below hold.
(i) uj(f j(ûi, u−i)) = uj(f j(u)) for any j ∈ D, and f j(ûi, u−i) = f j(u) for any j ∈ D0.
(ii) If f−i(ûi, u−i) 6= f−i(u), then D 6= ∅, and Pj∈D f

j(ûi, u−i) =
P

j∈D f
j(u).

(iii) D ∩D0 = ∅.
(iv) e(uj, f j(u)) exists for any j ∈ D, and Pj∈D e(u

j, f j(u)) =
P

j∈D f
j(u).

The condition (i) of Lemma 4.1 follows from Lemma 1.1. The condition (ii) follows
directly from the definition of D and resource balance. The condition (iii) follows from
the condition (i) and the definition of D. The condition (iv) follows from the conditions
(i) and (ii).

Lemma 4.2. Let f be an effectively pairwise strategy-proof rule. Let u ∈ U , i ∈ N,
and ûi ∈ US be such that f i(u) = f i(ûi, u−i) and f−i(u) 6= f−i(ûi, u−i). Then for some
preference profile ũ, there are C ⊆ N and C 0 ⊆ N such that
(i) C ∩ C 0 = ∅, C ∪ C 0 = N , C 6= ∅,
(ii) C 0 = {j ∈ N |b(ũj) = f j(ũ)}, and
(iii) e(ũj, f j(ũ)) exists for any j ∈ C, and Pj∈C e(ũ

j, f j(ũ)) =
P

j∈C f
j(ũ).

Proof of Lemma 4.2. We will construct C, C 0, and ũ by means of algorithm. Our algorithm
consists of Operation, and Cases 0, 1, 2, 3, and 4 defined below.
Let D = {j ∈ N |f j(ûi, u−i) 6= f j(u)} and D0 = {j ∈ N |f j(u) = b(uj)}. By f i(u) =

f i(ûi, u−i), we have ui(f i(ûi, u−i)) = ui(f i(u)) and ûi(f i(ûi, u−i)) = ûi(f i(u)). Therefore,
it follows from Lemma 4.1 and f−i(u) 6= f−i(ûi, u−i) that D∩D0 = ∅, D 6= ∅, e(uj, f j(u))
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exists for any j ∈ D, and Pk∈D e(u
k, fk(u)) =

P
k∈D f

k(u). If N = D ∪D0, then we set
C to be D, C 0 to be D0, and ũ to be u; and the proof is done. If N\(D ∪D0) 6= ∅, then
we are now in Case 0 below.

Case 0: The following conditions (i0), (ii0), and (iii0) hold for D ⊂ N and
D0 ⊂ N .
(i0) D ∩D0 = ∅, D ∪D0 6= N, and D 6= ∅.
(ii0) D0 = {j ∈ N |f j(u) = b(uj)}.
(iii0) e(uj, f j(u)) exists for any j ∈ D, and Pj∈D e(u

j, f j(u)) =
P

j∈D f
j(u).

When we are in Case 0, we execute the operation below.

Operation: Pick an agent j from N\(D ∪ D0). Let ûj ∈ US be such that
b(ûj) = f j(u), and let D00 = {k ∈ N |fk(ûj, u−j) 6= fk(u)}.

As the result of the operation above, we have f j(ûj, u−j) = f j(u) by strategy-proofness,
and so that j /∈ D00. Note that one of the four possible cases below must hold.

Case 1 : f−j(ûj, u−j) = f−j(u) & N = D0 ∪ {j} ∪D.
Case 2 : f−j(ûj, u−j) = f−j(u) & N 6= D0 ∪ {j} ∪D.
Case 3 : f−j(ûj, u−j) 6= f−j(u) & N = D0 ∪ {j} ∪D00.
Case 4 : f−j(ûj, u−j) 6= f−j(u) & N 6= D0 ∪ {j} ∪D00.

The discussion and the direction for each of the four cases are given below.

Case 1: It holds that f(ûj, u−j) = f(u). Thus, D0 ∪ {j} is the set of all
agents whose consumptions are equal to their peaks at the profile (ûj, u−j),
e(uk, fk(ûj, u−j)) exists for any k ∈ D, and Pk∈D e(u

k, fk(u)) =
P

k∈D f
k(u)

implies
P

k∈D e(u
k, fk(ûj, u−j)) =

P
k∈D f

k(ûj, u−j). We set C to be D, C 0 to
be D0 ∪ {j}, and the preference profile ũ to be (ûj, u−j). Then, the proof is
done.
Case 2: It holds that f(ûj, u−j) = f(u). Thus, D0 ∪ {j} is the set of all

agents whose consumptions are equal to their peaks at the profile (ûj, u−j),
e(uk, fk(ûj, u−j)) exists for any k ∈ D, and Pk∈D e(u

k, fk(u)) =
P

k∈D f
k(u)

implies
P

k∈D e(u
k, fk(ûj, u−j)) =

P
k∈D f

k(ûj, u−j). We reset the notation,
and let the new D0 denote D0∪ {j}, and the new u denote (ûj, u−j). Then, we
go back to Case 0 above and execute the same operation as above.
Case 3: By f j(ûj, u−j) = f j(u), it holds that uj(f j(ûj, u−j)) = uj(f j(u))

and ûj(f j(ûj, u−j)) = ûj(f j(u)). Thus by Lemma 4.1, D00 ∩ (D0 ∪ {j}) =
∅, D00 6= ∅, e(uk, fk(u)) exists for any k ∈ D00, and

P
k∈D00 e(uk, fk(u)) =P

k∈D00 fk(u). In addition, D0∪{j} is the set of all agents whose consumptions
are equal to their peaks at the profile (ûj, u−j). We set C to be D00, C 0 to be
D0∪ {j}, and ũ to be the preference profile (ûj, u−j). Then, the proof is done.
Case 4: By f j(ûj, u−j) = f j(u), it holds that uj(f j(ûj, u−j)) = uj(f j(u))

and ûj(f j(ûj, u−j)) = ûj(f j(u)). Thus by Lemma 4.1, D00 ∩ (D0 ∪ {j}) =
∅, D00 6= ∅, e(uk, fk(u)) exists for any k ∈ D00, and

P
k∈D00 e(uk, fk(u)) =P

k∈D00 fk(u). In addition, D0∪{j} is the set of all agents whose consumptions
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are equal to their peaks at the profile (ûj, u−j). We reset the notation, and
let the new D denote D00, the new D0 denote D0 ∪ {j}, and the new u denote
(ûj, u−j). Then, we go back to Case 0 above and execute the same operation
as above.

Note that after each operation, a new agent enters D0. Thus after some finite repeti-
tions of the operation, it must be the case that N = D∪{j}∪D0 or N = D0∪{j}∪D00, that
is, Case 1 or Case 3 must hold. Hence, the constructions of C, C 0, and ũ are completed.
Q.E.D.

Proof of Proposition 5. Let u ∈ U , i ∈ N, and ûi ∈ US be such that f i(u) = f i(ûi, u−i).
We want to show that f−i(u) = f−i(ûi, u−i). Suppose f−i(u) 6= f−i(ûi, u−i). By Lemma
4.2, we may assume that there are C ⊆ N and C 0 ⊆ N such that C ∩ C 0 = ∅, C ∪ C 0 =
N , C 6= ∅, e(uj, f j(u)) exists for any j ∈ C, C 0 = {j ∈ N : b(uj) = f j(u)}, andP

j∈C e(u
j, f j(u)) =

P
j∈C f

j(u).

Note that C ∩ C 0 = ∅ implies that for any j ∈ C, e(uj, f j(u)) < b(uj) < f j(u)
or e(uj, f j(u)) > b(uj) > f j(u). Thus for each j ∈ C, there is ūj ∈ US such that
b(ūj) = [e(uj, f j(u)) + f j(u)]/2, and

(∗) ∀xj ∈ Z0, [ūj(f j(u)) ≥ ūj(xj)⇐⇒ uj(f j(u)) ≥ uj(xj)].
Figure 2 below illustrates the preference ūj. Since

P
j∈C e(u

j, f j(u)) =
P

j∈C f
j(u), it

follows that X
j∈C

b(uj) =
X
j∈C
[e(uj, f j(u)) + f j(u)]/2

=

"X
j∈C

e(uj, f j(u)) +
X
j∈C

f j(u)

#
/2

=
X
j∈C

f j(u).

Without loss of generality, let C = {1, . . . , c}. We establish by induction logic that
for any k ∈ C = {1, . . . , c}, it holds that
(1) f j(uK , u−K) = f j(u) for any j ∈ C 0, and
(2) f j(uK , u−K) = f j(u) or f j(uK , u−K) = e(uj, f j(u)) for any j ∈ C,

where K = {1, . . . , k} and uK = (u1, . . . , uk).
Step 1: We show (1) and (2) in the case that k = 1. Note that by (∗), strategy-proofness
implies that f1(ū1, u−1) = f1(u) or f1(ū1, u−1) = e(u1, f1(u)). Therefore by (∗) again,
we have u1(f1(ū1, u−1)) = u1(f1(u)) and ū1(f1(ū1, u−1)) = ū1(f1(u)). Thus it follows
from Lemma 4.1 that f j(ū1, u−1) = f j(u) or f j(ū1, u−1) = e(uj, f j(u))) for any j ∈ C.
Furthermore, since b(uj) = f j(u) for any j ∈ C 0, it also follows from Lemma 4.1 that
f j(ū1, u−1) = bj(u) for any j ∈ C 0.
Step 2: As induction hypothesis, assume that
(10) f j(uK

0
, u−K

0
) = f j(u) for any j ∈ C 0, and

(20) f j(uK
0
, u−K

0
) = f j(u) or f j(uK

0
, u−K

0
) = e(uj, f j(u)) for any j ∈ C,

where K 0 = {1, . . . , k − 1} and uK0
= (u1, . . . , uk−1).

We show (1) and (2). By (∗) and (20), strategy-proofness implies that fk(uK , u−K) =
fk(u) or fk(uK , u−K) = e(uk, fk(u)). Thus it follows from Lemma 4.1 and (20) that
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f j(uK , u−K) = f j(u) or f j(uK , u−K) = e(uj, f j(u)) for any j ∈ C. Furthermore, it also
follows from Lemma 4.1 and (10) that f j(uK , u−K) = bj(u) for any j ∈ C 0.
We have completed the induction argument. When the result (2) above is applied to

the case that k = c, it implies that f j(uC , u−C) = f j(u) or f j(uC , u−C) = e(uj, f j(u))
for any j ∈ C. Since b(ūj) = [e(uj, f j(u)) + f j(u)]/2 for any j ∈ C, it follows that
f j(ūC , u−C) 6= b(ūj) for any j ∈ C 6= ∅. However, by C ∪ C 0 = N, we have Pj∈C0 b(u

j) +P
j∈C b(ū

j) =
P

j∈N f
j(u) = Ω. This contradicts to respect for unanimity. Q.E.D.

FIGURE 2 ENTERS HERE.

It is a well-know property of allotment economies20 that a rule f is Pareto-efficient if
and only if for any u ∈ U,
(i)
P

k∈N b(u
k) ≥ Ω⇒ [∀k ∈ N, fk(u) ≤ b(uk)], and

(ii)
P

k∈N b(u
k) ≤ Ω⇒ [∀k ∈ N, fk(u) ≥ b(uk)].

We employ this property in the proofs of Propositions 6 and 7.

Proof of Proposition 6. Let f be an effectively pairwise strategy-proof rule that respects
unanimity. Suppose that f is not Pareto-efficient. We derive a contradiction. We may
assume that there are u ∈ U and i ∈ N such that

P
k∈N b(u

k) ≥ Ω but f i(u) > b(ui)
since we can treat the opposite case symmetrically. Notice that

P
k∈N b(u

k) ≥ Ω and
f i(u) > b(ui) imply that there is j ∈ N such that f j(u) < b(uj).Without loss of generality,
let i = 1 and j = 2. Denote N 0 = {3, . . . , n}.
For each k ∈ N 0, let buk ∈ US be such that b(buk) = fk(u). Then by strategy-proofness,

f3(û3, u−3) = f3(u). So by nonbossiness (Proposition 5), f(û3, u−3) = f(u). Repeating
this argument for k = 4, . . . , n, we get f(u1, u2, ûN

0
) = f(u), where ûN

0
= (û3, . . . , ûN).

Note that f1(u) − b(u1) ≥ b(u2) − f2(u) or f1(u) − b(u1) ≤ b(u2) − f2(u). Consider
the case that f1(u) − b(u1) ≥ b(u2) − f2(u). Let bu1 ∈ US be such that b(bu1) = f1(u) −
[b(u2) − f2(u)] and bu1(f1(u)) > bu1(b(u1)). Then by strategy-proofness, f1(bu1, u2, ûN 0

) =
f1(u1, u2, ûN

0
) > b(bu1). So by nonbossiness (Proposition 5), f(bu1, u2, ûN 0

) = f(u1, u2, ûN
0
) =

f(u). However,

b(bu1) + b(u2) +X
k∈N 0

b(buk) = f1(u) + f1(u) +X
k∈N 0

fk(u) = Ω.

This contradicts to respect for unanimity. We can similarly derive a contradiction to
respect for unanimity in the case that f1(u)−b(u1) ≤ b(u2)−f2(u) by using the preferencebu2 ∈ US be such that b(bu2) = f2(u) + [f1(u)− b(u1)] and bu2(f2(u)) > bu2(b(u1)). Q.E.D.
Proof of Proposition 7. Let f be an effectively pairwise strategy-proof rule that respects
unanimity. Suppose that f is not group strategy-proof. Then there are u ∈ U, N 0 ⊆ N,
N1 ⊆ N 0, N2 ⊆ N 0, N3 ⊆ N 0, and buN 0 ∈ UN 0

such that
(1) N1 6= ∅ and N1 ∪N2 ∪N3 = N 0,
(2) ui(f(buN 0

, u−N
0
)) > ui(f(u)) for any i ∈ N1,

(3) f i(buN 0
, u−N

0
) = f i(u) for any i ∈ N2, and

(4) f i(buN 0
, u−N

0
) 6= f i(u), e(ui, f i(u)) exists and f i(buN 0

, u−N
0
) = e(ui, f i(u)) for any

i ∈ N3.
20See Sprumont (1991).
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Note that N1, N2, and N3 are mutually disjoint. Also note that (1) and (2) imply
f(buN 0

, u−N
0
) 6= f(u).

For each i ∈ N1, by (2), there is eui ∈ M(ui, f i(u)) ∩M(bui, f i(buN 0
, u−N

0
)). For each

i ∈ N2, let eui ∈ US be such that b(eui) = f i(buN 0
, u−N

0
) = f i(u). Then, by applying Fact

1 and nonbossiness (Proposition 5) successively for agents in N1 and N2, we have (5)
f(euN1∪N2, u−(N1∪N2)) = f(u). Similarly, we have (6) f(euN1∪N2, buN3, u−N 0

) = f(buN 0
, u−N

0
).

Without loss of generality, we may assume that

(7)
X

k∈N1∪N2
b(euk) + X

k∈N\(N1∪N2)
b(uk) ≥ Ω

since we can apply the symmetric argument to the case of the opposite inequality. Then,
Pareto-efficiency (Proposition 6), (5), and (7) together imply that f i(u) ≤ b(ui) for any
i ∈ N . Thus, (4) and (6) imply that f i(u) < b(ui) < e(ui, f i(u)) = f i(buN 0

, u−N
0
) for any

i ∈ N3. For each i ∈ N3, let eui ∈ US be such that b(eui) = f i(buN 0
, u−N

0
) = e(un

0
, fn

0
(u)).

Owing to (6), by applying Fact 1 and nonbossiness (Proposition 5) successively for agents
in N3, we have f(euN 0

, u−N
0
) = f(buN 0

, u−N
0
).

In the rest of the proof, we establish that f(euN 0
, u−N

0
) = f(u−N

0
), which together

with f(euN 0
, u−N

0
) = f(buN 0

, u−N
0
) contradicts to f(buN 0

, u−N
0
) 6= f(u). Without loss of

generality, let N3 = {n0, . . . , n00}, n0 ≤ n00.
It follows from (7) and b(un

0
) < fn

0
(buN 0

, u−N
0
) = b(eun0) thatX

k∈N1∪N2
b(euk) + b(eun0) + X

k∈N\(N1∪N2∪{n0})
b(uk) ≥ Ω.

Thus, Pareto-efficiency, (8) implies

fn
0
(euN1∪N2, eun0 , u−(N1∪N2∪{n0})) ≤ b(eun0) = e(un0 , fn0(u)).

By (4) and (5), strategy-proofness for agent n0 with the preference un
0
implies

fn
0
(euN1∪N2 , eun0 , u−(N1∪N2∪{n0})) ≤ fn

0
(euN1∪N2, u−(N1∪N2)) = fn0(u),

or fn
0
(euN1∪N2 , eun0 , u−(N1∪N2∪{n0})) ≥ e(un

0
, fn

0
(u)).

By (4) and (5), strategy-proofness for agent n0 with the preference eun0 implies
fn

0
(euN1∪N2 , u−(N1∪N2)) = fn0(u) ≤ fn0(euN1∪N2, eun0 , u−(N1∪N2∪{n0})) ≤ e(eun0 , fn0(u)).

Therefore, it holds that

fn
0
(euN1∪N2, eun0 , u−(N1∪N2∪{n0})) = fn

0
(euN1∪N2 , u−(N1∪N2)) = fn0(u),

or fn
0
(euN1∪N2, eun0 , u−(N1∪N2∪{n0})) = e(un

0
, fn

0
(u)) = fn

0
(buN 0

, u−N
0
).

Suppose fn
0
(euN1∪N2, eun0 , u−(N1∪N2∪{n0})) = fn0(buN 0

, u−N
0
). We derive a contradiction.

Let un
0 ∈ US be such that b(un0) < b(un0) < b(eun0) and un0(fn0(u)) < un0(fn0(buN 0

, u−N
0
)).

Figure 3 below illustrates un
0
. It follows from (7) and b(un

0
) < b(un

0
) thatX

k∈N1∪N2
b(euk) + b(un0) + X

k∈N\(N1∪N2∪{n0})
b(uk) ≥ Ω.
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Thus by Pareto-efficiency,

fn
0
(euN1∪N2 , un0 , u−(N1∪N2∪{n0})) ≤ b(un0).

By (4) and (5), strategy-proofness for agent n0 with the preference un
0
implies

fn
0
(euN1∪N2 , un0 , u−(N1∪N2∪{n0})) ≤ fn

0
(euN1∪N2, u−(N1∪N2)) = fn0(u),

or fn
0
(euN1∪N2 , un0 , u−(N1∪N2∪{n0})) ≥ e(un

0
, fn

0
(u)).

By (4) and (5), strategy-proofness for agent n0 with the preference un
0
implies

fn
0
(euN1∪N2 , u−(N1∪N2)) = fn0(u) ≤ fn0(euN1∪N2, un0 , u−(N1∪N2∪{n0})) ≤ e(un0 , fn0(u)).

Therefore, it holds that fn
0
(euN1∪N2 , un0 , u−(N1∪N2∪{n0})) = fn0(u). Thus

un
0
(fn

0
(euN1∪N2 , un0 , u−(N1∪N2∪{n0}))) < un0(fn0(euN1∪N2, eun0 , u−(N1∪N2∪{n0}))),

contradicting strategy-proofness. Thus, it must be the case that

fn
0
(euN1∪N2, eun0 , u−(N1∪N2∪{n0})) = fn0(euN1∪N2, u−(N1∪N2)) = fn0(u).

Hence by nonbossiness (Proposition 5), we have

f(euN1∪N2 , eun0 , u−(N1∪N2∪{n0})) = f(euN1∪N2 , u−(N1∪N2)) = f(u).
Repeating the same argument as above for agents, i = n0+1, . . . , n00, we get f(euN 0

, u−N
0
) =

f(u−N
0
). Q.E.D.

FIGURE 3 ENTERS HERE.

7 Concluding Remark

In this article, we applied effective pairwise strategy-proofness to the three types of
economies: public goods economies, pure exchange economies, and allotment economies.
Then, new characterization results have been obtained. The implication of effective pair-
wise strategy-proofness is interesting from the view point of strategic behavior. Although
pairwise strategy-proofness is seemingly much weaker than group strategy-proofness, this
axiom characterizes many rules that are analyzed by using different axioms in the litera-
ture. These results indicate a new direction of the research on strategy-proof requirements.
The author believes that the application of effective pairwise strategy-proofness will also
generate interesting characterization results in other types of economies.
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Fig. 1. Illustration of uε% 1 in  
Proof of Theorem 1 
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Fig. 2. Illustration of ju
in Proof of Proposition 5
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Fig. 3. Illustration of 'nu
in Proof of Proposition 7  
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