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1 Introduction

Robins (1989, 1994) introduced the class of semi-parametric structural mean models

(SMMs) and their associated �G-estimators�for the estimation of causal e¤ects of treat-

ment regimes on outcomes from randomised controlled trials a¤ected by non-compliance.

Non-compliance comes about when participants choose treatments other than those to

which they were randomised. Of most interest are SMM estimators that allow for the

e¤ects of non-ignorable non-compliance, that is, where participants choose their treat-

ments in a manner associated with their study outcomes, even after baseline (and possibly

time-varying) covariates have been adjusted for. SMMs for non-ignorable non-compliance

are widely used in biomedical research: see, for example, Goetghebeur and Lapp (1997),

Witteman et al. (1998), Fischer-Lapp and Goetghebeur (1999), Ten Have et al. (2004),

Tanaka et al. (2008), and Moodie et al. (2009).

The parameters of SMMs correspond to meaningful functions of expected potential

outcomes for the population of participants exposed to the treatment. For example,

additive SMMs are speci�ed in terms of average treatment (or causal) e¤ects, and mul-

tiplicative SMMs in terms of causal risk ratios. Vansteelandt and Goetghebeur (2003)

developed the generalised SMM and we consider its important special case, the logis-

tic SMM and its associated �double-logistic� estimator for causal odds ratios. Hernán

and Robins (2006) review additive and multiplicative SMMs and consider the relation-

ship between these and econometric instrumental variable estimators; Goetghebeur and

Vansteelandt (2005) review all of the SMMs considered here.

In this paper, we consider the estimation of causal e¤ects using SMMs from stud-

ies in which the outcome is binary. Super�cially, SMMs are applicable no matter what

the outcome�s measurement scale, but we will show that the binary case poses problems

for SMM estimators. The usual identi�cation assumption is �no e¤ect modi�cation by

randomisation�, but we argue that it does not generally hold for binary outcomes. In
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fact, the usual target parameters are identi�ed only with assumptions like the �treat-

ment exclusion restriction�wherein no-one randomised to the control group can receive

the treatment. For more general designs, provided that patients�treatment selection is

monotonic (e.g., Angrist et al., 1996), additive and multiplicative SMMs identify �local�

(or �complier�) causal e¤ects, but the double-logistic SMM does not. If researchers fail to

recognise the di¢ culties that arise with binary outcomes then misleading interpretations

of SMM estimates could result. We present some numerical results for simple examples

to demonstrate this.

2 Structural Mean Models

2.1 Potential Outcomes

Before introducing the models, we �rst set out the potential outcomes notation to be

used throughout. To simplify notation and highlight concepts, we consider only the sim-

plest set-up: a randomised controlled trial in which patients are randomised to a �xed

treatment dose or to the control group, which they comply with or not according to

some non-ignorable mechanism; the binary study outcome is measured after some �xed

follow-up period. The focus on this simple set-up is done without loss of generality

and our �ndings apply equally to situations including pre-randomisation covariates, vari-

able treatment dose, and treatment regimes involving repeated doses with time-varying

covariates recorded.

Following Hernán and Robins (2006), let Y;X and Z denote random variables repre-

senting the following observed quantities: Z is the randomisation assignment indicator,

with Z = 1 denoting treatment and Z = 0 control; X 2 f1; 0g is the corresponding

indicator for the actual treatment chosen by the patient, where X 6= Z is possible due to

non-compliance; and Y 2 f0; 1g is the binary study outcome. It is assumed throughout
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that the observed data f(yi; xi; zi) : i = 1; :::; ng constitute an i.i.d. sample from the

target population.

The potential outcomes can now be de�ned in the usual way. Let Y (x; z) be the

potential outcome that would be obtained if the treatment assignment was set to z and

the treatment received to x by external intervention, rather than by randomising and

letting the patient choose himself/herself. Similarly, let X(z) be the potential treatment

that would be obtained if treatment assignment was set to z by external intervention.

Four necessary (but not su¢ cient) conditions for identi�cation can now be stated

as follows: the �stable unit treatment value� assumption that each patient�s potential

outcomes are mutually independent of those of any other patient; the existence of �causal

e¤ects�of Z on X and on Y ; the �consistency assumption�Y = Y (X;Z) and X = X(Z);

linking the observed and potential outcomes; and the �exclusion restriction�Y (x; z) =

Y (x) constraining the e¤ect of treatment assignment to a¤ect the study outcome only

through its e¤ect on treatment choice (e.g., Angrist et al., 1996). All of these are taken

to hold throughout this paper.

2.2 The Additive and Multiplicative SMMs

For the simple scenario just described, the additive SMM is

E (Y jX;Z)� E fY (0) jX;Zg = ( 0 +  1Z)X;

where Y (0) is the treatment-free potential outcome. While this model is saturated,

or non-parametric, in more general scenarios the right hand side will be a paramet-

ric function incorporating the e¤ect of pre-randomisation covariates or variable treat-

ment dose, which is why SMMs are usually referred to as semi-parametric models.

The parameters of the additive model are  0 = E fY (1)� Y (0)jX = 1; Z = 0g and

 0+ 1 = E fY (1)� Y (0)jX = 1; Z = 1g, that is, the average causal e¤ect among those

who chose treatment but were assigned the control, and the average causal e¤ect among
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those who were assigned to and chose treatment, respectively.

SMM estimators are based on the conditional mean independence, or randomisation

assumption

E fY (0) jZ = 1g = E fY (0) jZ = 0g ; (1)

which holds provided that randomisation is unrelated to the untreated potential outcome.

Under the additive SMM, (1) can be rewritten as

E fY � ( 0 +  1)XjZ = 1g = E (Y �  0XjZ = 0) ; (2)

from which an estimating equation can be constructed.

The saturated multiplicative SMM for the same scenario is de�ned as

E (Y jX;Z)
E fY (0) jX;Zg = exp f(�0 + �1Z)Xg :

The parameters of the multiplicative SMM are

exp (�0) =
E fY (1)jX = 1; Z = 0g
E fY (0)jX = 1; Z = 0g

and

exp (�0 + �1) =
E fY (1)jX = 1; Z = 1g
E fY (0)jX = 1; Z = 1g ;

that is, causal risk ratios among the same two subgroups as before. Under the multi-

plicative SMM, the conditional mean independence assumption (1) leads to the moment

condition

E [Y exp f� (�0 + �1Z)Xg jZ = 1] = E fY exp (�X�0) jZ = 0g : (3)

It is clear that neither set of SMM parameters is identi�ed by its corresponding

moment condition because both constitute systems with two unknowns in one equation.

Therefore, further assumptions are required to identify the SMM parameters. Hernán

and Robins (2006) highlight the role of the �no e¤ect modi�cation by Z�assumption: for
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the additive SMM, it corresponds to constraining  1 = 0, and for the multiplicative SMM

it corresponds to �1 = 0. Under no e¤ect modi�cation, there is only one unknown in

both (2) and (3) and identi�cation is achieved. The target parameter for the additive

SMM is then

 0 = E fY (1)� Y (0)jX = 1g ;

that is, the average causal e¤ect among the treated, and for the multiplicative SMM

exp(�0) =
E fY (1)jX = 1g
E fY (0)jX = 1g ;

i.e. the risk ratio among the treated.

The estimators of the additive and multiplicative SMM target parameters can be

written as b 0 = E(Y jZ = 1)� E(Y jZ = 0)
E(XjZ = 1)� E(XjZ = 0) ; (4)

and

exp(b�0) = 1� E(Y jZ = 1)� E(Y jZ = 0)
E f(1�X)Y jZ = 1g � E f(1�X)Y jZ = 0g ; (5)

respectively (e.g., Angrist, 2001; Hernán and Robins, 2006). The additive SMM estimator

has the same form as the classical instrumental variable estimator (Angrist et al., 1996);

the numerator in both expressions is called the �intention to treat� estimator. More

generally, the estimating equations under additive and multiplicative SMMs based on (1)

can be solved by G-estimation (Robins, 1994).

The crucial nature of the no e¤ect modi�cation assumption in identifying both SMM

estimators is thus apparent. It is the validity of this assumption in the binary case that

we will consider in detail below in Section 3.

2.3 The Double-Logistic SMM

Robins et al. (1999) proposed the logistic SMM�
E (Y jX;Z)

E (1� Y jX;Z)

�
=

�
E fY (0)jX;Zg

E f1� Y (0)jX;Zg

�
= exp f(�0 + �1Z)Xg ;
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parameterised in terms of the causal odds ratios among the two treated groups. Under

the no e¤ect modi�cation assumption �1 = 0, its target parameter is

exp (�0) =
E fY (1)jX = 1; Z = zg =E f1� Y (1)jX = 1; Z = zg
E fY (0)jX = 1; Z = zg =E f1� Y (0)jX = 1; Z = zg :

The logistic SMM is considered separately here because Robins (1999) showed that no

consistent G-estimator for �0 can be constructed without further assumptions. Vanstee-

landt and Goetghebeur (2003) developed the double-logistic estimator by exploiting the

result that �0 can potentially be identi�ed if the researcher speci�es a parametric �asso-

ciation model�

E (Y jX;Z) = m�(X;Z);

which is indexed by parameter vector �. The double-logistic estimator is based on speci-

fyingm�(X;Z) to be logistic. A drawback to this approach, as acknowledged by Vanstee-

landt and Goetghebeur (2003), is that both the SMM and the association model cannot

generally be logistic (i.e., one but not the other can be logistic), so the double-logistic

SMM is generally �uncongenial�in the sense described by Meng (1994). Robins and Rot-

nitzky (2004) propose an alternative estimator that avoids this problem, but it is still

a¤ected by the identi�cation problem that concerns us here. Hence, we shall continue to

focus on the double-logistic estimator because of its relative simplicity, and so proceed

by assuming the e¤ect of uncongeniality is negligible.

3 No E¤ect Modi�cation and Binary Outcomes

The role of the no e¤ect modi�cation (NEM) assumption is to constrain the causal e¤ects

among the treated to be equal for those randomised to treatment and those randomised to

control. For example, recall that the NEM assumption for the additive SMM constrains

 1 = 0 and thus

E fY (1)� Y (0)jX = 1; Z = 0g = E fY (1)� Y (0)jX = 1; Z = 1g :
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To investigate the validity of this assumption for binary outcomes, it is necessary

to consider the hypothetical structural model that generated the observed data. Pearl

(2000) gives a full account of the link between structural models and potential outcomes,

but we follow the overview given by Hernán and Robins (2006, Appendix 1).

Informally, we posit that there must exist a non-parametric structural equation model

generating the observed data that satis�es the assumptions set out in Section 2.1. Note

that by �non-parametric�we are not implying that the true data generating process cannot

be parametric, merely that no constraints are placed on its unknown form. Under these

assumptions, the �one-step ahead counterfactual�can be written

Y (x) = I ff �Y (x; U) > 0g ;

where I(w) is the indicator function taking the value 1 if w is true and 0 otherwise,

f �Y (x; U) is a function that depends on the �xed value of treatment and on a latent ran-

dom variable, or vector, U representing all unobserved factors in�uencing the outcome. It

is usual to interpret U as representing the impact of unobserved �confounding�variables.

Similarly, the potential outcome for chosen treatment is X(z) = I ff �X(z; V )g, where V is

another latent random variable, or vector, representing unobservable factors in�uencing

treatment choice. As the outcome is binary the indicator function is unavoidable, but

within it f �Y (x; u) can be any suitable function that generates, say, non-linear or hetero-

geneous treatment e¤ects. For �xed x, it is U that determines whether the potential

outcome is zero or one for a particular patient, and similarly for X(z).

To understand the implications of this, note that

E fY (x)jX = 1; Z = zg = Pr ff �Y (x; U) > 0jf �X (z; V ) > 0g :

It is clear that, in general, the NEM assumption cannot hold under such models. For a

speci�c example, consider the simple parametric structural model with (U; V ) a bivariate
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continuous random vector related to the potential outcomes by

Y (x) = I (�+ �x� U > 0) ; X(z) = I (
 + �z � V > 0) ; (6)

where E(U) = E(V ) = 0 and (U; V ) has distribution function F (u; v; �), with �correla-

tion�parameter � indexing all non-zero moments involving products of U and V . This

model speci�cation is of course very simple because it does not allow for heterogeneity in

the e¤ect of treatment on the latent scale. Even in this case, however, it can be shown

that

E fY (1) jX = 1; Z = 1g = Pr (U < �+ �jV < 
 + �) = F (�+ �; 
 + �; �) =FV (
 + �)

E fY (1) jX = 1; Z = 0g = Pr (U < �+ �jV < 
) = F (�+ �; 
; �) =FV (
)

E fY (0) jX = 1; Z = 1g = Pr (U < �jV < 
 + �) = F (�; 
 + �; �) =FV (
 + �)

E fY (0) jX = 1; Z = 0g = Pr (U < �jV < 
) = F (�; 
; �) =FV (
) ;

where FV (v) is the marginal distribution function of V , and so for the additive SMM

 0 +  1 =
F (�+ �; 
 + �; �)

FV (
 + �)
� F (�; 
 + �; �)

FV (
 + �)
6= F (�+ �; 
; �)

FV (
)
� F (�; 
; �)

FV (
)
=  0

almost everywhere. Hence, we can see that the NEM assumption does not hold for the

additive SMM model, and so its target parameter, the average treatment e¤ect among

the treated, is not identi�ed. In other words, the additive SMM is not estimating the

average treatment e¤ect among the treated. Writing out the appropriate risk and odds

ratios for the multiplicative SMM and logistic SMM models in a similar fashion leads us

to the same conclusion regarding NEM for both.

It now remains to establish what can be identi�ed using additive, multiplicative and

double-logistic SMM estimators for binary outcomes.

4 Identi�cation By Treatment Exclusion

In the previous section, we established that the target parameters of all three SMMs are

non-identi�ed, even in our simple scenario, because the NEM assumption does not hold
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for binary outcomes. For certain designs, however, it is possible to identify the SMM

parameters without requiring that NEM holds.

Vansteelandt and Goetghebeur (2003) originally proposed the double-logistic estima-

tor in the context of �placebo-control�randomised controlled trials. For this design, nei-

ther compliers nor non-compliers randomised to control can receive the treatment because

non-compliers receive only the placebo, equating to the condition Pr(X = 0jZ = 0) = 1.

More generally, as we will now outline, this treatment exclusion restriction is crucial and

a special case of the identifying assumptions for binary outcome SMMs described by

Robins and Rotnitzky (2004). In placebo-control designs, an additional assumption of

no placebo e¤ect is also needed that we herein take to hold.

Under treatment exclusion, the SMM parameters  0, �0 and �0 are not de�ned be-

cause all three are conditioned on the event fX = 1; Z = 0g, which has measure zero.

Conversely, fX = 1g = fX = 1; Z = 1g and so  0 +  1 =  = EfY (1)� Y (0)jX = 1g,

exp(�0 + �1) = exp(�) = EfY (1)jX = 1g=EfY (0)jX = 1g, and

exp(�0 + �1) = exp(�) =
EfY (1)jX = 1g

Ef1� Y (1)jX = 1g=
EfY (0)jX = 1g

Ef1� Y (0)jX = 1g ;

for the additive, multiplicative and logistic SMMs, respectively.

Under treatment exclusion, EfY (0)jZ = 0g is always non-parametrically identi�ed

because

E (Y jZ = 0) = EfY (0)jZ = 0g:

Now consider EfY (0)jZ = 1g and expand it to give

E fY (0) jZ = 1g = E fY (0) jX = 1; Z = 1gE (XjZ = 1)

+E fY (0) jX = 0; Z = 1gE(1�XjZ = 1):

Using the conditional mean independence assumption (1), it then follows that we can

estimate the counterfactual values directly from the data:

E fY (0) jX = 1; Z = 1g = E (Y jZ = 0)� E f(1�X)Y jZ = 1g
E (XjZ = 1) :
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Hence, the estimators of the additive and multiplicative SMM parameters under treat-

ment exclusion are, respectively,

 ̂ =
E (Y jZ = 1)� E (Y jZ = 0)

E (XjZ = 1) ;

and

exp(�̂) =
E (XY jZ = 1)

E (Y jZ = 0)� E f(1�X)Y jZ = 1g : (7)

The double-logistic SMM estimator is

exp(�̂) =
E (Y jX = 1; Z = 1)

E (1� Y jX = 1; Z = 1)
=

E (Y jZ = 0)� E f(1�X)Y jZ = 1g
E (XjZ = 1)� E (Y jZ = 0) + E f(1�X)Y jZ = 1g ;

which corresponds to the estimator proposed by Vansteelandt and Goetghebeur (2003)

for our simple scenario.

5 Identi�cation Under Monotonic Selection

The treatment exclusion restriction may be unrealistic for randomised controlled trials

without a placebo-control. In such circumstances, one is forced to focus on alternative

causal parameters because the target SMM parameters are non-identi�ed.

Imbens and Angrist (1994) and Angrist et al. (1996) highlight the importance of

monotonicity in problems a¤ected by non-ignorable non-compliance. Patient treatment

selection is monotonic if

X (1) � X (0) (8)

for all patients for some coding of X;Z.

In this set-up, monotonic selection corresponds to the assumption that no patient will

be a de�er, such that X(0) = 1; X(1) = 0, with probability one. For this de�nition to

make sense, we must assume that for each patient there are two universes in which he/she

is randomised to control and randomised to treatment, and so the �no de�ers�assumption

corresponds to saying that while patients can disobey their treatment assignments in one
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or other of these universes, patients cannot disobey their assignments in both. As an

example, the simple structural model described in Section 3 is monotonic because

X(1) = I (
 + � � V > 0) � I (
 � V > 0) = X(0);

if � > 0.

While we have shown that the NEM assumption does not generally hold, additive

and multiplicative SMM estimators (4) and (5) do identify local (or complier) e¤ects

under monotonic selection. Compliers are those people who comply with their treatment

assignments in both hypothetical universes, such that they satisfy X(0) = 0; X(1) = 1,

which we write asX(1) > X(0). Speci�cally, consider estimator (4) based on the additive

SMM. As noted previously, it has the same form as the classical instrumental variable

estimator and so from the results of Imbens and Angrist (1994) it follows that it is

consistent for the local average treatment e¤ect (LATE),

LATE = E fY (1)� Y (0) jX (1) > X (0)g ; (9)

which is also called the �complier average causal e¤ect�(CACE). Note that treatment

exclusion can be seen as an extreme special case of monotonic selection in which X(1) �

X(0) = 0 and the complier and treated groups are equivalent.

Similarly, Angrist (2001) showed that estimator (5) based on the multiplicative SMM

under NEM is consistent for the local relative risk (LRR),

LRR =
E fY (1) jX (1) > X (0)g
E fY (0) jX (1) > X (0)g : (10)

See also Hernán and Robins (2006) and an alternative derivation without using SMMs

by Greenland (2000).

The equivalent double-logistic SMM estimator is the solution to the moment condition

E [expit f�01 + (�11 � �0)Xg jZ = 1] = E [expit f�00 + (�10 � �0)Xg jZ = 0] ; (11)
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where expit (a) = exp (a) = f1 + exp (a)g. Estimates for (�00; �10; �01; �11) are obtained at

the �rst stage by �tting logistic association model m�(X;Z) = expit(�00+Z�01+X�10+

XZ�11). Moment condition (11) can be solved iteratively. However, as shown by the

numerical illustrations below, even assuming monotonicity it is not generally consistent

for the local odds ratio (LOR), de�ned as

LOR =
E fY (1) jX (1) > X (0)g

E f1� Y (1) jX (1) > X (0)g=
E fY (0) jX (1) > X (0)g

E f1� Y (0) jX (1) > X (0)g :

Clarke and Windmeijer (2009, Appendix 3) show that the exception to this rule is if

E fY (1)jX(1) = X(0) = 1g = E fY (1)jX(1) > X(0)g, in which case exp(b�0) is consistent
for the LOR. However, the LOR can be estimated without this assumption. Abadie (2003)

proposes an estimator for the LOR, but van der Laan et al. (2007) note how the same

estimator can be derived based on the relative risk estimator (5): �rst calculate exp(b�0)
as per usual, then recode the outcome variable as Y � = 1 � Y and calculate exp

�b��0�
replacing Y by Y � in (5), then the ratio exp(b�0)= exp�b��0� is consistent for the LOR by
symmetry of the relative risk.

6 Numerical Examples

To recap, the starting point of our analysis is that SMM parameters are identi�ed only by

making assumptions additional to those set out in Section 2.1. The NEM assumption is

often used for identi�cation, but in Section 3 we showed that it does not hold for simple

binary structural models. An alternative to NEM is the treatment exclusion restriction,

appropriate for randomised controlled trials such as those with placebo-control designs,

but implausible for other scenarios. In Section 5, however, we showed that the additive

and multiplicative SMM estimators are consistent for local, or complier, e¤ects under

monotonic selection, but that the double-logistic SMM is not consistent without further

assumptions.
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In this section, we conduct two numerical studies to investigate the implications

of these �ndings for scenarios where the treatment exclusion restriction does not hold.

We �rst look at a scenario in which the true selection mechanism is monotonic and

the unobserved confounders normally distributed. In this setting we can analytically

calculate and compare the key causal parameters. In the second scenario, we replicate

the design of Didelez et al. (2008) in which treatment and outcome data are generated

using a logistic model and calculate the key causal parameters and SMM estimates in

a Monte Carlo study. In the latter example, we also consider the case where the true

selection mechanism is not monotonic. Our aim in both studies is to show the impact of

misinterpreting the estimand of a SMM estimator as a causal e¤ect among the treated.

6.1 Example 1

The �rst illustration is based on the structural model (6) de�ned in Section 3:

Y (x) = I (�+ �x� U > 0) ; X(z) = I (
 + �z � V > 0) :

We set (U; V ) to have the bivariate normal distribution�
U
V

�
� N

��
0
0

�
;

�
1 �
� 1

��
;

and set Pr(Z = 1) = 0:5. Note that � indexes the strength of non-ignorability in the

selection mechanism determining compliance, with � = 0 corresponding to ignorable

compliance. For each set of parameter values (�; �; 
; �; �), we can calculate the corre-

sponding values of the key causal parameters. We �x the parameters in the outcome

model to � = 0, � = 0:1 and look at how the causal parameters vary as a function of

(
; �; �).

Figure 1 displays the values of average treatment e¤ects, relative risks and odds ratios

as a function of � for 
 = 0 and � = 0:5. In the �rst panel, ATE denotes the average

treatment e¤ect EfY (1)�Y (0)g, and the parameters of the additive SMM are denoted as
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follows: EfY (1)�Y (0) jX = 1; Z = 1g by ATEX1Z1, EfY (1)�Y (0) jX = 1; Z = 0g by

ATEX1Z0, and the average treatment e¤ect among the treated EfY (1)� Y (0) jX = 1g

by ATEX1. LATE denotes EfY (1)�Y (0) jX (1) > X (0)g. The parameters are similarly

de�ned in the second and third panel for the relative risk and odds ratio respectively

(RRX1Z1, ORX1Z0, etc.). For the odds ratio, there is an additional parameter denoted

by �VG�corresponding to the estimand of the double-logistic SMM (11).

For � = 0 and � = 0:1, the marginal expectations are EfY (1)g = �(0:1) = 0:5398

and EfY (0)g = �(0) = 0:5; and hence ATE = 0:5398 � 0:5 = 0:0398, RR = 1:0796

and OR = 1:1730. Likewise, as 
 = 0 and � = 0:5 then EfX (1)g = �(0:5) = 0:6915

and EfX (0)g = �(0) = 0:5, indicating a large degree of non-compliance in the control

arm, as EfX(0)g = Pr(X = 1jZ = 0). The proportion of compliers in the population is

PrfX(1) > X(0)g = EfX (1)�X (0)g = 0:1915.

Figure 1 shows the di¤erences between the local parameters that are identi�ed by

the SMM estimands, LATE and LRR, and their respective parameters in the treated

group, ATEX1 and RRX1. Clearly, the di¤erences are increasing functions of �. We take

ATEX1 and RRX1 as the comparison here, as these are the parameters estimated if the

no e¤ect modi�cation by Z (NEM) holds. The di¤erences are quite substantial for large

�: for example, if � = 0:5 the LATE equals 0:0457 and the ATEX1 is equal to 0:0400, a

di¤erence of 14%. In terms of risk ratios, the LRR minus 1 equals 0:0634 and the RRX1

minus 1 equals 0:1030, a 62% di¤erence. The magnitude by which NEM is violated is

indicated by the di¤erence between ATEX1Z1 and ATEX1Z0 for the additive SMM, and

between RRX1Z1 and RRX1Z0 for the multiplicative SMM. Both are relatively small

indicating a minor failure of NEM, but the local parameters take quite di¤erent values.

For the odds ratio, the LOR and ORX1 are quite close: for example, if � = 0:5 the LOR

minus 1 is equal to 0:2018 and the ORX1 minus 1 equal to 0:1926, only a small di¤erence

of 4.8%. Interestingly, the estimand of the double-logistic SMM estimator, VG, tracks
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the odds ratio OR quite closely here, but not LOR or ORX1: at � = 0:5, VG minus 1 is

equal to 0:1745, a 10% di¤erence from ORX1 and 15:6% di¤erence from LOR.

Figure 2 displays the same plots for 
 = �1 and � = 0:615. We now have EfX (0)g =

0:159, so there is more compliance in the control group, while the complier proportion

remains 0:1915. Here we �nd values of LATE and ATEX1 at � = 0:5 of 0:0415 and 0:0341

respectively, a di¤erence of 21%. For the LRR and RRX1 (minus 1) the respective values

are 0:0639 and 0:0458, a di¤erence of 40%. In contrast, the LOR and ORX1 are virtually

identical in this case for all �, with VG now tracking both quite closely.

In Figure 3 we set 
 = �1 and � = 1:208 to give EfX (0)g = 0:023. These parameter

values generate data for which treatment exclusion might be expected to provide a good

approximation. As expected, the local parameters LATE and LRR are very close to

ATEX1Z1 and RRX1Z1 respectively, and to ATEX1 and RRX1 too. The LOR and VG

are in this case identical to ORX1Z1 and ORX1.

Figure 1. 
 = 0, � = 0:500
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Figure 2. 
 = �1, � = 0:615

Figure 3. 
 = �2, � = 1:208

6.2 Example 2

Didelez et al. (2008) considered a more complex model for generating non-ignorable non-

compliance using a logistic structural model. In our notation, it is written

X(z) = I fD < expit (�1 + z�2 + U�3 + zU�4)g (12)

Y (x) = I fW < expit (�1 + x�2 + U�3 + xU�4)g (13)

where D and W are independent random variables uniformly distributed on (0; 1). An

equivalent expression for (12) is EfX(z)jU = ug = expit(�1+ z�2+u�3+ zu�4) and for

(13) is EfY (x)jU = ug = expit(�1+x�2+u�3+xu�4). Both models contain interaction
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terms allowing the e¤ect of latent U to vary depending on z and x, respectively. There are

heterogeneous treatment e¤ects (on the latent scale) if �4 6= 0 but this poses no problems

as SMMs do not constrain treatment e¤ects to be homogeneous, or indeed place any

constraints on the form of treatment e¤ect heterogeneity. More importantly, however,

the monotonicity assumption X (1) � X (0) holds only if �4 = 0, and monotonicity is

crucial for identi�cation of local causal e¤ects.

We generate data according to models (12) and (13), setting the parameters �1 = 0,

�2 = 0:5, �3 = 2, �1 = 0, �2 = 0:3, �3 = 2, and specifying U � N (0; 1). Table 1

contains Monte Carlo estimates, based on 1000 replications, of the mean and standard

deviation of the causal parameters de�ned above and the estimands of three local e¤ect

estimators. For the additive and multiplicative SMMs we use (4) and (5), and use the

consistent estimator of LOR described in Section 5 rather than the double-logistic SMM.

To minimise the impact of �nite sample bias and maintain our focus on consistency, we

generated samples of size 500; 000.
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Table 1. Causal parameters and SMM estimates for logistic model
(1) (2) (3)

�4 = �4 = 0 �4 = 0; �4 = 1 �4 = 1; �4 = 1
mean stdev mean stdev mean stdev

ATE 0:0453 0 :0003 0:0344 0 :0003 0:0344 0 :0004
ATEX1Z1 0:0455 0 :0005 0:0625 0 :0007 0:0708 0 :0008
ATEX1Z0 0:0437 0 :0006 0:0658 0 :0007 0:0658 0 :0007
ATEX1 0:0447 0 :0004 0:0640 0 :0005 0:0684 0 :0005
LATE 0:0574 0 :0012 0:0403 0 :0013 0:0923 0 :0016
Add. SMM 0:0575 0 :0188 0:0403 0 :0180 0:1148 0 :0225

RR 1:0907 0 :0006 1:0689 0 :0007 1:0689 0 :0007
RRX1Z1 1:0682 0 :0009 1:0936 0 :0011 1:1007 0 :0012
RRX1Z0 1:0627 0 :0008 1:0944 0 :0011 1:0944 0 :0011
RRX1 1:0656 0 :0006 1:0940 0 :0008 1:0977 0 :0008
LRR 1:1219 0 :0028 1:0855 0 :0029 1:1376 0 :0027
Mult. SMM 1:1229 0 :0426 1:0863 0 :0399 1:1523 0 :0328

OR 1:1994 0 :0014 1:1479 0 :0016 1:1478 0 :0016
ORX1Z1 1:2377 0 :0032 1:3467 0 :0045 1:4457 0 :0057
ORX1Z0 1:2420 0 :0034 1:3984 0 :0053 1:3982 0 :0052
ORX1 1:2394 0 :0023 1:3691 0 :0033 1:4227 0 :0039
LOR 1:2584 0 :0061 1:1749 0 :0061 1:5802 0 :0126
LOR estimator 1:2629 0 :0958 1:1781 0 :0852 2:2247 0 :3699

Notes: 1000 Monte Carlo replications; sample size 500; 000.

The results for �4 = �4 = 0 are given in column 1 and are similar to the results

found above. When we introduce an extra source of treatment heterogeneity by setting

�4 = 1 (column 2), we see again that all three estimators are very close to the local

parameters. For the odds ratio, it can also be seen that treatment e¤ect heterogeneity

has here exacerbated the di¤erence between the local and treated group odds ratios LOR

and ORX1, being 1.175 and 1.369 respectively.

When the monotonicity assumption is violated by further setting �4 = 1 (column 3),

we see that all three SMM estimates diverge from the local parameters, with the LOR

estimator especially very poorly behaved. In this example, the divergence between the

target parameters, the causal e¤ects in the treated group, and the estimates of the local

treatment e¤ects gets more pronounced.
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7 Conclusions

We have shown that for the identi�cation of causal e¤ects on binary outcomes with non-

compliance using structural mean models, additional, non-standard assumptions need

to be made. Causal e¤ects like the average treatment e¤ect for the treated can be

identi�ed when the control group has no access to treatment. However, we show that the

common identifying assumption of no e¤ect modi�cation by randomisation does not hold

in general for binary outcomes, meaning that treatment e¤ects for the treated are not

identi�ed when there is also treatment non-compliance in the control group. To some

extent this has already been recognised: in the context of logistic and probit SMMs,

NEM is �unrealistic because subpopulations [de�ned by randomisation] are likely to be

quite di¤erent with regard to modi�ers of the e¤ect of active treatment on the outcome

of interest� (Robins and Rotnitzky, 2004, p. 778); and in the context of generalised

SMMs, �a sensitivity analysis which investigates departures from this homogeneity [NEM]

assumption is recommended�(Vansteelandt and Goetghebeur, 2003, p. 829). However,

our study represents an investigation into the full implications of this failure for all SMMs,

and through our numerical study its impact on practice.

While applications of logistic SMMs so far have been to designs satisfying the treat-

ment exclusion requirement, not all randomised controlled trials satisfy it. Moreover,

SMMs can also be applied to observational studies without a randomisation indicator

but where Z is chosen to satisfy the assumptions of an econometric instrumental vari-

able (e.g., Angrist et al., 1996). For such applications, such as genetic instruments used

within the �Mendelian randomisation� context (e.g., Didelez and Sheehan, 2007), any

such assumption is likely to be implausible.

If selection into treatment is monotonic, the additive and multiplicative SMM esti-

mands correspond to a local, or complier, causal e¤ects that, as we show, can be quite

di¤erent from treatment e¤ects for the treated. Caution is therefore in order when inter-
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preting SMM estimates when outcomes are binary, with the issue of monotonicity and

interpretation of complier average a¤ects paramount when treatment exclusion cannot

be obtained in the control group. Finally, we show that the double-logistic SMM esti-

mator is not consistent for the local odds ratio without further assumptions, but that an

alternative estimator is available (Abadie, 2003; van der Laan et al., 2007)
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