
MPRA
Munich Personal RePEc Archive

Bounding the CRRA Utility Functions

Suen, Richard M. H.

07. February 2009

Online at http://mpra.ub.uni-muenchen.de/13260/

MPRA Paper No. 13260, posted 08. February 2009 / 22:13

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6317945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/13260/


Bounding the CRRA Utility Functions

Richard M. H. Suen�

February, 2009

Abstract

The constant-relative-risk-aversion (CRRA) utility function is now predominantly

used in quantitative macroeconomic studies. This function, however, is not bounded

and thus creates problems when applying the standard tools of dynamic programming.

This paper devises a method for �bounding�the CRRA utility functions. The proposed

method is based on a set of conditions that can establish boundedness among a broad

class of utility functions. These results are then used to construct a bounded utility

function that is identical to a CRRA utility function except when consumption is very

small or very large. It is shown that the constructed utility function also satis�es the

Inada condition and is consistent with balanced growth.
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1 Introduction

It is now a standard practice in macroeconomics to postulate that preferences over con-

sumption streams are additively separable over time, and in each time period consumption

is evaluated by a constant-relative-risk-aversion (CRRA) utility function.1 Besides analyt-

ical simplicity, this particular functional form has two other appealing features. First, it

satis�es the Inada condition which states that marginal utility of consumption approaches

in�nity when consumption approaches zero. This condition ensures that it is never optimal

to have zero consumption at any point of time and hence one can focus on interior solutions.

Second, for a large class of economic growth models, a constant intertemporal elasticity of

substitution (IES) is su¢ cient to ensure the existence of balanced growth equilibria. Since

this type of equilibria is consistent with the stylized facts of economic growth, this feature

is often cited as the main justi�cation for using the CRRA utility function.2

One drawback of the CRRA utility function is that it is not bounded. This creates

problems in applying the tools of dynamic programming to models using this kind of utility

function. The standard theory of dynamic programming establishes that a unique solution

to the Bellman equation exists and can be obtained through successive iterations of a con-

traction mapping. These results, however, are based on the assumption of bounded utility

function.3 Various attempts have been made to extend these results to the unbounded

case in deterministic models (Boyd 1990; Alvarez and Stokey 1998; Durán 2000; Le Van and

Morhaim 2002; and Rincón-Zapatero and Rodríguez-Palmero 2003). The upshot of these ef-

forts is a set of additional conditions under which the basic results of dynamic programming

are valid when the utility function is unbounded. However, it remains unclear whether these

results would hold in stochastic models. When the utility function is unbounded, expected

utility and the expectation of the value function may be unbounded as well.4 In order to

avoid this problem, theoretical studies on stochastic economies typically adopt a bounded

utility function (see, among others, Aiyagari 1993; Huggett 1997; Huggett and Ospina 2001;

and Miao 2006). But the CRRA utility function is still predominantly used in quantitative

studies.

In order to bridge this gap between theoretical and quantitative analysis. this paper

1The standard CRRA utility function is given by u (c) = c1��= (1� �) with � > 0: In a dynamic stochastic
setting, � is both the coe¢ cient of relative risk aversion and the inverse of the intertemporal elasticity of
substitution. Since � = �cu00 (c) =u0 (c) ; it is also the elasticity of marginal utility for consumption. These
three terms are used interchangeably in this paper.

2To ensure the existence of these paths, it actually su¢ ce to have a constant IES when consumption is
large. See Palivos, Wang and Zhang (1997) for a formal proof using the AK growth model. See, also, Steger
(2007) for an analytical example.

3More precisely, the utility function is required to be bounded over the set of feasible choices. This
assumption permeates all the results presented in Stokey, Lucas and Prescott (1989) Section 4.2 and Section
9.2, which are now considered standard by macroeconomists.

4See Geweke (2001) for some examples.
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proposes a method to �bound� the CRRA utility functions. More speci�cally, this paper

proposes a method to construct a bounded utility function that is identical to a CRRA

utility function except when consumption is very small or very large. The current study

begins by deriving a set of conditions under which any twice continuously di¤erentiable

utility function is bounded, satisfying the Inada condition and consistent with balanced

growth. The theoretical analysis is motivated by the following observations. First, a strictly

increasing utility function is either unbounded at the origin or unbounded at in�nity. Second,

the Inada condition is a property of the utility function when consumption is very close to

zero. Finally, in order to ensure the existence of balanced growth equilibrium paths, it su¢ ce

to have a constant IES along those paths where consumption is growing inde�nitely. In other

words, all these are properties of the utility function when consumption is either very small

or very large. It is thus possible to formulate two sets of assumptions, one governing the

utility function when consumption is small and the other when consumption is large, so as

to obtain all the desired properties. To achieve this, the current study begins with a broad

class of utility functions which share the same elasticity of marginal utility. This elasticity

can be any bounded, continuous, nonnegative function of consumption which converges to

a positive constant when consumption approaches in�nity. The last condition ensures that

the underlying utility functions are consistent with balanced growth. It is shown that, under

some mild additional restrictions, these utility functions are bounded and satisfy the Inada

condition. This class of utility functions thus shares the same appealing features as the

CRRA utility functions. Since these new utility functions are bounded, they will not cause

any problem when applying the standard tools of dynamic programming. This o¤ers a wide

range of alternative utility functions that one can use in quantitative analysis.

The theoretical results presented in this paper also provide a set of guidelines for con-

structing upper bounds and lower bounds for the CRRA utility functions. Consider as

an example a CRRA utility function with coe¢ cient of relative risk aversion greater than

or equal to one. Suppose now the constant-relative-risk-aversion assumption is relaxed in

the vicinity of the origin, say over a certain interval [0; c] ; but remains intact beyond this

range. It is shown that such a speci�cation would generate a class of utility functions that

are bounded at the origin, satisfy the Inada condition and display CRRA for c � c. With

a suitable normalization, a utility function that coincides with the original CRRA utility

function for c � c can be obtained. Most importantly, the value of c can be made arbitrarily

small so that the new utility function is �almost identical� to the original CRRA utility

function.

The rest of this paper is organized as follows. Section 2 presents the theoretical results

underlying the proposed method. Section 3 provides a demonstration of this method. This

is followed by some concluding remarks in section 4.
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2 Theoretical Results

Let � (c) be a real-valued function de�ned on the positive real line. Let U (�) be the class of
functions that are (i) twice di¤erentiable for all c > 0; (ii) strictly increasing and (iii) solves

the following second-order di¤erential equation:

u00 (c) +
� (c)

c
u0 (c) = 0; for all c > 0: (1)

If u (c) is an element of U (�) ; then any linear transformation v (c) = au (c)+ b; with a > 0;

is also an element of U (�) : If u (c) is a utility function, then � (c) is the elasticity of marginal
utility. In a stochastic environment, � (c) =c is the coe¢ cient of absolute risk aversion and

� (c) is the coe¢ cient of relative risk aversion. It is a common practice to characterize utility

functions through the elasticity of marginal utility (or through the absolute risk aversion).

The most well-known example is the CRRA utility function which can be derived from (1)

by imposing the restriction: � (c) is constant for all c � 0: More generally, the class of

HARA utility functions can be obtained from (1) by imposing

� (c)

c
=

1

�+ 
c
; for �+ 
c > 0:

A similar approach is adopted in the current analysis. The task at hand is to formulate a

set of conditions on � (c) under which any function in U (�) is bounded, satisfying the Inada
condition and consistent with balanced growth. Throughout this section, the function � (c)

is assumed to have the following properties:

Assumption A1 � (c) is bounded, continuous and non-negative for all c � 0:

Assumption A2 lim
c!1

� (c) exists and is given by e� 2 (0;1) :
Assumption A1 has a number of implications. First, it ensures that the initial value

problem (1), with initial conditions u (c0) = u0 and u0 (c0) = z0 > 0 for any c0 > 0; has

a unique solution on [c0;1) :5 Thus U (�) is non-empty under Assumption A1. Second, it
ensures that any function in U (�) is twice continuously di¤erentiable and strictly concave.
This means under Assumption A1, all the functions in U (�) satisfy the �usual�properties of
a utility function, including continuity, monotonicity, concavity and di¤erentiability. Third,

this assumption implies that, in the vicinity of the origin, the marginal utility function u0 (c)

is bracketed between two strictly decreasing power functions.6 This result is summarized in

5The existence and uniqueness theorem for linear second-order initial value problems can be found in
almost any textbook on ordinary di¤erential equations. See, for instance, Boyce and DiPrima (1997) Theorem
3.2.1. Note that only continuity of the function � (c) =c is required in order to apply this theorem.

6The bracketing functions are speci�c to the underlying utility function. In other words, di¤erent functions
in the same class, for example u (c) and v (c) = au (c) + b; would have di¤erent bracketing functions. This
point is made clear in the proof of Lemma 1.
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Lemma 1. All proofs can be found in the Appendix.

Lemma 1 For any " > 0; de�ne �" � � (0) + " and �" � � (0)� ": Under Assumption A1,
there exists x > 0 such that for all c 2 (0; x],

�1 (x; ") c
��" � u0 (c) � �2 (x; ") c

��" ; (2)

where �1 (x; ") and �2 (x; ") are two strictly positive constants depending on x and ":

If � (0) is strictly positive, then it is possible to set �" > 0 in Lemma 1. It follows that

the lower bound in (2), and hence u0 (c) ; would become in�nite when c approaches zero.

Thus Assumption A1 and � (0) > 0 are su¢ cient to establish the Inada condition. This

result is summarized in Proposition 2.

Proposition 2 Suppose Assumption A1 is satis�ed. If � (0) > 0; then every utility function
u (c) in U (�) satis�es the Inada condition, i.e., lim

c!0
u0 (c) = +1:

The next proposition states the conditions under which any utility function in U (�) is
bounded or unbounded below.

Proposition 3 Suppose Assumption A1 is satis�ed.

(i) If there exists x > 0 such that � (c) � 1 for c 2 [0; x] ; then every utility function u (c)
in U (�) is not bounded below, i.e., u (0) = �1:

(ii) If there exists x > 0 such that � (c) < 1 for c 2 [0; x] ; then every utility function u (c)
in U (�) is bounded below, i.e., u (0) > �1:

The �rst part of this proposition states that a utility function is unbounded below if

there exists a neighborhood of the origin in which the elasticity of marginal utility is greater

than or equal to one. Any CRRA utility function with � � 1 clearly satis�es this condition
and is thus unbounded below. More generally, if � (c) satis�es Assumption A1 and � (0) > 1;

then the condition in part (i) is satis�ed and consequently the underlying utility functions

are unbounded below. This result is summarized in the �rst part of Corollary 4. The

second part of Proposition 3 states that a utility function is bounded below if the elasticity

of marginal utility is strictly less than one when c is very close to zero. This includes all

the CRRA utility functions with � < 1: It also includes any utility function with � (c)

that satis�es Assumption A1 and � (0) 2 (0; 1) : This result is stated in the second part of
Corollary 4.
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Corollary 4 Suppose Assumption A1 is satis�ed.

(i) If � (0) > 1; then every utility function u (c) in U (�) is not bounded below.

(ii) If � (0) 2 (0; 1) ; then every utility function u (c) in U (�) is bounded below.

Proposition 3 and its corollary together imply the following. Suppose Assumption A1 is

satis�ed and � (0) > 0: Then any utility function in U (�) is bounded below only if either (i)
� (0) 2 (0; 1) ; or (ii) � (0) = 1 and � (c) < 1 within a neighborhood of the origin. In order
words, the assumption of bounded utility function would imply certain restrictions on the

altitude towards risk and intertemporal substitution when consumption is small.

We now turn to the properties of u (c) when c is large. Proposition 5 states the conditions

under which u (c) is bounded or unbounded above. Part (i) of this proposition establishes

that a utility function is bounded above if the elasticity of marginal utility is strictly greater

than one when c is su¢ ciently large. This includes any CRRA utility function with � > 1:

The second part of this proposition states that a utility function is unbounded above if the

elasticity is no greater than one when c is large. This includes any CRRA utility function

with � � 1:

Proposition 5 Suppose Assumption A1 is satis�ed.

(i) If there exists x � 0; such that � (c) > 1 for c � x; then every utility function u (c) in

U (�) is bounded above.

(ii) If there exists x � 0; such that � (c) � 1 for c � x; then every utility function u (c) in

U (�) is not bounded above.

Clearly if lim
c!1

� (c) exists and is strictly greater than one, then the condition in the �rst

part of Proposition 5 is satis�ed. On the other hand, if the limit is no greater than one

then the condition in the second part is ful�lled. These results are summarized in Corollary

6. Similar to Propositions 3 and its corollary, these results show that the assumption of

bounded utility function would imply certain restrictions on the altitude towards risk and

intertemporal substitution when consumption is large.

Corollary 6 Suppose Assumptions A1 and A2 are satis�ed.

(i) If e� > 1; then every utility function u (c) in U (�) is bounded above.
(ii) If e� 2 (0; 1] ; then every utility function u (c) in U (�) is not bounded above.
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We conclude this section by proposing a class of bounded utility functions that inherit the

appealing features of the CRRA utility functions. Let � : R+ ! R+ be a real-valued function
that satis�es Assumptions A1 and A2. In addition, suppose the condition e� > 1 > � (0) > 0

is satis�ed. Then according to the theoretical results presented above, any utility function in

U (�) is bounded, satis�es the Inada condition and displays constant IES when consumption
approaches in�nity.

3 Bounding the CRRA Utility Functions

Consider the typical CRRA utility function,

v (c) =
c1��

1� � ; for all c � 0: (3)

This function is not bounded below when � � 1 and is not bounded above when � � 1:

This section describes a method for constructing a lower bound for the case when � � 1:

Empirical studies on IES typically report an estimate that falls within this range.7 For this

reason, these values of � are commonly used in calibrated models. The same approach can

be used to construct an upper bound for the case when � � 1:
The goal in here is to construct a utility function u that has the following properties: (i)

it is bounded below, (ii) it satis�es the Inada condition and (iii) there exists c > 0 such that

u (c) = v (c) for c � c: In particular, the value of c can be made arbitrarily small so that

u (c) is �almost identical�to v (c) :8 The third property also ensures that u is consistent with

balanced growth. In order to establish the third property, the utility function u (c) must

display constant relative risk aversion over the range [c;1) : The next proposition provides
the necessary and su¢ cient condition for this to be true. The proof is standard and is thus

omitted.

Proposition 7 The following statements are equivalent:

(i) � (c) = � for all c � c > 0:

(ii) The utility functions in U (�) can be expressed as

u (c) = �1 + �2
c1��

1� � ; for c � c;

where �1 is an arbitrary constant and �2 = u0 (c) c� > 0:

7See, for instance, Ogaki and Reinhart (1998) and Vissing-Jorgensen (2002).
8 It is tempting to call u (c) an approximation of v (c) : We choose not to do so because at the origin,

v (0) = �1 < u (0) : This means the approximating error at the origin is always in�nitely large.
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Begin with a real-valued function b� (c) that is de�ned on the positive real line. According
to Proposition 2 and Corollary 4, if b� (c) satis�es Assumption A1 and b� (0) 2 (0; 1), then
any utility function u (c) in U (b�) is bounded below and satis�es the Inada condition. If,
in addition, b� (c) is constant over the range [c;1) then u (c) is a CRRA utility function

over this range. Clearly, this condition implies Assumption A2. Thus, U (b�) is a subclass of
the utility functions de�ned at the end of section 2. In general, b� (c) can be non-monotonic
or non-di¤erentiable over the interval (0; c). A simple piecewise linear function is adopted

in here for illustrative purposes. Select two parameter values �0 2 (0; 1) and c > 0: The

function b� (c) is assumed to be given by
b� (c) = ( �0 +  c for c 2 [0; c]

� for c � c;
(4)

where � � 1 and  � (� � �0) =c > 0:
As shown in Proposition 7, the utility function u (c) can be expressed as

u (c) = �1 + �2
c1��

1� � , for c � c:

Set �1 = 0 and �2 = u0 (c) c� = 1 so that u (c) is equivalent to the CRRA utility function in

(3) for c � c. For c 2 [0; c] ; the utility function is given by

u (c) = � � �
Z c

c
exp (� z) z��0dz; (5)

where � � exp (� � �0) (c)�(���0) > 0: The derivations of (5) are shown in the Appendix.

Continuity of u (c) at c = c then requires � = c1��= (1� �) : It is straightforward to check
that u0 (c) and u00 (c) are both continuous at c: According to Proposition 2, this utility

function is bounded below at the origin. In particular, u (0) is given by

u (0) =
c1��

1� � � �
Z c

0
exp (� z) z��0dz;

which is �nite.

4 Final Remarks

The main contribution of this paper is two-fold. First, this paper proposes a class of utility

functions that are bounded, satisfying the Inada condition and consistent with balanced

growth. This class of utility functions represents a wide range of alternatives to the CRRA

utility functions for quantitative analysis. Second, this paper devises a method for �bound-
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ing� the CRRA utility functions. The proposed method involves constructing a bounded

utility function that is identical to a given CRRA utility function except when consumption

is very small or very large.

The proposed method is particularly useful for constructing a lower bound for CRRA

utility functions with coe¢ cient of relative risk aversion strictly greater than one. In this

case, a bounded utility function can be obtained by relaxing the CRRA assumption within

the vicinity of the origin. In other words, the proposed method would incur a modi�cation

in the altitude towards risk and intertemporal substitution when consumption is very close

to zero. Since the range of consumption values a¤ected can be made arbitrarily small, such

a modi�cation should be innocuous in most applications. In principle, the same method

can be used to construct an upper bound for CRRA utility functions with coe¢ cient of

relative risk aversion strictly less than one. However, in most applications an upper bound

for this type of CRRA utility functions is not necessary. In this case, the standard results

of deterministic dynamic programming can be recovered by using the weighted contraction

mapping theorem described in Boyd (1990). Becker and Boyd (1997, p.135-138) explain

how these results can be used to solve an one-sector neoclassical growth model with CRRA

utility function and the coe¢ cient of relative risk aversion is strictly less than one.
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Appendix

Preliminaries

The following theorems regarding improper integrals are useful in our proofs. The proofs of

these theorems can be found in Widder (1989) Chapter 10.

Theorem 8 Let f be a real-valued continuous function de�ned on the interval (a; b]. If
lim
c!a+

(c� a) f (c) = A, for some A 6= 0; then
R b
a f (c) dc = +1:

Theorem 9 Let f be a real-valued continuous function de�ned on the half-line [a;1) : If
lim
c!1

cf (c) = A, for some A 6= 0; then
R1
a f (c) dc = +1:

Theorem 10 Let f be a real-valued continuous function de�ned on the interval (a; b]. If
lim
c!a+

c�f (c) exists for some � 2 (0; 1) ; then
R b
a f (c) dc is �nite.

Proof of Lemma 1

The following proof is similar to the proof of Lemma 1 in Barelli and Pessôa (2003). For

any " > 0; de�ne �" � � (0) + " and �" � � (0)� ": Since � (c) is continuous at c = 0; there
exists x > 0 such that

�" � � (c) � �"; for all c 2 (0; x] ;

which implies
�"
c
� � 1

u0 (c)

du0 (c)

dc
=
� (c)

c
� �"

c
; for all c 2 (0; x] :

Since � (c) =c is bounded and continuous on (0; x] ; it is also integrable. Integrating the

above inequalities over the interval [c; x] gives

ln

�� c
x

���"� � ln � u0 (c)
u0 (x)

�
� ln

�� c
x

���"�
;

which implies

u0 (x)
� c
x

���" � u0 (c) � u0 (x)
� c
x

���"
; for all c 2 (0; x] ; (6)

Note that �1 (x; ") � u0 (x)x�" and �2 (x; ") � u0 (x)x�" are both strictly positive and

speci�c to the function u (c) : This completes the proof of Lemma 1.
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Proof of Proposition 3

Part (i) Suppose there exists x > 0 such that � (c) � 1 for all c 2 [0; x] : Then following
the same steps as in the proof of Lemma 1, one can obtain

�du
0 (c)

u0 (c)
� dc

c
; for all c 2 (0; x] :

Integrating this over the range [c; x] gives

u0 (c) � u0 (x)
� c
x

��1
; for all c 2 (0; x] :

Since lim
c!0

h
c � u0 (x)

�
c
x

��1i
= u0 (x)x 6= 0; it follows from Theorem 8 that

lim
c!0

Z x

c
u0 (x)

�y
x

��1
dy = +1:

Hence

lim
c!0

Z x

c
u0 (y) dy = u (x)� lim

c!0
u (c) = +1:

Since u (�) is continuous on [0;1) ; u (x) must be of �nite value for any x > 0: Thus

u (0) = �1: This completes the proof of part (i).

Part (ii) Suppose there exists x > 0 such that � (c) < 1 for all c 2 [0; x] : Then there
exists b� < 1 such that � (c) � b� for all c 2 (0; x] : Following the same steps as above, we
have

u0 (c) � u0 (x)
� c
x

��b�
; for all c 2 (0; x] :

It follows that

lim
c!0

Z x

c
u0 (y) dy � lim

c!0

Z x

c
u0 (x)

�y
x

��b�
dy =

u0 (x)x

1� b� < +1:

The desired result follows immediately from the following

lim
c!0

Z x

c
u0 (y) dy = u (x)� lim

c!0
u (c) < +1:

This completes the proof of Proposition 3.
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Proof of Proposition 5

Part (i) If there exists x � 0 such that � (c) > 1 for all c � x; then there must existb� > 1 such that � (c) � b� for all c � x: This implies

u0 (c) � u0 (x)
� c
x

��b�
; for all c � x: (7)

Since

lim
c!1

Z c

x
u0 (x)

�y
x

��b�
dy =

u0 (x)xb� � 1 < +1:

It follows from (7) that

lim
c!1

Z c

x
u0 (y) dy = lim

c!1
u (c)� u (x) < +1:

Hence the desired result.

Part (ii) If there exists x � 0 such that � (c) � 1 for all c � x; then the following

inequality holds for all c � x;

u0 (c) � u0 (x)
� c
x

��1
:

Since lim
c!1

h
c � u0 (x)

�
c
x

��1i
= u0 (x)x 6= 0; it follows from Theorem 9 that

lim
c!1

Z c

x
u0 (x)

�y
x

��1
dy = +1:

Hence

lim
c!1

Z c

x
u0 (y) dy = lim

c!1
u (c)� u (x) = +1

and the desired result. This completes the proof of Proposition 5.

Derivations of Equation (5)

Consider the following initial value problem,

u00 (c) +
� (c)

c
u0 (c) = 0; for c � c0 > 0;

with u0 (c0) > 0 given. The choice of c0 and u0 (c0) are immaterial. Since � (c) =c for c > 0

is continuous, a unique solution exists and is given by

u0 (c) = u0 (c0) exp

�
�
Z c

c0

� (z)

z
dz

�
; for c � c0:
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For any c 2 [c0; c] ;

u0 (c) = u0 (c0) exp

�
�
Z c

c0

� (z)

z
dz

�
exp

�
�
Z c

c

� (z)

z
dz

�
= u0 (c) exp

�
�
Z c

c

� (z)

z
dz

�
:

Hence for any c 2 (0; c] ;

u0 (c) = u0 (c) exp

�Z c

c

� (z)

z
dz

�
:

According to (4), we haveZ c

c

� (z)

z
dz = (� � �0)�  c+ �0 (ln c� ln c) ;

) exp

�Z c

c

� (z)

z
dz

�
= exp (� � �0) (c)�0 exp (� c) c��0 ;

where  � ���0
c > 0: Hence

u0 (c) = exp (� � �0) (c)�0 u0 (c) exp (� c) c��0 :

Since we adopt the normalization �2 = u0 (c) c� = 1; thus

u0 (c) = � exp (� c) c��0 ;

where � � exp (� � �0) (c)�(���0) > 0: Integrating this over the range [c; c] for any c > 0

gives

u (c) =
(c)1��

1� � � �
Z c

c
exp (� z) z��0dz:

Note that
R c
0 exp (� z) z

��0dz is another improper integral as exp (� z) z��0 ! 1 when

z ! 0: However, lim
z!0

[z�0 � exp (� z) z��0 ] = 0 and �0 2 (0; 1) : Hence it follows from

Theorem 10 that the integral Z c

0
exp (� z) z��0dz

is �nite.
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