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Abstract

When the objective is to forecast a variable of interest but with many explanatory variables
available, one could possibly improve the forecast by carefully integrating them. There are
generally two directions one could proceed: combination of forecasts (CF) or combination of
information (CI). CF combines forecasts generated from simple models each incorporating a part
of the whole information set, while CI brings the entire information set into one super model
to generate an ultimate forecast. Through linear regression analysis and simulation, we show
the relative merits of each, particularly the circumstances where forecast by CF can be superior
to forecast by CI, when CI model is correctly speci�ed and when it is misspeci�ed, and shed
some light on the success of equally weighted CF. In our empirical application on prediction
of monthly, quarterly, and annual equity premium, we compare the CF forecasts (with various
weighting schemes) to CI forecasts (with principal component approach mitigating the problem
of parameter proliferation). We �nd that CF with (close to) equal weights is generally the best
and dominates all CI schemes, while also performing substantially better than the historical
mean.
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1 Introduction

When one wants to predict an economic variable using the information set of many explanatory

variables that have been shown or conjectured to be relevant, one can either use a super model

which combines all the available information sets or use the forecast combination methodology.

It is commonly acknowledged in the literature that the forecast generated by all the information

incorporated in one step (combination of information, or CI) is better than the combination of

forecasts from individual models each incorporating partial information (combination of forecasts,

or CF). For instance, Engle, Granger and Kraft (1984) have commented: �The best forecast is

obtained by combining information sets, not forecasts from information sets. If both models are

known, one should combine the information that goes into the models, not the forecasts that come

out of the models�. Granger (1989), Diebold (1989), Diebold and Pauly (1990), and Hendry and

Clements (2004) have similar arguments. It seems that researchers in this �eld lean more towards

favoring the CI scheme.

However, as Diebold and Pauly (1990) further point out, �... it must be recognized that in many

forecasting situations, particularly in real time, pooling of information sets is either impossible or

prohibitively costly�. Likewise, when models underlying the forecasts remain partially or completely

unknown (as is usually the case in practice, e.g., survey forecasts), one would never be informed

about the entire information set. On the other hand, growing amount of literature have empirically

demonstrated the superior performance of forecast combination. For recent work, see Stock and

Watson (2004) and Giacomini and Komunjer (2005).1

The frequently asked questions in the existing literature are: �To combine or not to combine�2

and �how to combine�.3 In this paper, we are interested in: �To combine forecasts or to combine

information�. This is an issue that has been addressed but not yet elaborated much (see Chong

and Hendry (1986), Diebold (1989), Newbold and Harvey (2001); Stock and Watson (2004) and

Clements and Galvao (2006) provide empirical comparisons). Indeed, quite often the combination

of forecasts is used when the only things available are individual forecasts (for example the case of

professional forecasters) while the underlying information and the model used for generating each

1A similar issue is about forecast combination versus forecast encompassing, where the need to combine forecasts
arises when one individual forecast fails to encompass the other. See Diebold (1989), Newbold and Harvey (2001),
among others.

2See Palm and Zellner (1992), Hibon and Evgeniou (2005).
3See, for example, Granger and Ramanathan (1984), Deutsch, Granger, and Teräsvirta (1994), Shen and Huang

(2006), and Hansen (2006). Clemen (1989) and Timmermann (2006) provide excellent surveys on forecast combination
and related issues.
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individual forecast are unknown, thus the focus of �how to combine�.

In this paper we elaborate a di¤erent issue. Consider the situation that the predictor sets are

available but the question is how to use these predictor sets. This forecasting situation is also

prevalent in practice. For example, the empirical application we consider in Section 5, predicting

excess stock market return using a couple of predictors with proven forecast ability for return in

the �nance literature. With predictor sets now available, combination of forecasts is no longer a

method you end up with due to lack of knowledge on the underlying information of individual

forecasts, but one you can choose to get better out-of-sample forecasting performance than pooling

all the predictors at once into a large model (CI). The common belief that CI is better than CF

might be based on the in-sample analysis. On the contrary, from out-of-sample analysis, we often

�nd CF performs better than CI. Many articles typically account for the out-of-sample success of

CF over CI by pointing out various disadvantages CI may possibly possess. For example, (a) in

many forecasting situations, particularly in real time, CI by pooling all information sets is either

impossible or too expensive (Diebold 1989, Diebold and Pauly 1990, Timmermann 2006); (b) in a

data rich environment where there are many relevant input variables available, the super CI model

may su¤er from the well-known problem of curse of dimensionality (Timmermann 2006); and (c)

under the presence of complicated dynamics and nonlinearity, constructing a super model using CI

may be likely misspeci�ed (Hendry and Clements 2004).

In this paper, through a linear regression framework, for out-of-sample forecasting, under strict

exogeneity of predictors, we show analytically that CI can be beaten by CF even when the CI

model coincides with the data generation process (DGP) and when the CI model is misspeci�ed.

Intuitively, CF can be more successful than CI in out-of-sample forecasting largely due to: 1) the

bias and variance trade-o¤ between a small model (each individual forecasting model in CF is usu-

ally small) and a large model (CI model is usually large); and 2) in the stage of combining, CF

combines individual forecasts that contain both information of the forecast target y and informa-

tion of the predictors x, while CI combines information of the predictors only without taking into

consideration their relationships with y. In this sense, CF may be viewed as a �supervised learning�

mechanism (see, for example, Bai and Ng 2008a). We also shed some light on the (puzzling) success

of the equally-weighted CF forecasts. Monte Carlo study is presented to illustrate the analytical

results. Our analytical illustration provides some interpretation for simulation and empirical �nd-

ings. Moreover, the analytical �ndings assist us to shed some light on the empirical success of

2



equally weighted combination of forecasts which is deemed as a �puzzle� in forecast combination

literature (Stock and Watson 2004, Timmermann 2006).

Finally, as an empirical application, we study the equity premium prediction for which we com-

pare various schemes of CF and CI. Goyal and Welch (2008) explore the out-of-sample performance

of many stock market valuation ratios, interest rates and consumption-based macroeconomic ratios

toward predicting the equity premium. Here we bring the CF method into predicting equity pre-

mium and compare with CI. We implement CF with various weighting methods, including simple

average, regression based approach (see Granger and Ramanathan, 1984), and principal component

forecast combination (see Stock and Watson, 2004). We �nd that CF with (close to) equal weights

is generally the best and dominates all CI schemes, while also performing substantially better than

the historical mean.

The paper is organized as follows. Section 2 examines analytically the out-of-sample relative

merits of CF in comparison with CI. Section 2 considers two cases, which set up the two experimental

designs of Monte Carlo analysis in Section 4. In Section 3 we discuss the �forecast combination

puzzle�� the empirical success of equally weighted combination of forecasts (which we call CF-

Mean), and provide our attempts on understanding the puzzle in several ways. Furthermore, we

discuss the weighting of CF in the shrinkage framework as in Diebold and Pauly (1990) and compare

with CI. Section 5 presents an empirical application for equity premium prediction to compare the

performance of various CF and CI schemes. Section 6 concludes.

In Section 5, we use the principal component (PC) models for CI and CF. Section 2 is about

the theory of comparing CF and CI, but not about comparing CF-PC and CI-PC. Nevertheless,

we include these two factor models (CF-PC, CI-PC) in the empirical section (Section 5) because

of the following two reasons. First, the empirical section has a large number of predictors N = 12

and it would be unfair for CI as it could easily be contaminated by the large parameter estimation

uncertainty. Hence, we consider a factor model for CI, namely CI-PC, for a fair comparison by

mitigating the parameter estimation error. We include CI-PC in the empirical section, even if we

do not include it in the analytical discussion and Monte Carlo experiment where N = 2; 3 is small.

Second, more importantly, we note that CF-Mean is a single factor CF-PC model with the factor

loading shrunken to a constant (Remark 3, Section 5.2). As we include CF-Mean, it may be natural

to include the factor model without the shrinkage (CF-PC). Noting that CF-Mean is a shrinkage

version of the CF-PC, we can also view the regression based CF (to be denoted as CF-RA) and its
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shrinkage version as a general shrinkage version of the CF-PC.

2 Out-of-sample Forecast: CF Can Be Better Than CI

Suppose we forecast a scalar variable yt+1 using the information set available up to time t; It =

fxsgts=0, where xs is a 1�k vector of weakly stationary variables. Let xs = (x1s x2s) be a non-empty

partition. The CF forecasting scheme is based on two individual regression models

yt+1 = x1t�1 + �1;t+1; (1)

yt+1 = x2t�2 + �2;t+1: (2)

The CI takes a model4

yt+1 = x1t�1 + x2t�2 + et+1: (3)

Forecast Models: Denote the one-step out-of-sample CI and CF forecasts as

ŷCIT+1 = xT �̂T = x1T �̂1;T + x2T �̂2;T ; (4)

ŷCFT+1 = w1ŷ
(1)
T+1 + w2ŷ

(2)
T+1 = w1x1T �̂1;T + w2x2T �̂2;T ;

where ŷ(1)T+1 and ŷ
(2)
T+1 are forecasts generated by forecasting models (1) and (2) respectively, and

wi (i = 1; 2) denote the forecast combination weights. All parameters are estimated using strictly

past information (up to time T ) as indicated in subscript. Let êT+1 � yT+1 � ŷCIT+1 denote the

forecast error by CI, �̂i;T+1 � yT+1 � ŷ(i)T+1 denote the forecast errors by the �rst (i = 1) and the

second (i = 2) individual forecast, and êCFT+1 � yT+1 � ŷCFT+1 denote the forecast error by CF.

DGPs: We consider two cases for the DGP: (i) when the DGP is the same as the CI model

(i.e., the CI model (3) is correctly speci�ed for the DGP) and (ii) when the DGP has the additional

variable set x3 to generate y (i.e., the CI model (3) is misspeci�ed for the DGP as it omits x3).

We show that even in the �rst case when the CI model coincides with the DGP, CF can be better

than CI in a �nite sample (see Section 2.1 and Section 4 (Table 1) for the analysis and simulation

results). When the CI model is not correctly speci�ed for the DGP and su¤ers from the omitted

4Our CF and CI model set-ups (equations (1), (2) and (3)) are similar to Hendry and Clements (2004) (their
equations (5) to (7)). However, they compare CF with the best individual forecast but here we compare CF with
forecast by the CI model (the DGP in Hendry and Clements, 2004). Also note that Harvey and Newbold (2005)
investigate gains from combining the forecasts from DGP and mis-speci�ed models, and Clark and McCracken (2006)
examine methods of combining forecasts from nested models, while in contrast, we consider combining forecasts
from non-nested (mis-speci�ed) individual forecasting models and compare with models incorporating all available
information directly (CI, which may be correctly speci�ed).
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variable problem, we show that CF can be better than CI even in a large sample (T !1). Section

2.2 and Section 4 (Table 2) provide analytical illustrations and simulation results, respectively.

2.1 When the CI model is correctly speci�ed

DGP1: Suppose that the DGP is the same as the CI model (3) which generates y from x1 and x2

yt+1 = x1;t�1 + x2;t�2 + �t+1; (5)

where �t+1 � IID(0; �2�) and xt = (x1;t x2;t) with each xi;t being 1 � ki (i = 1; 2) is strictly

exogenous.5 Let � = (�01 �
0
2)
0: To simplify the algebra in this section and the Monte Carlo simulation

in Section 4, we assume the conditional mean of xt is zero6

x0t =

�
x01;t
x02;t

�
� INk

��
0
0

�
;

�

11 
12

21 
22

��
: (6)

Models (CI and CF): Consider predicting yt one-step ahead using information xt = (x1;t x2;t)

up to time t. The forecasts by CI and CF are respectively, ŷCIT+1 = x1;T �̂1;T + x2;T �̂2;T and

ŷCFT+1 = w1ŷ
(1)
T+1 + w2ŷ

(2)
T+1 = w1x1;T �̂1;T + w2x2;T �̂2;T , with wi (i = 1; 2) denoting the forecast

combination weights.

MSFE: Note that the unconditional MSFE by CI forecast is

MSFECI = E
�
E[ê2T+1jIT ]

	
= E

�
V arT (yT+1) + [ET (êT+1)]

2
	

= E(�2T+1) + E[(� � �̂T )0x0TxT (� � �̂T )]

= �2� + E[�
0X(X 0X)�1x0TxT (X

0X)�1X 0�]

= �2� + T
�1�2�Eftr[x0TxT (T�1X 0X)�1]g; (7)

5We assume E[��0jX] = �2�IT for both DGP1 and DGP2 that we use for the Monte Carlo analysis in Section
4. Note that a dynamic model augmented with dynamic terms (such as lagged dependent variables) may also be
considered, for example, as used in Stock and Watson (SW: 2002a, 2002b, 2004, 2005, 2006) and Bai and Ng (BN:
2002, 2008a,b):

yt+h = c+ �0Wt + �
0Xt + et+h;

where Xt is a vector of predictors and Wt is a vector of predetermined variables such as lags of yt: In our DGP1
and DGP2 in Sections 2 and 4, however, we consider a simple case when � = 0 as in some papers of SW and BN,
which can be thought of as a result of a residual regression (Frisch-Waugh-Lowell theorem) after regressing y on W
and regressing X on W to project out W �rst. We attempt to consider the simplest possible designs for Monte Carol
experiment in Section 4, which match with the discussion in Section 2. In Section 2 we assume strict exogeneity that
rules out lagged dependent variables, only to simplify the algebra for the two DGPs in Section 2. The same DGPs
are used in Section 4. However, all the results in this paper can be extended to a more complicated model, including
lagged dependent variables and other predetermined variables, without the strict exogeneity assumption.

6Monte Carlo analysis in Section 4 shows that dynamics in the conditional mean do not a¤ect our general conclu-
sions in this section.
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where V arT (�) and ET (�) denote the conditional variance and the conditional expectation given

information IT up to time T . Note that, if xt � INk(0; 
), then Eftr[x0TxT (T�1X 0X)�1]g '

trf

�1g = k, the dimension of xt. Therefore,MSFECI ' �2�+T�1�2�k = �2�+O
�
k
T

�
:7 Similarly,

the unconditional MSFE by CF forecast is

MSFECF = E
�
E[(êCFT+1)

2jIT ]
	
= E

�
V arT (yT+1) + [ET (ê

CF
T+1)]

2
	

= �2� + E
n�
ET (yT+1 � ŷCFT+1)

�2o
= �2� + E

8<:
"
xT � �

2X
i=1

wixi;T �̂i;T

#29=;
= �2� + E

8<:
"
xT � �

2X
i=1

wixi;T (X
0
iXi)

�1X 0
iY

#29=; : (8)

Comparison: Therefore, it follows that the CF forecast is better than the CI forecast under

the MSFE loss if the following condition holds:

T�1�2�Eftr[x0TxT (T�1X 0X)�1]g > E
�h
(x1;T �1 � w1x1;T �̂1;T ) + (x2;T �2 � w2x2;T �̂2;T )

i2�
: (9)

Note that �̂T ! �; a:s: as T ! 1 for the CI model. Note also that �̂T � (�̂
0
1;T �̂

0
2;T )

0 !

�; a:s: as T ! 1 for the two individual forecasting models if the two sets of predictors x1; x2 are

orthogonal, but �̂T 9 � otherwise. Therefore, as T !1, MSFECI �MSFECF always follows.

For a �nite T , however, even when the CI model (3) coincides with DGP1, the squared con-

ditional bias by ŷCIT+1 can be greater than that by ŷ
CF
T+1. This is mostly due to the parameter

estimation error in �̂T , which is often of a larger size (O
�
k
T

�
) compared to the parameter estima-

tion errors in individual models each use a smaller set of regressors (O
�
k
2T

�
if k1 = k2 = k=2),8

thus leaving out room for CF forecast to beat CI forecast in terms of MSFE. In general, this can

be understood through the bias and variance trade-o¤ between large and small models.9 To il-

lustrate the �nite sample potential gain of CF over CI more explicitly, we consider a simpli�ed
7This is also explained in Stock and Watson (2006) and Bai and Ng (2008b) in di¤erent ways.
8The number of parameters estimated in the CF method is actually larger than the number of parameters in the

CI method if the combining weights wi are to be estimated. In this section we focus on the case when the weights are
given (not estimated). In Section 3 we will discuss the case when the weights are estimated, where we explain why
the CF with equal weights can outperform the CF with estimated weights and also note the bene�ts of shrinking the
estimated weights towards the equal weights.

9Harvey and Newbold (2005) have the similar �nding: forecasts from the true (but estimated) DGP do not
encompass forecasts from competing mis-speci�ed models in general, particularly when T is small. By comparing the
restricted and unrestricted models Clark and McCracken (2006) note also the �nite sample forecast accuracy trade-o¤
resulted from parameter estimation noise in their simulation and in empirical studies. Note that by contrasting CF
with CI here we make a fair comparison in terms of information content �both CI and CF in our framework use
same amount of information (x�s) but in di¤erent ways (CI direct and CF indirect).
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case where k1 = k2 = 1 (thus k = 2) and 
2�2 =
�
1 �
� 1

�
(assuming xt � INk(0; 
)). Let

w1 = w and w2 = 1 � w. It can be shown that equation (9)�s LHS ' 2T�1�2�, while its RHS

' w2[T�1�2� + �22(1� �2)] + (1� w)2[T�1�2� + �21(1� �2)] + 2w(1� w)[T�1��2� � �1�2�(1� �2)].10

Rearranging terms, equation (9) can then be written into

T�1�2� >
(1� �2)[w2�22 + (1� w)2�21 � 2w(1� w)�1�2�]

1 + 2w(1� w)(1� �) ; (10)

assuming 1 + 2w(1 � w)(1 � �) > 0. The above condition is more likely to hold (so that CF

outperforms CI in MSFE) when its LHS is large. This would happen when either T is small or �2�

is big. Also note that with everything else held constant, the RHS of equation (10) is getting close

to 0 when � is approaching to 1, therefore, when xi�s are highly collinear, CF will have more chance

to beat CI. In our Monte Carlo analysis in Section 4, we will consider such a simple parameter

setting, for which the above analytical conclusions will be con�rmed by simulation �ndings.

2.2 When the CI model is not correctly speci�ed

Often in real time forecasting, DGP is unknown and the collection of predictors used to forecast

the variable of interest is perhaps just a subset of all relevant ones. This situation frequently occurs

when some of the relevant predictors are simply unobservable. For instance, in forecasting the

output growth, total expenditures on R&D and brand building may be very relevant predictors but

are usually unavailable. They may thus become omitted variables for predicting output growth.

To account for these more practical situations, we now examine the case when the CI model is

misspeci�ed with some relevant variables omitted. In this case, we demonstrate that CF forecast

can be superior to CI forecast even in a large sample. Intuitively, this is expected to happen likely

because when the CI model is also misspeci�ed, the bias-variance trade-o¤ between large and small

models becomes more evident, thus leading to possibly better chance for CF forecast (generated

from a set of small models) to outperform CI forecast (generated from one large model).

DGP2: Suppose that the true DGP involves one more set of variables x3;t than DGP1

yt+1 = x1;t�1 + x2;t�2 + x3;t�3 + �t+1; (11)

where �t+1 � IID(0; �2�) and xt = (x1;t x2;t x3;t) with each xi;t being 1� ki (i = 1; 2; 3) is strictly
10This can be seen from the derivations in the Appendix and let k1 = k2 = 1 and �3 = 0.
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exogenous. To simplify the algebra again we assume the conditional mean of xt is zero

x0t =

0@ x01;t
x02;t
x03;t

1A � INk

240@ 0
0
0

1A ;
0@ 
11 
12 
13

21 
22 
23

31 
32 
33

1A35 : (12)

Models (CI and CF): Suppose we use the same CI and CF models as in the previous

subsection, forecasting yT+1 using the CI model (3) and the CF scheme given by (1) and (2) with

the information set f(x1;s x2;s)gTs=0. The CI model in (3) is misspeci�ed by omitting x3;t, the

�rst individual model in (1) omits x2;t and x3;t, and the second individual model in (2) omits x1;t

and x3;t. The forecasts by CI and CF are therefore respectively, ŷCIT+1 = x1;T �̂1;T + x2;T �̂2;T and

ŷCFT+1 = w1ŷ
(1)
T+1 + w2ŷ

(2)
T+1 = w1x1;T �̂1;T + w2x2;T �̂2;T , with wi (i = 1; 2) denoting the forecast

combination weights.

Let us consider the special case w1 + w2 = 1 and let w � w1 hereafter. The forecast error by

CI is thus:

êT+1 = yT+1 � ŷCIT+1 = x1;T (�1 � �̂1;T ) + x2;T (�2 � �̂2;T ) + x3;T �3 + �T+1: (13)

The forecast errors by the �rst and the second individual forecast are, respectively:

�̂1;T+1 = yT+1 � ŷ(1)T+1 = x1;T (�1 � �̂1;T ) + x2;T �2 + x3;T �3 + �T+1; (14)

�̂2;T+1 = yT+1 � ŷ(2)T+1 = x1;T �1 + x2;T (�2 � �̂2;T ) + x3;T �3 + �T+1:

Hence the forecast error by CF is:

êCFT+1 = yT+1 � ŷCFT+1 = w�̂1;T+1 + (1� w)�̂2;T+1: (15)

Let zt = (x1;t x2;t); V ar(zt) = 
zz; Cov(zt; x3;t) = 
z3; �3z;T = x3;T � zT
�1zz 
z3; V ar(�3z;T ) =


�3z = 
33 � 
3z
�1zz 
z3; �23 = (�02 �
0
3)
0; �13 = (�01 �

0
3)
0; �23:1;T = (x2;T � x1;T
�111 
12 x3;T �

x1;T

�1
11 
13); �13:2;T = (x1;T�x2;T


�1
22 
21 x3;T�x2;T


�1
22 
23); V ar(�23:1;T ) = 
�23:1 ; and V ar(�13:2;T ) =


�13:2 .

MSFE: See Appendix for derivation of MSFEs for the CI and CF models.

Comparison: We now compare CI with CF. Assume that the DGP consists of (11) and (12).

From comparing MSFEs from (39) and (46) in Appendix, the CF forecast is better than the CI

forecast in MSFE if the following condition holds:

�03
�3z�3+g
CI
T > w2�023
�23:1�23+(1�w)

2�013
�13:2�13+2w(1�w)�
0
23E[�

0
23:1;T �13:2;T ]�13+g

CF
T ; (16)
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where gCIT = T�1(k1 + k2)�2� and g
CF
T = T�1(w2k1 + (1 � w)2k2)�2� + 2w(1 � w)E[x1;T (�̂1;T �

E(�̂1;T ))(�̂2;T � E(�̂2;T ))0x02;T ] are both O(T�1).

The condition (16) under which CF is better than CI can be simpli�ed when T goes to in�nity.

Note that it involves both small sample and large sample e¤ect. If we ignore O(T�1) terms or let

T !1, (16) becomes

�03
�3z�3 > w
2�023
�23:1�23 + (1� w)

2�013
�13:2�13 + 2w(1� w)�
0
23E[�

0
23:1;T �13:2;T ]�13: (17)

The variance of the disturbance term in the DGP model (11) no longer involves since it only appears

in gCIT and gCFT , the two terms capturing small sample e¤ect. While this large-sample condition

may still look complicated, we note that all the terms in (17) are determined only by � and 
 in

DGP2.

Remark: We also note that there is a chance that the CI forecast is even worse than two

individual forecasts. Note that

MSFECI = �2� + T
�1(k1 + k2)�

2
� + �

0
3
�3z�3;

and the MSFE�s by individual forecasts ŷ(1)T+1 and ŷ
(2)
T+1 are, respectively

MSFE(1) = �2� + T
�1k1�

2
� + �

0
23
�23:1�23;

MSFE(2) = �2� + T
�1k2�

2
� + �

0
13
�13:2�13:

SupposeMSFE(1) > MSFE(2), i.e., the second individual forecast is better, then CI will be worse

than the two individual forecasts if

T�1k2�
2
� + �

0
3
�3z�3 > �

0
23
�23:1�23: (18)

This is more likely to happen if the sample size T is not large, and/or �2� is large. The Monte Carlo

analysis in Section 4 also con�rms this result (see Table 2).

3 Understanding the Forecast Combination Puzzle

In the empirical forecasting literature numerous papers have found that the equally-weighted fore-

cast combination often outperforms the CF using estimated optimal forecasts. Stock and Watson

(2004) refer this as a �forecast combination puzzle�. Before we help illustrate analytical �ndings

via Monte Carlo analysis in the next section, here we attempt to understand the puzzling empirical
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success of the CF with equal weights through some analysis. The Monte Carlo analysis in Section

4 con�rms our explanation of the forecast combination puzzle. The Monte Carlo analysis also pro-

vides some insights on the possibility that CF with equal weights can dominate CI even in a large

sample.

While the weight w in CF has not yet been speci�ed in the above analysis, we now consider CF

with speci�c weights, in particular, the equal weights. Our aim of this section is to illustrate when

and how CF with certain weights can beat CI in out-of-sample forecasting, and shed some light on

the success of equally weighted CF.

Let MSFECI = E(ê2T+1) � 
2CI; and 

2
i � E(�̂2i;T+1) (i = 1; 2) denote MSFE�s by the two

individual forecasts. De�ne 
12 � E(�̂1;T+1�̂2;T+1). From equation (15), the MSFE of the CF

forecast is

MSFECF = w2
21 + (1� w)2
22 + 2w(1� w)
12 � 
2CF(w): (19)

CF-Mean: Consider the equally weighted CF, denoted �CF-Mean�(w = 1
2):

ŷCF-MeanT+1 =
1

2
ŷ
(1)
T+1 +

1

2
ŷ
(2)
T+1; (20)

for which the MSFE is

MSFECF-Mean = E(yT+1 � ŷCF-MeanT+1 )2 =
1

4
(
21 + 


2
2 + 2
12) � 
2CF

�
1

2

�
: (21)

CF-Optimal: Consider the �CF-Optimal�forecast with weight

w� = argmin
w

2CF(w) =


22 � 
12

21 + 


2
2 � 2
12

; (22)

obtained by solving @
2CF(w)=@w = 0 (as in Bates and Granger (1969) but without assuming the

individual forecasts are unbiased since we work directly on MSFE instead of error variances). Note

that if we rearrange terms in (15), it becomes the Bates and Granger (1969) regression

�̂2;T+1 = w(�̂2;T+1 � �̂1;T+1) + êCFT+1; (23)

from which estimate of w� is obtained by the least squares.

We note that CF-Optimal always assigns a larger (smaller) weight to the better (worse) indi-

vidual forecast, since the optimal weight w� for the �rst individual forecast is less than 1
2 if it is the

worse one (w� = 
22�
12

21+


2
2�2
12

< 1
2 if 


2
1 > 


2
2); and the weight is larger than

1
2 when it is the better

one (w� > 1
2 if 


2
1 < 
22). Also note that w

� = 1
2 if 


2
1 = 
22: One practical problem is that w� is

unobservable.
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We now explain how we may understand the puzzle in three ways, attributing the success of

CF-Mean to (i) the �nite sample estimation error of the forecast combining weights, (ii) the possible

scenario when CF-Mean is indeed near optimal, and (iii) weak predictors. The Monte Carlo and

empirical analysis in the subsequent sections con�rm our arguments.

3.1 Understanding the puzzle: when the combining weights are estimated

This optimal weight w� for CF needs to be estimated in practice, but it provides guidance for our

analysis regarding the virtue of equal-weights in CF which empirically is often found to work better

than many sophisticatedly estimated weights (Stock and Watson 2004, Timmermann 2006).

In practice, w� may be estimated and the consistently estimated weight ŵ may converge to w�

in large sample. When the in-sample estimation size T is large we use CF-Optimal (Bates and

Granger 1969, Granger and Ramanathan 1984). However, when the noise is large and T is small,

the estimated weight ŵ may be in some distance away from w�, and the gap between 
2CF(ŵ) and


2CF(w
�) may be wide enough such that it is possible to have the following ranking


2CF(w
�) < 
2CF

�
1

2

�
< 
2CF(ŵ): (24)

Therefore, when the noise is large and T is small, we may be better o¤by using the CF-Mean instead

of estimating the weights. Similarly, Smith and Wallis (2008) address the forecast combination

puzzle by attributing to the e¤ect of �nite sample estimation error of the combining weights.

To explore more about weighting in CF, we further consider shrinkage estimators for w. In case

when the above ranking of (24) holds, we can shrink the estimated weight ŵ towards the equal

weight 1
2 to reduce the MSFE. We have discussed three alternative CF weights: (a) w = ŵ , (b)

w = 1
2 , and (c) w = w�. It is likely that w� may be di¤erent from both ŵ and 1

2 . The relative

performance of CF with ŵ and CF-Mean depends on which of ŵ and 1
2 is closer to w

�. Depending

on the relative distance between ŵ and w�, between 1
2 and w

�, and between ŵ and 1
2 , the shrinkage

of ŵ towards 12 may or may not work. The common practice of shrinking ŵ towards
1
2 may improve

the combined forecasts as long as shrinking ŵ towards 12 is also to shrink ŵ towards w
�:

As we will see from the simulation results in Section 4, shrinkage of ŵ towards 1
2 works quite

well when the noise in the DGP is large and when the in-sample size T is small. When the noise is

not large or T is large, CI is usually the best when it is correctly speci�ed for the DGP. However,

when CI is not correctly speci�ed for the DGP, CI can be beaten by CF even in a large sample. The

CF with ŵ; that is obtained from the Regression Approach for weights as suggested by Granger
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and Ramanathan (1984), denoted as CF-RA, and its shrinkage version towards the equal weights,

denoted as CF-RA(�) (the shrinkage parameter � will be detailed in Section 4) generally works

quite well. As Diebold and Pauly (1990) point out, CF-RA with no shrinkage (with � = 0) and

CF-Mean may be considered as two polar cases of the shrinkage. Of course, we note that more

shrinkage to the equal weights is not necessarily better. However, if the weights are estimated when

the noise is large and T is small, the sampling error (estimation error) may be very large to make

the forecast error variance very large as well. The shrinkage toward CF-Mean is to reduce the

variance at the cost of increasing the forecast bias. In general, the MSFE (the sum of the forecast

error variance and squared bias) may be reduced by the shrinkage, which we will observe from the

Monte Carlo results in Section 4.

3.2 Understanding the puzzle: when CF-Mean is close to CF-Optimal

However, we note that the above explanation for the success of CF-Mean attributing to the �nite

sample estimation error (as in Smith and Wallis 2008 and as illustrated above) holds probably

only when the unobservable optimal combination weight w� is close to 1
2 such that CF-Mean

is approaching CF-Optimal hence dominating other sophisticated combinations where estimation

errors often involve. It is unlikely that CF-Mean would outperform other CF with weights obtained

by the regression equivalent of w� when w� is very close to 1 (or 0). Such values of w� happen

when the �rst (second) individual forecast is clearly better than or encompasses the second (�rst)

individual forecast such that combination of the two has no gains. See Hendry and Clements (2004)

for illustrations of situations where combination forecast gains over individual ones.

Therefore, in order to shed more light on the empirical success of simple average forecast com-

bination, i.e., the CF-Mean, it is worth investigating under what kind of DGP structures and

parameterization one could have w� ' 1
2 so that CF-Optimal ' CF-Mean. We consider again

DGP2 [equations (11) and (12)] discussed in Section 2.2 where the CI model is misspeci�ed. The

DGP1 in Section 2.1 where the CI model is correctly speci�ed for the DGP is actually a special

case of equation (11) when we let �3 � 0. First, we note again that w� = 1
2 if 


2
1 = 
22. Second,

from the discussions in Section 2.2 we have


21 � MSFE(1) = �2� + T
�1k1�

2
� +

�
�02 �

0
3

�

�23:1

�
�2
�3

�
; (25)


22 � MSFE(2) = �2� + T
�1k2�

2
� +

�
�01 �

0
3

�

�13:2

�
�1
�3

�
;
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where it is easy to show that


�23:1 =

�

22 � 
21
�111 
12 
23 � 
21
�111 
13

32 � 
31
�111 
12 
33 � 
31
�111 
13

�
;

and


�13:2 =

�

11 � 
12
�122 
21 
13 � 
12
�122 
23

31 � 
32
�122 
21 
33 � 
32
�122 
23

�
:

Therefore, to make 
21 = 

2
2 (so that w

� = 1
2) one su¢ cient set of conditions is �1 = �2 (implying

k1 = k2) and 
�23:1 = 
�13:2 . The latter happens when 
11 = 
22 and 
13 = 
23. Intuitively, when

the two individual information sets matter about the same in explaining the variable of interest,

their variations (signal strengths) are also about the same, and they correlate with the omitted

information set quite similarly, the resulting forecast performances of the two individual forecasts

are thus about equal.

In our Monte Carlo study in Section 4, we consider the three designs of DGPs in Panels A, B,

C of Table 2, such that the underlying optimal combination weight w� is 12 . In these three designs

of DGPs in Panels A, B, C of Table 2, we set �1 = �2 = 0:3 (with k1 = k2 = 1) and 
11 = 
22 = 1

and 
13 = 
23 = 0:7 or �0:7.

In addition, we also consider one exceptional case where we let �1 > �2 to make 
21 < 

2
2 so that

w� > 1
2 to see how CF with di¤erent weights perform in comparison with CI. In the design of DGP

in Panel D of Table 2, we set �1 = 3�2 = 0:6. Other cases such as 
11 > 
22 give similar results

(not reported). These four Monte Carlo cases will be detailed in Section 4, where we con�rm our

understanding of the forecast combination puzzle discussed in this section.

3.3 Understanding the puzzle: when predictors are weak

Clark and McCracken (2006) argue that often in practical reality, the predictive contents of some

variables of interest is quite low and hard to predict, especially for forecasting �nancial returns

in the conditional mean. Likewise, the di¤erent individual information sets used to predict such

variables in the (near) e¢ cient �nancial markets are performing quite similarly (all equally bad,

perhaps). When all or most of predictors are weak, a simple average combination of individual

forecasts is often desirable since in such a situation CF-Mean may be quite close to CF-Optimal.

We illustrate in Section 5 through an empirical study on forecasting the equity premium. Asset

prices are hard to predict and oftentimes the predictors used to generate forecasts have quite limited

predictive power, making them �weak predictors�.
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4 Monte Carlo Analysis

In this section we conduct Monte Carlo experiments in the context of Section 2 to illustrate under

what speci�c situations CF can be better than CI in out-of-sample forecasting.

4.1 DGPs: two cases

We consider the same two cases that we considered in Section 2 �when the CI model is correctly

speci�ed for the DGP (corresponding to Section 2.1) and when it is not (corresponding to Section

2.2). We use the following two DGPs:

DGP1: with xt = (x1;t x2;t), so that the CI model in (3) is correctly speci�ed:

yt+1 = x1;t�1 + x2;t�2 + �t+1; �t � N(0; �2�); (26)

xi;t = �ixi;t�1 + vi;t; vt = (v1;t v2;t) � N(0;
2�2);

DGP2: with xt = (x1;t x2;t x3;t), so that the CI model in (3) is not correctly speci�ed:

yt+1 = x1;t�1 + x2;t�2 + x3;t�3 + �t+1; �t � N(0; �2�); (27)

xi;t = �ixi;t�1 + vi;t; vt = (v1;t v2;t v3;t) � N(0;
3�3);

where all vi;t�s are independent of �t. We consider di¤erent degrees of signal to noise with seven

di¤erent values of �� = 2j (j = �2;�1; 0; 1; 2; 3; 4):

The pseudo random samples for t = 1; : : : ; R + P + 1 are generated and R observations are

used for the in-sample parameter estimation (with the �xed rolling window of size R) and the last

P observations are used for pseudo real time out-of-sample forecast evaluation.11 We experiment

with R = 100; 1000; P = 100: The number of Monte Carlo replications is 1000 for R = 100 and

100 for R = 1000.

Di¤erent speci�cations for covariance matrix 
 and coe¢ cient vector � are used as discussed in

Sections 2 and 3. We consider two sets of the di¤erent parameter values of 
 in Table 1, and four

sets of di¤erent parameter values of 
 and � in Table 2. In both Tables 1 and 2, all �i�s are set

at zero as the results are similar for di¤erent values of �i. With 
2�2 =
�
1 �
� 1

�
for DGP1, we

11The notation of R and P is adopted from West (1996). As we use a rolling forecasting scheme to estimate
parameters using the R observations, the notation T that was used to denote the sample size for the in-sample
estimation in Sections 2 and 3 is now R in Sections 4 and 5.
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have var(�̂R) = R�1�2�

�1; and var(�̂i;R) = R�1�2�(1 � �2)�1 for i = 1; 2: In Table 1 we consider

� = corr(x1; x2) = 0 and 0:8, measuring two di¤erent degrees of collinearity in the CI model.

4.2 CF with estimated weights and its shrinkage toward CF-Mean

One of the CF methods we use is the Regression Approach (RA) for combining forecasts as suggested

by Granger and Ramanathan (1984), denoted as CF-RA,

yt+1 = intercept+ w1ŷ
(1)
t+1 + w2ŷ

(2)
t+1 + error, t = T0; : : : ; R; (28)

where the pseudo out-of-sample forecast is made for t = T0; : : : ; R with T0 the time when the

�rst pseudo out-of-sample forecast is generated (we choose it at the middle point of each rolling

window). The three versions of the CF-RA methods are considered as in Granger and Ramanathan

(1984), namely, (a) CF-RA1 for the unconstrained regression approach forecast combination, (b)

CF-RA2 for the constrained regression approach forecast combination with zero intercept and the

unit sum of the weights w1 + w2 = 1, and (c) CF-RA3 for the constrained regression approach

forecast combination with zero intercept but without restricting the sum of the weights.

To illustrate more the parameter estimation e¤ect on combination weights, we also consider

CF with shrinkage weights based on CF-RA3. Let CF-RA3(�) denote the shrinkage forecasts

considered in Stock and Watson (2004, p. 412) with the shrinkage parameter � controlling for the

amount of shrinkage on CF-RA3 towards the equal weighting (CF-Mean). The shrinkage weight

used is wi;t = �ŵi;t + (1� �)=N (i = 1; 2) with � = maxf0; 1� �N=(t� h� T0 �N)g, N = 2 (the

number of individual forecasts), and h = 1 (one step ahead forecast).12 For simplicity we consider a

spectrum of di¤erent values of �, that are chosen such that CF-RA3(�) for the largest chosen value

of � is closest to CF-Mean. We choose ten di¤erent values of � with equal increment depending on

the in-sample size R as presented in Tables 1 and 2.

4.3 Monte Carlo results

Table 1 presents the Monte Carlo results for DGP1, for which we simulate two di¤erent cases with


2�2 being diagonal (Panel A, ! = 0) and with 
2�2 being non-diagonal (Panel B, ! = 0:8).

Table 2 presents the Monte Carlo results for DGP2, for which the CI model is not correctly

speci�ed as it omits x3t: We simulate four di¤erent cases with di¤erent values for 
3�3 and �

12Stock and Watson (2005) show the various forecasting methods (such as Bayesian methods, Bagging, etc.) in the
shrinkage representations.
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where unless speci�ed otherwise we let �1 = �2, 
11 = 
22, and 
13 = 
23 to make optimal

weight w� = 1
2 . The four cases for Table 2 are presented in Panel A (where x1t and x2t are highly

positively correlated with the omitted variable x3t), in Panel B (where x1t and x2t are highly

negatively correlated with the omitted variable x3t); in Panel C (where everything is the same as

in Panel B except with smaller �3), and in Panel D (where everything is the same as in Panel B

except �1 = 3�2 to make w� >> 1
2). See Section 3.2 for the discussion on this parameterization in

Panel D. In both Tables 1 and 2, all �i�s are set at zero as the results are similar for di¤erent values

of �i re�ecting dynamics in xit (and thus not reported for space).

First, we observe that results presented in Table 1 and Table 2 share some common features:

MSFE increases with �� (the noise in the DGP), but as �� grows, CF-RA3(�) and CF-Mean be-

come better and better and can beat the CI model (whether correctly speci�ed or not). For smaller

R (= 100), there are more chances for CF to outperform CI given higher parameter estimation

uncertainty in a small sample. Besides, the parameter estimation uncertainty makes the CF-RA2,

which is argued to return asymptotically the optimal combination (Bates and Ganger 1969), per-

forms undesirably. The best shrinkage value varies according to di¤erent �� values, while generally

a large amount of shrinkage (large �) is found to be needed since the optimal combination strategy

(except for Table 2 Panel D case) is about equal weighting. As mentioned in Section 3, shrinking

too much to the equal weights is not necessarily good. The Monte Carlo evidence con�rms this by

noting that for a �xed value of ��, CF-RA3(�) with some values of � is better than CF-Mean, and

shrinking too much beyond that � value sometimes make it deteriorate its performance.13

Second, we notice that results in Table 1 and Table 2 di¤er in several ways. In Table 1 (when

the CI model is correctly speci�ed for the DGP), for smaller R and when the correlation between

x1;t and x2;t is high, CF with shrinkage weights can beat CI even when disturbance in DGP (��) is

relatively small. When R gets larger, however, the advantage of CF vanishes. These Monte Carlo

results are consistent with the analysis in Section 2.1, where we show CF may beat CI only in a �nite

sample. In contrast, by comparing the four panels in Table 2 (when the CI model is not correctly

13Our sample size used in the Monte Carlo experiments are R = 100; 1000; that are quite large for the small
models with only 2 regressors (Table 1) and with 3 regressors (Table 2) in the CI model, making CI work quite
comparably with CF. Even R = 100 may not be small enough to see the drastic di¤erence (generally only about
2% improvement). The MSFE improvement by CF over CI would be more likely for a small sample size: Hence, we
conducted the simulation with R = 20, for which CF models improve MSFE upon the performance of CI much more
drastically by 8% � 9%. For space, the results with R = 20 are not presented but included in the supplementary
appendix that is made available on our webpage. In fact, the e¤ect of the estimation sample size R can also be seen
from the empirical results, e.g., comparing the three Panels in Table 3, with di¤erent size of R:When R = 42 is small
(Panel C), CF models drastically improve MSFE over CI models.
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speci�ed for the DGP), we �nd that when x1;t and x2;t are highly negatively correlated with the

omitted variable x3;t and �3 is relatively large (Panel B), the advantage of CF (for even small values

of ��) does not vanish as R gets larger. Moreover, we observe that even the individual forecasts

can outperform CI in a large sample for large �� under this situation. The negative correlation of

x1;t and x2;t with the omitted variable x3;t; and the large value of �3 play an important role for

CF to outperform CI in a large sample, which is conformable with the analysis in Section 2.2. In

addition, Panel D of Table 2 shows that when x1 contributes clearly more than x2 in explaining the

variable of interest y, the �rst individual forecast dominates the second one (making the optimal

combination weight w� close to 1 hence CF-Mean is clearly not working) when the noise in the

DGP is not large. However, when the noise in the DGP is overwhelmingly large (signal to noise

ratio is very low) such that the two individual forecasts are similarly bad, a close to equal weight

is still desirable.

5 Empirical Study: Equity Premium Prediction

In this section we study the relative performance of CI versus CF in predicting equity premium

out-of-sample with many predictors including various �nancial ratios and interest rates. For a

practical forecasting issue like this, we conjecture that CF scheme should be relatively more ad-

vantageous than CI scheme. Possible reasons are, �rst, it is very unlikely that the CI model (no

matter how many predictors are used) will coincide with the DGP for equity premium given the

complicated nature of �nancial markets and therefore it is likely misspeci�ed. Second, we deem

that the conditions under which CF is better than CI as we illustrated in Section 2.2 and 3.2 may

easily be satis�ed in this empirical application.

We obtained the monthly, quarterly and annual data over the period of 1927 to 2003 from the

homepage of Amit Goyal (http://www.bus.emory.edu/AGoyal/). Our data construction replicates

what Goyal and Welch (2008) did. The equity premium, y, is calculated by the S&P 500 market

return (di¤erence in the logarithms of index values in two consecutive periods) minus the risk free

rate in that period. Our explanatory variable set, x, contains 12 individual variables: dividend price

ratio, dividend yield, earnings price ratio, dividend payout ratio, book-to-market ratio, T-bill rate,

long term yield, long term return, term spread, default yield spread, default return spread and lag

of in�ation, as used in Goyal and Welch (2008). Goyal and Welch (2008) explore the out-of-sample

performance of these variables toward predicting the equity premium and �nd that not a single one
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would have helped a real-world investor outpredict the then-prevailing historical mean of the equity

premium while pooling all by simple OLS regression performs even worse, and then conclude that

�the equity premium has not been predictable�. This supports our �weak predictors� argument

discussed in Section 3.3 for explaining the success of CF-Mean.

Campbell and Thompson (2008) argue that once sensible restrictions are imposed on the signs of

coe¢ cients and return forecasts, forecasting variables with signi�cant forecasting power in-sample

generally have a better out-of-sample performance than a forecast based on the historical mean.

Lewellen (2004) studies in particular the predictive power of �nancial ratios on forecasting aggregate

stock returns through predictive regressions. He �nds evidence of predictability by certain ratios

over certain sample periods. In our empirical study, we bring the CF methodology into predicting

equity premium and compare with CI since the analysis in Section 2 demonstrates that CF method

indeed has its merits in out-of-sample forecasting practice. In addition, we investigate this issue of

predictability by comparing various CF and CI schemes with the historical mean benchmark over

di¤erent data frequencies, sample splits and forecast horizons.

5.1 CI schemes

Two sets of CI schemes are considered. The �rst is the OLS using directly xt (with dimension

N = 12) as the regressor set while parameter estimate is obtained using strictly past data. The

forecast is constructed as ŷT+h = (1 x0T )�̂T . Let us call this forecasting scheme: CI-Unrestricted,

namely the kitchen-sink model. The second set of CI schemes aims at the problem associated with

high dimension. It is quite possible to achieve a remarkable improvement on prediction by reducing

dimensionality if one applies a factor model by extracting the Principal Components (PC) (Stock

and Watson 2002a,b, 2004). The procedure is as follows:

xt = �Ft + vt; (29)

yt+h = (1 F 0t)
 + ut+1; (30)

where � is N � r and Ft is r � 1: In equation (29), by applying the classical principal component

methodology, the latent common factors F = (F1 F2 � � � FT )0 is solved by:

F̂ = X�̂=N (31)

where N is the size of xt, X = (x1 x2 � � � xT )0, and factor loading �̂ is set to
p
N times the

eigenvectors corresponding to the r largest eigenvalues of X 0X (see, for example, Bai and Ng
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2002). Once 
̂T is obtained from (30) by regression of yt on (1 F̂ 0t�1) (t = 1; 2; : : : ; T ), the forecast

is constructed as ŷCI-PCT+h = (1 F̂ 0T )
̂T (let us denote this forecasting scheme as CI-PC).

If the true number of factors r is unknown, it can be estimated by minimizing some information

criteria. Bai and Ng (2002) focus on estimation of the factor representation given by equation

(29) and the asymptotic inference for r when N and T go to in�nity. Equation (30), however, is

more relevant for forecasting and thus it is our main interest. Moreover, we note that the N in

our empirical study is only 12. We use AIC and BIC for which estimated number of factors k is

selected by

min 1�k�kmaxICk = ln(SSR(k)=T ) + g(T )k; (32)

where kmax is the hypothesized upper limit chosen by the user (we choose kmax = 12), SSR(k) is

the sum of squared residuals from the forecasting model (30) using k estimated factors, and the

penalty function g(T ) = 2=T for AIC and g(T ) = lnT=T for BIC.14 Additionally, we consider �xing

k a priori at a small value like 1; 2; 3.

5.2 CF schemes

We consider �ve sets of CF schemes where individual forecasts are generated by using each element

xit in xt: ŷ
(i)
T+h = (1 xiT )�̂i;T (i = 1; 2; : : : ; N). The �rst CF scheme, CF-Mean, is computed as

ŷCF-MeanT+1 = 1
N

PN
i=1 ŷ

(i)
T+1. Second, CF-Median is to compute the median of the set of individual

forecasts, which may be more robust in the presence of outlier forecasts. These two simple weighting

CF schemes require no estimation in weight parameters.15

To explore more information in the data, thirdly, we estimate the combination weights wi by

14 In model selection, it is well known that BIC is consistent in selecting the true model, and AIC is minimax-
rate optimal for estimating the regression function. Yang (2005) shows that for any model selection criterion to be
consistent, it must behave suboptimally for estimating the regression function in terms of minimax rate of convergence.
Bayesian model averaging cannot be minimax-rate optimal for regression estimation. This explains that the model
selected for in-sample �t and estimation would be di¤erent than the model selected for out-of-sample forecasting.
15Starting from Granger and Ramanathan (1984), based on earlier works such as Bates and Granger (1969) and

Newbold and Granger (1974), various feasible optimal combination weights have been suggested, which are static,
dynamic, time-varying, or Bayesian: see Diebold and Lopez (1996). Chan, Stock and Watson (1999) and Stock
and Watson (2004) utilize the principal component approach to exploit the factor structure of a panel of forecasts
to improve upon Granger and Ramanathan (1984) combination regressions. They show this principal component
forecast combination is more successful when there are large number of individual forecasts to be combined. The
procedure is to �rst extract a small set of principal components from a (large) set of forecasts and then estimate the
(static) combination weights for the principal components. Deutsch, Granger, and Teräsvirta (1994) extend Granger
and Ramanathan (1984) by allowing dynamics in the weights which are derived from switching regression models
or from smooth transition regression models. Li and Tkacz (2004) introduce a �exible non-parametric technique for
selecting weights in a forecast combination regression. Empirically, Stock and Watson (2004) consider various CF
weighting schemes and �nd the superiority of simple weighting schemes over sophisticated ones (such as time-varying
parameter combining regressions) for output growth prediction in a seven-country economic data set.
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regression approach (Granger and Ramanathan 1984):

yt+h = w0 +
NX
i=1

wiŷ
(i)
t+h + et+1; (33)

and form predictor CF-RA, ŷCF-RAT+h = ŵ0 +
PN
i=1 ŵiŷ

(i)
T+h. Similarly as in Section 4 (Monte Carlo

analysis), we experiment the three di¤erent versions of CF-RA. Fourth, we shrink CF-RA3 towards

equally weighted CF by choosing increasing values of shrinkage parameter �.

Finally, we extract the principal components from the set of individual forecasts and form

predictor that may be called as CF-PC (combination of forecasts using the weighted principal

components): see Chan, Stock and Watson (1999).16 Let ŷt+h := (ŷ
(1)
t+h; ŷ

(2)
t+h; : : : ; ŷ

(N)
t+h)

0: Now,

consider a factor model of ŷt+h (in the same way that a factor model of xt in equation (29) for

CI-PC is considered):17

ŷt+h = �Ft+h + vt+h: (34)

In equation (34), by applying the classical principal component methodology, the latent common

factors F = (F1+h F2+h � � � FT+h)0 is solved by:

F̂ = Ŷ �̂=N (35)

where Ŷ = (ŷ1+h ŷ2+h � � � ŷT+h)0, and factor loading �̂ is set to
p
N times the eigenvectors

corresponding to the r largest eigenvalues of Ŷ 0Ŷ . If the true number of factors r is unknown,

it can be estimated by minimizing some information criteria such as those of Bai and Ng (2002),

AIC, or BIC, to get the estimated number of factors k. Let F̂t+h := (F̂
(1)
t+h; : : : ; F̂

(k)
t+h)

0 denote the

�rst k principal components of ŷt+h = (ŷ
(1)
t+h; : : : ; ŷ

(N)
t+h)

0 for t = T0; : : : ; T .18 Then the forecasting

equation is

yt+h = (1 F̂ 0t+h)
 + ut+h

= 
0 +

kX
i=1


iF̂
(i)
t+h + ut+h:

16Also see Stock and Watson (2004), where it is called Principal Component Forecast Combination. In Aguiar-
Conraria (2003), a similar method is proposed: Principal Components Combination (PCC), where the Principal
Components Regression (PCR) is combined with the Forecast Combination approach by using each explanatory
variable to obtain a forecast for the dependent variable, and then combining the several forecasts using the PCR
method. This idea, as noted in the paper, follows the spirit of Partial Least Squares in the Chemometrics literature
thus is distinguished from what proposed in Chan, Stock and Watson (1999).
17We use the same notation F; v; u; 
;� in this sub-section for CF-PC as in the previous subsection on CI-PC, only

to make it easy to read. These are di¤erent in the two models and should be understood in the context of each model.
18 In computing the out-of-sample equity premium forecasts by rolling window scheme with window size R, we set

T = R and choose T0, the time when the �rst pseudo out-of-sample forecast is generated, at the middle point of the
rolling window.
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Once 
̂T is obtained by regression of yt+h on (1 F̂
0
t+h) (t = T0; : : : ; T ), the CF-PC forecast is then

constructed as ŷCF-PCT+h = (1 F̂ 0T )
̂T = 
̂0T +
Pk
i=1 
̂iT F̂

(i)
t+h (let us denote this forecasting scheme as

CF-PC).

Remark 1: Chan, Stock and Watson (1999) choose k = 1 since the factor analytic structure

for the set of individual forecasts they adopt permits one single factor � the conditional mean of

the variable to be forecast. Our speci�cations for individual forecasts in CF, however, di¤er from

those in Chan, Stock and Watson (1999) in that individual forecasting models considered here use

di¤erent and non-overlapping information sets, not a common total information set (which makes

individual forecasts di¤er solely from speci�cation error and estimation error) as assumed in Chan,

Stock and Watson (1999). Therefore, we consider k = 1; 2; 3. In addition to that, k is also chosen

by the information criteria AIC or BIC, as discussed in Section 5.1.

Remark 2: The biggest di¤erence between CF-PC and CI-PC lies in the set of variables we use

to extract the principal components (PC). In CI-PC, PC�s are computed from x�s directly, without

accounting for their relationship with the forecast target variable y. This problem with CI-PC leads

Bai and Ng (2008a) to consider �rst selecting a subset of predictors (�targeted predictors�) of x�s

that are informative in forecasting y; then using the subset to extract factors. In contrast, since

CF-PC is one type of CF where we combine forecasts not the information sets directly, PC�s in

CF-PC are computed from the set of individual forecasts ŷ�s that contain both information on x�s

and on all past values of y. This actually provides us further intuitions on why CF may be more

successful than CI, along the line of �supervised learning�.

If k = N , there is no di¤erence, i.e., CI-PC and CF-PC are the same. When k < N , the

principal components of the forecasts from CF and the principal components of predictors in CI

will di¤er from each other, because the linear combinations maximizing covariances of forecasts (for

which the supervision operates for the relationship between y and x) and the linear combinations

maximizing the covariances of predictors (for which there is no supervision) will be di¤erent.

Remark 3: CF-PC is the weighted combined forecasts. To see this, write the N � k matrix of

estimated loadings of the k factors as

�̂ =

0B@ �̂11 � � � �̂1k
...

...
�̂N1 � � � �̂Nk

1CA : (36)

Then the �rst k estimated CF-PC factors are

F̂ = (F̂1+h F̂2+h � � � F̂T+h)0 = Ŷ �̂=N;
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or its t-th column is

F̂t+h = �̂0ŷt+h=N

=
�

1
N

PN
i=1 �̂i1ŷ

(i)
t+h � � � 1

N

PN
i=1 �̂ikŷ

(i)
t+h

�0
= (F̂

(1)
t+h; : : : ; F̂

(k)
t+h)

0:

Note that by construction, CF-PC factors (F̂ (1)t+h; : : : ; F̂
(k)
t+h) are the weighted combined forecasts,

with the weights given by columns of �̂:

In particular, with �̂i1 = 1 (for all i = 1; : : : ; N), we note that F̂ (1)t+h =
1
N

PN
i=1 �̂i1ŷ

(i)
t+h =

1
N

PN
i=1 ŷ

(i)
t+h is the CF-Mean. CF-Mean is a particular form of CF-PC with k = 1, obtained by

shrinking �̂i1 to a �xed constant. Therefore, CF-Mean is a single factor CF-PC model with the

factor loading shrunken to a constant. Noting that CF-Mean is a shrinkage version of the CF-PC,

we can also view the regression based CF (CF-RA) and its shrinkage version CF-RA(�) as a general

shrinkage version of the CF-PC.

It is important to recall that the consistent estimation of �̂ requires a large N (Stock and

Watson 2002b, Bai 2003). When N is not large enough, CF-Mean (without estimating �̂i1) can

dominate CF-PC models (with estimating �̂ij ; j = 1; : : : ; k); as we will see the empirical results

below with N = 12:19

5.3 Empirical results

Table 3 presents the out-of-sample performance of each forecasting scheme for equity premium

prediction across di¤erent forecast horizons h, di¤erent frequencies (monthly, quarterly, and annual

in Panels A, B, and C) and di¤erent in-sample/out-of-sample splits R and P . Data range from

1927 to 2003 in monthly, quarterly and annual frequencies. All models are estimated using OLS

over rolling windows of size R. To compare each model with the benchmark Historical Mean (HM)

we report its MSFE ratio with respect to HM.20

First, similarities are found among Panels A, B, and C. While not reported for space, although

there are a few cases some individual forecasts return relatively small MSFE ratio, the performance

19 If N is very large and �̂
p! �; CF-PC may work better than CF-Mean. Otherwise, the parameter estimation of

the factor loading can contaminate CF-PC and make it worse than CF-Mean, which is in line with our understanding
of the forecast combination puzzle discussed in Section 3.1. The consistent estimation of �̂

p! � amounts to the
consistent estimation of the forecast combination weight w in Section 3.1 and Smith and Wallis (2008).
20The MSFE ratios are computed with respect to the CI benchmark for Monte Carlo analysis (Section 4, Tables 1,

2), while they are computed with respect to the historical-mean benchmark for empirical analysis as in Campbell and
Thompson (2008). We present the tables only with the MSFE ratios. However, we make the MSFE values available
from our webpage.
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of individual forecasts is fairly unstable and each similarly bad. In contrast, we clearly observe the

genuinely stable and superior performance of CF-Mean and CF with shrinkage weights (particularly

with a large amount of shrinkage imposed so that the weights are close to equal weights), compared

to almost all CI schemes across di¤erent frequencies, especially for shorter forecast horizons and

for the forecast periods with earlier starting date. CF-Median also appears to perform quite well.

This con�rms the discussion in Section 3 (particularly subsection 3.3) where we shed light on the

reasons for the success of simple average combination of forecasts, and is fairly consistent with this

understanding of the puzzle in the presence of �weak predictors�for the equity premium prediction.

Second, MSFE ratios of the good models that outperform HM are smaller in Panel B (quarterly

prediction) and Panel C (annual prediction) than in Panels A1 and A2 (monthly predictions). This

indicates that with these good models we can beat HM more easily for quarterly and annual series

than for monthly series.

Third, CF-PC with a �xed number of factors (1 or 2) frequently outperforms HM as well, and

by contrast, the CI schemes rarely beat HM by a considerable margin. Generally BIC performs

better than AIC by selecting a smaller k (the estimated number of factors) but worse than using a

small �xed k (= 1; 2; 3).

Fourth, within each panel, we �nd that generally it is hard to improve upon HM for more

recent out-of-sample periods (forecasts beginning in 1980) and for longer forecast horizons, since

the MSFE ratios tend to be larger under these situations. It seems that the equity premium

becomes less predictable in recent years than older years.

Fifth, we note that the in-sample size R is smaller for the forecast period starting from the

earlier year. In accordance with the conditions under which CF can be superior to CI as discussed

in Section 2, the smaller in-sample size may partly account for the success of CF-Mean over the

forecast period starting from the earlier year in line of the argument about parameter estimation

uncertainty.

In summary, Table 3 shows that CF-Mean, or CF-RA3 using estimated weights shrunken to-

wards equal weights, are simple but powerful methods to predict the equity premium out-of-sample

in comparison with the CI schemes, and to beat the HM benchmark. This may be due to the

estimation uncertainty of the factor loadings as discussed in Remark 3 of Section 5.2. When N is

not large enough, CF-Mean (without estimating �̂i1) can dominate CF-PC models (with estimating

�̂ij ; j = 1; : : : ; k) due to the similar reason discussed in Section 3.1.
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6 Conclusions

In this paper, we show the relative merits of combination of forecasts (CF) compared to combination

of information (CI). In the literature, it is commonly believed that CI is optimal. This belief is valid

for in-sample �t but when it comes to out-of-sample forecasting, CI is no longer undefeated. In

Section 2, through stylized linear forecasting regressions we illustrate analytically the circumstances

when the forecast by CF can be superior to the forecast by CI, when CI model is correctly speci�ed

and when it is misspeci�ed. We also shed some light on how CF with (close to) equal weights

may work by noting that, apart from the parameter estimation uncertainty argument (Smith and

Wallis 2008), in practical situations the information sets we selected that are used to predict the

variable of interest are often with about equally low predictive content therefore a simple average

combination is often close to optimal (discussed in Section 3). Our Monte Carlo analysis in Section

4 provides some insights on the possibility that CF with shrinkage or CF with equal weights can

dominate CI even in a large sample.

In accordance with the analytical �ndings, our empirical application on the equity premium

prediction con�rms the advantage of CF in real time forecasting. We compare CF with various

weighting methods, including simple average, regression based approach with principal component

method (CF-PC), to CI models with principal component approach (CI-PC). We �nd that CF with

(close to) equal weights dominates about all CI schemes, and also performs substantially better

than the historical mean benchmark model. These empirical results highlight the merits of CF that

we analyzed in Section 2 and 3, and they are also consistent with much of literature about CF,

for instance, the empirical �ndings by Stock and Watson (2004) where CF with various weighting

schemes (including CF-PC) is found favorable when compared to CI-PC.
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Appendix: Derivation of MSFEs for Section 2.2

De�ne �12 � (�01 �02)0 and ��̂ � �̂T � E(�̂T ). Note that

E(�̂T ) = E

��X
z0tzt

��1X
z0tyt+1

�
= �12+E

��X
z0tzt

��1X
z0tx3t

�
�3 = �12+


�1
zz 
z3�3; (37)

and V ar(�̂T ) = T�1�2�

�1
zz , so ��̂ = �̂T � �12 � 
�1zz 
z3�3. Thus, the conditional bias by the CI

forecast is

E(êT+1jIT ) = x1T (�1 � �̂1;T ) + x2;T (�2 � �̂2;T ) + x3;T �3 (38)

= zT (�12 � �̂T ) + x3;T �3 = zT (�
�1zz 
z3�3 � ��̂) + x3;T �3

= �zT ��̂ + �3z;T �3;

where IT denotes the total information up to time T . It follows that

MSFECI = E[V arT (yT+1)] + E[(E(êT+1jIT ))2]

= �2� + E[(�zT ��̂ + �3z;T �3)(�zT ��̂ + �3z;T �3)0]

= �2� + E[zTV ar(�̂T )z
0
T ] + �

0
3E[�

0
3z;T �3z;T ]�3

= �2� + T
�1�2�E[zT


�1
zz z

0
T ] + �

0
3
�3z�3

= �2� + T
�1�2�trf
�1zz E[z0T zT ]g+ �03
�3z�3

= �2� + T
�1�2�(k1 + k2) + �

0
3
�3z�3: (39)

Similarly, for the two individual forecasts, de�ne ��̂i � �̂i;T � E(�̂i;T ) (i = 1; 2). Given that

E(�̂1;T ) = E

��X
x01;tx1;t

��1X
x01;tyt+1

�
(40)

= �1 + E

��X
x01;tx1;t

��1X
x01;t(x2;t�2 + x3;t�3)

�
= �1 +


�1
11 (
12�2 +
13�3);

and

E(�̂2;T ) = �2 +

�1
22 (
21�1 +
23�3); (41)

the conditional biases by individual forecasts are:

E(�̂1;T+1jIT ) = x1;T (�1 � �̂1;T ) + x2;T �2 + x3;T �3 = �x1;T ��̂1 + �23:1;T �23; (42)

E(�̂2;T+1jIT ) = x1;T �1 + x2;T (�2 � �̂2;T ) + x3;T �3 = �x2;T ��̂2 + �13:2;T �13:
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Hence, similar to the derivation for MSFECI, it is easy to show that

MSFE(1) = �2� + E[(�x1;T ��̂1 + �23:1;T �23)(�x1;T ��̂1 + �23:1;T �23)
0]

= �2� + T
�1�2�E[x1;T


�1
11 x

0
1;T ] + �

0
23
�23:1�23

= �2� + T
�1�2�k1 + �

0
23
�23:1�23; (43)

and

MSFE(2) = �2� + T
�1�2�k2 + �

0
13
�13:2�13; (44)

by noting that V ar(�̂i;T ) = T
�1�2�


�1
ii (i = 1; 2).

Using equation (15), the conditional bias by the CF forecast is

E(êCFT+1jIT ) = wE(�̂1;T+1jIT ) + (1� w)E(�̂2;T+1jIT ): (45)

It follows that

MSFECF = �2� + E[(E(ê
CF
T+1jIT ))2]

= �2� + E[w
2(E(�̂1;T+1jIT ))2 + (1� w)2(E(�̂2;T+1jIT ))2

+2w(1� w)E(�̂1;T+1jIT )E(�̂2;T+1jIT )]

= �2� + w
2[T�1�2�k1 + �

0
23
�23:1�23] + (1� w)

2[T�1�2�k2 + �
0
13
�13:2�13]

+2w(1� w)E[x1T ��̂1�
0
�̂2
x02T + �

0
23�

0
23:1;T �13:2;T �13]

= �2� + g
CF
T + w2�023
�23:1�23 + (1� w)

2�013
�13:2�13

+2w(1� w)�023E[�023:1;T �13:2;T ]�13; (46)

where gCFT = T�1(w2k1 + (1� w)2k2)�2� + 2w(1� w)E[x1T ��̂1�
0
�̂2
x02T ].
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Table 1.  Monte Carlo Simulation (When CI model is the DGP) 
 
This set of tables presents the performance of each forecasting schemes for predicting yt+1 out-of-sample where yt is by DGP:  

yt+1 = xtθ  + ηt+1 ,  ηt ~ N(0, ση2);  xit = φixit-1 + vit, vt ~ N(0, Ω), i=1,2.  
We report the out-of-sample MSFE of each forecasting scheme where bolded term indicates smaller-than-CI case and the 
smallest number among them is highlighted. 
 

  

Panel A. No correlation:  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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R=100, P=100    MSFE Ratio    
 ση =0.25 ση =0.5 ση =1 ση =2 ση =4 ση =8 ση =16 

ŷ(1) 4.9798  1.9708  1.2403  1.0493  1.0050  0.9935  0.9900  

ŷ(2) 4.9225  1.9879  1.2404  1.0507  1.0053  0.9937  0.9903  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.1256  1.0930  1.0870  1.0810  1.0584  1.0353  1.0314  

CF-RA2 3.0124  1.5074  1.1322  1.0357  1.0138  1.0073  1.0055  

CF-RA3(κ=0) 1.1752  1.1004  1.0758  1.0563  1.0284  1.0095  1.0061  

CF-RA3(κ=1) 1.1705  1.0965  1.0719  1.0526  1.0253  1.0071  1.0038  

CF-RA3(κ=3) 1.1860  1.0938  1.0655  1.0458  1.0195  1.0026  0.9995  

CF-RA3(κ=5) 1.2279  1.0984  1.0611  1.0396  1.0143  0.9986  0.9956  

CF-RA3(κ=7) 1.2992  1.1101  1.0584  1.0341  1.0097  0.9951  0.9923  

CF-RA3(κ=9) 1.3984  1.1288  1.0578  1.0293  1.0055  0.9922  0.9895  

CF-RA3(κ=11) 1.5256  1.1545  1.0589  1.0251  1.0020  0.9898  0.9872  

CF-RA3(κ=13) 1.6806  1.1875  1.0620  1.0216  0.9990  0.9879  0.9854  

CF-RA3(κ=15) 1.8636  1.2272  1.0670  1.0188  0.9965  0.9866  0.9842  

CF-RA3(κ=17) 2.0744  1.2743  1.0739  1.0166  0.9946  0.9857  0.9834  

CF-RA3(κ=19) 2.3147  1.3288  1.0826  1.0152  0.9933  0.9854  0.9832  

CF-Mean 2.9550  1.4763  1.1091  1.0142  0.9922  0.9866  0.9845  
        

R=1000, P=100        

ŷ(1) 5.0616  2.0509  1.2669  1.0573  1.0138  1.0051  1.0009  

ŷ(2) 4.8499  1.9921  1.2334  1.0665  1.0107  1.0021  0.9998  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0111  1.0075  1.0076  1.0070  1.0072  1.0060  1.0071  

CF-RA2 2.9510  1.5195  1.1256  1.0326  1.0057  1.0027  1.0012  

CF-RA3(κ=0) 1.0174  1.0067  1.0079  1.0071  1.0059  1.0037  1.0019  

CF-RA3(κ=1) 1.0174  1.0067  1.0079  1.0071  1.0059  1.0037  1.0019  

CF-RA3(κ=28) 1.0458  1.0134  1.0097  1.0068  1.0049  1.0031  1.0013  

CF-RA3(κ=55) 1.1185  1.0324  1.0141  1.0072  1.0040  1.0026  1.0008  

CF-RA3(κ=82) 1.2370  1.0632  1.0211  1.0083  1.0034  1.0022  1.0004  

CF-RA3(κ=109) 1.3997  1.1058  1.0309  1.0100  1.0030  1.0018  1.0001  

CF-RA3(κ=136) 1.6051  1.1603  1.0432  1.0124  1.0028  1.0015  0.9998  

CF-RA3(κ=163) 1.8578  1.2266  1.0582  1.0155  1.0028  1.0013  0.9996  

CF-RA3(κ=190) 2.1532  1.3052  1.0759  1.0192  1.0030  1.0011  0.9994  

CF-RA3(κ=217) 2.4929  1.3952  1.0962  1.0236  1.0034  1.0010  0.9993  

CF-RA3(κ=244) 2.8784  1.4974  1.1192  1.0287  1.0041  1.0010  0.9993  

CF-Mean 2.9463  1.5156  1.1233  1.0296  1.0042  1.0010  0.9993  



 
 
 

Panel B. High correlation:  
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R=100, P=100    MSFE Ratio    
 ση =0.25 ση =0.5 ση =1 ση =2 ση =4 ση =8 ση =16 

ŷ(1) 2.4295  1.3409  1.0808  1.0110  0.9948  0.9911  0.9896  

ŷ(2) 2.3969  1.3545  1.0788  1.0132  0.9942  0.9913  0.9899  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0589  1.0568  1.0580  1.0571  1.0593  1.0406  1.0335  

CF-RA2 1.1566  1.0455  1.0177  1.0108  1.0097  1.0085  1.0088  

CF-RA3(κ=0) 1.0403  1.0366  1.0356  1.0343  1.0296  1.0125  1.0070  

CF-RA3(κ=1) 1.0357  1.0331  1.0319  1.0307  1.0261  1.0099  1.0047  

CF-RA3(κ=3) 1.0310  1.0265  1.0251  1.0240  1.0195  1.0050  1.0004  

CF-RA3(κ=5) 1.0279  1.0214  1.0191  1.0179  1.0136  1.0007  0.9967  

CF-RA3(κ=7) 1.0279  1.0171  1.0138  1.0125  1.0083  0.9970  0.9934  

CF-RA3(κ=9) 1.0310  1.0140  1.0091  1.0076  1.0035  0.9939  0.9908  

CF-RA3(κ=11) 1.0372  1.0121  1.0052  1.0033  0.9994  0.9913  0.9886  

CF-RA3(κ=13) 1.0450  1.0109  1.0020  0.9997  0.9959  0.9893  0.9870  

CF-RA3(κ=15) 1.0558  1.0113  0.9996  0.9966  0.9931  0.9879  0.9860  

CF-RA3(κ=17) 1.0698  1.0125  0.9980  0.9942  0.9908  0.9870  0.9855  

CF-RA3(κ=19) 1.0868  1.0148  0.9970  0.9924  0.9891  0.9867  0.9855  

CF-Mean 1.1333  1.0245  0.9974  0.9905  0.9876  0.9882  0.9875  
        

R=1000, P=100        

ŷ(1) 2.4803  1.3861  1.0842  1.0204  1.0029  1.0016  1.0006  

ŷ(2) 2.3791  1.3458  1.0957  1.0206  1.0052  0.9983  0.9980  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0063  1.0051  1.0052  1.0056  1.0038  1.0052  1.0053  

CF-RA2 1.1327  1.0399  1.0109  1.0027  1.0002  1.0000  1.0000  

CF-RA3(κ=0) 1.0047  1.0032  1.0038  1.0041  1.0031  1.0023  1.0005  

CF-RA3(κ=1) 1.0047  1.0032  1.0038  1.0041  1.0031  1.0023  1.0005  

CF-RA3(κ=28) 1.0063  1.0028  1.0031  1.0031  1.0023  1.0016  0.9999  

CF-RA3(κ=55) 1.0095  1.0032  1.0028  1.0022  1.0015  1.0009  0.9994  

CF-RA3(κ=82) 1.0174  1.0051  1.0027  1.0015  1.0009  1.0003  0.9991  

CF-RA3(κ=109) 1.0284  1.0075  1.0028  1.0009  1.0003  0.9998  0.9988  

CF-RA3(κ=136) 1.0411  1.0111  1.0032  1.0005  0.9998  0.9994  0.9986  

CF-RA3(κ=163) 1.0585  1.0158  1.0039  1.0003  0.9994  0.9990  0.9985  

CF-RA3(κ=190) 1.0774  1.0213  1.0048  1.0002  0.9991  0.9988  0.9985  

CF-RA3(κ=217) 1.1011  1.0276  1.0060  1.0002  0.9989  0.9986  0.9986  

CF-RA3(κ=244) 1.1264  1.0351  1.0075  1.0004  0.9988  0.9984  0.9988  

CF-Mean 1.1311  1.0367  1.0078  1.0005  0.9988  0.9984  0.9988  

  



Table 2.  Monte Carlo Simulation (When CI model is not the DGP) 
 
This set of tables presents the performance of each forecasting schemes for predicting yt+1 out-of-sample where yt is by DGP:  

yt+1 = xtθ  + ηt+1 ,  ηt ~ N(0, ση2);  xit = φixit-1 + vit, vt ~ N(0, Ω), i=1,2,3.  
Variable x3t is omitted in each CF and CI schemes. 
 

Panel A. High positive correlations with the omitted variable:  
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R=100, P=100    MSFE Ratio    
 ση =0.25 ση =0.5 ση =1 ση =2 ση =4 ση =8 ση =16 

ŷ(1) 1.9823  1.5051  1.1665  1.0406  1.0011  0.9932  0.9897  

ŷ(2) 1.9761  1.5111  1.1656  1.0361  1.0024  0.9919  0.9909  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0625  1.0620  1.0628  1.0615  1.0620  1.0434  1.0326  

CF-RA2 1.2166  1.1157  1.0444  1.0179  1.0105  1.0077  1.0068  

CF-RA3(κ=0) 1.0458  1.0428  1.0426  1.0396  1.0328  1.0154  1.0072  

CF-RA3(κ=1) 1.0420  1.0391  1.0387  1.0359  1.0292  1.0126  1.0048  

CF-RA3(κ=3) 1.0377  1.0333  1.0317  1.0290  1.0227  1.0075  1.0005  

CF-RA3(κ=5) 1.0367  1.0296  1.0260  1.0229  1.0167  1.0029  0.9967  

CF-RA3(κ=7) 1.0391  1.0279  1.0211  1.0174  1.0113  0.9989  0.9934  

CF-RA3(κ=9) 1.0448  1.0281  1.0174  1.0126  1.0064  0.9954  0.9907  

CF-RA3(κ=11) 1.0544  1.0306  1.0148  1.0084  1.0022  0.9925  0.9884  

CF-RA3(κ=13) 1.0673  1.0351  1.0133  1.0050  0.9985  0.9902  0.9867  

CF-RA3(κ=15) 1.0840  1.0418  1.0129  1.0022  0.9953  0.9884  0.9855  

CF-RA3(κ=17) 1.1035  1.0503  1.0134  1.0000  0.9928  0.9871  0.9849  

CF-RA3(κ=19) 1.1269  1.0610  1.0152  0.9986  0.9908  0.9864  0.9848  

CF-Mean 1.1927  1.0928  1.0229  0.9978  0.9885  0.9868  0.9864  
        

R=1000, P=100        

ŷ(1) 2.0644  1.5331  1.1696  1.0452  1.0102  1.0024  0.9998  

ŷ(2) 2.0045  1.5254  1.1763  1.0523  1.0118  1.0035  0.9986  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0045  1.0078  1.0043  1.0052  1.0050  1.0056  1.0016  

CF-RA2 1.2092  1.1185  1.0305  1.0077  1.0027  1.0022  0.9990  

CF-RA3(κ=0) 1.0025  1.0045  1.0042  1.0025  1.0030  1.0038  0.9985  

CF-RA3(κ=1) 1.0025  1.0045  1.0041  1.0025  1.0030  1.0037  0.9985  

CF-RA3(κ=28) 1.0040  1.0060  1.0028  1.0018  1.0022  1.0029  0.9981  

CF-RA3(κ=55) 1.0106  1.0100  1.0025  1.0013  1.0016  1.0021  0.9979  

CF-RA3(κ=82) 1.0226  1.0166  1.0031  1.0012  1.0011  1.0015  0.9977  

CF-RA3(κ=109) 1.0392  1.0259  1.0047  1.0013  1.0007  1.0010  0.9976  

CF-RA3(κ=136) 1.0608  1.0379  1.0072  1.0019  1.0005  1.0005  0.9976  

CF-RA3(κ=163) 1.0880  1.0525  1.0107  1.0026  1.0004  1.0002  0.9976  

CF-RA3(κ=190) 1.1197  1.0698  1.0151  1.0037  1.0005  1.0000  0.9978  

CF-RA3(κ=217) 1.1564  1.0897  1.0205  1.0052  1.0006  0.9999  0.9980  

CF-RA3(κ=244) 1.1981  1.1123  1.0267  1.0069  1.0010  0.9999  0.9982  

CF-Mean 1.2056  1.1163  1.0279  1.0072  1.0010  0.9999  0.9983  



 

Panel B. High negative correlations with the omitted variable:  
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R=100, P=100    MSFE Ratio    
 ση =0.25 ση =0.5 ση =1 ση =2 ση =4 ση =8 ση =16 

ŷ(1) 0.9948  0.9915  0.9902  0.9906  0.9897  0.9900  0.9891  

ŷ(2) 0.9943  0.9920  0.9899  0.9900  0.9896  0.9891  0.9901  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0510  1.0396  1.0328  1.0293  1.0288  1.0268  1.0281  

CF-RA2 1.0081  1.0077  1.0071  1.0072  1.0069  1.0073  1.0069  

CF-RA3(κ=0) 1.0191  1.0142  1.0062  1.0045  1.0055  1.0040  1.0039  

CF-RA3(κ=1) 1.0162  1.0114  1.0038  1.0023  1.0032  1.0018  1.0017  

CF-RA3(κ=3) 1.0110  1.0065  0.9996  0.9982  0.9989  0.9978  0.9977  

CF-RA3(κ=5) 1.0062  1.0020  0.9957  0.9947  0.9952  0.9943  0.9942  

CF-RA3(κ=7) 1.0019  0.9980  0.9925  0.9917  0.9921  0.9913  0.9912  

CF-RA3(κ=9) 0.9981  0.9945  0.9899  0.9892  0.9895  0.9888  0.9887  

CF-RA3(κ=11) 0.9948  0.9918  0.9877  0.9873  0.9874  0.9869  0.9868  

CF-RA3(κ=13) 0.9924  0.9895  0.9860  0.9858  0.9858  0.9854  0.9853  

CF-RA3(κ=15) 0.9900  0.9878  0.9849  0.9849  0.9848  0.9845  0.9844  

CF-RA3(κ=17) 0.9885  0.9866  0.9843  0.9845  0.9843  0.9841  0.9840  

CF-RA3(κ=19) 0.9876  0.9861  0.9843  0.9847  0.9843  0.9842  0.9841  

CF-Mean 0.9876  0.9868  0.9861  0.9869  0.9863  0.9862  0.9863  
        

R=1000, P=100        

ŷ(1) 1.0039  1.0012  1.0004  1.0002  0.9996  0.9993  0.9990  

ŷ(2) 1.0024  1.0015  0.9982  1.0007  0.9992  0.9991  0.9987  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0048  1.0060  1.0056  1.0072  1.0028  1.0035  1.0029  

CF-RA2 1.0019  1.0015  1.0012  1.0014  1.0012  1.0008  1.0002  

CF-RA3(κ=0) 1.0039  1.0040  1.0032  1.0037  0.9997  1.0017  1.0011  

CF-RA3(κ=1) 1.0039  1.0040  1.0031  1.0037  0.9997  1.0017  1.0011  

CF-RA3(κ=28) 1.0029  1.0032  1.0021  1.0029  0.9993  1.0011  1.0005  

CF-RA3(κ=55) 1.0019  1.0025  1.0013  1.0022  0.9990  1.0005  1.0000  

CF-RA3(κ=82) 1.0014  1.0017  1.0005  1.0016  0.9987  1.0000  0.9995  

CF-RA3(κ=109) 1.0010  1.0010  0.9999  1.0011  0.9986  0.9996  0.9991  

CF-RA3(κ=136) 1.0005  1.0005  0.9994  1.0007  0.9985  0.9993  0.9988  

CF-RA3(κ=163) 1.0000  1.0002  0.9989  1.0003  0.9985  0.9991  0.9986  

CF-RA3(κ=190) 0.9995  0.9998  0.9987  1.0001  0.9986  0.9989  0.9985  

CF-RA3(κ=217) 0.9995  0.9998  0.9984  0.9999  0.9988  0.9989  0.9985  

CF-RA3(κ=244) 0.9995  0.9995  0.9983  0.9999  0.9990  0.9989  0.9985  

CF-Mean 0.9995  0.9995  0.9983  0.9998  0.9991  0.9989  0.9985  



 

Panel C. High negative correlations with the omitted variable and relatively small 3θ : 
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R=100, P=100    MSFE Ratio    
 ση =0.25 ση =0.5 ση =1 ση =2 ση =4 ση =8 ση =16 

ŷ(1) 1.3639  1.0973  1.0180  0.9981  0.9911  0.9904  0.9891  

ŷ(2) 1.3552  1.0988  1.0178  0.9961  0.9914  0.9895  0.9902  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0606  1.0611  1.0643  1.0558  1.0395  1.0291  1.0289  

CF-RA2 1.0879  1.0300  1.0139  1.0091  1.0075  1.0075  1.0068  

CF-RA3(κ=0) 1.0421  1.0406  1.0396  1.0245  1.0129  1.0059  1.0043  

CF-RA3(κ=1) 1.0384  1.0369  1.0358  1.0214  1.0102  1.0036  1.0020  

CF-RA3(κ=3) 1.0322  1.0300  1.0286  1.0156  1.0053  0.9994  0.9980  

CF-RA3(κ=5) 1.0272  1.0241  1.0222  1.0103  1.0010  0.9957  0.9945  

CF-RA3(κ=7) 1.0248  1.0190  1.0162  1.0056  0.9972  0.9925  0.9915  

CF-RA3(κ=9) 1.0248  1.0146  1.0110  1.0014  0.9939  0.9899  0.9890  

CF-RA3(κ=11) 1.0248  1.0113  1.0064  0.9979  0.9912  0.9878  0.9870  

CF-RA3(κ=13) 1.0272  1.0088  1.0025  0.9949  0.9890  0.9862  0.9855  

CF-RA3(κ=15) 1.0309  1.0069  0.9991  0.9925  0.9874  0.9851  0.9846  

CF-RA3(κ=17) 1.0359  1.0059  0.9965  0.9907  0.9863  0.9845  0.9841  

CF-RA3(κ=19) 1.0433  1.0059  0.9944  0.9894  0.9857  0.9845  0.9842  

CF-Mean 1.0656  1.0088  0.9921  0.9886  0.9865  0.9863  0.9863  
        

R=1000, P=100        

ŷ(1) 1.3648  1.1068  1.0346  1.0087  0.9997  0.9986  0.9998  

ŷ(2) 1.3585  1.1072  1.0230  1.0092  1.0008  1.0003  0.9996  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0075  1.0063  1.0037  1.0072  1.0049  1.0025  1.0024  

CF-RA2 1.0742  1.0240  1.0071  1.0045  1.0011  1.0006  1.0012  

CF-RA3(κ=0) 1.0063  1.0041  1.0024  1.0061  1.0028  0.9999  1.0005  

CF-RA3(κ=1) 1.0063  1.0041  1.0024  1.0060  1.0028  0.9999  1.0004  

CF-RA3(κ=28) 1.0063  1.0037  1.0018  1.0051  1.0020  0.9994  1.0000  

CF-RA3(κ=55) 1.0075  1.0037  1.0014  1.0043  1.0013  0.9990  0.9996  

CF-RA3(κ=82) 1.0113  1.0044  1.0012  1.0037  1.0007  0.9987  0.9992  

CF-RA3(κ=109) 1.0164  1.0059  1.0012  1.0031  1.0001  0.9985  0.9990  

CF-RA3(κ=136) 1.0239  1.0078  1.0014  1.0027  0.9997  0.9984  0.9989  

CF-RA3(κ=163) 1.0327  1.0103  1.0019  1.0024  0.9993  0.9983  0.9988  

CF-RA3(κ=190) 1.0428  1.0133  1.0026  1.0022  0.9990  0.9984  0.9989  

CF-RA3(κ=217) 1.0553  1.0166  1.0035  1.0022  0.9987  0.9985  0.9990  

CF-RA3(κ=244) 1.0692  1.0211  1.0045  1.0023  0.9986  0.9987  0.9992  

CF-Mean 1.0717  1.0218  1.0047  1.0023  0.9985  0.9988  0.9993  



 

 

Panel D. High negative correlations with the omitted variable and : 
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R=100, P=100    MSFE Ratio    
 ση =0.25 ση =0.5 ση =1 ση =2 ση =4 ση =8 ση =16 

ŷ(1) 1.0014  0.9960  0.9913  0.9906  0.9900  0.9900  0.9891  

ŷ(2) 1.3459  1.1777  1.0529  1.0060  0.9943  0.9900  0.9904  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0501  1.0515  1.0515  1.0459  1.0353  1.0279  1.0290  

CF-RA2 1.0210  1.0169  1.0140  1.0112  1.0090  1.0079  1.0070  

CF-RA3(κ=0) 1.0243  1.0246  1.0232  1.0168  1.0103  1.0052  1.0043  

CF-RA3(κ=1) 1.0210  1.0214  1.0200  1.0141  1.0078  1.0029  1.0021  

CF-RA3(κ=3) 1.0167  1.0157  1.0142  1.0090  1.0032  0.9988  0.9981  

CF-RA3(κ=5) 1.0143  1.0117  1.0093  1.0046  0.9992  0.9952  0.9946  

CF-RA3(κ=7) 1.0143  1.0092  1.0053  1.0007  0.9957  0.9921  0.9915  

CF-RA3(κ=9) 1.0162  1.0082  1.0021  0.9975  0.9928  0.9896  0.9890  

CF-RA3(κ=11) 1.0205  1.0087  0.9999  0.9948  0.9904  0.9875  0.9871  

CF-RA3(κ=13) 1.0272  1.0105  0.9986  0.9928  0.9885  0.9860  0.9856  

CF-RA3(κ=15) 1.0363  1.0139  0.9980  0.9914  0.9873  0.9850  0.9847  

CF-RA3(κ=17) 1.0472  1.0189  0.9984  0.9905  0.9865  0.9845  0.9842  

CF-RA3(κ=19) 1.0606  1.0254  0.9997  0.9903  0.9863  0.9845  0.9843  

CF-Mean 1.0983  1.0455  1.0058  0.9919  0.9878  0.9865  0.9864  
        

R=1000, P=100        

ŷ(1) 1.0101  1.0060  0.9992  0.9999  0.9988  0.9985  0.9995  

ŷ(2) 1.3483  1.1861  1.0569  1.0214  1.0036  1.0010  0.9996  

CI 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  

CF-RA1 1.0034  1.0042  1.0034  1.0063  1.0047  1.0023  1.0027  

CF-RA2 1.0097  1.0062  1.0026  1.0021  1.0007  1.0012  1.0010  

CF-RA3(κ=0) 1.0019  1.0025  1.0024  1.0041  1.0017  0.9995  1.0003  

CF-RA3(κ=1) 1.0019  1.0025  1.0023  1.0040  1.0017  0.9995  1.0003  

CF-RA3(κ=28) 1.0024  1.0027  1.0012  1.0031  1.0011  0.9991  0.9998  

CF-RA3(κ=55) 1.0053  1.0045  1.0008  1.0025  1.0005  0.9988  0.9994  

CF-RA3(κ=82) 1.0111  1.0075  1.0009  1.0022  1.0001  0.9986  0.9991  

CF-RA3(κ=109) 1.0193  1.0122  1.0016  1.0021  0.9998  0.9984  0.9988  

CF-RA3(κ=136) 1.0309  1.0182  1.0028  1.0024  0.9996  0.9984  0.9987  

CF-RA3(κ=163) 1.0449  1.0254  1.0047  1.0029  0.9996  0.9985  0.9987  

CF-RA3(κ=190) 1.0618  1.0344  1.0071  1.0037  0.9996  0.9986  0.9988  

CF-RA3(κ=217) 1.0812  1.0449  1.0101  1.0048  0.9997  0.9988  0.9989  

CF-RA3(κ=244) 1.1039  1.0566  1.0138  1.0061  1.0000  0.9991  0.9992  

CF-Mean 1.1077  1.0586  1.0144  1.0064  1.0001  0.9992  0.9992  



Table 3.  Equity Premium Prediction 
 

Note: Data range from 1927m1 to 2003m12; “kmax”, the maximum hypothesized number of factors, is set at 12; 
“h” is the forecast horizon; we report MSFE Ratio which is the MSFE of each method over that of the Historical 
Mean model; “k” is the number of factors included in the principal component approaches; “Mean/SD” is the 
mean and standard deviation of the estimated number of factors over the out-of-sample. The case when Historical 
Mean benchmark is outperformed is indicated in bold, and the smallest number among them is highlighted. 
 

 

Panel A1. Monthly prediction, forecasts begin 1969m1 (R=504 and P=420) 
    MSFE Ratio     
 h=1  h=3  h=6  h=12  
Historical Mean 1.0000  1.0000  1.0000  1.0000  

CF-Mean 0.9820  0.9860   0.9890   0.9891   

CF-Median 0.9887  0.9915   0.9913   0.9904   

CF-RA1 1.0585  1.0660   1.0325   1.1548   

CF-RA2 1.0975  1.0847   1.0538   1.1225   

CF-RA3 (κ=0) 1.0795  1.0581   1.0310   1.1240   

CF-RA3 (κ=1) 1.0670  1.0487   1.0250   1.1116   

CF-RA3 (κ=3) 1.0443  1.0317   1.0141   1.0889   

CF-RA3 (κ=5) 1.0248  1.0172   1.0049   1.0684   

CF-RA3 (κ=7) 1.0086  1.0052   0.9974   1.0503   

CF-RA3 (κ=9) 0.9956  0.9956   0.9916   1.0346   

CF-RA3 (κ=11) 0.9859  0.9884   0.9875   1.0213   

CF-RA3 (κ=13) 0.9794  0.9837   0.9851   1.0103   

CF-RA3 (κ=15) 0.9762 Mean/SD 0.9815  Mean/SD 0.9844  Mean/SD 1.0017  Mean/SD

CF-PC (AIC) 1.0429 9.13/3.26 1.0697  8.62/3.45 1.0363  4.74/4.23 1.0158  1.90/2.45

CF-PC (BIC) 0.9828 1.30/1.06 0.9962  1.14/0.49 1.0029  1.18/0.42 0.9993  1.06/0.24

CF-PC (k=1) 0.9858  0.9903   0.9989   1.0049   

CF-PC (k=2) 0.9801  0.9953   1.0000   0.9995   

CF-PC (k=3) 0.9912  1.0076   1.0090   1.0065   

         

CI-Unrestricted 1.0103  1.0661   1.0400   1.0712   

CI-PC (AIC) 1.0142 8.70/2.18 1.0537  7.47/2.49 1.0655  6.22/2.82 1.0147  2.35/0.84

CI-PC (BIC) 1.0523 3.29/1.85 1.0655  2.48/1.39 1.0478  1.92/0.99 1.0071  1.38/0.63

CI-PC (k=1) 0.9998  1.0009   0.9996   0.9934   

CI-PC (k=2) 1.0060  1.0151   1.0134   0.9944   

CI-PC (k=3) 1.0673  1.0805   1.0612   1.0115   

 



 
 
 
 

 

Panel A2. Monthly prediction, forecasts begin 1980m1 (R=636 and P=288) 
    MSFE Ratio     
 h=1  h=3  h=6  h=12  
Historical Mean 1.0000  1.0000  1.0000  1.0000  

CF-Mean 0.9938   0.9980   0.9981   0.9995   

CF-Median 0.9993   1.0023   0.9986   1.0026   

CF-RA1 1.0606   1.0361   1.0873   1.0649   

CF-RA2 1.0590   1.0637   1.0811   1.0946   

CF-RA3 (κ=0) 1.0821   1.0605   1.1108   1.0690   

CF-RA3 (κ=1) 1.0741   1.0547   1.1008   1.0642   

CF-RA3 (κ=4) 1.0523   1.0389   1.0734   1.0509   

CF-RA3 (κ=7) 1.0338   1.0256   1.0501   1.0391   

CF-RA3 (κ=10) 1.0187   1.0147   1.0310   1.0288   

CF-RA3 (κ=13) 1.0069   1.0063   1.0161   1.0200   

CF-RA3 (κ=16) 0.9985   1.0005   1.0053   1.0128   

CF-RA3 (κ=19) 0.9935   0.9970   0.9986   1.0071   

CF-RA3 (κ=22) 0.9917  Mean/SD 0.9961  Mean/SD 0.9961  Mean/SD 1.0029  Mean/SD

CF-PC (AIC) 1.0741  10.33/3.27 1.0251 8.74/3.98 1.0815  9.33/3.95 1.0198  4.26/4.55

CF-PC (BIC) 0.9937  1.30/0.77 1.0063 1.02/0.14 1.0104  1.02/0.13 1.0161  1/0 

CF-PC (k=1) 0.9896   1.0038  1.0089   1.0161   

CF-PC (k=2) 0.9918   1.0091  1.0154   1.0148   

CF-PC (k=3) 0.9960   1.0086  1.0150   1.0200   

         

CI-Unrestricted 1.0592   1.1344  1.0525   1.0495   

CI-PC (AIC) 1.0522  8.63/1.87 1.1274 7.68/2.12 1.0607  6.95/2.53 1.0197  2.68/1.14

CI-PC (BIC) 1.0639  3.02/1.72 1.0578 2.35/1.31 1.0199  1.64/1.08 1.0376  1.56/0.72

CI-PC (k=1) 1.0131   1.0150  1.0200   1.0194   

CI-PC (k=2) 1.0175   1.0251  1.0274   1.0315   

CI-PC (k=3) 1.0617   1.0623  1.0575   1.0376   

 



 
 
 
 

 

Panel B. Quarterly prediction 

 
Forecasts begin 1969q1  

(R=168 and P=140)   
Forecasts begin 1980q1  

(R=212 and P=96) 
    MSFE Ratio     
 h=1  h=4  h=1  h=4  
Historical Mean 1.0000  1.0000  1.0000  1.0000  

CF-Mean 0.9589   0.9768   0.9899   1.0071   

CF-Median 0.9689   0.9831   0.9992   1.0172   

CF-RA1 1.2436   1.7457   1.3127   1.2568   

CF-RA2 1.3942  1.6537  1.3120   1.3482   

CF-RA3 (κ=0) 1.2981  1.6728  1.4901   1.2819   

CF-RA3 (κ=0.25) 1.2660  1.6185  1.4554   1.2656   

CF-RA3 (κ=0.5) 1.2354  1.5665  1.4219   1.2499   

CF-RA3 (κ=1) 1.1791 Mean/SD 1.4690 Mean/SD 1.3586  Mean/SD 1.2198  Mean/SD

CF-PC (AIC) 1.3136  7.08/4.40 1.3484  3.31/3.98  1.2224  8.69/4.05  1.0959  4.17/4.87 

CF-PC (BIC) 1.0512  1.27/0.66 1.0451  1.06/0.23  1.0136  1.25/0.78 1.0499  1.01/0.10 

CF-PC (k=1) 1.0036   1.0286   0.9987   1.0501   

CF-PC (k=2) 0.9993   1.0287   1.0176   1.0306   

CF-PC (k=3) 1.0214   1.0464   1.0216   1.0467   

         

CI-Unrestricted 1.0835   1.2182   1.3046   1.2026   

CI-PC (AIC) 1.1488  7.66/2.21 1.1104  2.56/1.35  1.2942  8.73/2.10  1.0708  2.97/1.84 

CI-PC (BIC) 1.2094  2.36/0.95 1.0409  1.35/0.78 1.1799  2.67/1.60 1.2350  2.01/1.49

CI-PC (k=1) 0.9991   0.9932   1.0414   1.0543   

CI-PC (k=2) 1.0207   1.0091   1.0846   1.1257   

CI-PC (k=3) 1.2214   1.0875   1.2112   1.1467   

 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 
 

Panel C. Annual prediction 

 
Forecasts begin 1969  

(R=42 and P=35) 
Forecasts begin 1980  

(R=53 and P=24) 
  MSFE Ratio  
 h=1  h=1  
Historical Mean 1.0000  1.0000  

CF-Mean 0.9096  0.9828  

CF-Median 0.9390  1.0188  

CF-RA1 5.1820  6.4651  

CF-RA2 4.0819   3.2646   

CF-RA3 (κ=0) 4.3141   5.0635   

CF-RA3 (κ=0.25) 2.2625   3.3712   

CF-RA3 (κ=0.5) 1.1408   2.1293   

CF-RA3 (κ=1) 0.9096  Mean/SD 0.9965  Mean/SD 

CF-PC (AIC) 4.6260 10.14/2.59 5.8805 10.08/3.39 

CF-PC (BIC) 3.6133 5.29/4.62 2.2426 4.46/4.70 

CF-PC (k=1) 1.0034  1.1012  

CF-PC (k=2) 0.9376  1.1211  

CF-PC (k=3) 1.0507  1.3079  

     

CI-Unrestricted 1.9013  1.9979  

CI-PC (AIC) 1.9067 5.34/3.33 1.9196 6.33/3.16 

CI-PC (BIC) 1.5243 3.03/1.87 1.5385 1.88/1.33 

CI-PC (k=1) 1.0340  1.2502  

CI-PC (k=2) 1.0596  1.3183  

CI-PC (k=3) 1.3754  1.3814  
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