
 
 

ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS & SOCIAL SCIENCES, SMU 

 

 

 
 
 
 

 

 
 
 

Dynamic Treatment Effect Analysis of TV Effects on Child 
Cognitive Development 

 
 

 
 
 
 
 

 

Fali Huang 
September 2007 

 
 
 
 
 
 
 

   
 Paper No. 10-2007 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6317926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dynamic Treatment Effect Analysis of TV Effects
on Child Cognitive Development

(September 21, 2007)

Fali Huang

School of Economics and Social Sciences

Singapore Management University

90 Stamford Road, Singapore 178903

flhuang@smu.edu.sg;

fax: 65-6828-0833

Myoung-jae Lee*

Department of Economics

Korea University

Anam-dong, Sungbuk-ku

Seoul 136-701, South Korea

myoungjae@korea.ac.kr

phone: 82-2-3290-2229

We investigate whether TV watching at ages 6-7 and 8-9 affects cognitive development mea-

sured by math and reading scores at ages 8-9 using a rich childhood longitudinal sample from

NLSY79. Dynamic panel data models are estimated to handle the unobserved child-specific

factor, endogeneity of TV watching, and dynamic nature of the causal relation. A special

emphasis is put on the last aspect where TV watching affects cognitive development which

in turn affects the future TV watching. When this feedback occurs, it is not straightforward

to identify and estimate the TV effect. We adopt estimation methods available in the bio-

statistics literature which can deal with the feedback feature; we also apply the “standard”

econometric panel data IV approaches. Overall, for math score at ages 8-9, we find that

watching TV for more than two hours per day during ages 6-9 has a negative total effect

mostly due to a large negative effect of TV watching at the younger ages 6-7. For read-

ing score, there are evidences that TV watching between 2-4 hours per day has a positive

effect whereas the effect is negative outside this range. In both cases, however, the effect

magnitudes are economically small.
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1 Introduction

The U.S. children spend the second largest chunk of their waking time on watching TV

(Juster and Stafford, 1991). That is, the most time-consuming activity after attending school

is TV watching. For example, an average eight-year old in NLSY79 (National Longitudinal

Survey of Youth 1979) child sample spends about 25 hours per week in front of the television.

Not surprisingly, the public and parents have been concerned about potentially bad effects

of child TV watching. The goal of this paper is to find the effects of TV watching on child

cognitive development measured by standardized mathematics and reading scores.

The cognitive development in early childhood may be crucial to human capital formation

in later years, since “success or failure at this stage feeds into success or failure in school which

in turn leads to success or failure in post-school learning” (Heckman, 1999). This relation is

just one of many such relations where something happened far back has long-term lingering

effects. For instance, the skill heterogeneity at age 16 is shown to account for as much as

90% of the total variation of one’s lifetime earnings by Keane and Wolpin (1997).

There are, however, a number of difficulties in establishing the causal link between

TV watching and cognitive development. First, inappropriate home and school inputs (for

instance, economically and intellectually deficient environments) may induce both more TV

watching and lower test scores. This is an omitted variable (or unobserved confounder)

problem, which can be resolved by detailed data with sufficient “environmental” control

variables. Second, children and the parents may share predispositions for certain habits and

behaviors, which cannot be measured. This is an ‘unit-specific effect’ problem, which may

be overcome with panel data. Third, TV watching can affect cognitive development, which

can in turn affect the future TV watching. This is an issue of dynamic treatment effects with

feedback, calling for a proper dynamic model and estimation method. With a rich childhood

longitudinal sample from NLSY79 child data that have not only child characteristics and

family background variables but also detailed home and school inputs in the current and

earlier periods, we will estimate dynamic models to overcome these problems.

Possibly due to the above difficulties, there has been hardly any research in the eco-

nomics literature for the effects of TV watching on cognitive development. An exception is

Zavodny (2006) who studies the effects of TV watching for high school students and reviews

related studies in other social sciences. Her main finding is that, although there exist sig-
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nificantly negative effects in cross-sectional results, TV watching has no effect on test scores

once individual-specific effects are taken into account. Differently from Zavodny (2006) who

deals with individual-specific effects with panel data and family-specific effects with twins

and siblings data, we tackle the dynamic (feedback) nature of the causal relation; also we

focus on young children, not on high school students. Another exception is Gentzkow and

Shapiro (2007) who use the well known ‘Coleman study’ data and difference-in-differences

methods, taking advantage of different TV-introduction timings across regions. Their pre-

ferred estimate shows a small (about 2% of one standard deviation) but positive effect of TV

watching on test scores at ages 11-17. As in Zavodny (2006), this study does not address the

dynamic nature of the causal relation.

The impact of TV viewing on child development has been studied also in the literature

of communication, child development, and other psychological domains. These non-economic

literature tends to focus more on content-specific studies through experiments and detailed

routes for how TV viewing may affect child development. As far as the effects of TV viewing

time are concerned, the statistical analysis is mostly on the correlation rather than the causal

relationship between TV viewing and child development, and most studies found modest and

negative associations of TV viewing with cognitive development of young children (Van Evra,

2004, Zimmerman and Christakis 2005, and Anderson 2005).

Putting our main findings in advance, the TV watching effects are statistically significant,

but economically small in terms of their magnitude. The directions of the effects vary across

ages, and differ for math and reading scores–two different measures of cognitive development

used in this paper. Our preferred estimates indicate that the total effect of watching more

than two hours TV per day during ages 6-7 and 8-9 is negative for math score at age 8-9,

while a coherent pattern emerging from various specifications is that between two and four

hours TV time per day seems to bring the best reading score than too much or too little TV

watching.

This paper differs from the TV effect literature in economics on several grounds. First,

we introduce and modify a method in the biostatistics literature to deal with the dynamic

feedback feature of TV watching on test scores. Second, we focus on the effects of TV watching

for children at ages 8-9, who are younger than the groups in the two studies mentioned above.

Third, with a large set of control variables including detailed home and school inputs as well

as family backgrounds, we still find significant concave/convex effects of TV watching on
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both scores based on conventional methods of least squares estimator (LSE) and fixed effects

models, which differs from Zavodny (2006). Additionally, when the dynamic feedback effects

of earlier TV watching are taken into account, the estimated overall effects of TV watching

at ages 6-7 and 8-9 are significantly negative for math score, mostly due to a large harmful

effects of TV viewing at early ages 6-7. This contrasts with the positive effects found by

Gentzkow and Shapiro (2007). On the other hand, our results are consistent with these

former studies on the small magnitudes of TV effects, and on the possible positive effects of

TV viewing for reading score at relatively older ages.

Section 2 reviews ‘G-algorithm’ used in biostatistics that identifies the desired full TV

effects taking the dynamic feedback feature into account, and then shows how to implement G-

algorithm in practice using linear models. As a comparison to G-algorithm, Section 3 presents

typical econometric dynamic panel data approaches and points out that these approaches

misses an important part of the TV effect, although they relax the critical ‘selection-on-

observable’ assumption in G-algorithm. Section 4 describes our data. Section 5 presents the

empirical findings. Finally, Section 6 concludes.

2 G-algorithm and Its implementation

This section explains G-algorithm and how it can be implemented in practice. First,

we explain the basics of G-algorithm, which needs regression functions and conditional den-

sities as well as carrying out integration with them. Second, we present a simple model to

illustrate how G-algorithm works and when it may fail. Third, as G-algorithm is difficult

to implement non-parametrically in general, we examine how to simplify the G-algorithm

with linear models. This modified version of G-algorithm is much easier to implement as it

requires essentially only LSE. Fourth, G-algorithm for binary responses is presented, which

could be the easiest to apply in practice

2.1 G-algorithm Basics

Suppose

(xi0, yi0, x
0
i1, di1, yi1, x

0
i2, di2, yi2), i = 1, ..., N, are observed and iid across i = 1, ..., N.
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We will often omit the subscript i in the rest of this paper in view of the iid assumption. In

each period, xit is the “period-t baseline” covariate which can affect the treatment dit and

response yit, and dit then may affect yit. The dynamic framework with feedback to be dealt

with is, omitting xit’s,

d2 −→ −→ −→ y2

- % ↑
y1 ↑

% ↑
d1 −→ −→ −→ ↑

The feedback feature is y1 −→ d2: d2 gets adjusted after the interim response y1 has been

observed. This sounds natural: parents adjust their children’s TV watching hours having

seen their test scores, but this would make d2 non-randomized even if d1 were so.

Define the ‘potential responses’ for the observed responses y1 and y2:

yj1 : potential response when treatment j is given exogenously at time 1,

yjk2 : potential response when treatments j, k are given exogenously at time 1, 2, j, k ∈ [0,∞).

With d1 = j and d2 = k observed, we have y1 = yj1 and y2 = yjk2 ; i.e., only the poten-

tial responses corresponding to the realized treatment levels are observed, and all the other

potential responses–‘counter-factuals’–are not. Also define the ‘potential treatment’ for d2:

dj2 : potential treatment when treatment j is given exogenously at time 1 (thus y
j
1 realized);

with d1 = j observed, we have d2 = dj2.

Our goal is to find the mean effect E(yjoko2 −y002 ) for the treatment ‘profile’ (jo, ko) versus
no treatment at all. Although the mean effect on some treated group may be also of interest,

there are problems in identifying the effect on the treated unless essentially the treated is

only for the first period; this is discussed in detail by Lechner and Miquel (2001). In this

paper, we take the position that TV effect is of interest to the entire population, not just

to some subpopulation. Nevertheless, if desired, our models allow interaction terms between

the treatments and some elements of the covariates/lagged-responses, which can account for

the effect on the subpopulation characterized by those elements.
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Before proceeding further, one word on conditioning notations: when a random vector

appears in a conditioning set, it means that the condition holds for each support point of

the random vector. In relation to this, we will assume that any ‘intervention’ value (j, k) on

(d1, d2) falls in the support of the random vector (d1, d2).

Let

Xy ≡ (x00, y0, x01, x02)0

and denote the conditional independence of a and b given c as ‘aqb|c’. Assume ‘no unobserved
confounder’ (NUC):

Nuc1 : yjk2 q d1|Xy, for j = jo, 0 and k = ko, 0

Nuc2 : yjk2 q dj2|(d1 = j, yj1,Xy), for j = jo, 0 and k = ko, 0.

Nuc1 holds if d1 is determined byXy and some error term independent of y
jk
2 givenXy. Saying

“d1 determined by Xy” may sound preposterous because parts of Xy are realized after d1,

but the dependence between d1 and those components of Xy in Nuc1 should be construed as

d1 being allowed to affect y
jk
2 through those components in Xy. If one finds Nuc2 somewhat

confusing, it may help to rephrase it with densities: with f(yjk2o |dj2o, d1o, yj1o,Xyo) denoting

the conditional density/probability of yjk2 |(dj2, d1, yj1,Xy) evaluated at (y
jk
2o , d

j
2o, d1o, y

j
1o,Xyo),

Nuc2 states

f(yjk2o |dj2o, j, yj1o,Xyo) does not change as d
j
2o changes.

Both Nuc1 and Nuc2 are ‘selection-on-observables’, because Nuc1 states that the d1-selection

is independent of yjk2 given the observable Xy, and Nuc2 states that the dj2 selection is

independent of yjk2 given the observable (d1 = j, yj1,Xy).

G-algorithm (or G-estimation) under NUC is (see Robins, 1986 (with errata and appen-

dum 1987), 1998, 1999 and the references therein)

E(yjk2 |Xy) =

Z
E(y2|d1 = j, d2 = k, y1,Xy)f(y1|d1 = j,Xy)∂y1 (2.1)

where f(y1|d1 = j,Xy) denotes the conditional density of y1|(d1 = j,Xy), ‘∂’ is used for inte-

gration/differentiation to avoid the confusion with treatment d. In (2.1), y1 is an integration

dummy, not a random variable. To distinguish random variables from constants, it may be

better to use notations such as y1o, instead of y1, to write (2.1) as

E(yjk2 |Xy) =

Z
E(y2|d1 = j, d2 = k, y1 = y1o,Xy)f(y1o|d1 = j,Xy)∂y1o.
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But to save/simplify notations, we will keep writing as in (2.1).

The important point is that the right-hand side of (2.1) is identified, and so is the

conditional mean E(yjk2 |Xy). The equality holds because the right-hand side isZ
E(yjk2 |d1 = j, dj2 = k, yj1,Xy)f(y

j
1|d1 = j,Xy)∂y

j
1

=

Z
E(yjk2 |d1 = j, yj1,Xy)f(y

j
1|d1 = j,Xy)∂y

j
1 (due to Nuc2) (2.2)

= E(yjk2 |d1 = j, Xy) (for yj1 is integrated out)

= E(yjk2 |Xy) (due to Nuc1).

The role of Nuc1 in G-algorithm is relatively minor, as it is to remove d1 = j in the con-

ditioning set at the last stage. When Nuc1 does not hold, one may go for E(yjk2 |d1 =
j, Xy)−E(yj02 |d1 = j, Xy), which is the mean treatment effect on the “treated (d1 = j)”–a

kind of treatment effects examined in Lechner and Miquel (2001) as mentioned ahead.

In essence, G-algorithm starts with the mean of yjk2 for the subpopulation (d1 = j, d2 =

k, y1). The condition d1 = j, d2 = k is needed because yjk2 is observed only for those with

d1 = j, d2 = k, and y1 is needed to account for the dynamic feedback nature. Then the

subpopulation is generalized to the whole population (i.e., the selection problem is ruled out)

as d1 = j and d2 = k are removed by Nuc1 and Nuc2, respectively, and y1 is removed by

integration.

Getting E(yjoko2 |Xy) and E(y002 |Xy) and then integrating out Xy, we obtain the desired

(marginal) effect:

E(yjoko2 − y002 ) = EXy [{rhs of (2.1) for j = jo, k = ko}− {rhs of (2.1) for j = 0, k = 0}]

where EXy [·] means integrating out Xy using its population distribution and ‘rhs’ stands for

‘right-hand side’. Even for two periods, implementing G-algorithm in (2.1) requires finding

E(y2|d1 = j, d2 = k, y1,Xy) and f(y1|d1 = j,Xy) first, and then carrying out the one-

dimensional integration, which could be daunting. Part of this problem can be avoided by

adopting linear models.
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2.2 A Simple Linear Model for G-algorithm

It is illuminating to see G-algorithm with a simple linear model:

d1 = ζ1 + ζxx1 + ε1,

y1 = β1 + βxx1 + βdd1 + u1 (d1 affects y1),

d2 = ζ1 + ζxx2 + ζyy1 + ε2 (y1 affects d2), (2.3)

y2 = β1 + βxx2 + βdlagd1 + βdd2 + βyy1 + u2 (d1, d2, y1 affect y2),

ε1, ε2, x1, x2, u1, u2 are iid N(0, 1)

where ζ and β are parameters, (ε1, ε2, u1, u2) are mean-zero errors, and the N(0, 1) assump-

tion for the random variables is only for ease of exposition. Corresponding to the y1 and y2

equations, we get

yj1 = β1 + βxx1 + βdj + u1,

yjk2 = β1 + βxx2 + βdlagj + βdk + βyy
j
1 + u2, (2.4)

dj2 = ζ1 + ζxx2 + ζyy
j
1 + ε2.

Hence the desired effect is

E(yjoko2 − y002 ) = βdlagjo + βdko + βyE(y
jo
1 − y01) = βdlagjo + βdko + βyβdjo. (2.5)

To see that G-algorithm identifies this effect, examine (2.2) for the linear model:

E(yjk2 |Xy) =

Z
(β1 + βxx2 + βdlagj + βdk + βyy

j
1)f(y

j
1|d1 = j,Xy)∂y

j
1

= β1 + βxx2 + βdlagj + βdk + βyE(y
j
1|d1 = j,Xy) (integration becomes averaging)

= β1 + βxx2 + βdlagj + βdk + βy{β1 + βxx1 + βdj +E(u1|d1 = j,Xy)}
= β1 + βxx2 + βdlagj + βdk + βy(β1 + βxx1 + βdj)

because E(u1|d1 = j,Xy) = E(u1|ε1 = j − ζ1 − ζxx1,Xy) = E(u1|Xy) = 0. Thus

E(yjk2 − y000 |Xy) = βdlagj + βdk + βyβdj = E(yjk2 − y002 ).

This can be obtained also directly by using the yjk2 ‘reduced form’ equation with yj1 substituted

out:

yjk2 = β1 + βxx2 + βdlagj + βdk + βy(β1 + βxx1 + βdj + u1) + u2

= β1 + βyβ1 + βxx2 + βyβxx1 + βdlagj + βdk + βyβdj + (βyu1 + u2); (2.6)
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the terms with j and k constitute E(yjk2 − y000 ).

We can verify Nuc1 for the linear model. From (2.4), given (Xy, d1 = j, yj1), y
jk
2 depends

only on u2 whereas d
j
2 depends only on ε2. Since

ε2 q u2|(Xy, d1 = j, yj1) (as this is implied by ε2 q u2|(Xy, ε1, u1))

in the linear model, Nuc2 holds. As for Nuc1, given Xy, d1 is determined only by ε1, whereas

yjk2 is determined only by (yj1, u2) and yj1 is determined only by u1. Because

ε1 q (u1, u2)|Xy,

Nuc1 holds. These two displayed conditions show that we can allow heteroskedasticity and

serial correlations within (ε1, ε2) as well as within (u1, u2), but not between (ε1, ε2) and

(u1, u2). That is, Nuc1 and Nuc2 hold in the linear model if

(ε1, ε2)q (u1, u2)|Xy;

the above condition ‘ε1, ε2, x1, x2, u1, u2 are iid N(0, 1)’ was overly sufficient. The last display

is at the heart of the selection on observables: the selection equation (i.e., the treatment

equation) error terms should be unrelated to the outcome equation errors conditional on the

covariates.

In the above linear model, y1 affects d2 and y2. Other than d2 and y2, x2 is also a

period-2 variable: what happens if y1 affects x2? For instance, if the period 1 test score is

poor (good), the parents may take some disciplinary (rewarding) measure, such as grounding

the child (taking the child out to a ballpark). To examine this possibility, augment the above

linear model with an x2 equation–x2 is no longer N(0, 1) independently of all the other

random variables:

x2 = θ1+θ2y1+ξ2 (=⇒ xj2 = θ1+θ2y
j
1+ξ2), θ1, θ2 are parameters and ξ2 ∼ N(0, 1). (2.7)

This hardly disturbs Nuc2, because yjk2 still depends only on u2 given (Xy, d1 = j, yj1), and

dj2 still depends only on ε2, and what we need for Nuc2 is only

ε2 q u2|(x1, xj2, d1 = j, yj1) (which is implied by ε2 q u2|(x1, ξ2, ε1, u1)).

What goes wrong when y1 affects x2 is Nuc1. To see this easily, set x1 = ξ2 = 0 and

all parameters at 1, which implies x2 = y1. From the d1 equation in (2.3), d1 is ε1 (plus a
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constant). Substituting the d1 equation into the y1 equation in (2.3), y1 becomes ε1 + u1

(plus a constant). From the yjk2 reduced form with x2 = y1 = ε1 + u1 plugged in, y
jk
2 is

ε1 + 2u1 + u2 (plus a constant). Now, using f to denote densities, observe

f(yjk2 |d1, x2) = f(ε1 + 2u1 + u2|ε1, ε1 + u1) = f(ε1 + 2u1 + u2|ε1, u1)
6= f(ε1 + 2u1 + u2|ε1 + u1) = f(yjk2 |x2).

From the first and last terms, we can see that Nuc1 can fail when y1 affects x2. The next

subsection will provide a simple solution to this failure of G-algorithm.

2.3 G-algorithm with More General Linear Models

Carrying out G-algorithm non-parametrically using a local approximation method such

as kernel methods is difficult when the dimension of Xy is large as in our data. But linear

models can lead to a much simpler and practical procedure; formally, the linear models may

be taken as a nonparametric series approximation. This is explored in this subsection.

Generalizing (2.3) for nonlinear treatment effects and non-stationary parameters by al-

lowing the parameters of the y1 equation to differ from those of the y2 equation, suppose

(now x1 and x2 are multi-dimensional)

y1 = α1 + α0xx1 + αd1d1 + αd1qd
2
1 + u1, E(u1|d1,Xy) = 0 {=⇒ E(u1|d1, x1) = 0}

=⇒ yj1 = α1 + α0xx1 + αd1j + αd1qj
2 + u1 (2.8)

y2 = β1 + β0xx2 + βd1d1 + βd1qd
2
1 + βd2d2 + βd2qd

2
2 + βyy1 + u2, E(u2|d1, d2, y1,Xy) = 0

=⇒ yjk2 = β1 + β0xx2 + βd1j + βd1qj
2 + βd2k + βd2qk

2 + βyy
j
1 + u2

where the error terms u1 and u2 are also more general than in (2.3) because only certain

conditional means are specified to be zero. The quadratic terms d21 and d22 are to account

for the potential nonlinear effect of TV watching hours: even if TV watching is beneficial,

too much TV watching should be harmful. If necessary, various interaction terms can be

included in these equations to capture the effect on the subpopulations characterized by the

variables interacting with the treatments. Also y21 can be included as well in the y2 equation.

But, for our data with N ' 1800 and a high dimensional xit, adding high-order terms can

quickly go out of hand.
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Take E(·|d1 = j,Xy) on the yjk2 equation in (2.8)–this is the integration step in G-

algorithm–to obtain

E(yjk2 |d1 = j,Xy) = β1 + β0xx2 + βd1j + βd1qj
2 + βd2k + βd2qk

2 + βyE(y
j
1|d1 = j,Xy).

Under Nuc1, this becomes

E(yjk2 |Xy) = β1 + β0xx2 + βd1j + βd1qj
2 + βd2k + βd2qk

2 + βyE(y
j
1|Xy).

The next section will show that typical econometric panel dynamic models will miss the effect

conveyed by y1, i.e., the part due to E(y
j
1|d1 = j,Xy), which is the key component in dynamic

treatment effects with feedbacks.

Substitute E(yj1|Xy) = α1+α0xx1+αd1j+αd1qj
2 from the yj1 equation into E(y

j
1|Xy) to

get

E(yjk2 |Xy) = β1 + β0xx2 + βd1j + βd1qj
2 + βd2k + βd2qk

2 + βy(α1 + α0xx1 + αd1j + αd1qj
2).

From this with j = jo, 0 and k = ko, 0, we obtain

E(yjoko2 −y002 |Xy) = βd1jo+βd1qj
2
o+βd2ko+βd2qk

2
o+βy(αd1jo+αd1qj

2
o) = E(yjoko2 −y002 ). (2.9)

Turning to estimation, all α and β parameters can be estimated by LSE to the y1 and

y2 equations in (2.8) separately. But if x2 is affected by y1 as in (2.7), then Nuc1 (thus

G-algorithm) can fail as noted already. To see this in (2.8), recall the linear model (2.3)

with the true effect βdlagjo + βdko + βyβdjo in (2.5), which is a special case of (2.9) with

the quadratic terms removed and βd1 = βdlag, βd2 = βd, and αd1 = βd. Although we can

still assume E(u1|d1, x1) = 0, E(u1|d1,Xy) = 0 in (2.8) no longer holds. In the LSE of

y1 on (1, d1,X 0
y), x2 in Xy is an endogenous regressor. But there is a simple solution to

this endogeneity problem: drop x2 in the LSE for the y1 equation in (2.8); this is a simple

modification of G-algorithm when it fails due to x2 affected by y1. In fact, even when x2 is

not endogenous, there is no need to include x2 in the LSE for the y1 equation, because the

slope estimator for x2 is consistent for zero. That is, endogenous or not, drop x2 from the

LSE to the y1 equation in (2.8).

Although we adopted G-algorithm and proposed its modification using linear models,

other approaches are certainly possible for dynamic treatment effects. For instance, Lechner

(2004,2007) propose matching approaches using the ‘propensity score’ idea in Rosenbaum

11



and Rubin (1983), which is, however, applicable only when the treatment is binary. The

following subsection presents a simplified version of the G-algorithm when the response is

binary.

2.4 G-algorithm with Binary Responses

We proposed a series-approximation-based linear model approach above to alleviate the

implementation problem of the G-algorithm. If many high-order terms should appear (par-

ticularly y21,y
3
1,... in the y2 equation), however, then even the linear model approach becomes

cumbersome. The G-algorithm can be implemented with much ease if y is binary–no need

for y21,y
3
1,...any more–in which case the G-algorithm becomes

E(yjk2 |y0,X2) = P (y2 = 1|d1 = j, d2 = k, y1 = 0, y0,X2) · P (y1 = 0|d1 = j, y0,X2)

+P (y2 = 1|d1 = j, d2 = k, y1 = 1, y0,X2) · P (y1 = 1|d1 = j, y0,X2). (2.10)

For instance, apply probit (or logit) to y2 on d1, d2, y1, y0,X2 to obtain the two probit

probabilities for y2 = 1 in (2.10):

Φ(ψ1 + ψd1d1 + ψd2d2 + ψy1y1 + ψy0y0 + ψ0xX2)

where the ψ-parameters are to be estimated. Also apply probit (or logit) to y1 on d1, y0,X2

to get the probit probabilities for y1 = 1 (and y1 = 0):

Φ(η1 + ηd1d1 + ηy0y0 + η0xX2)

where the η-parameters are to be estimated. Substituting these into (2.10) will do. This

version will be applied to our data as well.

When x2 is affected by y1, (2.10) may run into a problem as the preceding linear

model does because Nuc1 can fail. When this happens, the left-hand side of (2.10) be-

comes E(yjk2 |d1 = j, y0,X2) because Nuc1 is no longer available to get rid of d1 = jo in the

conditioning set. In this case, however, we may still obtain the effect on the treated d1 = jo

by getting (2.10) for (jo, ko) and (jo, 0) to obtain the difference

E(yjoko2 |d1 = jo, y0,X2)−E(yjo02 |d1 = jo, y0,X2).

Integrate out (y0,X2) conditional on d1 = jo to get the effect on the treated d1 = jo:

E(yjoko2 − yjo02 |d1 = jo) = E[ {E(yjoko2 |d1 = jo, y0,X2)−E(yjo02 |d1 = jo, y0,X2)} |d1 = jo].
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If we still desire E(yjoko2 −y002 ), then following the lead of the linear model case where x2
being affected by y1 matters only for the y1 equation estimation, we may drop x2 for the y1

probit estimation to estimate P (y1 = 0|d1 = j, y0, x0, x1) instead of P (y1 = 0|d1 = j, y0,X2).

Although we could not work out a formal proof that using this instead of P (y1 = 0|d1 =
j, y0,X2) in (2.10) indeed solves the problem, our experience with (2.10) worked well with

this modification. In fact, (2.10) worked just as well even without this modification, because

although using x2 affected by y1 causes biases in the probit estimator per se, the resulting

predicted probabilities needed for (2.10) tend to be hardly biased. In our empirical part

later, the results for (2.10) without x2 removed in the y1 equation will be presented, which

are virtually identical to the results for (2.10) with x2 removed.

3 Dynamic Panel Data Models

Consider a dynamic panel data model

y2 = β1 + βd1d1 + βd2d2 + βy0y0 + βy1y1 + β0x1x1 + β0x2x2 + v2 (3.1)

where v2 is an error term. This kind of models are popular in econometrics for a number

of reasons, which are laid out in the following. Then we will show the pros and cons of

G-algorithm relative to typical panel data approaches using (3.1) or special cases of (3.1).

First, model (3.1) allows for Granger-causality test. A panel data version of the Granger-

causality test (Granger, 1969,1980) of {dt} on {yt} includes all lagged dit’s and yit’s (as well

as the current dit if dit precedes yit) on the right-hand side of the yit equation to test for

the coefficients of the lagged dit’s (and the current dit if dit precedes yit) being all zero. For

the test, confounding covariates are also controlled by including them on the right-hand side.

Hence model (3.1) can be used for Granger-causality. Although we adopt the ‘counter-factual

causality’ framework as explained in the preceding section, dissenting views are also strong as

can be seen in Holland (1986) and Dawid (2000). Because Granger-causality is widely used

in time-series econometrics with its panel version in Holtz-Eakin et al. (1988,1989), it seems

sensible to consider a model that can test for Granger-causality. Although Granger-causality

does not imply nor is implied by the counter-factual causality in general, Robins et al. (1999)

show that the two concepts do agree in some cases; see also Lechner (2006) further on the

comparison of the counter-factual and Granger-type causalities.
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Second, model (3.1) allows violations of NUC–endogeneity problem of treatments–due

to the relation between the treatment and ‘unobserved unit-specific effect δi’ when vi2 is

augmented by δi so that the the error term in (3.1) becomes δ + v2. For this, consider a

dynamic panel data model

yit = αt + αytyi,t−1 + αdtdit + α0xtxit + αδtδi + vit, t = 1, 2 (3.2)

where α’s are parameters and δi is a time-constant error possibly related with dit (and some

regressors). Model (3.2) is more general than typical dynamic panel data models in use

because all parameters are indexed by t to allow for the data generating process to be non-

stationary in early childhood. Particularly notable is αδt for δi: the effect of δi on yit can

vary across t. Take the ‘quasi-difference’ y2 − (αδ2/αδ1)y1 in (3.2) to get rid of δi and then
put (αδ2/αδ1)y1 on the right-hand side to get

y2 = α2 − αδ2
αδ1

α1 + (αy2 +
αδ2
αδ1

)y1 − αδ2
αδ1

αy1y0

+αd2d2 − αδ2
αδ1

αd1d1 + α0x2x2 −
αδ2
αδ1

α0x1x1 + v2 − αδ2
αδ1

v1. (3.3)

Model (3.1) includes this model devoid of δi as a special case. That is, using (3.1), we may

not have to be concerned about the endogeneity problem due to δ as we may have to in using

(3.2).

Third, model (3.1) allows for violations of NUC due to the relation between the treatment

and the time-variant error vit. Although the endogeneity due to δi is taken care of with

(quasi-) differencing, the endogeneity problem due to the relation with vit in (3.2) requires

instrumental variable estimator (IVE). Angrist and Krueger (2001) show an ingenious list of

instruments in various studies, but having that type of instruments is not always possible.

Rather, in typical panel data, it is unavoidable that one finds instruments within the data–

namely, lagged regressors. Because (3.3) derived from (3.2) includes already y1, y0, d2, d1,

x2, and x1, the only source left for instruments for endogenous regressors is x0. Hence, when

x0 is excluded from the model as in (3.1), IVE can be done for endogenous treatments; IVE

can be done also for endogenous covariates.

To see what type of orthogonality conditions are invoked when x0 is used as instruments

for (3.3), observe that

COR(v2 − αδ2
αδ1

v1, x0) = 0 is implied by COR(v2, x0) = COR(v1, x0) = 0.
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This is a ‘predeterminedness’ type of assumption (see, e.g., Lee (2002) for several types

of orthogonality conditions in panel data IVE). This assumption allows for a simultaneous

relation between (dt, x0t) and vt.

In practice, the so-called ‘fixed-effect estimator’ for a simple stationary model is popular,

which is equivalent to first-differencing the non-dynamic version of (3.2) with all parameters

time-constant. For our empirical analysis, we will also apply first-differencing to a slightly

more general model: defining ∆yi2 ≡ yi2 − yi1, ∆di2 ≡ di2 − di1, ∆d2i2 ≡ d2i2 − d2i1, and

∆vi2 ≡ vi2 − vi1,

yit = αt + αddit + αdqd
2
it + α0xtxit + αδδi + vit

=⇒ ∆yi2 = α2 − α1 + αd∆di2 + αdq∆d
2
it + α0x2xi2 − α0x1xi1 +∆vi2. (3.4)

In short, as a comparison to G-algorithm, we will apply three panel data approaches: (i) LSE

to (3.1) for Granger-causality, (ii) IVE to (3.1) to allow for endogeneity of the treatment or

covariates, and (iii) LSE to (3.4) which is a ‘fixed-effect’ estimator.

Turning to the comparison of G-algorithm and the panel data approaches, since we

already pointed out the main advantage of the dynamic panel data model relative to G-

algorithm–namely, relaxations of NUC–here we show only the main disadvantage of the

dynamic panel data approach. Recall the figure showing the feedback feature where d2 has

only a direct effect on y2 while d1 has both direct and indirect effects (through y1) on y2.

Because y1 is controlled in the dynamic panel data model, the indirect effect of d1 on y2 is

not identified. Formally, the treatment effect that (3.1) can deliver is not E(yjk2 − y002 ) but

βd1j + βd2k = E(yjk2 − y002 |y1) (3.5)

If we do not control y1 to avoid this problem, then the effect of d2 on y2 can be distorted

because y1 becomes a ‘common factor’ for d2 and y2. That is, even if there is no true effect

of d2 on y2, we may find a spurious effect of d2 due to not controlling y1. This dilemma is

fundamental to dynamic treatment effect analysis under feedback. Ruling out the feedback

from y1 to d2 a priori would be ill-advised, because when it comes to TV watching, no parents

would sit idle after having seen low test scores of their children.

In summary, model (3.1) has a couple of nice features. First, we can test for Granger

non-causality of {dt} on {yt}. Second, using IVE allows endogeneity (i.e., violation of NUC)
of dit and covariates from two major sources: the relations to δ and vt. Despite these nice
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features, however, model (3.1) has the critical weakness resulting from missing the ‘feedback’

from the interim response y1 to d2. In the “best of times”–that is, if the NUC holds–G-

algorithm identifies the full dynamic effects. But the panel data approach with (3.1) will

always miss part of the dynamic effect, even when all the assumptions for it hold.

4 Data Description

The NLSY79 child sample contains rich information on children born to the women re-

spondents of the NLSY79. Starting from 1986, a separate set of questionnaires was developed

to collect information about the cognitive, social, and behavioral development of children.

The set of child development results and inputs from birth up to age 10 were grouped in

three periods: 0-2 years, 3-5 years, and 6-9 years. The variables include detailed home inputs

as well as family backgrounds and school inputs.

Based on children surveyed from 1986 to 1998, we constructed a longitudinal sample of

about 2600 children with no missing values in Peabody Individual Achievement Test (PIAT)

math and reading scores at ages 8-9 and TV watching hours at ages 6-9. The relevant

questions on TV watching ask a mother how many hours her child watches TV on a typical

weekday and weekend day. While examining the data, we found that some answers do not

seem valid: the reported hours sometimes go well beyond 24 hours. This may be due to a

confusion between a daily measure and a weekly measure of TV watching hours. Thus we

excluded children reportedly spending more than ten hours watching TV on a typical day

at any age. This left us with a sample of 2180 children, based on which all of our empirical

analyses were conducted. The summary statistics of some variables in this sample are listed

in Table 1.

For children five years old and above, PIAT Math score offers a wide-range measure of

achievement in mathematics, and PIAT Reading Recognition score assesses their attained

reading knowledge. Both are among the most widely used assessments of academic achieve-

ments. The norming sample has mean 100 and standard deviation (SD) 15 for both math

and reading scores; these were normed against the standards based on a national sample of

children in the United States in 1968. The PIAT math in our sample has mean 102.2 and

SD 13.9 around age nine, and the PIAT reading score has mean 105 and SD 14.6.

In the sample, the average child spends 3.5 hours per day watching TV at ages 8-9 and
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3.2 hours at ages 6-7. Specifically, around 60% of children aged 8-9 watch more than 2 hours

TV per weekday, and 21% of them more than 4 hours; on weekends, they watch TV for longer

hours: around 72% exceeding 2 hours and 35% exceeding 4 hours. These patterns are quite

similar to those at ages 6-7, though younger children usually watch less TV. We choose to

use a measure of daily TV viewing hours in the form of

1

7
{5× (average weekday watching hours) + 2× (average weekend-day watching hours)}.

White children on average watch about one hour less TV per day at both ages 6-7 and

8-9 than the others, and their PIAT scores are 8.8 points higher in math and 6.4 points

higher in reading. There is virtually no difference between boys and girls in TV watching

hours and PIAT scores, while firstborns watch about half an hour less than the others and

get higher math and reading scores. A child with ten or more child-books at home watches

around 1.2 hours less TV at age 8-9 and have much higher scores (11.2 points higher in math

and 12.1 in reading) than those with fewer books. Similarly, children whose mothers read

to them frequently (at least three times per week) and whose parents discuss TV programs

with them spend less time in watching TV than others and get higher grades. In general, TV

watching times are significantly and negatively correlated with other activities such as going

to museums and theaters.

Public school children watch about one hour more TV on a daily basis at ages 6-9 than

those in private schools, and their math and reading scores are lower. The perceived quality

of detailed school inputs (including the skills of the principal and teachers, how much teachers

care about the students, whether parents are given enough information and opportunity to

participate in school affairs, the safety and order of the school, and whether moral teaching is

offered), however, do not seem to affect much TV watching time, although they are positively

associated with both math and reading scores. The correlation between TV watching hours

and time spent on math homework or reading and writing assignments is quite weak and

sometimes positive.

Children with mothers having 16 or more years of schooling watch about one hour less

TV. Similarly, children whose mothers have above average AFQT scores watch 1.4 hours less

TV at ages 8-9 and around 1.2 hours less at ages 6-7, and their PIAT scores are much higher

(10 points higher in math and 9 in reading). In summary, children with high quality home

inputs and better educated mothers watch much less TV, while school inputs have relatively
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less influence.

A salient feature in Table 1 is that less time spent viewing TV is almost always associ-

ated with higher math and reading scores. The potentially harmful effects of TV watching,

however, may be over-estimated if detailed home inputs are not controlled, since a child

watching more TV also lacks important home inputs. The strength of our data is that a

rich set of home inputs from birth up to age nine as well as key family background variables

are available; for some children, there are also many detailed school inputs available. This

would greatly reduce potential biases due to omitted variables. Most home and school input

variables were categorical with multiple levels, which were converted to dummy variables

according to sample medians. The age-specific Home Observation Measurement of the Envi-

ronment variable (HOME), which is a simple summation of the dichotomized individual input

item scores, is often used in child development research as an aggregate quality indicator of

home environment. The completion rates of HOME, however, are in general very low for

children under age four, which causes many missing values. Whenever possible, HOME is

included as a control in addition to the detailed home inputs.

In discussing dynamic treatment effects, we desire the time sequence xit −→ dit −→ yit in

each period so that xit works as the time-t baseline covariates which affect dit and possibly yit,

and then the treatment dit affects yit. In our data, this temporal order is plausible for a couple

of reasons. First, yit is measured on the interview day, which means that xit and dit precede

yit. Second, many family characteristics of xit are likely to be determined independently of

dit. Third, overall, TV watching hours tend to be the “residual’ usage of time, and thus is

unlikely to influence the other time-consuming activities, although we cannot completely rule

out TV watching taking precedence over the other activities. As mentioned above, our panel

data has three periods defined by child ages, and we use the two later periods while the first

period serves as the baseline period providing x0 and y0.

5 Empirical Results

5.1 Granger Causality

Table 2 presents results for Granger causality for model (3.1) augmented by squared

treatment variables, where PIAT math and reading scores at ages 8-9 are the dependent
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variables. The various specifications differ mainly in the control variables used. In the first

column ‘OLS’ of both math and reading regressions, the earlier scores y1 at ages 6-7 and y0

at ages 4-5 are used as well as the basic group of controls which include the child’s race, sex,

birth order, home inputs at ages 6-7 and 8-9, and family backgrounds variables (mother’s

AFQT score, her age at the child birth, whether the child was breast-fed, her marriage status,

her highest grade, and family income). The sample sizes drop much when the school inputs

at ages 6-9 are controlled in the second column ‘OLS(S)’. Home inputs at age 4-5 are further

added in the third column ‘OLS(SH)’, which contains the most comprehensive set of controls

and hence the smallest sample size.

For math scores at age 8-9, TV watching hours at ages 6-7 and 8-9 are jointly significant

across these specifications with p values at least 0.07, though the coefficients of individual TV

watching variables are usually not significant; TV hours at age 6-7 have positive and concave

effects, while those at age 8-9 have negative and convex effects. For reading scores at age 8-9,

the joint significant levels of TV watching hours are overall lower than those for math except

in the most comprehensive specification ‘OLS(SH)’, where TV hours at ages 6-7 and 8-9 are

jointly significant with p-value 0.009. The effects of TV watching hours at both age periods

seem to have positive and concave effects.

To compare later with the other tables, the mean differences in PIAT scores between

different TV watching hours at ages 6-9 are listed in the lower half of Table 2. More time

spent on watching TV (up to 6 hours daily) is associated with higher math scores, while the

TV effects on reading scores seem positive and concave with the best outcome achieved at

3 hours in ‘OLS(S)’ and ‘OLS(SH)’. These results, however, are not significantly different

from zero. As emphasized earlier, these mean differences capture only the direct effects of

TV watching since the lagged PIAT scores are controlled.

In summary, there exists clear evidence of Granger causality of TV watching at ages 6-9

on PIAT math and reading scores at ages 8-9. The effects of TV watching seem to differ in

both magnitude and sign for math versus reading scores. With the Granger-causality estab-

lished now, the orderly thing to do is proceeding further to obtaining the full dynamic effects

of TV watching. But before that, in the next subsection, we will present some estimation

results for typical econometric panel data methods.
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5.2 Fixed Effect with IV

In Table 3, columns ‘FE(IV)’ present the results based on model (3.1) where home inputs

at age 4-5 are used as instruments for the current home inputs at age 8-9; as in Table 2, the

squared treatment variables are used. This specification allows for the endogeneity problem

of current home inputs. As noted already, (3.1) may be regarded as (3.3) that was obtained

from (3.2) by removing the individual-specific effect with quasi-differencing. This proposition

is supported by the different signs of d2 and d1 (and d22 and d21) in Tables 2 and 3–in (3.3),

the signs of d2 and d1 are likely to differ as αδ2/αδ1 > 0 is plausible.

Consistent with the OLS specification for Table 2, TV hours at age 6-7 have positive and

concave effects, while those at ages 8-9 have negative and convex effects for math score at

ages 8-9; the coefficients of individual TV watching variables, however, are insignificant due

to the lower precision in estimation. But, in contrast to the OLS results in Table 2, spending

more time watching TV at ages 6-9 is overall associated with lower math scores in ‘FE(IV)’,

as shown at the lower half of the table in the same column. This is due to the much larger

negative marginal effect of current TV hours (-7.90 in ‘FE(IV)’ versus -2.68 in ‘OLS(SH)’ in

Table 2) when they are instrumented by TV hours and other home inputs at age 4-5. Similar

results apply to the reading scores, where the different coefficients and effects of TV hours

at age 8-9 do not amount to significant differences from the OLS specification, judging from

the Hausman test.

Columns ‘DF’ and ‘DF (S)’ are based on the first-difference model (3.4); they differ only

in terms of control variables, where school inputs at ages 6-9 are further controlled in ‘DF

(S)’. For PIAT math scores at ages 8-9, TV watching hours at ages 8-9 has a negative and

convex effect on math scores under both specifications, which leads to an overall negative

association between TV hours and math scores as shown in the lower half of the table. For

reading scores at ages 8-9, TV watching hours at ages 8-9 has a positive and concave effect

under both specifications, where 3-hour TV watching achieves the best outcome in ‘DF’ while

4-hour is best when school inputs are controlled under ‘DF (S)’. These estimated TV effects,

however, are statistically insignificant for both math and reading scores. There is a notable,

but statistically insignificant, difference between the negative TV effects for math score in

the first-difference results and the positive effects under various OLS specifications in Table

2 for math scores, suggesting that the unobserved child-specific factor may matter more for
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math scores than for reading scores.

The overall results of these fixed-effect and IV models are not significantly different

from the OLS specifications for Table 2, possibly because many detailed home inputs and

family backgrounds are already controlled. This finding suggests that we may proceed to G-

estimation without worrying too much about the potential biases caused by the unobserved

child-specific fixed effect or the endogeneity of current inputs. It is important to note that,

even when these OLS and IVE are consistent, they can capture only the direct effects, not

the total effects of TV watching.

5.3 G-algorithm with Linear Models

Table 4 presents results for G-estimation based on the linear models in (2.8), where PIAT

math and reading scores at ages 6-7 and 8-9 are the dependent variables, respectively, for the

y1 and y2 equations. The two specifications ‘OLS’ and ‘OLS(S)’ differ only in their control

variables, where the current school inputs are included in ‘OLS(S)’ for both age periods.

Under both specifications, the effects of TV watching at ages 6-7 on scores at ages 6-7 are

negative and convex for math score and just negative for reading score. But, as shown in

the lower half of Table 4, the overall effects of TV watching across ages 6-9 on math and

reading scores at ages 8-9 in ‘OLS(S)’ is negative for math scores and concave for reading

scores, where the best outcome is achieved at 2 hours in column ‘G-est.(S)’ (and at 6 hours

in column ‘G-est.’). Overall, however, the magnitudes of most TV effects are quite small and

statistically insignificant.

To get a sense of the relative importance of the indirect effect of TV watching at age

6-7 on the math and reading scores two years later, we did some calculation based on the

estimates in columns ‘OLS(S)’. For math score, compared with not watching TV at all, the

effect of one-hour TV watching at age 6-7 on the math score at ages 6-7 is (−.74+.01) = −.73,
which leads to an indirect effect on the math score at ages 8-9 −.73 ∗ .64 = −.47, while its
direct effect is (−.06 + .02) = −.04 points. The effect of one-hour TV viewing at ages 8-9 is
(.20 + .002) = .202 points. So the indirect effect of earlier TV watching at ages 6-7 (which

is −.47) is almost three times the total direct effect of TV watching at both ages 6-7 and

8-9 (which is .162 = .202− .04), and makes the total effect of one-hour TV watching at ages

6-9 negative (−.30 as reported at the first row in column ‘G-est.(S)’ for math), despite the
positive effect of current TV viewing at ages 8-9.
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Doing analogously, based on the estimates in column ‘OLS(S)’ for reading score, the

mean difference between the effects of 6-hour and 2-hour TV viewing at ages 6-9 on reading

scores at age 8-9 (which is −1.78 as reported at the last row in column ‘G-est.(S)’ for reading)
can be decomposed into three components: the indirect effect of TV viewing time at ages

6-7 is [(−.49 ∗ 6− .01 ∗ 36)− (−.49 ∗ 2− .01 ∗ 4)] ∗ .78 = −1.78, the direct effect of d1 and d21

is (−.47 ∗ 6 + .02 ∗ 36)− (−.47 ∗ 2 + .02 ∗ 4) = −1.24, while the direct effect of d2 and d22 is

(1.27 ∗ 6− .12 ∗ 36)− (1.27 ∗ 2− .12 ∗ 4) = 1.24. Again, the indirect effect of TV viewing at
ages 6-7 on the reading score at ages 8-9 dominates the total direct effect of TV viewing at

ages 6-9, and outweighs the positive effect of the current TV watching.

The bottom half of Table 4 presents various mean treatment effects. All effects for math

scores are negative. For reading scores, the effects are mixed with positive as well as negative

effects. In all cases, unfortunately, the effect is either too small in magnitude or statistically

insignificant.

5.4 G-algorithm with Discrete Responses

The insignificance of the total TV effects in Table 4 might be due to measurement errors,

since few parents can recall with much accuracy the exact time their children watch TV every

day. It is quite plausible, however, most parents know the time range their kids spend in front

of TV. This prompts us to apply the simplified G-estimation with discrete responses, where

we convert the average daily TV watching hours to three dummy variables: High TV if a child

watches TV for more than 4 hours per day, Middle TV if between 2 and 4 hours, and Low

TV if less than or equal to 2 hours. The three levels are done mainly to capture the possible

concavity feature of TV watching effects. We also convert PIAT math and reading scores to

dummy variables which take on 1 if higher than the sample mean and 0 otherwise. The basic

set of controls includes detailed home inputs at ages 6-9, home environment indicators at ages

2-3 and 4-5, child demographic information and family backgrounds variables, while detailed

home inputs at age 4-5 are further added in columns labeled ‘Probit(H)’ and ‘G-est.(H)’.

The probit results are shown in the upper part of Table 5, where the entries are the

estimated marginal effects calculated at the sample means of the control variables ( i.e., the

derivatives of P (y2 = 1| · · · ) evaluated at the variable sample averages). For math scores at
ages 8-9 and 6-7, none of the TV dummies is significant. For reading score at ages 8-9, the

coefficient of High TV at ages 6-7 is insignificantly negative in column ‘Probit’, while that
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at age 8-9 is significantly positive in ‘Probit (H)’. There seems to be some nonlinear effects,

but most individual estimates are insignificant.

The G-estimation using the above probit regressions are presented in the lower half of

Table 5. Compared to the benchmark of watching TV less than or equal to 2 hours per day

at both ages 6-7 and 8-9, the total effects of watching TV for more than 4 hours at both

ages are negative and significant for both math and reading scores at ages 8-9 over different

specifications. Specifically, a child with High TV at ages 6-9 reduces his/her probability of

having a higher-than-average math score by 18% in the first column ‘G-est.’ and 23% in

the second column ‘G-est. (H)’; the corresponding probability for reading scores is lowered

by 21% and 23% respectively for the two specifications. Since the SD of having a higher-

than-average score is around .50, these percentage reductions amount to almost half the SD.

Middle level TV hours (between 2 and 4 hours per day) at ages 6-9 also have negative and

significant effects on math and reading scores, though their magnitudes are smaller than

those of High TV: the probability of having a higher-than-average PIAT score is reduced by

16%-18% for math and 13%-14% for reading.

It seems that TV watching at ages 6-7 has much larger negative effects on both math and

reading scores at ages 8-9 than TV watching at ages 8-9. For example, in the last two rows

of Table 5, the results in the first column ‘G-est.’ shows that, watching more than 4 hours

TV daily at ages 6-7 reduces the probability of having a higher-than-average math score by

23%, while watching between 2 and 4 hours TV daily reduces it by 19% even when the TV

watching time is less than or equal to 2 hours per day at age 8-9; the corresponding numbers

(unreported in Table 5) are 18% and 16% respectively when the TV watching hours at ages

8-9 are High and Middle instead. These results imply that watching more TV at ages 8-9

actually does much less harm compared to the effects of TV hours two years earlier. More

or less the same statements can be made for reading scores.

6 Conclusions

When multiple treatments are given over time and there is a feedback of interim responses

affecting some future treatments, finding the total effect of all treatments on the final response

measured at the end is difficult. The fundamental dilemma is that, if the interim responses are

controlled as in the usual dynamic models, then the indirect effect from the earlier treatments
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on the final response through the interim responses is missed; if not controlled, the interim

responses become unobserved confounders for the direct effect of the affected treatments

on the final response. Despite this difficulty, the G-estimation (or G-algorithm) originally

developed in biostatistics can identify the total effect, unlike the usual OLS or IVE applied

to dynamic models with lagged responses on the right-hand side.

This paper reviewed G-estimation, and applied two practical versions of G-algorithm to

an important issue: the effect of watching TV on child cognitive development measured by

math and reading scores. For math score, the G-estimation results indicated that watching

TV for more than two hours per day during ages 6-9 has a negative total effect at ages 8-9,

where the negative effects of TV watching at younger ages 6-7 are much larger, which was not

expected beforehand. Furthermore, results from various estimators (G-algorithm and typical

panel data econometric approaches) using continuous response variables led to a coherent

evidence that between two and four hours TV watching per day seems to bring the best

reading scores than too much or too little TV hours, while the effects of TV watching on

math scores are usually negative.

These findings collectively explain why the effect of TV watching on child cognitive

development has been controversial: the effect varies depending on the TV watching age,

and it is nonlinear with changing signs. Also its magnitude is small, suggesting that TV

effect may not matter that much after all. The total effect feature found by our dynamic

framework provided a richer “story”, taking only part of which would convey misleading

messages.
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Table 1: TV Watching and Math and Reading Scores: Summary Statistics 
 

Daily TV watching hours PIAT scores at age 8-9  
at age  8-9 at age 6-7 math reading 

Group    
Size 

Main Sample 3.5 (2.0) 3.3 (2.0) 102.2 (13.9)    105 (14.6)   2180 
 
Race 
White 2.9 (1.7) 2.9 (1.8) 106.3 (13.0)  108.0 (13.8)     1165 
Non-White 4.1 (2.2) 3.9 (2.2)   97.5 (13.4)  101.6 (14.7)     1015 
 
Sex 
Boy 3.5 (2.0) 3.3 (1.9) 102.6 (14.6) 103.6 (15.3)   1095 
Girl 3.5 (2.0) 3.4 (2.1) 101.7 (13.2)  106.4 (13.7)     1085 
 
Birth order 
First-borns 3.2 (1.9) 3.1 (1.9) 104.3 (13.6)  108.4 (13.3)     868 
Others 3.7 (2.1) 3.5 (2.1) 100.7 (13.9)  102.7 (15.0)     1312 
 
How many children books a child has at home at age 6-7 
> = 10 at both 3.3 (1.9) 3.2 (2.0) 103.8 (13.2)  106.7 (13.7)     1862  
< 10 at either 4.6 (2.2) 4.1 (2.2)   92.6 (13.2)    94.6 (15.4)     313 
 
Mother reads to child at age 6-7 
Often 3.3 (2.0) 3.3 (2.0) 103.1 (13.5)   105.7 (14.2)     1636 
Not often 4.1 (2.1) 3.6 (2.0)   99.2 (14.6)   102.7 (15.5)     540 
 
Whether parents discuss TV programs with a  child 
Discuss 3.4 (2.0) 3.3 (2.0) 103.2 (13.8)   106.0 (14.4)     1801 
Not discuss 3.9 (2.2) 3.6 (1.9)   97.0 (13.2)   100.2 (14.7)     354 
 
School type 
Public 3.5 (2.0) 3.4 (2.0) 102.6 (14.4)   104.8 (14.7)     885 
private 2.6 (2.0) 2.3 (1.6) 105.7 (11.6)   111.1 (11.5)     66 
 
Mother’s highest grade 
> =16 2.7 (1.8) 2.7 (1.8) 107.0 (13.6)   109.4 (13.4)     534 
<  16 3.7 (2.0) 3.6 (2.0) 100.6 (13.6)   103.5 (14.7)     1646 
 
Mother’s AFQT score in 1981 
Above mean 2.7 (1.6) 2.7 (1.7) 107.5 (12.5)   109.9 (12.9)     999 
Below mean 4.1 (2.1) 3.9 (2.1)   97.6 (13.2)   100.9 (14.7)     1181 

Note: The entries are group means and standard deviations (in parentheses). The main 
sample is composed of kids watching ten hours or less TV per day between ages 6-9. 



Table 2: TV Watching on Math and Reading: Granger Causality 
 

 PIAT Math at age 8-9    PIAT Reading at age 8-9 
 OLS OLS(S) OLS(SH) OLS OLS(S) OLS(SH) 

Daily TV hours at age 8-9 -1.05 
(.77) 

-2.15 
(1.74) 

-2.68 
(2.52) 

-.06 
(.61) 

2.21 
(1.83) 

2.49 
(2.60) 

Daily TV hours at age 8-9 squared .16** 
(.08) 

.36** 
(.18) 

.40 
(.26) 

.03 
(.07) 

-.23 
(.18) 

-.25 
(.25) 

Daily TV hours at age 6-7 .89 
(.68) 

4.79** 
(1.89) 

5.50** 
(2.31) 

.58 
(.60) 

1.96 
(1.79) 

2.54 
(2.0) 

Daily TV hours at age 6-7 squared -.11 
(.08) 

-.56*** 
(.21) 

-.66** 
(.26) 

-.07 
(.07) 

-.37* 
(.21) 

-.57** 
(.23) 

PIAT Score at Age 6-7 .59*** 
(.04) 

.58*** 
(.12) 

.65*** 
(.13) 

.78*** 
(.03) 

.83*** 
(.09) 

.88*** 
(.12) 

PIAT Score at Age 4-5 .10*** 
(.03) 

.13 
(.09) 

.12 
(.11) 

.09*** 
(.03) 

.06 
(.08) 

.09 
(.09) 

Joint Significance of TV at 6-9 .07* .03** .04** .60 .12 .009*** 

Joint Significance of TV at 8-9 .02** .02** .15 .50 .46 .61 

Joint Significance of TV at 6-7 .38 .03** .048** .60 .04** .001*** 

Sample Size 871 178 155 835 175 152 

R-squared .49 .71 .72 .64 .75 .79 

Mean Difference in PIAT Scores (Bootstrapped SD in parentheses) 

PIAT Math at age 8-9 PIAT Reading at age 8-9  
Daily TV hours at age 6-9 OLS OLS(S) OLS(SH) OLS OLS(S) OLS(SH) 
1 hour versus 0 hour -.12 

(.72) 
2.43 

(2.68) 
2.56 

(5.82) 
.49 

(.61) 
3.57 

(2 .44) 
4.20 

(4.23) 
2 hours versus 0 hour -.13 

(1.27) 
4.46 

(4.73) 
4.62 

(9.95) 
.90 

(1.07) 
5.94 

(4.30) 
6.77 

(7.34) 
3 hours versus 0 hour -.04 

(1.66) 
6.08 

(6.21) 
6.17 

(12.5) 
1.25 

(1.39) 
7.11 

(5.59) 
7.69 

(9.41) 
4 hours versus 0 hour .15 

(1.9) 
7.28 

(7.16) 
7.21 

(13.5) 
1.52 

(1.59) 
7.07 

(6.38) 
6.97 

(10.57) 
5 hours versus 0 hour .45 

(2.0) 
8.08 

(7.68) 
7.73 

(13.5) 
1.72 

(1.67) 
5.83 

(6.77) 
4.61 

(11.06) 
6 hours versus 0 hour .85 

(2.0) 
8.47 

(7.96) 
7.75 

(13.1) 
1.86 

(1.67) 
3.38 

(6.95) 
.60 

(11.35) 
4 hours versus 2 hours .28 

 (.67) 
2.82 

(2.65) 
2.58 

(4.37) 
.62 

(.56) 
1.13 

(2.32) 
.20 

(3.78) 
6 hours versus 2 hours .98 

 (1.0) 
4.01 

(4.53) 
3.13 

(8.73) 
.95 

(.88) 
-2.56 
(4.04) 

-6.16 
(7.26) 

Notes: * p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses. The sample is composed of 
kids watching ten hours or less TV per day at ages 6-9. The controlled inputs include a child’s race, sex, 
birth order, home inputs at ages 6-9, and family backgrounds (mother’s AFQT score, her age at child birth, 
whether the child was breastfed, her marriage status, highest grade, and family income). OLS(S) -- School 
inputs (hours a child spent after school working on math problems and writing projects, whether the child 
participated remedial programs in math and reading, whether he/she participated in programs for advanced 
work; the school is public or private, how much teachers care about the students, the skills of teachers and 
the principal, whether parents are given enough information and opportunity to participate in school affairs, 
the safety and order of the school, and the moral teaching offered in the school) are included. OLS(SH) -- 
Home inputs at age 4-5 are included as well as the above school inputs. 



Table 3: TV Watching on Math and Reading: Fixed Effect Model 
 

PIAT Math  PIAT Reading   

At age  
8-9 

Difference b/w ages 
8-9 and 6-7    

At age 
8-9 

Difference b/w ages 
8-9 and 6-7 

 FE (IV) DF DF(S) FE (IV) DF DF(S) 
Difference in daily TV hours 
b/w ages 8-9 and 6-7 

 -.18 
(.50) 

-1.41 
(1.26) 

 .084 
(.39) 

1.38 
(.90) 

Difference in squared daily TV 
hours b/w ages 8-9 and 6-7 

 .02 
(.05) 

.14 
(.13) 

 -.015 
(.04) 

-.17* 
(.09) 

Daily TV hours at age 8-9 -7.90 
(11.3) 

  -1.89 
(8.28) 

  

Daily TV hours at age 8-9 
squared 

  .61 
(1.68) 

  .14 
(1.15) 

  

Daily TV hours at age 6-7 5.76 
(5.41) 

  .92 
(3.68) 

  

Daily TV hours at age 6-7 
squared 

-.55 
(.46) 

  -.08 
(.34) 

  

PIAT Score at age 6-7 .62*** 
(.12) 

  .72*** 
(.10) 

  

Sample Size 1050 1555 299 1043 1539 299 

R-squared -- .04 .22 -- .06 .27 

Mean Difference in PIAT Scores (Bootstrapped SD in parentheses) 

PIAT Math at age 8-9 PIAT Reading at age 8-9  
Daily TV hours at age 6-9 FE (IV) DF DF(S) FE (IV) DF DF(S) 
1 hour versus 0 hour -2.08 

(13.4) 
-.16 
(.47) 

-1.27 
(1.22) 

-.91 
(24.1) 

.07 
(.36) 

1.21 
(.98) 

2 hours versus 0 hour -4.03 
(22.8) 

-.28 
(.84) 

-2.26 
(2.19) 

-1.70 
(43.2) 

.11 
(.64) 

2.10 
(1.77) 

3 hours versus 0 hour -5.86 
(28.1) 

-.35 
(1.11) 

-2.96 
(2.90) 

-2.37 
(57.3) 

.12 
(.85) 

2.65 
(2.37) 

4 hours versus 0 hour -7.57 
(29.7) 

-.38 
(1.29) 

-3.38 
(3.36) 

-2.91 
(66.8) 

.10 
(1.0) 

2.88 
(2.80) 

5 hours versus 0 hour -9.15 
(28.1) 

-.37 
(1.39) 

-3.51 
(3.61) 

-3.33 
(71.8) 

.05 
(1.08) 

2. 77 
(3.07) 

6 hours versus 0 hour -10.6 
(25.2) 

-.31 
(1.41) 

-3.37 
(3.68) 

-3.63 
(72.8) 

-.02 
(1.12) 

2.34 
(3.22) 

4 hours versus 2 hours -3.53 
 (8.41) 

-.10 
(.47) 

-1.12 
(1.31) 

-1.21 
 (24.3) 

-.13 
 (.57) 

.24 
 (1.65) 

6 hours versus 2 hours -6.57 
 (16.8) 

-.03 
(.65) 

-1.11 
(1.92) 

-1.93 
 (33.5) 

-.01 
 (.36) 

.78 
 (1.04) 

Notes: * p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses. The sample is composed of 
kids watching ten hours or less TV per day between ages 6-9. The controlled inputs include a child’s race, 
sex, birth order, home inputs at ages 6-9, and family backgrounds. FE(IV) – Current home inputs at ages 8-
9 are instrumented by earlier home inputs at ages 4-5. DF(S) – School inputs at ages 6-9 are included. 



Table 4: TV Watching on Math and Reading: G-Estimation with Linear Models 
  

PIAT Math  PIAT Reading 
OLS OLS (S) OLS OLS (S) 

 

at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7 

Daily TV hours at age 
8-9 

-.42 
 (.54) 

 .20 
(.77) 

 .37 
 (.48) 

 1.27* 
(.68) 

 

Daily TV hours at age 
8-9 squared 

.06 
(.06) 

 .002 
(.08) 

 -.04 
(.05) 

 -.12* 
(.07) 

 

Daily TV hours at age 
6-7 

.13 
(.50) 

-.27 
(.44) 

-.06  
(.76) 

-.74 
(1.04) 

.18 
(.44) 

-.11 
 (.43) 

-.47  
(.67) 

-.49 
(.97) 

Daily TV hours at age 
6-7 squared 

-.01 
 (.05) 

.02 
(.05) 

.02 
(.08) 

.01 
 (.12) 

-.01 
 (.05) 

-.01 
(.05) 

.02 
(.08) 

-.01 
 (.10) 

PIAT score at age 6-7 .60*** 
(.03) 

 .64*** 
(.04) 

 .75*** 
(.03) 

 .78*** 
(.04) 

 

Sample Size 1594 1555 663 299 1578 1539 661 299 

R-squared .46 .25 .50 .42 .54 .22 .57 .35 
 

Mean Difference in PIAT Scores 
(Bootstrapped SD in parentheses) 

PIAT Math PIAT Reading  
Daily TV hours at age 6-9 G-est. G-est. (S) G-est. G-est. (S) 

1 hour versus 0 hour -.38 (.57) -.30 (1.25) .42 (.54) .31 (1.23) 
2 hours versus 0 hour -.64 (1.0) -.54 (2.20) .76 (.96) .40 (2.18) 

3 hours versus 0 hour -.76 (1.31) -.73 (2.84) 1.02 (1.25) .28 (2.85) 

4 hours versus 0 hour -.75 (1.50) -.86 (3.23) 1.19 (1.42) -.06 (3.29) 
5 hours versus 0 hour -.62 (1.58) -.94 (3.41) 1.27 (1.50) -.62 (3.54) 
6 hours versus 0 hour -.35 (1.61) -.96 (3.51) 1.28 (1.53) -1.39 (3.68) 
4 hours versus 2 hours -.12 (.54) -.32 (1.17) .43 (.51) -.46 (1.23) 
6 hours versus 2 hours -.37 (.95) -.56 (2.05) .52 (.85) -1.78 (2.15) 
Notes: * p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses. The sample is composed of 
kids watching ten hours or less TV per day between ages 6-9. The controlled inputs include a child’s race, 
sex, birth order, family backgrounds, and detailed current home inputs.  OLS(S) – Detailed current school 
inputs are included. 
  



  Table 5: TV Watching on Math and Reading: G-Estimation with Binary Responses 
  

The Marginal Effects 

PIAT Math (higher than mean) PIAT Reading (higher than mean) 
Probit Probit (H) Probit  Probit (H) 

 

at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7 

High TV at age 8-9  .05 
 (.06) 

 -.006 
(.07) 

 .06 
(.05) 

 .10* 
(.05) 

 

Middle TV at age 8-9 -.007 
(.06) 

 -.07 
(.06) 

 -.02 
(.05) 

 .01 
(.05) 

 

High TV at age 6-7 .05 
(.06) 

-.05 
(.06) 

.06 
(.06) 

-04 
(.06) 

-.07 
(.06) 

.01 
(.06) 

-.07 
(.06) 

.01 
(.06) 

Middle TV at age 6-7 -.03 
(.05) 

-.04 
(.05) 

-.002 
(.06) 

-.05 
(.05) 

-.004 
(.05) 

-.001 
(.05) 

-.01 
(.05) 

.001 
(.05) 

PIAT score higher    
than mean at age 6-7 

.37*** 
(.04) 

 .40*** 
(.04) 

 .51*** 
(.04) 

 .51*** 
(.05) 

 

PIAT score higher    
than mean at age 4-5 

.03 
 (.04) 

.31*** 
(.04) 

.04 
(.04) 

.26*** 
(.04) 

.14*** 
(.05) 

.32*** 
(.05) 

.13** 
(.05) 

.29*** 
(.05) 

Sample Size 720 720 651 651 687 687 622 622 
Pseudo R-squared .29 .23 .31 .22 .40 .26 .41 .23 

 
Mean difference in probability of PIAT score higher than mean at age 8-9 

(Bootstrapped SD in parentheses) 
PIAT Math PIAT Reading  

Daily TV hours at age 6-9 G-est. G-est. (H) G-est. G-est. (H) 
High versus Low TV at ages 6-9 -.18** 

(.08) 
-.23*** 
(.08) 

-.21*** 
(.08) 

-23*** 
(.09) 

Middle versus Low TV at ages 6-9 -.16** 
(.07) 

-.18** 
(.07) 

-.13* 
(.07) 

-.14*  
(.08) 

High versus Low TV at age 6-7 with Low at 8-9 -.23* 
(.13) 

-.19  
(.13) 

-.23*  
(.12) 

-.26*  
(.14) 

Middle versus Low TV at age 6-7 with Low at 8-9 -.19** 
(.08) 

-.20** 
(.08) 

-.11  
(.08) 

-.13 
(.08) 

Notes: * p<.1; ** p<.05; *** p<.01. Standard deviations are in the parentheses. 
High TV: watching TV more than 4 hours per day; Middle TV: more than 2 but less than or equal to 4 
hours per day; Low TV: less than or equal to 2 hours per day. The sample is composed of kids watching ten 
hours or less TV per day between ages 6-9. The controlled inputs include a child’s race, sex, birth order, 
detailed home inputs at ages 6-9, home environment indicators at ages 2-3 and 4-5, and family backgrounds.  
Probit(H) -- Detailed home inputs at age 4-5 are included. 


