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Abstract 
 
The traditional economic approach to index number theory is based on a ratio concept.  
The Konüs true cost of living index is a ratio of cost functions evaluated at the same 
utility level but with the prices of the current period in the cost function that appears in 
the numerator and the prices of the base period in the denominator cost function.  The 
Allen quantity index is also a ratio of cost functions where the utility levels vary but the 
price vector is held constant in the numerator and denominator.  There is a corresponding 
theory for differences of cost functions that was initiated by Hicks and the present paper 
develops this approach.  Diewert defined superlative price and quantity indexes as 
observable indexes which were exact for a ratio of unit cost functions or for a ratio of 
linearly homogeneous utility functions.  The present paper looks for counterparts to his 
results in the difference context, for both flexible homothetic and flexible nonhomothetic 
preferences.  The Bennet indicators of price and quantity change turn out to be 
superlative for the nonhomothetic case.  The underlying preferences are of the translation 
homothetic form discussed by Balk, Chambers, Dickenson, Färe and Grosskopf.      
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1. Introduction 
 
Traditional index number theory adopts a theoretical framework based on a ratio concept.  
In this approach, the ratio of the value aggregate between two periods is decomposed into 
the product of a price index and a quantity index.  The price index, a function of the price 
and quantity data pertaining to the two periods under consideration, is interpreted as the 
ratio of the current price of the aggregate to the aggregate price in the base period.  The 
quantity index, another function of the price and quantity data pertaining to the two 
periods, is interpreted as the ratio of the current period quantity aggregate to the base 
period quantity aggregate.  In the economic approach to index number theory, it is 
assumed that the consumer has preferences over the individual quantities in the aggregate 
that can be represented by a utility function which has a dual cost function.  This cost 
function is used to define consumer’s family of Konüs (1939) price indexes or true cost 
of living indexes and the consumer’s family of Allen (1949) quantity indexes.   
 
If the consumer’s preferences are homothetic (so that they can be represented by a 
linearly homogeneous utility function), then the family of Konüs price indexes collapses 
to a ratio of unit cost functions and the family of Allen quantity indexes collapses to a 
ratio of utility functions, where these functions are evaluated at the data of say period 1 in 
the numerator and the data of period 0 in the denominator.  If preferences are homothetic, 
then Konüs and Byushgens (1926), Afriat (1972) and  Pollak (1983) showed that certain 
numerical index number formula were exactly equal to the underlying theoretical 
economic indexes, provided that the consumer’s utility function or dual unit cost function 
had certain functional forms.  Diewert (1976) took this theory of exact indexes one step 
further and looked for indexes that were exact for flexible functional forms, for either the 
linearly homogeneous utility function or for the dual unit cost function and he called such 
indexes that were exact for flexible functional forms superlative.  However, empirically, 
it has been shown that consumer preferences are generally not homothetic and hence the 
relevance of Diewert’s concept of a superlative index is somewhat doubtful, at least in 
the consumer context.  But Diewert (1976; 122) did implicitly develop a stronger concept 
for a superlative index in the context of general nonhomothetic preferences and we will 
formalize his idea in the present paper in section 2 below where we will define strongly 
superlative indexes.  Section 2 will also review the standard definitions for exact and 
superlative indexes in the case of homothetic preferences. 
 
In section 3, we switch from the traditional economic approach to index number theory, 
which is based on ratios, to an economic approach pioneered by Hicks (1942) (1943) 
(1945-46) which is based on differences.  In the traditional approach to index number 
theory, a value ratio is decomposed into the product of a price index times a quantity 
index whereas in the difference approach, a value difference is decomposed into the sum 
of a price indicator (which is a measure of aggregate price change) plus a quantity 
indicator (which is a measure of aggregate quantity change).  The difference analogue to 
a theoretical Konüs price index is a Hicksian price variation and the difference analogue 
to an Allen quantity index is a Hicksian quantity variation such as the equivalent or 
compensating variation.  For normal index number theory, the theoretical Konüs and 
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Allen indexes are defined using ratios of cost functions but in the difference approach to 
index number theory, the theoretical price and quantity variation functions are defined in 
terms of differences of cost functions.  In the difference approach, the counterparts to 
price and quantity index number formulae are price and quantity indicator functions.2  
Both index number formulae and indicator functions are known functions of the price and 
quantity data pertaining to the two periods under consideration.  In section 3, we provide 
a definition for an exact price or quantity indicator function. 
 
In sections 4 and 5, we develop further the difference approach to index number theory.  
In section 4, we will define a given price or quantity indicator function to be superlative 
if it is exactly equal to a corresponding theoretical price or quantity variation under the 
assumption that the consumer has homothetic preferences that are represented by a 
flexible linearly homogeneous utility function or which are dual to a flexible unit cost 
function.  We draw on the theory of superlative price and quantity indexes to exhibit 
many superlative indicator functions.  The theory that we develop in section 4 for the 
case of homothetic preferences turns out to be a variant of the theory of superlative 
indicators developed earlier by Diewert (2005).  
 
In section 5, we will define a given price or quantity indicator function to be strongly 
superlative if it is exactly equal to a corresponding theoretical price or quantity variation, 
under the assumption that the consumer has (general) preferences which are dual to a 
flexible cost function that is subject to money metric utility scaling.  The term money 
metric utility scaling is due to Samuelson (1974) and it is simply a convenient way of 
cardinalizing a utility function.  It proves to be much more difficult to find strongly 
superlative price or quantity indicator functions but in section 5, we show that the Bennet 
(1920) indicator functions are strongly superlative.  Our results require that the 
consumer’s preferences be represented by a certain translation homothetic cost function 
that is a variant of the normalized quadratic cost function introduced by Diewert and 
Wales (1987) (1988a) (1988b).  The flexibility of this functional form is shown in 
Appendix A.  Our work draws on the earlier work on translation homothetic preferences 
(or linear parallel preferences) by Blackorby, Boyce and Russell (1978), Dickinson 
(1980), Chambers and Färe (1998), Chambers (2001; 111) and Balk, Färe and Grosskopf 
(2004). 
 
The practical usefulness of the difference approach to the measurement of price and 
quantity change is illustrated at the end of section 5 where we show that under certain 
conditions including the assumption that each household faces the same prices in each 
period, it is possible to exactly measure the arithmetic average of the economy’s sum of 
the individual household equivalent and compensating variations using only aggregate 
data since this aggregate measure of welfare change is exactly equal to the Bennet 
quantity indicator using aggregate quantity data.  In other words, the difference approach 
to the measurement of aggregate price and quantity change has better aggregation 
properties than the traditional ratio approach.  
 

                                                 
2 This indicator terminology was introduced by Diewert (1992a) (2005). 
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In section 6, we provide economic interpretations for each term in the sum of terms that 
make up the Bennet price and quantity indicators.  The decomposition results developed 
here are analogues to similar results obtained by Diewert and Morrison (1986) and Kohli 
(1990) in the traditional approach to index number theory. 
 
In section 7, we illustrate the use of the difference approach to measure aggregate 
Japanese consumption and we contrast the traditional ratio approach to the measurement 
of real consumption to our difference approach. 
 
Section 8 concludes. 
 
2. Exact and Superlative Price and Quantity Indexes 
 
In preparation for the difference approach to aggregate price and quantity measurement, 
in this section, we review the standard ratio approach to the measurement of price and 
quantity change.  Thus we will define exact price and quantity indexes and present two 
definitions for a superlative price index.  In the following sections, we will attempt to 
adapt these standard index number theory concepts to the difference context. 
 
The starting point for the economic approach to index number theory is the consumer’s 
cost or expenditure function C.  Thus suppose that the consumer has preferences that are 
defined by the utility function f(q) over all nonnegative N dimensional quantity vectors q 
≡ [q1,...,qN] ≥ 0N.3  In addition, suppose that f is a nonnegative, increasing,4 continuous 
and quasiconcave function over the nonnegative orthant Ω ≡ {q : q ≥ 0N}.  Now suppose 
that the consumer faces the positive vector of commodity prices p >> 0N and suppose that 
the consumer wishes to attain the utility level u belonging to the range of f as cheaply as 
possible.  Then the consumer will solve the following cost minimization problem and the 
consumer’s cost function, C(u,p), will be the minimum cost of achieving the target utility 
level u: 
 
(1) C(u,p) ≡ min q {p⋅q : f(q) ≥ u ; q ≥ 0N}. 
 
It can be shown5 that C(u,p) will have the following properties: (i) C(u,p) is jointly 
continuous in u,p for p >> 0N and u∈U where U is the range of f and is a nonnegative 
function over this domain of definition set; (ii) C(u,p) is increasing in u for each fixed p 
and (iii) C(u,p) is nondecreasing, linearly homogeneous and concave function of p for 
each u∈U.6  Conversely, if a cost function is given and satisfies the above properties, 
then the utility function f that is dual to C can be recovered as follows.7  For u∈U and q 
>> 0N, define the function F(u,q) as follows: 

                                                 
3 Notation: q ≥ 0N means each component of q is nonnegative; q >> 0N means each component of q is 
positive and q > 0N means q ≥ 0N but q ≠ 0N where 0N denotes an N dimensional vector of zeros.  Also p⋅q 
denotes the inner product of the vectors p and q; i.e., p⋅q = pTq ≡ ∑n=1

N pnqn. 
4 Thus if q2 >> q1 ≥ 0N, then f(q2) > f(q1). 
5 See Diewert (1993; 124). 
6 Call these conditions on the cost function Conditions I. 
7 See Diewert (1974; 119) (1993; 129) for the details and for references to various duality theorems. 
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(2) F(u,q) ≡ max p {C(u,p) : p⋅q ≤ 1 ; p ≥ 0N}. 
 
Now solve the equation: 
 
(3) F(u,q) =1 
 
for u* and this solution u* will equal f(q).   
 
The utility function f(q) and the dual cost function C(u,p) are used in order to define the 
consumer’s family of Konüs (1939) true cost of living indexes, PK(p0.p1,f(q)), where p0 
and p1 are the vectors of positive commodity prices that the consumer faces in periods 0 
and 1 respectively and u = f(q) is a positive reference level of utility: 
 
(4) PK(p0.p1,f(q)) ≡ C(f(q),p1)/C(f(q),p0). 
 
Thus for each reference quantity vector q that gives rise to a positive utility level, u = f(q) 
> 0, the consumer’s aggregate price index for that reference level of utility is the ratio of 
C(u,p1) to C(u,p0). 
 
The consumer’s utility and cost functions can be used in order to define the consumer’s 
family of Allen (1949) quantity indexes, QA(q0.q1,p), where q0 and q1 are the observed 
consumption vectors that the consumer chose in periods 0 and 1 respectively and p >> 0N 
is a strictly positive vector of reference prices: 
 
(5) QA(q0,q1,p) ≡ C(f(q1),p)/C(f(q0),p). 
 
The meaning of (5) is that if the consumer faces the reference price vector p, then his or 
her period t utility, f(qt), is set equal to the minimum cost of achieving this utility level 
using the reference prices p, C(f(qt),p), for t = 0,1 and the consumer’s quantity index is 
set equal to the ratio C(f(q1),p)/C(f(q0),p).  Samuelson (1974) called this type of 
cardinalization of utility, money metric utility.8  However, note that different choices of p 
will generate different cardinalizations of utility and different Allen quantity indexes. 
 
It is useful to specialize the above definitions for price and quantity indexes for the case 
where the consumer’s preferences are homothetic9 or neoclassical.  We say that a utility 
function is neoclassical if it satisfies the following properties over the positive orthant: (i) 
f is a positive function; i.e.,  f(q) > 0 if q >> 0N; (ii) f is positively linearly homogeneous; 
i.e., f(λq) = λf(q) for all λ > 0 and q >> 0N and (iii) f is concave; i.e., for 0 < λ < 1, q0 >> 
0N and q1 >> 0N, we have f(λq0 + (1−λ)q1) ≥ λf(q0) + (1−λ)f(q1).  It turns out that a 

                                                 
8 The basic idea can be traced back to Hicks (1942). 
9 Preferences are homothetic if the consumer’s utility function can be written as G[f(q)] where f is 
neoclassical and G is a continuous increasing function of one variable.  Note that the homothetic 
preferences G[f(q)] can be represented by the neoclassical utility function f.  Thus, at times in what follows, 
we will sometimes refer to neoclassical preferences as homothetic preferences. The concept of 
homotheticity is due to Shephard (1953). 
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concave function defined over the positive orthant is also continuous over this domain of 
definition.  Furthermore, f defined over the positive orthant has a continuous extension to 
the nonnegative orthant10 and this extended f will also satisfy properties (ii) and (iii) 
above.  The extended f(q) will also be nondecreasing in its variables q over the 
nonnegative orthant.11 
   
If the consumer’s preferences are neoclassical, then it turns out that the corresponding 
cost function defined by (1) above has the following representation: 
 
(6) C(u,p) = c(p)u 
 
where c(p) ≡ C(1,p) is the consumer’s unit cost function.  It also turns out that the unit 
cost function, c(p), is also a neoclassical function, i.e., it is a positive, nondecreasing, 
continuous, concave and linearly homogeneous function of p over the positive orthant.  
Finally, the consumer’s utility function f can be recovered from a knowledge of the unit 
cost function as follows:12 for q >> 0N, 
 
(7) f(q) = 1/max p {c(p) : p⋅q = 1; p ≥ 0N}. 
 
The assumption that the consumer has neoclassical (or homothetic) preferences greatly 
simplifies index number theory.  Under the assumption of neoclassical preferences, for 
each reference q such that f(q) is positive, we have13 
 
(8) PK(p0,p1,f(q)) ≡ C(f(q),p1)/C(f(q),p0)                                     using definition (4) 
                            = c(p1)f(q)/c(p0)f(q)                                         using (6) 
                            = c(p1)/c(p0). 
 
Thus under the assumption of neoclassical preferences, the Konüs price index is equal to 
the unit cost ratio, c(p1)/c(p0), and is independent of the reference utility level. 
 
Similarly, under the assumption of  neoclassical preferences, for each positive reference 
price vector p, we have 
 
(9) QA(q0,q1,p) ≡ C(f(q1),p)/C(f(q0),p).                                       using definition (5) 
                         = c(p)f(q1)/c(p)f(q0)                                            using (6) 
                         = f(q1)/f(q0). 
   
Thus under the assumption of neoclassical preferences, the Allen quantity index is equal 
to the utility ratio, f(q1)/f(q0), and is independent of the reference price vector p. 

                                                 
10 See Fenchel (1953; 78) or Rockafellar (1970; 85). 
11 See Diewert (1974; 111). 
12 This is a version of the Samuelson (1953) Shephard (1953) duality theorem; see also Diewert (1974; 110-
112) and Samuelson and Swamy (1974).  
13 See Shephard (1953) (1970), Pollak (1983) and Samuelson and Swamy (1974).  Shephard in particular 
realized the importance of the homotheticity assumption in conjunction with separability assumptions in 
justifying the existence of subindexes of the overall cost of living index. 
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Now suppose that the consumer has homothetic preferences (which we represent by a 
neoclassical utility function f(q) or the dual unit cost function c(p)) and he or she faces 
prices pt >> 0N in period t and minimizes the cost of achieving the utility level ut in 
period t for t = 0,1.  Let qt be the consumer’s observed quantity vector for period t so that 
ut = f(qt) for t = 0,1.  Then the consumer’s observed period t cost, pt⋅qt can be written as 
follows: 
 
(10) pt⋅qt = C(f(qt),pt) = c(pt)f(qt) ;                                                      t = 0,1. 
 
Under these assumptions, the consumer’s ratio of period 1 expenditures to period 0 
expenditures satisfies the following equations: 
 
(11) p1⋅q1/p0⋅q0 = [c(p1)f(q1)]/[c(p0)f(q0)]                                           using (10) 
            = [c(p1)/c(p0)][f(q1)/f(q0)] 
            = PK(p0,p1,f(q))QA(q0,q1,p)            for arbitrary reference q and p using (8) and (9). 
   
Thus under the assumption of homothetic preferences and cost minimizing behavior on 
the part of the consumer for the two periods under consideration, the consumer’s 
observed expenditure ratio is equal to the product of the Konüs price index for arbitrary 
reference vector q and the Allen quantity index for arbitrary reference vector p.  
 
Note that in general, without a knowledge of the consumer’s preferences, the Konüs price 
index and the Allen quantity index are not directly observable; i.e., they are theoretical 
indexes as opposed to the “practical” bilateral price and quantity formulae, say 
P(p0,p1,q0,q1) and Q(p0,p1,q0,q1), that are known functions of the observed consumer data 
pertaining to the two periods being compared.  We assume that the bilateral index 
number formulae P and Q satisfy the following product test for all strictly positive price 
and quantity vectors:14  
 
(12) p1⋅q1/p0⋅q0 = P(p0,p1,q0,q1)Q(p0,p1,q0,q1). 
 
Diewert (1976; 117) defined a quantity index Q(p0,p1,q0,q1) to be exact for a neoclassical 
utility function f if under the assumption that the consumer minimizes the cost of 
achieving the utility level ut = f(qt) in period t for t = 0,1, we have 
 
(13) Q(p0,p1,q0,q1) = f(q1)/f(q0) ; 
 
i.e., the quantity index Q(p0,p1,q0,q1) is exactly equal to the utility ratio which in turn is 
equal to the theoretical Allen quantity index under the assumption of neoclassical 
preferences.15  Under the same assumptions of cost minimizing behavior and assuming 
that the preferences of the consumer can be represented by the dual unit cost function 

                                                 
14 This is Fisher’s (1922) weak factor reversal test. 
15 Diewert (1976) gave many examples of exact index number formulae drawing on the earlier work of 
Konüs and Byushgens (1926), Pollak (1983) (originally written in 1971) and Afriat (1972). 
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c(p), then Diewert (1976; 134) defined a price index P(p0,p1,q0,q1) to be exact for c(p) if 
we have     
 
(14) P(p0,p1,q0,q1) = c(p1)/c(p0) ; 
 
i.e., the price index P(p0,p1,q0,q1) is exactly equal to the ratio of unit costs which in turn is 
equal to the theoretical Konüs price index under the assumption of neoclassical 
preferences.   
 
Suppose the index number pair P(p0,p1,q0,q1) and Q(p0,p1,q0,q1) satisfy the product test 
(12) and either P is exact for c(p) or Q is exact for f(q).16  Then Diewert (1976) defined P 
and Q to be superlative indexes if either c or f could provide a second order 
approximation to an arbitrary twice continuously differentiable neoclassical unit cost 
function c*(p) or to an arbitrary twice continuously differentiable neoclassical utility 
function f*(q).17  Thus the advantage of superlative price and quantity indexes is that they 
can generate reasonably accurate price and quantity aggregates without having to 
undertake any econometric estimation of preferences, which becomes difficult or 
impossible as the number of commodities in the aggregate increases. 
 
Examples of superlative price index formulae18 are the Fisher (1922) ideal price index PF 
and the Törnqvist (1936) (1937) Theil (1967) index PT defined as follows: 
 
(15)      PF(p0,p1,q0,q1) ≡ [p1⋅q0/p0⋅q0]1/2 [p1⋅q1/p0⋅q1]1/2 ; 
(16) ln PT(p0,p1,q0,q1)  ≡ ∑n=1

N (1/2)[sn
0 + sn

1] ln [pn
1/pn

0]  
 
where the period t expenditure share on commodity n is defined as sn

t ≡ pn
tqn

t/pt⋅qt for n = 
1,...,N and t = 0,1.  
 
This completes our summary of the existing theory for superlative indexes in the case of 
homothetic preferences.  Unfortunately, if the consumer’s preferences are homothetic, 
then all income elasticities of demand are equal to unity and Engel’s Law and other 
econometric evidence strongly suggests that income elasticities are not homothetic and 
hence consumer preferences are not homothetic.  Thus while the theory of exact and 
superlative indexes may be very useful when we wish to construct subaggregate prices 
and quantities, it seems that superlative indexes may not be appropriate when 
constructing overall aggregate consumer price and quantity indexes.  Thus we need to 
determine whether we can find indexes which are exact for more general nonhomothetic 
preferences.  Fortunately, this can be done. 
 
Suppose the consumer has general preferences defined by the utility function f(q) and the 
general cost function C(u,p) is dual to f.  As usual, let pt and qt be the observed price and 
quantity data pertaining to period t and define the period t level of utility ut ≡ f(qt) for t = 
                                                 
16 Of course, if P is exact for c, P and Q satisfy (12) and f is dual to c, then Q is exact for f (and vice versa). 
17 Blackorby and Diewert (1979) showed that if c is a differentiable flexible functional form and has a 
differentiable dual f(q), then f is also flexible in the class of neoclassical utility functions and vice versa. 
18 See Diewert (1976) for the details. 
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0,1.  We assume that the consumer is minimizing the cost of achieving the utility level ut 
in period t so we have: 
 
(17) pt⋅qt = C(f(qt),pt) ;                                                                                 t = 0,1. 
 
Under the above assumptions, we say that the bilateral price index number formula, 
P(p0,p1,q0,q1), is exact for the cost function C if there exists a u* such that u* is between u0 
and u1 so that 
 
(18) either u0 ≤ u* ≤ u1 or u1 ≤ u* ≤ u0 and 
(19) P(p0,p1,q0,q1) = C(u*,p1)/C(u*,p0) ≡ PK(p0,p1,u*). 
 
Thus P is an exact index number formula if under the assumption of cost minimizing 
behavior, P(p0,p1,q0,q1) is exactly equal to the Konüs theoretical price index PK(p0,p1,u*) 
where u* is an intermediate reference level of utility.  The requirement that the reference 
level of utility be between the period 0 and 1 utility levels (or possibly equal to one of 
these levels) is a natural one: we do not want the reference utility level to be too far from 
the two levels actually experienced by the consumer during the two periods under 
consideration.   
 
Initially, we define P to be a strongly superlative index number formula if it is exact 
according to the definition immediately above and in addition, the cost function C(u,p) 
that P is exact for can approximate an arbitrary cost function to the second order. 
 
Diewert (1976; 122) showed that the Törnqvist Theil index PT defined by (16) is exact for 
a general translog cost function where the reference level of utility u* is equal to [u0 u1]1/2, 
the square root of the product of the period 0 and 1 utility levels.  Since the general 
translog cost function is a fully flexible functional form, this shows that PT is a strongly 
superlative price index. 
 
Since the scaling of utility is arbitrary up to an increasing transformation of an initial 
representation of the utility function, we will find it convenient to impose money metric 
utility scaling on the underlying utility function f and its dual cost function C.  Thus let p* 
>> 0N be an arbitrary positive price vector.  We will assume that the consumer’s utility is 
scaled so that the dual cost function C satisfies the following equation:19 
 
(20) C(u,p*) = u for all u∈U. 
 
Thus our final definition for a strongly superlative index number formula P is that it is 
exact according to the above definition (18) and (19) and in addition, the cost function 
C(u,p) that P is exact for can approximate an arbitrary cost function (that satisfies the 
money metric utility scaling property (20)) to the second order. 
 

                                                 
19 If the cost function C(u,p) satisfies Conditions I and in addition, satisfies the money metric utility scaling 
conditions (20), then we will say that C satisfies Conditions II. 
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An analogous definition of exactness can be made for a quantity index.  Thus we say that 
the bilateral quantity index number formula, Q(p0,p1,q0,q1), is exact for the cost function 
C if there exists a reference price vector p* ≡ [p1

*,...,pN
*] such that p* is between p0 and p1 

so that 
 
(21) either pn

0 ≤ pn
* ≤ pn

1 or pn
1 ≤ pn

* ≤ pn
0 for n = 1,...,N and 

(22) Q(p0,p1,q0,q1) = C(f(q1),p*)/C(f(q0),p*) ≡ QA(q0,q1,p*). 
 
Thus Q is an exact index number formula if under the assumption of cost minimizing 
behavior, Q(p0,p1,q0,q1) is exactly equal to the Allen theoretical quantity index 
QA(q0,q1,p*) where p* is a vector of intermediate  reference prices.  The requirement that 
the reference price vector p* be between the period 0 and 1 price vectors that the 
consumer faced (or possibly equal to one of these two vectors) is again a natural one: we 
do not want the money metric cardinalizing vector of reference prices to be too far from 
the two price vectors actually faced by the consumer during the two periods under 
consideration. 
 
Finally, we define Q to be a strongly superlative index number formula if it is exact 
according to the definition immediately above and in addition, the cost function C(u,p) 
that is dual to the utility function f can approximate an arbitrary cost function (that has 
the money metric utility scaling property (20)) to the second order. 
    
The above material summarizes the theory of exact and superlative indexes which is 
based on decompositions of the value ratio into price and quantity components that 
multiply together.  In the following section, we will review and extend the companion 
theory that is based on decompositions of the value difference into a sum of a price 
change component and a quantity change component. 
     
3. Value Differences, Variations and Indicators of Price and Quantity Change 
 
Assume that the consumer’s cost function, C(u,p), satisfies Conditions I and the dual 
utility function is f(q) as usual.  Throughout this section, we will assume that pt and qt are 
the observed price and quantity data pertaining to period t and we define the consumer’s 
period t observed level of utility ut ≡ f(qt) for t = 0,1.  We assume that the consumer is 
minimizing the cost of achieving the utility level ut in period t so that conditions (17) 
hold; i.e., we have pt⋅qt = C(f(qt),pt)  for t = 0,1.  Our task in the present section is to 
decompose the consumer’s observed value change over the two periods under 
consideration, p1⋅q1 − p0⋅q0, into the sum of two terms, one of which is the part of the 
value change that is due to price change and the other part due to quantity change.  This 
is the difference approach to explaining a change in a value aggregate as opposed to the 
usual ratio approach used in index number theory.20 
 

                                                 
20 Hicks (1942) seems to have been the first to explore the similarities between the two approaches. 



 11 

The difference counterpart to the Allen (1949) quantity index explained in the previous 
section is the following Hicks Samuelson quantity variation QS: for each strictly positive 
reference price vector p >> 0N, define QS(q0,q1,p) as follows:21 
 
(23) QS(q0,q1,p) ≡ C(f(q1),p) − C(f(q0),p). 
 
Just as the Allen quantity index QA(q0,q1,p) defined by (5) was an entire family of 
indexes (one for each reference price vector p), so too is the family of quantity variations, 
QS.  Two special cases of (23) are of particular importance, the equivalent and 
compensating variations, QE and QC, defined as follows:22 
 
(24) QE(q0,q1,p0) ≡ QS(q0,q1,p0) = C(f(q1),p0) − C(f(q0),p0) ; 
(25) QC(q0,q1,p1) ≡ QS(q0,q1,p1) = C(f(q1),p1) − C(f(q0),p1) . 
 
Thus the equivalent variation uses the period 0 price vector p0 as the reference price 
vector while the compensating variation uses the period 1 price vector p1 as the reference 
price vector. 
  
Generalizing Hicks (1939; 40-41) (1946; 331-332), we will define a family of Hicksian 
price variation functions PH(p0,p1,f(q)) as follows: for each nonnegative reference 
quantity vector q, define PH(p0,p1,f(q)) as follows: 
 
(26) PH(p0,p1,f(q))  ≡ C(f(q),p1) − C(f(q),p0). 
 
Just as the Konüs price index, PK(p0.p1,f(q)), defined by (4) was an entire family of 
indexes (one for each reference quantity vector  or reference utility level u ≡ f(q)), so too 
is the family of Hicksian price variations.  Two special cases of (26) are of particular 
importance, the Laspeyres and Paasche price variation functions, PHL and PHP, defined as 
follows:23  
 

                                                 
21 Samuelson (1974) recognized that C(f(q),p) was a valid cardinalization of utility for any reference price 
vector p and thus (23) is a valid cardinal measure of the utility difference between periods 0 and 1.  Hicks 
on the other hand only considered the special cases (24) and (25) defined below.  
22 Henderson (1941; 120) introduced these variations in the N = 2 case and Hicks (1942) introduced them 
in the general case, although his exposition is difficult to follow.  The term compensating variation is due to 
Henderson (1941; 118) and  the term equivalent variation is due to Hicks (1942; 128).  Hicks (1939; 40-41) 
initially defined the compensating variation as a measure of price change: “As we have seen, the best way 
of looking at consumer’s surplus is to regard it as a means of expressing, in terms of money income, the 
gain which accrues to the consumer as a result of a fall in price.  Or better, it is the compensating variation 
in income, whose loss would just offset the fall in price and leave the consumer no better off than before.”  
However, later, Hicks (1942; 127-128), following Henderson (1941; 120) defined (geometrically) the 
compensating variation as C(u1,p1) − C(u0,p1) and the equivalent variation as C(u1,p0) − C(u0,p0), which are 
measures of welfare (or quantity) change. 
23 In the index number literature, C(u0,p1)/C(u0,p0) is known as the Laspeyres Konüs (1939; 17) true cost of 
living index or price index and C(u1,p1)/C(u1,p0) is known as the Paasche Konüs theoretical price index; see 
Pollak (1983).  It can be seen that (27) and (28) are the difference counterparts to these ratio type indexes. 
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(27) PHL(p0,p1,f(q0)) ≡ PH(p0,p1,f(q0)) = C(f(q0),p1) − C(f(q0),p0) ;24 
(28) PHP(p0,p1,f(q1)) ≡ PH(p0,p1,f(q1)) = C(f(q1),p1) − C(f(q1),p0) .25  
 
Thus the Laspeyres price variation uses the period 0 quantity vector q0 as the reference 
quantity vector while the Paasche price variation uses the period 1 quantity vector q1 as 
the reference quantity vector. 
 
Let M0 ≡ p0⋅q0 be the consumer’s nominal “income” or expenditure on the N 
commodities in period 0.  Then PHL(p0,p1,f(q0)) is the amount of nominal income that 
must be added to the period 0 income M0 in order to allow the consumer, facing period 1 
prices p1, to achieve the same utility level as was achieved in period 0, which is u0 ≡ 
f(q0).  Similarly, let M1 ≡ p1⋅q1 be the consumer’s nominal “income” in period 1.  Then 
PHP(p0,p1,f(q1)) is the amount of nominal income that must be subtracted from the period 
1 income M1 in order to allow the consumer, facing period 0 prices p0, to achieve the 
same utility level as was achieved in period 1, which is u1 ≡ f(q1).   
 
Note that the equivalent quantity variation defined by (24) matches up with the Paasche 
price variation defined by (28) in order to provide an exact decomposition of the value 
change going from period 0 to 1; i.e., using these definitions and assumptions (17), it can 
be seen that: 
 
(29) p1⋅q1 − p0⋅q0 = C(f(q1),p1) − C(f(q0),p0) = QE(q0,q1,p0) + PHP(p0,p1,f(q1)). 
 
Similarly, the compensating quantity variation defined by (25) matches up with the 
Laspeyres price variation defined by (27) in order to provide another exact decomposition 
of the value change going from period 0 to 1:  
 
(30) p1⋅q1 − p0⋅q0 = C(f(q1),p1) − C(f(q0),p0) = QC(q0,q1,p1) + PHL(p0,p1,f(q0)). 
 
A problem with the quantity variations defined by (24) and (25) and the price variations 
defined by (27) and (28) is that they asymmetrically single out a reference price or 
quantity vector that pertains to a single period.  Since both measures are equally valid and 
if a single measure of price or quantity change is required, then for some purposes, it may 
be useful to take an arithmetic average of the equivalent and compensating variations 
defined by (24) and (25) (denote the resulting average quantity variation as 
QA(q0,q1,p0,p1)) and to take an arithmetic average of the price variations defined by (27) 
and (28) (denote the resulting average price variation as PHA(p0,p1,q0,q1)).  It can be seen 
that these average price and quantity variations will also provide an additive 
decomposition of the value change; i.e., we have: 
 
(31) p1⋅q1 − p0⋅q0 = C(f(q1),p1) − C(f(q0),p0) = QA(q0,q1,p0,p1) + PHA(p0,p1,f(q0),f(q1)).  

                                                 
24 Hicks (1945-46; 68) called this measure the ‘price compensating variation’ and distinguished this 
measure from a quantity compensating variation, which he did not define in a very clear manner.  Hicks 
also considered price and quantity variations in Hicks (1943). 
25 Hicks (1945-46; 69) called this measure the “price equivalent variation”. 
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All of the price and quantity variations defined above cannot be evaluated in general 
using observed price and quantity data pertaining to the two periods under consideration.  
Thus we now turn our attention to the problem of finding observable approximations to 
the above theoretical variation functions. 
 
Looking at definition (24) for the equivalent variation, it can be seen that the term 
C(f(q0),p0) is equal to period 0 expenditure on the N commodities, p0⋅q0, and hence this 
term is observable.  The remaining term, C(f(q1),p0), is not observable but we can use 
Shephard’s (1953; 11) Lemma in order to obtain the following first order approximation 
to this term: 
 
(32) C(f(q1),p0) ≈ C(f(q1),p1) + ∇pC(f(q1),p1)⋅[p0 − p1] 
                          = C(f(q1),p1) + q1⋅[p0 − p1]                                  using Shepard’s Lemma 
                          = p1⋅q1 + p0⋅q1 − p1⋅q1                                          using (17) for t = 1 
                          = p0⋅q1. 
 
Using (17) for t = 0, (32) and definition (24), we obtain the following first order 
approximation to the equivalent variation: 
 
(33) QE(q0,q1,p0) ≈ p0⋅q1 − p0⋅q0  
                            = p0⋅[q1 − q0] 
                            ≡ VL(p0,p1,q0,q1) 
 
where the observable Laspeyres indicator of quantity change, VL(p0,p1,q0,q1), is defined 
as p0⋅[q1 − q0], the inner product of the base period prices p0 with the quantity change 
vector, q1 − q0.  In a similar fashion, it can be shown that a first order approximation to 
the term C(f(q0),p1) is p1⋅q0 and so a first order approximation to the compensating 
variation QC(q0,q1,p1) defined by (25) is:26 
 
(34) QC(q0,q1,p1) ≈ p1⋅q1 − p1⋅q0  
                            = p1⋅[q1 − q0] 
                            ≡ VP(p0,p1,q0,q1) 
 
where the observable Paasche indicator of quantity change, VP(p0,p1,q0,q1), is defined as 
p1⋅[q1 − q0], the inner product of the current period prices p1 with the quantity change 
vector, q1 − q0.         
  
Note that VL and VP are the difference counterparts to the ordinary Laspeyres and 
Paasche quantity indexes, QL, and QP, defined as follows: 
 
(35) QL(p0,p1,q0,q1) ≡ p0⋅q1/p0⋅q0 ;  QP(p0,p1,q0,q1) ≡ p1⋅q1/p1⋅q0.   
              
                                                 
26 The first order approximations (33) and (34) were obtained by Hicks (1942; 127-134); see also Diewert 
(1992a; 568). 
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We now turn our attention to the problem of finding observable approximations for the 
Laspeyres and Paasche price variation functions defined by (27) and (28) above.  An 
observable first order approximation to the term C(f(q0),p1) in (27) is   
   
(36) C(f(q0),p1) ≈ C(f(q0),p0) + ∇pC(f(q0),p0)⋅[p1 − p0] 
                          = C(f(q0),p0) + q0⋅[p1 − p0]                                  using Shepard’s Lemma 
                          = p0⋅q0 + p1⋅q0 − p0⋅q0                                          using (17) for t = 0 
                          = p1⋅q0. 
 
Using (17) for t = 0, (36) and definition (27), we obtain the following first order 
approximation to the Laspeyres price variation: 
 
(37) PHL(p0,p1,f(q0))  ≈ p1⋅q0 − p0⋅q0  
                                  = q0⋅[p1 − p0] 
                                  ≡ IL(p0,p1,q0,q1) 
 
where the observable Laspeyres indicator of price change, IL(p0,p1,q0,q1), is defined as 
q0⋅[p1 − p0], the inner product of the base period quantity vector q0 with the price change 
vector, p1 − p0.  In a similar fashion, it can be shown that a first order approximation to 
the term C(f(q1),p0) is p0⋅q1 and so a first order approximation to the Paasche price 
variation PHP(p0,p1,f(q1)) defined by (28) is: 
 
(38) PHP(p0,p1,f(q1)) ≈ p1⋅q1 − p0⋅q1  
                                = q1⋅[p1 − p0] 
                                ≡ IP(p0,p1,q0,q1) 
 
where the observable Paasche indicator of price change, IP(p0,p1,q0,q1), is defined as 
q1⋅[p1 − p0], the inner product of the current period quantity vector q1 with the price 
change vector, p1 − p0.27         
  
Note that IL and IP

28 are the difference counterparts to the ordinary Laspeyres and 
Paasche price indexes, PL, and PP, defined as follows: 
 
(39) PL(p0,p1,q0,q1) ≡ p1⋅q0/p0⋅q0 ;  PP(p0,p1,q0,q1) ≡ p1⋅q1/p0⋅q1.   
  

                                                 
27 The first order approximations (37) and (38) were obtained by Hicks (1945-46; 72-73) (1946; 331). 
28 Hicks (1942; 128) (1945-46; 71) called IL and IP the Laspeyres and Paasche variations but we will 
reserve the term “variation” for the (unobservable) theoretical measures of price and quantity change 
defined by (23) for changes in quantities and by (26) for changes in prices.  We will follow Diewert 
(1992a; 556) (2005; 313) and use the term “indicator” to denote a given function of the price and quantity 
data pertaining to the two periods under consideration so that the term indicator becomes the difference 
theory counterpart to an index number formula in the ratio approach to the measurement of price and 
quantity change.  Since P and Q are usually used to denote price and quantity indexes, a different notation 
is required to denote price and quantity indicators.  Using I to denote a price indicator and V to denote a 
quantity (or volume) indicator follows the conventions used by Diewert (2005).  Note that national income 
accountants use the term “volume index” to denote a quantity index. 
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In the usual approach to index number theory, it proves to be useful to take the geometric 
average of the Laspeyres and Paasche price indexes, leading to the Fisher price index PF 
defined by (15), since the Fisher index has very good properties from the viewpoint of the 
test or axiomatic approach to index number theory; see Diewert (1992b) and Balk (1995).  
However, in the axiomatic approach 29  to price and quantity measurement in the 
difference context, it proves to be better to take the arithmetic average of the Paasche and 
Laspeyres indicators.  This leads to the Bennet (1920) indicators of price and quantity 
change defined as follows: 
 
(40) IB(p0,p1,q0,q1)  ≡ (1/2)IL(p0,p1,q0,q1) + (1/2)IP(p0,p1,q0,q1)    = (1/2)[q0+q1]⋅[p1−p0] ; 
(41) VB(p0,p1,q0,q1) ≡ (1/2)VL(p0,p1,q0,q1) + (1/2)VP(p0,p1,q0,q1) = (1/2)[p0+p1]⋅[q1−q0]. 
 
Note that Hicks (1942; 134) (1945-46; 73) obtained the Bennet quantity indicator VB as 
an approximation to the arithmetic average of the equivalent and compensating variations 
and he also identified VB as a generalization to many markets of Marshall’s consumer 
surplus concept. 
 
It can be verified that the Laspeyres, Paasche and Bennet price and quantity indicators 
can be used in order to obtain the following exact decompositions of the value change in 
the aggregate over the two periods under consideration: 
 
(42) p1⋅q1 − p0⋅q0 = IL(p0,p1,q0,q1) + VP(p0,p1,q0,q1) ; 
(43) p1⋅q1 − p0⋅q0 = IP(p0,p1,q0,q1) + VL(p0,p1,q0,q1) ; 
(44) p1⋅q1 − p0⋅q0 = IB(p0,p1,q0,q1) + VB(p0,p1,q0,q1) . 
 
We conclude this section by defining indicator counterparts to our index number 
definitions of exactness in the case of nonhomothetic preferences.  As usual, we assume 
that the consumer minimizes cost in periods 0 and 1 so that the consumer has the utility 
function f(q) that satisfies the usual regularity Conditions I and has the dual cost function 
C(u,p) so that equations (17) are satisfied.  Recall that the price index number formula 
P(p0,p1,q0,q1) was defined to be exact for the cost function C if conditions (18) and (19) 
were satisfied.  The price indicator counterpart to this definition is as follows: 
I(p0,p1,q0,q1) is exact for the cost function C if there exists a u* such that u* is between u0 
≡ f(q0) and u1 ≡ f(q1) so that 
 
(45) either u0 ≤ u* ≤ u1 or u1 ≤ u* ≤ u0 and 
(46) I(p0,p1,q0,q1) = C(u*,p1) − C(u*,p0) = PH(p0,p1,u*). 
 
Thus I(p0,p1,q0,q1) is exact for the preferences that are dual to C(u,p) if under the 
assumption of cost minimizing behavior on the part of the consumer, I(p0,p1,q0,q1) is 
exactly equal to the theoretical Hicksian price variation function PH(p0,p1,u*) defined by 
(26) for a reference utility level u* that is between the period 0 and 1 utility levels 
attained by the consumer. 

                                                 
29 See Diewert (2005) and Balk (2007) on the axiomatic approach to measures of price and quantity change 
using differences. 
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Recall that the quantity index number formula Q(p0,p1,q0,q1) was defined to be exact for 
the cost function C if conditions (21) and (22) were satisfied.  The quantity indicator 
counterpart to this definition is as follows: V(p0,p1,q0,q1) is exact for the cost function C 
if there exists a reference price vector p* ≡ [p1

*,...,pN
*] such that p* is between p0 and p1 so 

that 
 
(47) either pn

0 ≤ pn
* ≤ pn

1 or pn
1 ≤ pn

* ≤ pn
0 for n = 1,...,N and 

(48) V(p0,p1,q0,q1) = C(f(q1),p*) − C(f(q0),p*) = QS(q0,q1,p*). 
 
Thus V(p0,p1,q0,q1) is exact for the preferences that are dual to C(u,p) if under the 
assumption of cost minimizing behavior on the part of the consumer, V(p0,p1,q0,q1) is 
exactly equal to the theoretical Hicks Samuelson quantity variation function QS(q0,q1,p*) 
defined by (23) for a reference price vector p* that is between the period 0 and 1 price 
vectors faced by the consumer.. 
 
In the following section, we will assume that the consumer has homothetic preferences 
and we will attempt to find price and quantity indicators that are exact and superlative in 
this case.  In section 5, we will drop the assumption of homothetic preferences and we 
will attempt to find superlative indicators in this more general context. 
 
4. Superlative Price and Quantity Indicators in the Homothetic Preferences Case   
 
We now suppose that the consumer’s utility function f(q) is neoclassical and the dual unit 
cost function is c(p).   Under these conditions, using (6), we have  
   
(49) C(f(q),p) = c(p)f(q). 
 
Thus the family of Hicks Samuelson quantity variations QS defined by (23) and the 
family of Hicksian price variations PH defined by (26) have the following structures 
under the assumption of neoclassical preferences:  
 
(50)   QS(q0,q1,p)    ≡ C(f(q1),p) − C(f(q0),p) = [f(q1) − f(q0)]c(p) ; 
(51) PH(p0,p1,f(q))  ≡ C(f(q),p1) − C(f(q),p0) = [c(p1) − c(p0)]f(q) . 
 
It turns out that if we choose the vector of reference prices p in (50) to be equal to p0 or 
p1, then we can find exact quantity indicator functions V(p0,p1,q0,q1) and if we choose the 
reference quantity vector q in (51) to be equal to q0 or q1, then we can find exact price 
indicator functions I(p0,p1,q0,q1), by drawing on exact index number theory in the case of 
homothetic preferences.  Thus let P(p0,p1,q0,q1) and Q(p0,p1,q0,q1) be an exact pair of 
price and quantity indexes; i.e., they satisfy (12), (13) and (14) in section 2.  Now let the 
reference price vector p in (50) above equal the period 0 price vector, p0.  Then  
QS(q0,q1,p0) becomes the equivalent variation QE(q0,q1,p0) and thus (50) becomes the 
following equation: 
 
(52) QE(q0,q1,p0) = [f(q1) − f(q0)]c(p0) 
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                            = [{f(q1)/f(q0)} − 1]c(p0)f(q0) 
                            = [Q(p0,p1,q0,q1) − 1]p0⋅q0                           using (13) and (10) for t = 0 
                            ≡ VE(p0,p1,q0,q1). 
 
Thus the observable function of the data, VE(p0,p1,q0,q1), defined to be equal to 
[Q(p0,p1,q0,q1) − 1]p0⋅q0, is exactly equal to the equivalent variation, QE(q0,q1,p0), and 
hence is an exact quantity indicator function.  If in addition, Q is exact for a flexible 
neoclassical utility function f, then we say that the corresponding VE(p0,p1,q0,q1) is a 
superlative quantity indicator.  
 
Now let the reference price vector p in (50) above equal the period 1 price vector, p1.  
Then QS(q0,q1,p1) becomes the compensating variation QC(q0,q1,p1) and thus (50) 
becomes the following equation: 
 
(53) QC(q0,q1,p1) = [f(q1) − f(q0)]c(p1) 
                            = [1 − {f(q0)/f(q1)}]c(p1)f(q1) 
                            = [1 − Q(p0,p1,q0,q1)−1]p1⋅q1                       using (13) and (10) for t = 1 
                            ≡ VC(p0,p1,q0,q1). 
 
Thus the observable function of the data, VC(p0,p1,q0,q1), is exactly equal to the 
compensation variation, QC(q0,q1,p0), and hence is an exact quantity indicator function.  
If in addition, Q is exact for a flexible neoclassical utility function f, then we say that the 
corresponding VC(p0,p1,q0,q1) is a superlative quantity indicator.  
                      
Thus each superlative quantity index function, Q(p0,p1,q0,q1), generates two superlative 
quantity indicator functions, VE(p0,p1,q0,q1) defined in (52) which is exact for the 
theoretical equivalent variation, and VC(p0,p1,q0,q1) defined in (53) which is exact for the 
theoretical compensating variation.  Since there are an infinite number of superlative 
quantity indexes30, there are an infinite number of superlative quantity indicators. 
 
The above analysis can be repeated with some modifications in order to find superlative 
price indicator functions.  Thus again let P(p0,p1,q0,q1) and Q(p0,p1,q0,q1) be an exact pair 
of price and quantity indexes.  Now let the reference quantity vector q in (51) above 
equal the period 0 quantity vector, q0.  Then PH(p0,p1,f(q0)) becomes the Laspeyres price 
variation PHL(p0,p1,f(q0)) defined by (27) and thus (51) becomes the following equation: 
 
(54) PHL(p0,p1,f(q0))  = [c(p1) − c(p0)]f(q0) 
                                  = [{c(p1)/c(p0)} − 1]c(p0)f(q0) 
                                   = [P(p0,p1,q0,q1) − 1]p0⋅q0                      using (14) and (10) for t = 0 
                                   ≡ IHL(p0,p1,q0,q1). 
 
Thus the observable function of the data, IHL(p0,p1,q0,q1), defined to be equal to 
[P(p0,p1,q0,q1) − 1]p0⋅q0, is exactly equal to the Laspeyres price variation, 
PHL(p0,p1,f(q0)), and hence is an exact price indicator function.  If in addition, P is exact 
                                                 
30 See Diewert (1976). 
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for a flexible unit cost function c, then we say that IHL(p0,p1,q0,q1) is a superlative price 
indicator.  
 
Now let the reference quantity vector q in (51) above equal the period 1 quantity vector, 
q1.  Then PH(p0,p1,f(q1)) becomes the Paasche price variation PHP(p0,p1,f(q1) and thus (51) 
becomes the following equation: 
 
(55) PHP(p0,p1,f(q1))  = [c(p1) − c(p0)]f(q1) 
                                  = [1 − {c(p0)/c(p1)}]c(p1)f(q1) 
                                   = [1 − P(p0,p1,q0,q1)−1]p1⋅q1                   using (14) and (10) for t = 1 
                                   ≡ IHP(p0,p1,q0,q1). 
 
Thus the observable function of the data, IHP(p0,p1,q0,q1), defined to be equal to [1 − 
P(p0,p1,q0,q1)−1]p1⋅q1, is exactly equal to the Paasche  price variation, PHP(p0,p1,f(q1)), 
and hence is an exact price indicator function.  If in addition, P is exact for a flexible unit 
cost function c, then we say that IHP(p0,p1,q0,q1) is a superlative price indicator.  Again, 
since there are many superlative price index functions P(p0,p1,q0,q1), there will be many 
superlative price indicator functions.31 
 
There is one more detail to be settled in this analysis of superlative price and quantity 
indicator functions that are generated by traditional index number formulae: we want the 
sum of the price indicator and quantity indicator to be exactly equal to the value 
difference.  Thus suppose that we are given bilateral index number formulae P and Q that 
satisfy the product test (12) and we use these indexes to define the quantity indicators 
VE(p0,p1,q0,q1) by (52) and VC(p0,p1,q0,q1) by (53) and the price indicators IHL(p0,p1,q0,q1) 
by (54) and IHP(p0,p1,q0,q1) by (55).  Then using (12), it can be shown that numerically, 
the following equations will hold: 
 
(56) p1⋅q1 − p0⋅q0 = IHP(p0,p1,q0,q1) + VE(p0,p1,q0,q1) ; 
(57) p1⋅q1 − p0⋅q0 = IHL(p0,p1,q0,q1) + VC(p0,p1,q0,q1) . 
 
Thus the equivalent variation indicator VE(p0,p1,q0,q1) generated by Q needs to be 
matched up with the Paasche price variation indicator IHP(p0,p1,q0,q1) generated by P and 
the compensating variation indicator VC(p0,p1,q0,q1) generated by Q needs to be matched 
up with the Laspeyres price variation indicator IHL(p0,p1,q0,q1) generated by P in order for 
the value difference to equal the sum of a price and quantity indicator.  
 

                                                 
31 Diewert (2005; 333-337) also defined superlative price and quantity indicators in the case where 
consumer preferences were homothetic.  Diewert’s (2005; 336) superlative economic indicator of price 
change was defined as IE (p0,p1,q0,q1) = (1/2)IHL(p0,p1,q0,q1) + (1/2)IHP(p0,p1,q0,q1) where IHL and IHP are 
defined by the third equation in (54) and (55) respectively where the index number formula P(p0,p1,q0,q1) is 
superlative.  Thus our present definition of a superlative price or quantity indicator is a variation of 
Diewert’s earlier definition.  It should be noted that Fox (2006) generalized Diewert’s (2005) bilateral 
approach to multilateral comparisons.      
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This completes our discussion of superlative indicators when the consumer’s preferences 
are homothetic.  In the following section, we address the much more difficult task of 
finding superlative indicators in the nonhomothetic case. 
 
5. Strongly Superlative Price and Quantity Indicators 
 
The holy grail of applied welfare economics is to obtain a quantity variation indicator that 
is exact for fully flexible preferences.  To our knowledge, no one yet has succeeded in 
this quest.32  In this section, we will show that the Bennet quantity indicator is exact for 
fully flexible preferences, subject to the money metric cardinalization of utility defined 
by (20), except that normalized prices that are adjusted for general inflation between the 
two periods must be used in place of the original prices facing the consumer.  Since our 
focus is on quantity variations, this scaling of prices does not seem to be too serious a 
drawback to our suggested indicator of quantity change. 
 
We now distinguish the original (unscaled) price vector Pt ≡ [P1

t,...,PN
t] >> 0N that the 

consumer faces in period t for t = 0,1 from the scaled or normalized price vector pt which 
is proportional to Pt and will be defined shortly.  As in previous sections, the consumer’s 
observed quantity vector in period t is qt for t = 0,1.  Let the consumer’s utility function 
f(q) satisfy Conditions II (which are the usual nonhomothetic assumptions plus the 
assumption of money metric utility scaling (20) for some strictly positive reference prince 
vector P* >> 0N) and let the corresponding dual cost function be C(u,P).  We assume that 
the consumer’s cost function has the following translation homothetic normalized 
quadratic functional form, 33  which is a special case of translation homothetic 
preferences:34   
 
(58) C(u,P) ≡ b⋅P + (1/2) (α⋅P)−1P⋅BP + c⋅Pu  
 

                                                 
32 Recent attempts by Weitzman (1988) and Diewert (1992a) ended up making homotheticity assumptions 
or in the case of Diewert’s (1992a) Theorems 2 and 4, unrealistic assumptions relating the parameters of 
preferences to utility levels were made.  Chambers and Färe (1998) and Chambers (2001) also came close 
but their preference classes fell short of being fully flexible; Chambers (2001; 111) explained the problem 
with his class of preferences.  Diewert (1976; 123-124) had a fully flexible result but his result was exact 
for a Malmquist (1953) quantity index which is not an exact result for a quantity variation and moreover, 
the Malmquist index does not have the convenient aggregation properties that a Hicks-Samuelson quantity 
variation possesses.    
33 Diewert and Wales (1987) (1988a) (1988b) introduced the normalized quadratic cost function which can 
be defined as C(u,P) ≡ b⋅P + [(1/2) (α⋅P)−1P⋅BP + c⋅P]u  where b, c and B satisfy (59)-(62) and they showed 
that this functional form was flexible in the class of cost functions that satisfy the money metric utility 
scaling restrictions (20) for any predetermined parameter vector α > 0N.  The advantage of this functional 
form is that it contains a flexible unit cost function as a special case (just set b = 0N).  However, since 
preferences are generally nonhomothetic, this advantage is not necessarily a huge one.   
34 Chambers and Färe (1998; 640) and Chambers (2001; 111) introduced the term “translation homothetic 
preferences” and studied these preferences in some detail and noted their importance for the measurement 
of welfare change; see also Balk, Färe and Grosskopf (2004).  Blackorby, Boyce and Russell (1978; 348) 
introduced this class of preferences and Dickinson (1980; 1713) referred to this class of preferences as 
linear parallel preferences.  Dickinson (1980; 1715-1717) exhibited several examples of this class of 
preferences that were flexible.  
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where α > 0N, b and c are N dimensional parameter vectors and B is parameter matrix.  
These parameter vectors and matrix satisfy the following restrictions, where P* >> 0N is 
the reference vector which appears in (20), the definition for C to satisfy money metric 
utility scaling at the reference prices P*: 
 
(59) B = BT so that B is symmetric and B is negative semidefinite; 
(60) BP* = 0N ; 
(61) b⋅P* = 0 and 
(62) c⋅P* = 1. 
 
Using the techniques in Diewert and Wales (1987), it can be shown that (59) implies that 
the C defined by (58) is globally concave.  In the Appendix, we show that this functional 
form is flexible in the class of preferences satisfying the money metric utility scaling 
restrictions in (20) for any predetermined parameter vector α > 0N; i.e., given any α > 0N, 
we can find vectors b and c and a matrix of parameters B such that the restrictions (59)-
(62) are satisfied and the resulting C defined by (58) is flexible at the arbitrary point 
(u*,P*).  However, in general, this flexible functional form may not satisfy Conditions II 
for all u > 0 and all P >> 0N.  In the Appendix, we will define the region of prices and 
utility levels where the functional form satisfies the required regularity conditions for a 
cost function. 
 
Assuming that the consumer’s preferences can be represented by the cost function 
defined by (58)-(62) for the two periods under consideration, then assuming cost 
minimizing behavior on the part of the consumer, the following equations will hold: 
 
(63) Pt⋅qt = C(f(qt),Pt) = b⋅Pt + (1/2) (α⋅Pt)−1Pt⋅BPt + c⋅Pt f(qt) ;                               t = 0,1. 
 
Using Shephard’s Lemma, the consumer’s observed period t demand vector qt is equal to 
the following expression: 
 
(64) qt = ∇PC(f(qt),Pt) = b + (α⋅Pt)−1 BPt − (1/2)(α⋅Pt)−2 Pt⋅BPt α + c f(qt) ;              t = 0,1. 
 
If there is a great deal of general inflation between periods 0 and 1, then the 
compensating variation will be much larger than the equivalent variation simply due to 
this general inflation and taking an average of these two variations will be difficult to 
interpret due to the change in the scale of prices.  In order to eliminate the effects of 
general inflation between the two periods being compared, it will be useful to scale the 
prices in each period by a fixed basket price index of the form α⋅P where α ≡ [α1,...,αN] > 
0N is a nonnegative, nonzero vector of price weights.35  Thus, having chosen the price 

                                                 
35 A reasonable “standard” choice for the weighting vector α is α ≡ q0/P0⋅q0.  For this choice of α, the 
vector of period t normalized prices, pt ≡ Pt/Pt⋅α, can be interpreted as a period t vector of “real” prices 
using a fixed base Laspeyres price index to do the deflation of nominal prices.  Diewert (2005; 340-341) 
commented on the general inflation problem as follows: “The above quotation alerts us to a potential 
problem with our treatment of value changes; namely, if there is a great change in the general purchasing 
power of money between the two periods being compared, then our indicators of volume change may be 
“excessively” heavily weighted by the prices of the period that has the highest general price level.  Put 
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weighting vector α, the period t real prices that the consumer faces pt are defined as 
follows: 
 
(65) p0 ≡ P0/α⋅P0  ;  p1 ≡ P1/α⋅P1 . 
 
Note that these real price vectors will satisfy the following restrictions: 
 
(66) α⋅pt = α⋅Pt/α⋅Pt = 1 ;                                                                                          t = 0,1. 
 
Divide both sides of equation t in (63) by α⋅Pt and using definitions (65), the resulting 
equations become: 
 
(67) pt⋅qt = C(f(qt),pt) = b⋅pt + (1/2)pt⋅Bpt + c⋅ptf(qt) ;                                       t = 0,1. 
   
Similarly, substituting equations (65) and (66) into equations (64) leads to the following 
equations relating the consumer’s period t quantity vectors qt to the real price vectors pt: 
 
(68) qt = ∇PC(f(qt),pt) = b + Bpt − (1/2)pt⋅Bptα + cf(qt) ;                                  t = 0,1. 
 
With the above preliminaries out of the way, we are ready to state our first Proposition 
which relates the Bennet quantity indicator defined earlier by (41), VB(p0,p1,q0,q1) ≡ 
(1/2)[p0+p1]⋅[q1−q0], to the theoretical equivalent and compensating variations defined by 
(24) and (25), QE(q0,q1,p0) ≡ C(f(q1),p0) − C(f(q0),p0) and QC(q0,q1,p1) ≡ C(f(q1),p1) − 
C(f(q0),p1), where we are using the scaled real price vectors pt defined by (65) as 
reference price vectors in place of the original nominal price vectors Pt. 
 
Proposition 1:  Let the consumer’s observed period t data be (Pt,qt) and suppose that the 
consumer minimizes the cost of achieving the period t utility level for each period t = 0,1.  
Let α > 0N be a given vector of price weights that are used in order to construct the period 
t real price vectors, pt ≡ Pt/α⋅Pt for t = 0,1.  Suppose a consumer has preferences f(q) 
which are dual to the translation homothetic normalized quadratic cost function C(u,P) 
defined by (58)-(62) and define ut ≡ f(qt) for t = 0,1.  Then the Bennet quantity indicator 
defined by (41) using the real prices defined by (65) is exactly equal to the arithmetic 
average of the equivalent and compensating variations defined by (24) and (25) using the 

                                                                                                                                                 
another way, the units that quantities are measured in do not require any comparisons with other quantities 
but the dollar price of a quantity is the valuation of a unit of a commodity relative to a numeraire 
commodity, money.  Thus the indicators of price change that we have discussed in this paper encompass 
both general changes in the purchasing power of money as well as changes in  inflation adjusted prices.  
Thus if there is high inflation between periods 0 and 1 and quantities have increased, then the use of 
symmetric in prices and quantities indicators (like the Bennet and Montgomery indicators) will shift some 
of the inflationary increase in values over to the indicator of volume change.”  Diewert (2005; 341) 
suggested deflating the prices of the second period by a general index of inflation going from period 0 to 1 
whereas our solution is more specific in that we choose a Laspeyres type index to do the deflation.  Diewert 
(1992a; 566) discussed other normalizations that have been used historically by various authors in order to 
construct suitable real prices for use in the measurement of welfare change by volume or quantity 
indicators. 
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real price vectors as reference prices rather than the original nominal price vectors; i.e., 
we have 
 
(69) VB(p0,p1,q0,q1) = (1/2)QE(q0,q1,p0) + (1/2)QC(q0,q1,p1). 
 
Proof:  
 
(70) 2VB(p0,p1,q0,q1) = [p0 + p1]⋅[q1 − q0]                                              using definition (41)  
                                  = p0⋅q1 − C(f(q0),p0) + C(f(q1),p1) − p1⋅q0                            using (67) 
                                  = p0⋅[b + Bp1 − (1/2)p1⋅Bp1α + cf(q1)] − C(f(q0),p0) 
                                     + C(f(q1),p1) − p1⋅[b + Bp0 − (1/2)p0⋅Bp0α + cf(q0)]         using (68) 
                                   = p0⋅b +p0⋅Bp1 − (1/2)p1⋅Bp1 + p0⋅cf(q1) − C(f(q0),p0) 
                                     + C(f(q1),p1) − [p1⋅b + p1⋅Bp0 − (1/2)p0⋅Bp0 + p1⋅cf(q0)]  using (66) 
                                   = [p0⋅b + (1/2)p0⋅Bp0 + p0⋅cf(q1)] − C(f(q0),p0) 
                                     + C(f(q1),p1) − [p1⋅b + (1/2)p1⋅Bp1 + p1⋅cf(q0)]                 using (59) 
                                   = C(f(q1),p0) − C(f(q0),p0) + C(f(q1),p1) − C(f(q0),p1)        using (67) 
                                   = QE(q0,q1,p0) + QC(q0,q1,p1)              using definitions (24) and (25) 
 
which is equivalent to (69).                                                                                    Q.E.D.                 
                                         
Corollary 1: Under the conditions of the above Proposition, the following equality holds: 
 
(71) VB(p0,p1,q0,q1) = C(f(q1),(1/2)[p0+p1]) − C(f(q0),(1/2)[p0+p1]) 
                               ≡ QS(q0,q1,(1/2)[p0+p1]). 
 
Proof: From (70), we have the following equality: 
 
(72) 2VB(p0,p1,q0,q1) = C(f(q1),p0) − C(f(q0),p0) + C(f(q1),p1) − C(f(q0),p1) 
                                  = p0⋅c[f(q1) − f(q0)] + p1⋅c[f(q1) − f(q0)]              using definition (67) 
                                  = [p0 + p1]⋅c[f(q1) − f(q0)]  
                                  = C(f(q1),p0+p1) − C(f(q0),p0+p1)              
 
where the last equality follows adding and subtracting terms and using definition (67) for 
C.  Using the linear homogeneity property of C(u,p) in p, it can be seen that (72) implies 
(71).                                                                                                                            Q.E.D. 
 
The equality (71) shows that the Bennet quantity indicator, VB(p0,p1,q0,q1), is a strongly 
superlative indicator, since it is exact for the theoretical quantity variation, 
QS(q0,q1,(1/2)p0 + (1/2)p1), using reference prices that are between p0 and p1, namely the 
arithmetic average reference prices (1/2)p0 + (1/2)p1. 
 
There is a counterpart to Proposition 1 for the Bennet price indicator.  Proposition 2 
relates the Bennet price indicator defined earlier by (40), IB(p0,p1,q0,q1) ≡ 
(1/2)[q0+q1]⋅[p1−p0], to the theoretical Laspeyres and Paasche price variation functions  
defined by (27) and (28), PHL(p0,p1,f(q0)) ≡ C(f(q0),p1) − C(f(q0),p0) and PHP(p0,p1,f(q1)) ≡ 
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C(f(q1),p1) − C(f(q1),p0), where again we use the scaled real price vectors pt defined by 
(65) as reference price vectors in place of the original nominal price vectors Pt. 
 
Proposition 2:  Under the hypotheses listed in Proposition 1, the Bennet price indicator  
defined by (40) using the real prices defined by (65) is exactly equal to the arithmetic 
average of the Laspeyres and Paasche price variations defined by (27) and (28) using the 
real price vectors as reference prices rather than the original nominal price vectors; i.e., 
we have 
 
(73) IB(p0,p1,q0,q1) = (1/2) PHL(p0,p1,f(q0)) + (1/2)PHP(p0,p1,f(q1)). 
 
Proof:36  
 
(74) 2IB(p0,p1,q0,q1) = [q0 + q1]⋅[p1 − p0]                                               using definition (40)  
                                  = p1⋅q0 − C(f(q0),p0) + C(f(q1),p1) − p0⋅q1                            using (67) 
                                  = p1⋅[b + Bp0 − (1/2)p0⋅Bp0α + cf(q0)] − C(f(q0),p0) 
                                     + C(f(q1),p1) − p0⋅[b + Bp1 − (1/2)p1⋅Bp1α + cf(q1)]         using (68) 
                                   = p1⋅b +p1⋅Bp0 − (1/2)p0⋅Bp0 + p1⋅cf(q0) − C(f(q0),p0) 
                                     + C(f(q1),p1) − [p0⋅b + p0⋅Bp1 − (1/2)p1⋅Bp1 + p0⋅cf(q1)]  using (66) 
                                   = [p1⋅b + (1/2)p1⋅Bp1 + p1⋅cf(q0)] − C(f(q0),p0) 
                                     + C(f(q1),p1) − [p0⋅b + (1/2)p0⋅Bp0 + p0⋅cf(q1)]                 using (59) 
                                   = C(f(q0),p1) − C(f(q0),p0) + C(f(q1),p1) − C(f(q1),p0)        using (67) 
                                   = PHL(p0,p1,f(q0)) + PHP(p0,p1,f(q1))   using definitions (27) and (28) 
 
which is equivalent to (73).                                                                                        Q.E.D.     
   
Corollary 2: Under the conditions of the above Proposition, the following equality holds: 
 
(75) IB(p0,p1,q0,q1) = C((1/2)f(q0)+(1/2)f(q1),p1) − C((1/2)f(q0)+(1/2)f(q1),p0) 
                               ≡ PH(p0,p1,(1/2)f(q0)+(1/2)f(q1)) . 
 
Proof: From (74), we have the following equality: 
 
(76) 2IB(p0,p1,q0,q1) = C(f(q0),p1) − C(f(q0),p0) + C(f(q1),p1) − C(f(q1),p0) 
           = [p1⋅b + (1/2)p1⋅Bp1 + p1⋅cf(q0)] − [p0⋅b + (1/2)p0⋅Bp0 + p0⋅cf(q0)] 
               + [p1⋅b + (1/2)p1⋅Bp1 + p1⋅cf(q1)] − [p0⋅b + (1/2)p0⋅Bp0 + p0⋅cf(q1)]      using (58) 
           = 2[p1⋅b + (1/2)p1⋅Bp1 + p1⋅c(1/2){f(q0)+f(q1)}]  
              − 2[p1⋅b + (1/2)p1⋅Bp1 + p1⋅c(1/2){f(q0)+f(q1)}]                          rearranging terms 
          = 2C((1/2)f(q0)+(1/2)f(q1),p1) − 2C((1/2)f(q0)+(1/2)f(q1),p0)     using definition (58) 
          = 2 PH(p0,p1,(1/2)f(q0)+(1/2)f(q1))                                              using definition (26) 
 
which is equivalent to (75).                                                                                        Q.E.D.                                                        
                                                 
36 Our technique of proof is closely related to the techniques used by Balk, Färe and Grosskopf (2004; 160-
161) but our functional form assumptions are different and they do not establish a flexibility result for the 
class of functional forms that they use in their proofs.   
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The equality (75) shows that the Bennet price indicator, IB(p0,p1,q0,q1), is a strongly 
superlative indicator, since it is exact for the theoretical Hicksian price variation, 
PH(p0,p1,(1/2)u0+(1/2)u1), using the arithmetic average of the period 0 and 1 utility levels, 
u0 and u1, as the reference utility level. 
 
Bennet (1920) showed that the sum of the Bennet price and quantity indicators, 
IB(p0,p1,q0,q1) plus VB(p0,p1,q0,q1), is numerically equal to the value difference, p1⋅q1 − 
p0⋅q0; recall (44) above.  The above two Propositions show that the Bennet indicators 
have strong economic interpretations if we use real prices instead of nominal prices when 
calculating these indicators; i.e., they are both strongly superlative indexes.37     
                                   
Another advantage of the Bennet quantity indicator is that it has a nice aggregation over 
households property.  Thus let α > 0N and suppose that there are H households in the 
economy and household h has normalized quadratic translation homothetic preferences 
fh(q) that are dual to the following cost function Ch for h = 1,...,H: 
 
(77) Ch(uh,P) ≡ bh⋅P + (1/2) (α⋅P)−1P⋅BhP + ch⋅Puh  
 
where bh, ch and Bh satisfy the restrictions (59)-(62) for h = 1,...,H.  Let qht be household 
h’s observed consumption vector for period t and let household h face the price vector Pht 
in period t for h = 1,...,H and t = 0,1.  Define the vector of real prices that household h 
faces in period t, pht, as follows: 
 
(78) pht ≡ Pht/α⋅Pht ;                                                                                  t = 0,1 ; h = 1,...,H. 
 
Now make the hypotheses in Proposition 1 for each household and we find that the sum 
over households of the Bennet quantity indicators VB(ph0,ph1,qh0,qh1) for each household h 
is equal to the average of the sum of the household h equivalent and compensating 
variations, QE

h(qh0,qh1,ph0) and QC
h(qh0,qh1,ph1); i.e., using Proposition 1, we have: 

 
(79) ∑h=1

H VB(ph0,ph1,qh0,qh1) ≡ ∑h=1
H (1/2)[ph0 + ph1]⋅[qh1 − qh0]   

                 = (1/2)∑h=1
H QE

h(qh0,qh1,ph0) + (1/2)∑h=1
H QC

h
 (qh0,qh1,ph0) 

                 = ∑h=1
H  QS

h(qh0,qh1,(1/2)[ph0+ph1])                                         using Corollary 1 
 
where for h = 1,...,H, QS

h(qh0,qh1,(1/2)[ph0+ph1]) is the Hicks Samuelson theoretical 
quantity variation for household h using the vector of average real prices facing 
household h for the two periods under consideration, (1/2)ph0 + (1/2)ph1, as the reference 
price vector.  Thus if individual household price and quantity data are available, the sum 
of these theoretical quantity variations can be calculated as the sum of the observable 
Bennet quantity indicators. 
 

                                                 
37 Diewert (2005) and Balk (2007) indicated that the Bennet indicators had excellent axiomatic properties 
as well.  Thus the Bennet indicators seem to be the difference counterparts to the Fisher indexes in normal 
ratio index number theory, since the Fisher indexes also have strong economic and axiomatic properties. 
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If in addition, each household faces the same vector of prices p0 in period 0 and p1 in 
period 1, then (79) simplifies as follows: 
 
(80) VB(p0,p1,q0,q1) ≡ (1/2)[p0 + p1]⋅[q1 − q0]   
                 = (1/2)∑h=1

H QE
h(qh0,qh1,p0) + (1/2)∑h=1

H QC
h

 (qh0,qh1,p0) 
                 = ∑h=1

H  QS
h(qh0,qh1,(1/2)[p0+p1]) 

 
where the aggregate period t quantity vectors qt are defined as the sum of the individual 
household quantity vectors: 
 
(81) q0 ≡ ∑h=1

H qh0 ; q1 ≡ ∑h=1
H qh1 . 

 
Thus under the assumptions of Proposition 1 and the assumption that each household 
faces the same prices in each period, the aggregate Bennet indicator of quantity change, 
VB(p0,p1,q0,q1) defined by the first line in (80), is exactly equal to the arithmetic average 
of the sum of the individual household equivalent variations, ∑h=1

H QE
h(qh0,qh1,p0), plus 

the sum of the individual compensating variations, ∑h=1
H QC

h
 (qh0,qh1,p0).  Under these 

hypotheses, the aggregate Bennet indicator of quantity change is also exactly equal to the 
sum over households of the Hicks Samuelson theoretical quantity variations using the 
vector of average real prices facing household h for the two periods under consideration, 
∑h=1

H  QS
h(qh0,qh1,(1/2)[p0+p1]).38          

 
6. The Decomposition Properties of the Bennet Indicators 
 
In the production context, Diewert and Morrison (1986), Morrison and Diewert (1990) 
and Kohli (1990) (1991) developed a methodology that enables one to obtain exact 
decompositions of various Törnqvist indexes into explanatory factors for each price or 
quantity change using the assumption of a translog technology.39  It would be useful if we 
could provide a similar decomposition result for the Bennet indicators but we are not able 
to accomplish this task.  However, Diewert and Morrison (1986; 674-676) developed an 
average of first order approximations methodology which gave very similar results to 
their translog methodology40 and so we will use this second approach below in order to 
provide economic interpretations for each separate term in the Bennet indicators. 
 
In this section, we will not make any specific parametric assumptions; we will assume 
only that the consumer’s cost function C(u,P) satisfies conditions I and in addition, 
C(u,P) and the dual f(q) are once differentiable in a neighbourhood around the observed 
period t real price and quantity vectors, pt ≡ Pt/α⋅qt and qt, and around the observed period 
t utility levels, ut ≡ f(qt), for t = 0,1.  Hence the following equations will be satisfied by 
the data under the assumption that the consumer minimizes costs in each period:    
 
                                                 
38 This result is analogous to Chamber’s (2001; 114) exact result for an aggregate normalized Bennet 
quantity indicator in the context of Chamber’s benefit function framework.  
39 Diewert (2002) also developed some decomposition results for the Fisher indexes but these results lack 
the simplicity of the Törnqvist decomposition results. 
40 See Morrison and Diewert (1990) and Diewert and Lawrence (2006). 
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(82) pt⋅qt = C(f(qt),pt) ;                                                                                              t = 0,1; 
(83)     qt = ∇P C(f(qt),Pt) = ∇p C(f(qt),pt) ;                                                                t = 0,1. 
 
The first set of equalities in (83) follows from Shephard’s Lemma and the second set 
follows from the proportionality of the real prices pt to the corresponding nominal prices 
Pt and the linear homogeneity of the cost function C(u,P) in the components of P so that 
the partial derivative functions ∂C(u,P)/∂Pn are homogeneous of degree 0 in their price 
variables.   
 
Define the nth partial Bennet price and quantity indicators, In(pn

0,pn
1,qn

0,qn
1) and 

Vn(pn
0,pn

1,qn
0,qn

1), as follows: 
 
(84) IBn(pn

0,pn
1,qn

0,qn
1) ≡ (1/2)[qn

0 + qn
1][pn

1 − pn
0] ;                                          n = 1,...,N;  

(85) VBn(pn
0,pn

1,qn
0,qn

1) ≡ (1/2)[pn
0 + pn

1][qn
1 − qn

0] ;                                         n = 1,...,N.  
                                                                                                 
Note that the above partial indicators using real prices sum up to the overall Bennet 
indicators using real prices; i.e., we have: 
 
(86)  IB(p0,p1,q0,q1) = ∑n=1

N IBn(pn
0,pn

1,qn
0,qn

1) ; 
(87) VB(p0,p1,q0,q1) = ∑n=1

N VBn(pn
0,pn

1,qn
0,qn

1). 
 
We will relate the above observable partial indicators to theoretical partial indicators: for 
each n, define the Laspeyres and Paasche partial price variations, αLn and αPn, as 
follows:41 
 
(88) αLn ≡ C(f(q0),p1

0,...,pn−1
0, pn

1, pn+1
0,...,pN

0) − C(f(q0),p0) ;                           n = 1,...,N ; 
(89) αPn ≡ C(f(q1),p1) − C(f(q1),p1

1,...,pn−1
1, pn

0, pn+1
1,...,pN

1)  ;                          n = 1,...,N . 
 
Thus the nth partial price Laspeyres variation, αLn, is the difference in real expenditure 
that would result if the standard of living of the consumer were held constant at the 
period 0 utility level, u0 ≡ f(q0), and all real prices are also held constant at their period 0 
levels except that we allow the nth real price to increase from the period 0 level, pn

0, to 
the period 1 level, pn

1.  The nth partial price Paasche variation, αPn, has a similar 
interpretation except that the reference utility level is held constant at the period 1 level, 
u1 ≡ f(q1), and all real prices are held constant at their period 1 levels and as before, we 
allow the nth real price to increase from the period 0 level, pn

0, to the period 1 level, pn
1.  

 
It is possible to adapt the first order approximation methods used to derive the 
approximations (36) and (38) in the present context.  Thus first order approximations to 
the unobservable terms in (88) and (89) can be obtained as follows: for n = 1,...,N, we 
have: 
 
(90) C(f(q0),p1

0,...,pn−1
0, pn

1, pn+1
0,...,pN

0) ≈ C(f(q0),p0) + [∂C(f(q0),p0)/∂pn][pn
1 − pn

0] 
                                                 
41 These variations are difference counterparts to the partial indexes defined in Diewert and Morrison 
(1986) and Kohli (1990). 
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                          = C(f(q0),p0) + qn
0[pn

1 − pn
0]                       using Shepard’s Lemma (83) ; 

                           
(91) C(f(q1),p1

1,...,pn−1
1, pn

0, pn+1
1,...,pN

1) ≈ C(f(q1),p1) + [∂C(f(q1),p1)/∂pn][pn
0 − pn

1] 
                          = C(f(q1),p1) + qn

1[pn
0 − pn

1]                         using Shepard’s Lemma (83). 
 
Substituting (90) and (91) into (88) and (89) leads to the following observable first order 
approximations, aLn and aPn  to the Laspeyres and Paasche partial price variations, αLn 
and αPn:42 
 
(92) αLn ≈ qn

0[pn
1 − pn

0] ≡ aLn ;                                                                            n = 1,...,N ; 
(93) αPn ≈ qn

1[pn
1 − pn

0] ≡ aPn ;                                                                            n = 1,...,N . 
 
Thus using definitions (84) for the Bennet partial price indicators, IBn(pn

0,pn
1,qn

0,qn
1), it 

can be seen that they are exactly equal to the arithmetic average of the Laspeyres and 
Paasche partial price indicators, (1/2)aLn + (1/2)aPn, which in turn approximate the 
average of theoretical Laspeyres and Paasche partial price variations, (1/2)αLn + (1/2)αPn, 
to the first order; i.e., we have: 
 
Proposition 3: 
 
(94) IBn(pn

0,pn
1,qn

0,qn
1) = (1/2)aLn + (1/2)aPn ≈ (1/2)αLn + (1/2)αPn ;                   n = 1,...,N. 

 
The above results are nonparametric; i.e., the approximations given by (92)-(94) are first 
order Taylor series approximations that are valid no matter what (once differentiable) 
preferences the consumer holds.  However, if we assume that the consumer has 
preferences that can be represented by the translation homothetic normalized quadratic 
cost function C(u,P) defined by (58)-(62), then we can obtain an exact expression for the 
gap between the Bennet partial indicator on the left hand side of (94) and the average of 
the theoretical partial variations on the right hand side of (94); i.e., we can obtain the 
following expression for the bias BBPn in the nth Bennet partial price indicator; i.e., we 
have: 
 
(95) IBn(pn

0,pn
1,qn

0,qn
1) = (1/2)αLn + (1/2)αPn + BBPn ;                                        n = 1,...,N; 

(96)                     BBPn ≡ −(1/2)αn[p0⋅Bp0 + p1⋅Bp1][pn
1 − pn

0]  
 
where αn is the nth component in the weighting vector α that is used to form real prices.  
Since ∑n=1

N αnpn
t = 1 for t = 0,1, it can be seen that: 

 
(97) ∑n=1

N BBPn = 0 

                                                 
42 Using simple feasibility arguments for the cost minimization problems defined by the left hand sides of 
(90) and (91), it can be shown that aLn ≥ αLn  and aPn ≤ αPn so that the Laspeyres partial price indicators aLn 
generally biased upwards for the true partial Laspeyres price indexes αLn and the Paasche partial price 
indicators aPn generally biased downwards for the true partial Paasche price indexes αPn; i.e., these partial 
price indicators will generally have some substitution bias, which will tend to cancel out when we take their 
averages. 
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so that the sum of the bias terms in the Bennet partial indicators IBn(pn

0,pn
1,qn

0,qn
1) sums 

to zero.43  Let P* be the money metric utility scaling vector which appears in (60)-(62) 
and define its real counterpart by p* ≡ P*/P*⋅α.  If p0 is proportional to p*, then p0⋅Bp0 is 
equal to 0 and if p1 is proportional to p*, then p1⋅Bp1 is equal to 0 and under these 
conditions, it can be seen that all of the bias terms BBPn will be equal to 0 as well.  Hence 
if p0 and p1 are close to each other, then we can choose the reference price vector p* to be 
close to p0 and p1 and the bias terms will all be close to 0.       
 
Finding economic interpretations for the Bennet partial quantity indicators, 
VBn(pn

0,pn
1,qn

0,qn
1), is more difficult.  For each n, we first define the theoretical 

Laspeyres and Paasche partial quantity variations, βLn and βPn, as follows: 
 
(98) βLn ≡ C(f(q1

0,...,qn−1
0, qn

1, qn+1
0,...,qN

0),p0) − C(f(q0),p0) ;                           n = 1,...,N ; 
(99) βPn ≡ C(f(q1),p1) − C(f(q1

1,...,qn−1
1,qn

0,qn+1
1,...,qN

1),p1)  ;                            n = 1,...,N . 
 
Thus the nth partial quantity Laspeyres variation, βLn, is the difference in real expenditure 
that would result if the real prices of the consumer are held constant at their period 0 
levels p0 and all quantities are also held constant at their period 0 except that we allow the 
nth quantity to increase from the period 0 level, qn

0, to the period 1 level, qn
1.  The nth 

partial quantity Paasche variation, βPn, has a similar interpretation except that the 
reference prices are held constant at their period 1 levels p1 and all quantities are also held 
constant at their period 1 levels except that we allow the nth quantity to increase from the 
period 0 level, qn

0, to the period 1 level, qn
1. 

 
In order to obtain observable first order approximations to the theoretical quantity 
variations defined by (98) and (98), it is first necessary to develop some preliminary 
material.  Define the function ht(q) for q’s in a neighborhood of qt as follows: 
 
(100) ht(q) ≡ C(f(q),pt) ;                                                                                              t = 0,1.  
 
Under our assumptions, ht(q) is once differentiable at qt and we can calculate the vector 
of first order partial derivatives as follows: 
 
(101) ∇qht(qt) = [∂C(f(qt),pt)/∂u] ∇qf(qt) ;                                                                  t = 0,1. 
 
Under our assumptions, qt solves the cost minimization problem defined by C(f(qt),pt) for 
t = 0,1 and since f(q) is differentiable at qt, there exists a nonnegative Lagrange multiplier 
λt such that the following first order necessary conditions for the period t cost 
minimization problem are satisfied:44 
 
(102) pt = λt ∇qf(qt) ;                                                                                                  t = 0,1.       

                                                 
43 This must be the case in order for Proposition 2 to hold. 
44 Strictly speaking, we require qt >> 0N to ensure that conditions (102) are satisfied and later we will also 
require that marginal cost be positive so that ∂C(f(qt),pt)/∂u > 0 for t = 0,1. 
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But Samuelson (1947) showed that the period t Lagrange multiplier λt which appears in 
(102) is also equal to the period t marginal cost around the equilibrium point so that we 
have: 
 
(103) λt = ∂C(f(qt),pt)/∂u ;                                                                                          t = 0,1. 
 
Substituting (102) and (103) into (101) gives us the following simple expression for the 
derivatives of the function ht(q) defined by (100): 
 
(104) [∂C(f(qt),pt)/∂u]∇qf(qt) ≡ ∇qht(qt) = pt ;                                                           t = 0,1. 
  
Equations (104) seem to have been first derived by Balk (1989; 166) so we can call these 
relationships Balk’s Lemma.   With the above preliminary material out of the way, we can 
now proceed to the task of finding first order approximations to the theoretical partial 
quantity variations βLn and βPn defined by (98) and (99).  Thus a first order approximation 
to the unobservable term C(f(q1

0,...,qn−1
0, qn

1, qn+1
0,...,qN

0),p0) in (98) is: 
 
(105) C(f(q1

0,...,qn−1
0, qn

1, qn+1
0,...,qN

0),p0)                                          n = 1,...,N  
                          ≈ C(f(q0),p0) + [∂h0(q0)/∂qn][qn

1 − qn
0]                      using (100) for t = 0 

                          = C(f(q0),p0) + pn
0[qn

1 − qn
0]                                      using (104) for t = 0.  

  
Similarly, a first order approximation to the unobservable term 
C(f(q1

1,...,qn−1
1,qn

0,qn+1
1,...,qN

1),p1) in (99) is: 
 
(106) C(f(q1

1,...,qn−1
1,qn

0,qn+1
1,...,qN

1),p1)                                            n = 1,...,N  
                          ≈ C(f(q1),p1) + [∂h1(q1)/∂qn][qn

0 − qn
1]                      using (100) for t = 1 

                          = C(f(q1),p1) + pn
1[qn

0 − qn
1]                                      using (104) for t = 1.  

  
Substituting (105) and (106) into (98) and (99) leads to the following observable first 
order approximations, bLn and bPn  to the Laspeyres and Paasche partial quantity 
variations, βLn and βPn:45 
 
(107) βLn ≈ pn

0[qn
1 − qn

0] ≡ bLn ;                                                                         n = 1,...,N ; 
(108) βPn ≈ pn

1[qn
1 − qn

0] ≡ bPn ;                                                                          n = 1,...,N . 
 
Thus using definitions (85) for the Bennet partial quantity indicators, VBn(pn

0,pn
1,qn

0,qn
1), 

it can be seen that they are exactly equal to the arithmetic average of the Laspeyres and 
Paasche partial quantity indicators, (1/2)bLn + (1/2)bPn, which in turn approximate the 

                                                 
45 Using simple feasibility arguments for the cost minimization problems defined by the left hand sides of 
(102) and (103), it can be shown that bLn ≥ βLn  and bPn ≤ βPn so that the Laspeyres partial quantity 
indicators bLn generally biased upwards for the true partial Laspeyres quantity indexes βLn and the Paasche 
partial quantity indicators bPn generally biased downwards for the true partial Paasche quantity indexes βPn; 
i.e., these partial quantity indicators will generally have some substitution bias, which will tend to cancel 
out when we take their averages. 
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average of the theoretical Laspeyres and Paasche partial price variations, (1/2)βLn + 
(1/2)β Pn, to the first order; i.e., we have: 
 
Proposition 4: 
 
(109) VBn(pn

0,pn
1,qn

0,qn
1) = (1/2)bLn + (1/2)bPn ≈ (1/2)β Ln + (1/2)β Pn ;              n = 1,...,N. 

 
This completes our theoretical discussion of the properties of the Bennet indicators.  In 
the following section, we illustrate the use of these indicators for a Japanese data set. 
 
7. The Bennet Indicators using Japanese Data 
 
In this section, we apply our methodology to Japanese consumption data.  These data 
were constructed from the Japanese national accounts for 12 classes of expenditure for 
the period 1980-2006.  The prices for each commodity class were normalized to equal 
one in 1980; see Tables B-1 and B-2 in Appendix B for a listing of the data.  We chose 
food and non-alcoholic beverages to be our numeraire commodity and the resulting real 
prices are listed in Table B-3.46  Aggregate expenditures evaluated in terms of real prices 
are 127753 billion yen in 1980 and 232679 in 2006.  Therefore, household expenditures 
evaluated in real prices increased by 104927 billion yen over the last 27 years.  We 
calculate Bennet indicators of quantity changes and real price changes to decompose the 
expenditure difference for every year.  Table 1 lists value the real expenditure differences 
and the Bennet indicators for the period 1981-2006.  Table 2 lists their annual averages.  
It tells us that the effects of real price changes are much smaller than the effects of 
quantity changes.  However, the impact of real price changes has been significant for the 
last decade. 
 
Table 1: Real Expenditure Differences and Bennet Indicators, 1981-2006 

                                                 
46 This choice of deflator means that we used the weighting vector α = (1,0,…0)T. 
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Table 2: Annual Averages of Real Expenditure Differences and Bennet Indicators 

 
 
Our focus is on real consumption that measures the overall utility or volume of aggregate 
consumption.  Real consumption can be computed throughout either the traditional ratio 
approach to quantity indexes or by the difference approach as outlined in this paper.  
However, if we use the ratio approach, the choice of specific index number formula could 
matter for the value of real consumption.  Therefore, we use the difference approach as 
well as alternative index number formulae in order to evaluate the performance of the 
difference approach relative to that of the ratio approach. 
 
Real consumption coincides with the corresponding nominal value at the reference year.  
Setting 1980 to be the reference year, we calculate different versions of real consumption 
for all years using the ratio approach and the difference approach. Fixed base and chained 
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quantity indexes were computed using the Laspeyres, Paasche, Fisher and Törnqvist-
Theil formulae.47  The results are listed in Table 3 below.  The last column of Table 3 
lists the corresponding Bennet estimate of total consumption.  The first entry in this 
column is simply the 1980 measure of Japanese total consumption expenditures divided 
by the price of food; i.e., the first entry in the second column of the Table.  The next entry 
in the Bennet column just adds the Bennet measure of quantity change or volume change 
VB defined by (41) above where the real price vectors and quantity vectors pertaining to 
the years 1980 and 1981 are used in the formula.  The 1982 entry in the Bennet column is 
just the 1981 entry plus the Bennet measure of quantity change going from 1981 to 1982 
and so on. 
 
Looking at Table 3, it can be seen that all of the index number estimates of real Japanese 
consumption are very close to each other with the exception of the fixed base Laspeyres 
and Paasche estimates.  This lack of correspondence is normal since these indexes are 
known to differ from their superlative counterparts when a fixed base is used.  The 
superlative chained indexes are particularly close to each other.  But how do these 
chained superlative indexes compare to the corresponding Bennet estimates of real 
consumption listed in the last column of Table 3?  It can be seen that the Bennet 
measures are always equal to or greater than their chained superlative counterparts but 
the differences are not very large: on average, the Bennet estimate exceeds its chained 
Fisher counterpart by 0.74% per year, with a maximum deviation of 1.1%.     
 
 
Table 3: Comparison of Japanese Real Consumption, 1980-2006 

                                                 
47 Two versions of the Törnqvist-Theil were computed for both fixed base and chained indexes: one that 
constructed the price index first using the usual formula (and then the quantity index was defined by 
dividing real expenditures by this direct price index) and the other was constructed by directly comparing a 
share weighted average of log quantity changes and exponentiating.  These two quantity indexes are 
superlative as is the Fisher index; see Diewert (1976) for the formula details. 
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What are we to conclude from the above results?  For the Japanese data, it seems that a 
standard superlative index number approach to measuring aggregate real consumption 
will be fairly close to the results generated by the theoretically preferable Bennet 
approach, which has better aggregation over consumer properties and is consistent with 
nonhomothetic preferences.  However, there seem to be small but significant differences 
between the Bennet estimates and those generated by chained superlative indexes.  
 
8. Conclusion 
 
This paper has established satisfactory difference theory counterparts to the standard 
results on exact and superlative indexes in the ratio approach to the aggregation over 
commodities problem.  The counterpart to a superlative index number formula is a 
superlative indicator formula.  We found that the Bennet indicators of price and quantity 
change were (strongly) superlative and thus we recommend their use in practical 
applications of cost benefit analysis when ex post variations must be calculated. 
 
In section 7 above, we found that, somewhat surprisingly, the results using the Bennet 
indicator of quantity change are rather close to the quantity aggregates generated by a 
superlative quantity index.  This is somewhat reassuring in that the ratio and difference 
approaches to economic aggregation seem to give more or less the same answer, at least 
for our Japanese data set. 
 
Finally, we mention one strong advantage of the difference approach over the ratio 
approach: the ratio approach fails if the quantity aggregate has a value equal to zero in the 
base period whereas the difference approach is unaffected by this complication.  This 
observation is important if labour supply enters the consumer’s utility function 
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(negatively rather than positively) since in this case, zero or negative value aggregates 
can readily occur.  Although we did not formally model this situation, we are confident 
that our techniques can be generalized to cover this situation.    
 
 
Appendix A: On the Flexibility of the Translation Homothetic Normalized 
Quadratic Cost Function. 
 
Let P* >> 0N be an arbitrary predetermined reference price vector and let α > 0N be a 
predetermined weighting vector.  Define the translation homothetic normalized quadratic 
cost function, C(u,P) by (58) where the two parameter vectors b and c and the parameter 
matrix B satisfy the restrictions (59)-(62).  The restrictions (61) and (62) imply that the b 
and c vectors each have only N − 1 independent parameters, bn and cn respectively, while 
the restrictions (59) and (60) imply that the N by N matrix B ≡ [bnm] has only N(N−1)/2 
independent parameters bmn.  Thus this functional form has 2N − 2 + N(N−1)/2 
independent parameters in all.48  In this Appendix, we will show that this C(u,P) is 
flexible in the class of cost functions satisfying Conditions II over a region of utility 
levels u and price vectors P.  
 
Let C*(u,P) be an arbitrary cost function satisfying Conditions II and suppose that it is 
twice continuously differentiable at u* > 0 and P* >> 0N.  We assume that it satisfies 
money metric utility scaling at the reference prices P* so that  
 
(A1) C*(u,P*) = u     for all u ≥ 0. 
 
In order for C(u,P) defined by (58)-(62) to be flexible at (u*,P*), the following equations 
need to be satisfied for some choice of b, c and B: 
 
(A2) C*(u*,P*)          = C(u*,P*)           = u*                                            using (58)-(62); 
(A3) ∇PC*(u*,P*)      = ∇PC(u*,P*)       = b + cu*                                   using (58)-(62); 
(A4) ∂C*(u*,P*)/∂u   = ∂C(u*,P*)/∂u    = 1                                             using (58) and (62) 
(A5) ∇2

PPC*(u*,P*)   = ∇2
PPC(u*,P*)    = (α⋅P*)−1B                                using (58)-(60); 

(A6) ∂2C*(u*,P*)/∂u2 = ∂2C(u*,P*)/∂u2 = 0                                             using (58); 
(A7) ∇2

PuC*(u*,P*)   = ∇2
PuC(u*,P*)    = c                                              using (58). 

(A8) ∇2
uPC*(u*,P*)   = ∇2

uPC(u*,P*)    = cT                                           
 
The number of equations in (A2)-(A8) is 1+N+1+N2+1+N+N.  However, Young’s 
Theorem on the equality of second order partial derivatives implies that there are only 
N(N+1)/2 independent equations in (A5) instead of N2 and the N equations in (A8) are 
implied by the N equations in (A7).  This leaves 3 + 2N + N(N+1)/2 equations to be 
satisfied.  However, both C*(u,P) and C(u,P) are positively linearly homogeneous in the 
prices P.  Hence Euler’s Theorem on homogeneous functions implies the following 3 sets 
of further restrictions on the derivatives of C* and C: 

                                                 
48 This turns out to be the minimal number of parameters required for a functional form to be flexible in the 
class of cost functions satisfying Conditions II; hence this flexible functional form is also parsimonious. 
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(A9)   C*(u*,P*)            = P*⋅∇PC*(u*,P*) ;      C(u*,P*)            = P*⋅∇PC(u*,P*) ; 
(A10) ∇2

PPC*(u*,P*)P* = 0N ;                          ∇2
PPC(u*,P*)P* = 0N ;  

(A11) P*⋅∇2
PuC*(u*,P*) = ∂C*(u*,P*)/∂u ;       P*⋅∇2

PuC(u*,P*) = ∂C(u*,P*)/∂u .                     
 
Thus there are 1+N+1 further equations which can be dropped which leaves 1 + 2N + 
N(N−1)/2 equations to be satisfied. 
 
Finally, both C* satisfies (A1) and C satisfies (20) in the main text; i.e., both C and C* 
satisfy money metric utility scaling at the reference prices P*.  Differentiation of (A1) and 
(20) gives us the following additional 3 restrictions on the levels and derivatives of C and 
C*: 
 
(A12)  u* = C*(u*,P*) = P*⋅∇PC*(u*,P*) ;      u* = C(u*,P*) = P*⋅∇PC(u*,P*)        using (A9); 
(A13)   ∂C*(u*,P*)/∂u = 1 ;                           ∂C(u*,P*)/∂u  = 1; 
(A14) ∂2C*(u*,P*)/∂u2 = 0 ;                         ∂2C(u*,P*)/∂u2 = 0. 
 
Thus we will require that C have at least 2N − 2 + N(N−1)/2 free parameters so that this 
number of independent equations can be satisfied.  Using the above material, it can be 
seen that we will satisfy all of the equations (A2)-(A8) if we can find b, c and B which 
satisfy equations (A3), (A5) and (A7) where the chosen b,c and B must satisfy the 
restrictions (59)-(62).  This can readily be done.  Use equations (A5) in order to define B 
as follows: 
 
(A15) B ≡ α⋅P* ∇2

PPC*(u*,P*). 
 
Since α > 0N and P* >> 0N, α⋅P* is greater than 0.  Since C*(u,P) is concave in P, 
∇2

PPC*(u*,P*) is a negative semidefinite symmetric matrix and hence so is B.  Since 
C*(u,P) is linearly homogeneous in P, (A10) holds and so ∇2

PPC*(u*,P*)P* = 0N.  Thus the 
B defined by (A15) satisfies the restrictions (59) and (60).  Now use equations (A7) in 
order to define c: 
 
(A16) c ≡ ∇2

PuC*(u*,P*). 
 
(A11) and (A13) will imply that the c defined by (A16) satisfies the restrictions (62) in 
the main text.  Now define u* using (A2): 
 
(A17) u* ≡ C*(u*,P*). 
 
Finally, define b using (A3) and definitions (A16) and (A17): 
 
(A18) b ≡ ∇PC*(u*,P*) −  ∇2

PuC*(u*,P*)C*(u*,P*).        
   
We need to verify that the b defined by (A18) satisfies the restriction (61) in the main 
text.  Using definition (A18), we have: 
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(A19) P*⋅b = P*⋅[∇PC*(u*,P*) −  ∇2

PuC*(u*,P*)C*(u*,P*)] 
                  = C*(u*,P*) − [∂C*(u*,P*)/∂u]C*(u*,P*)]                            using (A9) and (A11) 
                  =  C*(u*,P*) − 1C*(u*,P*)                                                   using (A13) 
                  = 0. 
 
Thus the parameter vector b defined by (A18) does indeed satisfy the restriction (61) and 
this completes our proof of the flexibility of the translation homothetic normalized 
quadratic functional form. 
 
Suppose C(u,P) is defined by (58) where B, b and c satisfy the restrictions (59)-(62).  The 
region of prices and utility levels where C satisfies the appropriate regularity conditions 
for a cost function are the set of P and u which satisfy the following inequalities: 
 
(A20) u ≥ 0 ; P ≥ 0N ; 
(A21) ∇PC(u,P) = b + (α⋅P)−1BP − (1/2) (α⋅P)−2 P⋅BPα + cu ≥ 0N ; 
(A22) ∂ C(u,P)/∂u = c⋅P > 0. 
 
We will illustrate what the preferences dual to the normalized quadratic translation 
homothetic cost function look like for the case of two commodities.  For all of the 
examples defined below, we choose the price weighting vector α which is used to form 
real prices as αT = [α1,α2] ≡ [1,0] and the reference price vector for money metric utility 
scaling P* to be P*T = [P1

*,P2
*] ≡ [1,1].   For Example 1, define the parameters in (58) as 

follows: 

(A23) bT = [b1,b2] ≡ [−1,1] ; cT = [c1,c2] ≡ [1/2,1/2] ; B =  ≡  . 

 
The preferences corresponding to this functional form are graphed in Figure 1. 
 
Figure 1: Leontief Translation Homothetic Preferences with No Inferior Goods      
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It can be seen that the regular region of utility levels and price vectors for this cost 
function is u ≥ 2 and P ≥ 0N.  The dual direct utility function is defined only over the set 
of quantity vectors such that q1 ≥ 0 and q2 ≥ 2.  Note that all of the indifference curves are 
simply parallel shifts of a base Leontief or L shaped indifference curve that goes through 
the point b = [−1,1].  The consumer’s income expansion path or Engel curve is the dashed 
line that passes through (0,2) and has slope c2/c1 = 1.  Note also that b⋅P* = (−1)(1) + 
(1)(1) = 0.  Any point q ≡ [q1,q2] that lies along the dashed line through b and the origin 
will have the property that q⋅P* will equal 0 and so as we vary b along this dashed line 
and vary the c vector, we will be able to approximate an arbitrary Engel curve locally by 
using this functional form.49  Finally, to illustrate money metric utility scaling, shift the 
dashed line through the point b and the origin (0,0) in a parallel fashion until it is just 
tangent to an indifference curve; we have drawn two of these parallel budget lines that 
are tangent to the u = 2 and u = 3 indifference curves.  The distance of these lines from 
the origin serves to cardinalize utility. 
 
Now consider Example 2 and define the parameters in (58) as follows: 

(A24) bT = [b1,b2] ≡ [−1,1] ; cT = [c1,c2] ≡ [1/2,1/2] ; B =  ≡  . 

 
The preferences that correspond to this functional form are graphed in Figure 2. 
 
Figure 2: Translation Homothetic Preferences with No Inferior Goods    
 
   

                                                 
49 This is a special case of the class of cost functions studied by Lau and Tamura (1972). 
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The dashed line through the point b and the origin is the set of q1 and q2 that satisfy the 
equation 
 
(A25) P1

*q1 + P2
*q2 = P1

*b1 + P2
*b2 = 0. 

 
Note that the base indifference curve (which corresponds to the zero utility level u = 0) is 
tangent to this budget line defined by (A26) and the higher utility indifference curves are 
simply parallel shifts of this base indifference curve.  It can be shown that the points (0, 
2−31/2) and (1/2, 0) are on the base indifference curve.  It can also be shown that as P2/P1 

tends to zero, the upper limiting point on the base indifference curve tends to the point 
(−3/2, 2)50 and as P2/P1 tends to plus infinity, the lower limiting point on the base 
indifference curve tends to (∞, −∞).  As was the case with the Figure 1 preferences, The 
consumer’s income expansion path or Engel curve is the dashed line that passes through 
(0,2) and has slope c2/c1 = 1.  Again, to illustrate money metric utility scaling, shift the 
dashed line through the point b and the origin (0,0) in a parallel fashion until it is just 
tangent to an indifference curve; we have drawn two of these parallel budget lines that 
are tangent to the u = 2 and u = 3 indifference curves.  The distance of these lines from 
the origin serves to cardinalize utility.  Thus for example, all of the points on the u = 2 
indifference curve are assigned the utility level 2 while all of the points on the u = 3 
indifference curve are assigned the utility level 3. 
 

                                                 
50 This indifference curve can be extended to cover higher levels of q2 in the obvious way. 

q2 

q1 

(0,0) 

b = (−1,1) 

slope is c2/c1 
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u = 3 

2 3 
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The regular region of prices and utility levels is more difficult to describe in a succinct 
fashion.  Basically, given u51 and P >> 0N, use Shephard’s Lemma to generate q ≡ 
∇PC(u,P) and check whether this q is nonnegative.  If so, then the given u and P belong to 
the regular region.  In our example, the vector c had positive components so the 
regularity condition ∂C(u,P)/∂u = c⋅P > 0 will automatically be satisfied.   
   
Note that the vector c is equal to ∇2

uP C(u,P) which in turn is equal to the vector of 
derivatives of the consumer’s Hicksian demand functions, q(u,P) ≡ ∇P C(u,P), with 
respect to an increase in utility u and thus indicates how the household’s consumption 
changes as utility increases.  If ∂qn(u,P)/∂u =  ∂2C(u,P)/∂Pn∂u is negative, then we say 
that commodity n is an inferior commodity at u, P.  Although it is easy to show that not 
all commodities can be inferior at a particular point, there is nothing to prevent one or 
more commodities from being inferior.  Hence if the consumer’s preferences are 
represented by a translation homothetic normalized quadratic cost function in a 
neighbourhood of a point where the consumer has one or more inferior commodities, then 
the parameter vector c will have one or more negative components.  This means that there 
will exist positive price vectors P such that c⋅P is negative and hence C(u,P) defined by 
(58) cannot be regular at these price vectors.  Fortunately, it is possible to show that the 
cost function defined by (58) can still be locally regular and provide a valid 
representation of a consumer’s nonhomothetic preferences in a neighborhood of  a point 
(u,P) where C(u,P) satisfies the required regularity conditions for a cost function locally. 
 
We conclude this section by considering an example where the second commodity is 
inferior.  For simplicity, we consider again the case of Leontief preferences.  Thus for 
Example 3, define the parameters in (58) as follows: 

(A26) bT = [b1,b2] ≡ [−1,1] ; cT = [c1,c2] ≡ [4/3,−1/3] ; B =  ≡  . 

 
The preferences corresponding to this functional form are graphed in Figure 3. 
 
Figure 3: Leontief Translation Homothetic Preferences with an Inferior Good 
 
 

                                                 
51 The utility level u does not have to be nonnegative in this example.  If we allow negative utility levels, 
then the dual preferences f(q) are well defined for all q ≥ 0N; i.e., if we restrict ourselves to u ≥ 0, then we 
will not be able to define the consumer’s preferences in the little triangle which is below the u = 0 
indifference curve intersected with the nonnegative quadrant. 
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The u = 0 indifference curve is the L shaped curve that has its corner at the point A, 
which is the point (q1,q2) = (−1,1) = (b1,b2) = b.  As usual, the point b lies on the line P*⋅q 
= 0 and the dashed line segment AO is part of this line.  The dashed line segments ending 
in D, F, H and C are all parallel to the line segment AO.  The consumer’s Engel curve at 
the reference prices P*T = [P1

*,P2
*] = [1,1] is the intersection of the line segment AC with 

the nonnegative orthant which is the line segment BC.  The first regular point on this line 
segment is the point B which corresponds to the point (q1,q2) = (0,3/4) and the 
corresponding money metric utility level is u = 3/4.  L shaped indifference curves that are 
translations of the base indifference curve corresponding to u = 0 have been drawn for the 
utility levels u = 3/4, u = 1, u = 2 and u = 3.  However, it can be seen that there is a 
problem with these indifference curves: they cross each other!  Geometrically, it is easy 
to solve this problem: for the u = 3/4 indifference curve, replace the lower line segment 
BK by the line segment BE, where the point E on this line segment must be strictly 
between the points D and C.  Similarly replace the bottom part of the u = 1 indifference 
curve that passes through M by the line segment that ends at the point G where this line 
segment is parallel to the line segment BE, replace the bottom part of the u = 2 
indifference curve that passes through N by the line segment that ends at the point I 
where this line segment is also parallel to the line segment BE, and so on.  The resulting 
system of indifference curves no longer cross and are well behaved.  Algebraically, we 
need to restrict the prices P1 and P2 so that the restrictions (A22), c⋅P > 0, are satisfied.  
Under assumptions (A26), (A22) becomes the following restriction on prices:  
 
(A27) P2 < 4 P1. 
 
In order to satisfy the restrictions (A21), we require the following restrictions on u: 
 

u = 0           u = ¾      q2      u = 1                          u = 2                            u = 3 

q1 

A 

    O                      D   E  F    G             H   I                  C          

B 

J 
 
K 
M 
 
N 
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(A28) ¾ ≤ u ≤ 3. 
 
The inequalities (A27) and (A28) define the regular region for the Example 3 
preferences. 
 
For more information on how local information on a cost function can be used to form 
local approximations to utility functions, see Blackorby and Diewert (1979). 
 
Viewing this last example, it can be seen that when there are inferior goods, the regular 
region may not be very large; i.e., our suggested functional form will not be able to 
provide an adequate global approximation to arbitrary preferences.  However, with all of 
the examples, it can be seen that if relative prices do not change too much and the utility 
levels in the two periods being compared are fairly close, translation homothetic 
normalized quadratic preferences will be able to provide a good local approximation to 
arbitrary preferences.  On the other hand, if relative prices differ markedly and/or utility 
levels differ considerably, then the approximation may not be very close.  But having 
results that are exact for second order approximations to arbitrary preferences is better 
than having results that are exact for only first order approximations!    
 
Appendix B: The Japanese Consumption Data 
 
We use the household consumption data in the Japanese national accounts. Household 
consumption is classified into 12 categories; (1) Food and non-alcoholic beverages; (2) 
Alcoholic beverages and tobacco; (3) Clothing and footwear; (4) Housing, electricity, gas 
and water supply; (5) Furnishings, household equipment and household services; (6) 
Health; (7) Transport; (8) Communication; (9) Recreation and culture; (10) Education; 
(11) Restaurants and hotels; (12) Miscellaneous goods and services. 
 
Expenditure series for each category are provided at current prices and constant prices in 
the national accounts.  For the years 1980-2003, current and constant yen series for the 12 
consumption goods are found in the Annual Report on National Accounts of 2005; see 
the Economic and Social Research Institute (2005); Part 1 Flows; 5. Supporting Tables; 
(13) Composition of Final Consumption Expenditure of Households classified by 
Purpose; Calendar Year, in billions of yen.  The constant yen series are at the market 
prices of 1995.  For the years 1996-2006, current and constant yen series for the 12 
consumption goods are found on Annual Report on National Accounts of 2008;  see  the 
Economic and Social Research Institute (2007).  The constant yen series are at the market 
prices of 2000.  We link the current and constant yen series of these two reports to 
construct current and constant prices for the 12 goods for the period 1980-2006.  For the 
years 1996-2006, we use current and constant yen series taken from the Annual Report 
on the National Accounts of 2008.  We interpolate these series backward by using the 
growth rate of current and constant yen series taken from Annual Report on the National 
Accounts of 2005.   The price of each good is implicitly derived from the current and 
constant yen series.  We normalize all the prices so that prices in 1980 are one and adjust 
the corresponding quantity series in order to preserve values.  We regard the constant yen 
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series as the quantity series.  We list the resulting price and quantity series for 1980-2006 
in Table B-1 and Table B-2 respectively.   
 
Table B-1: Prices of Consumption Goods 
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Table B-2: Quantities of Consumption Goods 
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