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Abstract

The traditional economic approach to index number theory is based on a ratio concept.
The Koniis true cost of living index is a ratio of cost functions evaluated at the same
utility level but with the prices of the current period in the cost function that appears in
the numerator and the prices of the base period in the denominator cost function. The
Allen quantity index is also a ratio of cost functions where the utility levels vary but the
price vector is held constant in the numerator and denominator. There is a corresponding
theory for differences of cost functions that was initiated by Hicks and the present paper
develops this approach. Diewert defined superlative price and quantity indexes as
observable indexes which were exact for a ratio of unit cost functions or for a ratio of
linearly homogeneous utility functions. The present paper looks for counterparts to his
results in the difference context, for both flexible homothetic and flexible nonhomothetic
preferences. The Bennet indicators of price and quantity change turn out to be
superlative for the nonhomothetic case. The underlying preferences are of the translation
homothetic form discussed by Balk, Chambers, Dickenson, Fire and Grosskopf.
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1. Introduction

Traditional index number theory adopts a theoretical framework based on a ratio concept.
In this approach, the ratio of the value aggregate between two periods is decomposed into
the product of a price index and a quantity index. The price index, a function of the price
and quantity data pertaining to the two periods under consideration, is interpreted as the
ratio of the current price of the aggregate to the aggregate price in the base period. The
quantity index, another function of the price and quantity data pertaining to the two
periods, is interpreted as the ratio of the current period quantity aggregate to the base
period quantity aggregate. In the economic approach to index number theory, it is
assumed that the consumer has preferences over the individual quantities in the aggregate
that can be represented by a utility function which has a dual cost function. This cost
function is used to define consumer’s family of Koniis (1939) price indexes or true cost
of living indexes and the consumer’s family of Allen (1949) quantity indexes.

If the consumer’s preferences are homothetic (so that they can be represented by a
linearly homogeneous utility function), then the family of Koniis price indexes collapses
to a ratio of unit cost functions and the family of Allen quantity indexes collapses to a
ratio of utility functions, where these functions are evaluated at the data of say period 1 in
the numerator and the data of period 0 in the denominator. If preferences are homothetic,
then Koniis and Byushgens (1926), Afriat (1972) and Pollak (1983) showed that certain
numerical index number formula were exactly equal to the underlying theoretical
economic indexes, provided that the consumer’s utility function or dual unit cost function
had certain functional forms. Diewert (1976) took this theory of exact indexes one step
further and looked for indexes that were exact for flexible functional forms, for either the
linearly homogeneous utility function or for the dual unit cost function and he called such
indexes that were exact for flexible functional forms superlative. However, empirically,
it has been shown that consumer preferences are generally not homothetic and hence the
relevance of Diewert’s concept of a superlative index is somewhat doubtful, at least in
the consumer context. But Diewert (1976; 122) did implicitly develop a stronger concept
for a superlative index in the context of general nonhomothetic preferences and we will
formalize his idea in the present paper in section 2 below where we will define strongly
superlative indexes. Section 2 will also review the standard definitions for exact and
superlative indexes in the case of homothetic preferences.

In section 3, we switch from the traditional economic approach to index number theory,
which is based on ratios, to an economic approach pioneered by Hicks (1942) (1943)
(1945-46) which is based on differences. In the traditional approach to index number
theory, a value ratio is decomposed into the product of a price index times a quantity
index whereas in the difference approach, a value difference is decomposed into the sum
of a price indicator (which is a measure of aggregate price change) plus a quantity
indicator (which is a measure of aggregate quantity change). The difference analogue to
a theoretical Koniis price index is a Hicksian price variation and the difference analogue
to an Allen quantity index is a Hicksian quantity variation such as the equivalent or
compensating variation. For normal index number theory, the theoretical Koniis and



Allen indexes are defined using ratios of cost functions but in the difference approach to
index number theory, the theoretical price and quantity variation functions are defined in
terms of differences of cost functions. In the difference approach, the counterparts to
price and quantity index number formulae are price and quantity indicator functions.”
Both index number formulae and indicator functions are known functions of the price and
quantity data pertaining to the two periods under consideration. In section 3, we provide
a definition for an exact price or quantity indicator function.

In sections 4 and 5, we develop further the difference approach to index number theory.
In section 4, we will define a given price or quantity indicator function to be superlative
if it is exactly equal to a corresponding theoretical price or quantity variation under the
assumption that the consumer has homothetic preferences that are represented by a
flexible linearly homogeneous utility function or which are dual to a flexible unit cost
function. We draw on the theory of superlative price and quantity indexes to exhibit
many superlative indicator functions. The theory that we develop in section 4 for the
case of homothetic preferences turns out to be a variant of the theory of superlative
indicators developed earlier by Diewert (2005).

In section 5, we will define a given price or quantity indicator function to be strongly
superlative if it is exactly equal to a corresponding theoretical price or quantity variation,
under the assumption that the consumer has (general) preferences which are dual to a
flexible cost function that is subject to money metric utility scaling. The term money
metric utility scaling is due to Samuelson (1974) and it is simply a convenient way of
cardinalizing a utility function. It proves to be much more difficult to find strongly
superlative price or quantity indicator functions but in section 5, we show that the Bennet
(1920) indicator functions are strongly superlative. Our results require that the
consumer’s preferences be represented by a certain translation homothetic cost function
that is a variant of the normalized quadratic cost function introduced by Diewert and
Wales (1987) (1988a) (1988b). The flexibility of this functional form is shown in
Appendix A. Our work draws on the earlier work on translation homothetic preferences
(or linear parallel preferences) by Blackorby, Boyce and Russell (1978), Dickinson
(1980), Chambers and Fare (1998), Chambers (2001; 111) and Balk, Fére and Grosskopf
(2004).

The practical usefulness of the difference approach to the measurement of price and
quantity change is illustrated at the end of section 5 where we show that under certain
conditions including the assumption that each household faces the same prices in each
period, it is possible to exactly measure the arithmetic average of the economy’s sum of
the individual household equivalent and compensating variations using only aggregate
data since this aggregate measure of welfare change is exactly equal to the Bennet
quantity indicator using aggregate quantity data. In other words, the difference approach
to the measurement of aggregate price and quantity change has better aggregation
properties than the traditional ratio approach.

? This indicator terminology was introduced by Diewert (1992a) (2005).



In section 6, we provide economic interpretations for each term in the sum of terms that
make up the Bennet price and quantity indicators. The decomposition results developed
here are analogues to similar results obtained by Diewert and Morrison (1986) and Kohli
(1990) in the traditional approach to index number theory.

In section 7, we illustrate the use of the difference approach to measure aggregate
Japanese consumption and we contrast the traditional ratio approach to the measurement
of real consumption to our difference approach.

Section 8 concludes.
2. Exact and Superlative Price and Quantity Indexes

In preparation for the difference approach to aggregate price and quantity measurement,
in this section, we review the standard ratio approach to the measurement of price and
quantity change. Thus we will define exact price and quantity indexes and present two
definitions for a superlative price index. In the following sections, we will attempt to
adapt these standard index number theory concepts to the difference context.

The starting point for the economic approach to index number theory is the consumer’s
cost or expenditure function C. Thus suppose that the consumer has preferences that are
defined by the utility function f(q) over all nonnegative N dimensional quantity vectors q
= [qu....qn] = Ox.” In addition, suppose that f is a nonnegative, increasing,* continuous
and quasiconcave function over the nonnegative orthant Q = {q : q = On}. Now suppose
that the consumer faces the positive vector of commodity prices p >> Ox and suppose that
the consumer wishes to attain the utility level u belonging to the range of f as cheaply as
possible. Then the consumer will solve the following cost minimization problem and the
consumer’s cost function, C(u,p), will be the minimum cost of achieving the target utility
level u:

(1) C(u,p) =min 4 {pq: f(qQ) =u; q = On}.

It can be shown’ that C(u,p) will have the following properties: (i) C(u,p) is jointly
continuous in u,p for p >> Oy and u€U where U is the range of f and is a nonnegative
function over this domain of definition set; (ii) C(u,p) is increasing in u for each fixed p
and (iii) C(u,p) is nondecreasing, linearly homogeneous and concave function of p for
each u€U.° Conversely, if a cost function is given and satisfies the above properties,
then the utility function f that is dual to C can be recovered as follows.” For u€U and q
>> (O, define the function F(u,q) as follows:

3 Notation: q = Oy means each component of q is nonnegative; q >> Oy means each component of q is
positive and q > Oy means q = Oy but q = Oy where Oy denotes an N dimensional vector of zeros. Also p'q
denotes the inner product of the vectors p and q; i.e., pq=p'q = Sn-1" Pnn-

* Thus if ¢ >> q' = Oy, then f(q®) > f(q").

> See Diewert (1993; 124).

® Call these conditions on the cost function Conditions I.

7 See Diewert (1974; 119) (1993; 129) for the details and for references to various duality theorems.



(2) F(u,q) =max , {C(u,p) : p.q=1;p=0n}.

Now solve the equation:

(3) F(u,q) =1
for u” and this solution u” will equal f(q).

The utility function f(q) and the dual cost function C(u,p) are used in order to define the
consumer’s family of Koniis (1939) true cost of living indexes, Px(p’.p',f(q)), where p’
and p' are the vectors of positive commodity prices that the consumer faces in periods 0
and 1 respectively and u = f(q) is a positive reference level of utility:

(4) P(p"p".f(@) = C(f(q),p"V/C(f(q).p").

Thus for each reference quantity vector q that gives rise to a positive utility level, u = f(q)
> 0, the consumer’s aggregate price index for that reference level of utility is the ratio of
C(up") to Cu,p’).

The consumer’s utility and cost functions can be used in order to define the consumer’s
family of Allen (1949) quantity indexes, Qa(q".q',p), where q” and q' are the observed
consumption vectors that the consumer chose in periods 0 and 1 respectively and p >> Oy
is a strictly positive vector of reference prices:

(5) Qa(a”.a'.p) = C(f(q").p)/C(f(q").p).

The meaning of (5) is that if the consumer faces the reference price vector p, then his or
her period t utility, f(q'), is set equal to the minimum cost of achieving this utility level
using the reference prices p, C(f(q"),p), for t = 0,1 and the consumer’s quantity index is
set equal to the ratio C(f(ql),p)/C(f(qO),p). Samuelson (1974) called this type of
cardinalization of utility, money metric utility.” However, note that different choices of p
will generate different cardinalizations of utility and different Allen quantity indexes.

It is useful to specialize the above definitions for price and quantity indexes for the case
where the consumer’s preferences are homothetic’ or neoclassical. We say that a utility
function is neoclassical if it satisfies the following properties over the positive orthant: (i)
f is a positive function; i.e., f(q) > 0 if q >> Oy; (ii) f is positively linearly homogeneous;
i.e., f(Aq) = AM{(q) for all A > 0 and q >> On and (iii) f is concave; i.e., for 0 <A <1, q0 >>
On and q' >> Oy, we have flAq” + (1-0)q') = M(qQ") + (I-Mf(q'). It turns out that a

¥ The basic idea can be traced back to Hicks (1942).

? Preferences are homothetic if the consumer’s utility function can be written as G[f(q)] where f is
neoclassical and G is a continuous increasing function of one variable. Note that the homothetic
preferences G[f(q)] can be represented by the neoclassical utility function f. Thus, at times in what follows,
we will sometimes refer to neoclassical preferences as homothetic preferences. The concept of
homotheticity is due to Shephard (1953).



concave function defined over the positive orthant is also continuous over this domain of
definition. Furthermore, f defined over the positive orthant has a continuous extension to
the nonnegative orthant'® and this extended f will also satisfy properties (ii) and (iii)
above. The extended f(q) will also be nondecreasing in its variables q over the
nonnegative orthant."!

If the consumer’s preferences are neoclassical, then it turns out that the corresponding
cost function defined by (1) above has the following representation:

(6) C(u,p) = c(p)u

where c(p) = C(L,p) is the consumer’s unit cost function. It also turns out that the unit
cost function, c(p), is also a neoclassical function, i.e., it is a positive, nondecreasing,
continuous, concave and linearly homogeneous function of p over the positive orthant.
Finally, the consumer’s utility function f can be recovered from a knowledge of the unit
cost function as follows:'? for q >> O,

(7) f(@) = I/max ;, {c(p) : p'q=1; p = On}.

The assumption that the consumer has neoclassical (or homothetic) preferences greatly
simplifies index number theory. Under the assumption of neoclassical preferences, for
each reference q such that f(q) is positive, we have'’

(8) Px(p".p".f(q)) = C(f(q).p")/C(f(q).p") using definition (4)
= c(p)fta)/c(p")() using (6)
=c(p )e(p)

Thus under the assumption of neoclassical preferences, the Koniis price index is equal to
the unit cost ratio, ¢(p')/c(p®), and is independent of the reference utility level.

Similarly, under the assumption of neoclassical preferences, for each positive reference
price vector p, we have

(9) Qa(q’q',p) = C(f(q"),p)/C(f(q").p). using definition (5)
= C(Pl)f(ql)o/ c(mf(q’) using (6)
= flq)/f(q).

Thus under the assumption of neoclassical preferences, the Allen quantity index is equal
to the utility ratio, f(q')/f(q"), and is independent of the reference price vector p.

12 See Fenchel (1953; 78) or Rockafellar (1970; 85).

' See Diewert (1974; 111).

"2 This is a version of the Samuelson (1953) Shephard (1953) duality theorem; see also Diewert (1974; 110-
112) and Samuelson and Swamy (1974).

1 See Shephard (1953) (1970), Pollak (1983) and Samuelson and Swamy (1974). Shephard in particular
realized the importance of the homotheticity assumption in conjunction with separability assumptions in
justifying the existence of subindexes of the overall cost of living index.



Now suppose that the consumer has homothetic preferences (which we represent by a
neoclassical utility function f(q) or the dual unit cost function c(p)) and he or she faces
prices p' >> Oy in period t and minimizes the cost of achieving the utility level u' in
period t for t =0,1. Let q' be the consumer’s observed quantity vector for period t so that
u' = f(q') for t = 0,1. Then the consumer’s observed period t cost, p“q' can be written as
follows:

(10) p“q' = C(f(q").,p") = c(pHf(q") ; t=0,1.

Under these assumptions, the consumer’s ratio of period 1 expenditures to period 0
expenditures satisfies the following equations:

(11) p"q'/p*q" = [e(p)f")V[e(p*)fq")] using (10)
= [e(p)/e(P)If(a)f(q)]
=Px(p’.p".f(9))Qa(q".q",p) for arbitrary reference q and p using (8) and (9).

Thus under the assumption of homothetic preferences and cost minimizing behavior on
the part of the consumer for the two periods under consideration, the consumer’s
observed expenditure ratio is equal to the product of the Koniis price index for arbitrary
reference vector q and the Allen quantity index for arbitrary reference vector p.

Note that in general, without a knowledge of the consumer’s preferences, the Koniis price
index and the Allen quantity index are not directly observable; i.e., they are theoretical
indexes as opposed to the “practical” bilateral price and quantity formulae, say
P(p’p'.q%q") and Q(p’.p'.q",q"), that are known functions of the observed consumer data
pertaining to the two periods being compared. We assume that the bilateral index
number formulae P and Q satisfy the following product test for all strictly positive price
and quantity vectors:'*

(12) p"q'p"q" = P(p",p",0".a"HQ(p".p".a%.q).

Diewert (1976; 117) defined a quantity index Q(p°,p',q°,q") to be exact for a neoclassical
utility function f if under the assumption that the consumer minimizes the cost of
achieving the utility level u' = f(q') in period t for t = 0,1, we have

(13) Q(p’p'.a%q") = f(qa'Vf(q") ;

i.e., the quantity index Q(p’,p',q°,q") is exactly equal to the utility ratio which in turn is
equal to the theoretical Allen quantity index under the assumption of neoclassical
preferences.”” Under the same assumptions of cost minimizing behavior and assuming
that the preferences of the consumer can be represented by the dual unit cost function

' This is Fisher’s (1922) weak factor reversal test.
' Diewert (1976) gave many examples of exact index number formulae drawing on the earlier work of
Kontis and Byushgens (1926), Pollak (1983) (originally written in 1971) and Afriat (1972).



c(p), then Diewert (1976; 134) defined a price index P(p’,p’.q",q") to be exact for c(p) if
we have

(14) P(p°,p'.q".q") = c(p'Ve(®") ;

i.e., the price index P(p’,p',q",q") is exactly equal to the ratio of unit costs which in turn is
equal to the theoretical Koniis price index under the assumption of neoclassical
preferences.

Suppose the index number pair P(p’,p’,q",q") and Q(p’,p',q".q") satisfy the product test
(12) and either P is exact for ¢(p) or Q is exact for f(q).'° Then Diewert (1976) defined P
and Q to be superlative indexes if either ¢ or f could provide a second order
approximation to an arbitrary twice continuously differentiable neoclassical unit cost
function ¢'(p) or to an arbitrary twice continuously differentiable neoclassical utility
function f*(q).17 Thus the advantage of superlative price and quantity indexes is that they
can generate reasonably accurate price and quantity aggregates without having to
undertake any econometric estimation of preferences, which becomes difficult or
impossible as the number of commodities in the aggregate increases.

Examples of superlative price index formulae'® are the Fisher (1922) ideal price index Pg
and the Tornqvist (1936) (1937) Theil (1967) index Pt defined as follows:

(15) PF(pOO,pll’%O,qll) = [pl.ql(\)l/po'qo]1/20[p1.q11/p0'q1]11/2 : )
(16) In Pr(p",p .99 ) =21 (1/2)[sn + 0 ] In [pn /pn’]

where the period t expenditure share on commodity n is defined as s, = p,'q./p"q' for n =
1,..,.Nand t=0,1.

This completes our summary of the existing theory for superlative indexes in the case of
homothetic preferences. Unfortunately, if the consumer’s preferences are homothetic,
then all income elasticities of demand are equal to unity and Engel’s Law and other
econometric evidence strongly suggests that income elasticities are not homothetic and
hence consumer preferences are not homothetic. Thus while the theory of exact and
superlative indexes may be very useful when we wish to construct subaggregate prices
and quantities, it seems that superlative indexes may not be appropriate when
constructing overall aggregate consumer price and quantity indexes. Thus we need to
determine whether we can find indexes which are exact for more general nonhomothetic
preferences. Fortunately, this can be done.

Suppose the consumer has general preferences defined by the utility function f(q) and the
general cost function C(u,p) is dual to f. As usual, let p' and q' be the observed price and
quantity data pertaining to period t and define the period t level of utility u' = f(q") for t =

' Of course, if P is exact for ¢, P and Q satisfy (12) and f is dual to c, then Q is exact for f (and vice versa).
' Blackorby and Diewert (1979) showed that if ¢ is a differentiable flexible functional form and has a
differentiable dual f(q), then f is also flexible in the class of neoclassical utility functions and vice versa.

'8 See Diewert (1976) for the details.



0,1. We assume that the consumer is minimizing the cost of achieving the utility level u'
in period t so we have:

(17) pq' = C(f(q'),p") t=0,1.

Under the above assumptions, we say that the bilateral price index number formula,
P(p’,p'.q".q"), is exact for the cost function C if there exists a u” such that u” is between u’
and u' so that

18) eitheru’<u <u'oru' =u” <u’and
(
(19) P(’p',q°.q") = C(",p")/C(u",p’) = Px(p’p',u).

Thus P is an exact index number formula if under the assumption of cost minimizing
behavior, P(p°,p',q°,q") is exactly equal to the Koniis theoretical price index Px(p’,p',u’)
where u’ is an intermediate reference level of utility. The requirement that the reference
level of utility be between the period 0 and 1 utility levels (or possibly equal to one of
these levels) is a natural one: we do not want the reference utility level to be too far from
the two levels actually experienced by the consumer during the two periods under
consideration.

Initially, we define P to be a strongly superlative index number formula if it is exact
according to the definition immediately above and in addition, the cost function C(u,p)
that P is exact for can approximate an arbitrary cost function to the second order.

Diewert (1976; 122) showed that the Tornqvist Theil index Pt defined by (16) is exact for
a general translog cost function where the reference level of utility u” is equal to [u’u']"?,
the square root of the product of the period 0 and 1 utility levels. Since the general
translog cost function is a fully flexible functional form, this shows that Pt is a strongly

superlative price index.

Since the scaling of utility is arbitrary up to an increasing transformation of an initial
representation of the utility function, we will find it convenient to impose money metric
utility scaling on the underlying utility function f and its dual cost function C. Thus let p"
>> (O be an arbitrary positive price vector. We will assume that the consumer’s utility is
scaled so that the dual cost function C satisfies the following equation:"

(20) C(u,p*) =u for all u€U.

Thus our final definition for a strongly superlative index number formula P is that it is
exact according to the above definition (18) and (19) and in addition, the cost function
C(u,p) that P is exact for can approximate an arbitrary cost function (that satisfies the
money metric utility scaling property (20)) to the second order.

"% If the cost function C(u,p) satisfies Conditions I and in addition, satisfies the money metric utility scaling
conditions (20), then we will say that C satisfies Conditions II.
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An analogous definition of exactness can be made for a quantity index. Thus we say that
the bilateral quantity index number formula Q(p p' ,q ,q'), is exact for the cost functlon
C if there exists a reference price vector p [p1 ,....PN "] such that p is between p° and p'
so that

(21) either p” < pn < pn’ OF Pn’ =Pn < pn forn=1,...N and
(22) Q(p",p'.q%q") = C(f(@").p )/CH").p) = Qa(q’q',p)-

Thus Q is an exact index number formula if under the assumption of cost minimizing
behavior, Q(p°,p'.q° 4 ) is exactly equal to the Allen theoretical quantity index
Qa(q ,ql,p ) where p is a vector of intermediate reference prices. The requirement that
the reference price vector p be between the period 0 and 1 price vectors that the
consumer faced (or possibly equal to one of these two vectors) is again a natural one: we
do not want the money metric cardinalizing vector of reference prices to be too far from
the two price vectors actually faced by the consumer during the two periods under
consideration.

Finally, we define Q to be a strongly superlative index number formula if it is exact
according to the definition immediately above and in addition, the cost function C(u,p)
that is dual to the utility function f can approximate an arbitrary cost function (that has
the money metric utility scaling property (20)) to the second order.

The above material summarizes the theory of exact and superlative indexes which is
based on decompositions of the value ratio into price and quantity components that
multiply together. In the following section, we will review and extend the companion
theory that is based on decompositions of the value difference into a sum of a price
change component and a quantity change component.

3. Value Differences, Variations and Indicators of Price and Quantity Change

Assume that the consumer’s cost function, C(u,p), satisfies Conditions I and the dual
utility function is f(q) as usual. Throughout this section, we will assume that p' and q' are
the observed price and quantity data pertaining to period t and we define the consumer’s
period t observed level of utility u' = f(q') for t = 0,1. We assume that the consumer is
minimizing the cost of achieving the utility level u' in period t so that conditions (17)
hold; i.e., we have p“q' = C(f(q"),p') for t = 0,1. Our task in the present section is to
decompose the consumer’s observed value change over the two periods under
consideration, p'-q' - p%q’, into the sum of two terms, one of which is the part of the
value change that is due to price change and the other part due to quantity change. This
is the difference approach to explaining a change in a value aggregate as opposed to the
usual ratio approach used in index number theory.*

%% Hicks (1942) seems to have been the first to explore the similarities between the two approaches.
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The difference counterpart to the Allen (1949) quantity index explained in the previous
section is the following Hicks Samuelson quantity variation Qs: for each strictly positive
reference price vector p >> Oy, define Qs(q’,q',p) as follows:*'

(23) Qs(q”.q'.p) = C(f(q").p) - C(f(q").p).

Just as the Allen quantity index Qa(q’.q'.p) defined by (5) was an entire family of
indexes (one for each reference price vector p), so too is the family of quantity variations,
Qs. Two special cases of (23) are of particular importance, the equivalent and
compensating variations, Qg and Qc, defined as follows:**

(24) Qe(q’,q',p") = Qs(q".q',p") = C(f(@").p") - C(fQ").p") ;
(25) Qc(q”q',p") = Qs(q.q".p") = C(f(q").p") - C(fq").p") .

Thus the equivalent variation uses the period 0 price vector p° as the reference price
vector while the compensating variation uses the period 1 price vector p' as the reference
price vector.

Generalizing Hicks (1939; 40-41) (1946; 331-332), we will define a family of Hicksian
price variation functions Py(p’,p'.f(q)) as follows: for each nonnegative reference
quantity vector q, define Pu(p’,p',f(q)) as follows:

(26) Pu(p’,p'.f(q)) = C(f(q).p") - C(f(q).p").

Just as the Koniis price index, Px(p°.p',f(q)), defined by (4) was an entire family of
indexes (one for each reference quantity vector or reference utility level u = f(q)), so too
is the family of Hicksian price variations. Two special cases of (26) are of particular
importat;ge, the Laspeyres and Paasche price variation functions, Py, and Pyp, defined as
follows:

! Samuelson (1974) recognized that C(f(q),p) was a valid cardinalization of utility for any reference price
vector p and thus (23) is a valid cardinal measure of the utility difference between periods 0 and 1. Hicks
on the other hand only considered the special cases (24) and (25) defined below.

22 Henderson (1941; 120) introduced these variations in the N = 2 case and Hicks (1942) introduced them
in the general case, although his exposition is difficult to follow. The term compensating variation is due to
Henderson (1941; 118) and the term equivalent variation is due to Hicks (1942; 128). Hicks (1939; 40-41)
initially defined the compensating variation as a measure of price change: “As we have seen, the best way
of looking at consumer’s surplus is to regard it as a means of expressing, in terms of money income, the
gain which accrues to the consumer as a result of a fall in price. Or better, it is the compensating variation
in income, whose loss would just offset the fall in price and leave the consumer no better off than before.”
However, later, Hicks (1942; 127-128), following Henderson (1941; 120) defined (geometrically) the
compensating variation as C(u',p') - C(u’,p") and the equivalent variation as C(u',p”) — C(u’,p”), which are
measures of welfare (or quantity) change.

3 In the index number literature, C(u’p')/C(u’,p°) is known as the Laspeyres Koniis (1939; 17) true cost of
living index or price index and C(u',p")/C(u',p’) is known as the Paasche Koniis theoretical price index; see
Pollak (1983). It can be seen that (27) and (28) are the difference counterparts to these ratio type indexes.
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27) Puc(p’p',f(q") = Pu(p’p'.f(q") = C(f(q").p") - C(f(q"),p") ;j“
(28) Pp(p’,p',f(q")) = Pu(p’,p',f(q")) = C(f(q").p") - C(f(q").p") .»°

Thus the Laspeyres price variation uses the period 0 quantity vector q” as the reference
quantity vector while the Paasche price variation uses the period 1 quantity vector q' as
the reference quantity vector.

Let M’ = p”q” be the consumer’s nominal “income” or expenditure on the N
commodities in period 0. Then Pu(p’,p',f(q")) is the amount of nominal income that
must be added to the period 0 income M? in order to allow the consumer, facing period 1
prices p', to achieve the same utility level as was achieved in period 0, which is v’ =
f(q°). Similarly, let M' = p'-q' be the consumer’s nominal “income” in period 1. Then
Pur(p’,p',f(q")) is the amount of nominal income that must be subtracted from the period
1 income M' in order to allow the consumer, facing period 0 prices p’, to achieve the
same utility level as was achieved in period 1, which is u' = f(q").

Note that the equivalent quantity variation defined by (24) matches up with the Paasche
price variation defined by (28) in order to provide an exact decomposition of the value
change going from period 0 to 1; i.e., using these definitions and assumptions (17), it can
be seen that:

29)p'q' - p™q" = C(f(q").p") - C(fq").p") = Qe(q’.q".p") + Pre(p’.p'.f(q")).

Similarly, the compensating quantity variation defined by (25) matches up with the
Laspeyres price variation defined by (27) in order to provide another exact decomposition
of the value change going from period 0 to 1:

(30)pq' - p”q"=C(f(q"),p") - C(f(q").p") = Qc(q’.a".p") + Prr(p’.p",f(q")).

A problem with the quantity variations defined by (24) and (25) and the price variations
defined by (27) and (28) is that they asymmetrically single out a reference price or
quantity vector that pertains to a single period. Since both measures are equally valid and
if a single measure of price or quantity change is required, then for some purposes, it may
be useful to take an arithmetic average of the equivalent and compensating variations
defined by (24) and (25) (denote the resulting average quantity variation as
Qa(q’,q",p",p")) and to take an arithmetic average of the price variations defined by (27)
and (28) (denote the resulting average price variation as Pya(p’.p’.q°,q')). It can be seen
that these average price and quantity variations will also provide an additive
decomposition of the value change; i.e., we have:

3D p"q' -p"q"=Cf(Qq").p") - C(f(q").p") = Qa(q”q".p",p") + Pua(p’.p'.f(q°).f(q")).

* Hicks (1945-46; 68) called this measure the ‘price compensating variation’ and distinguished this
measure from a quantity compensating variation, which he did not define in a very clear manner. Hicks
also considered price and quantity variations in Hicks (1943).

> Hicks (1945-46; 69) called this measure the “price equivalent variation”.
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All of the price and quantity variations defined above cannot be evaluated in general
using observed price and quantity data pertaining to the two periods under consideration.
Thus we now turn our attention to the problem of finding observable approximations to
the above theoretical variation functions.

Looking at definition (24) for the equivalent variation, it can be seen that the term
C(f(q").p") is equal to period 0 expenditure on the N commodities, p*q°, and hence this
term is observable. The remaining term, C(f(q'),p°), is not observable but we can use
Shephard’s (1953; 11) Lemma in order to obtain the following first order approximation
to this term:

(32) C(f(q").p") = C(f(q").p") + V,C(f(q").p")[p’ - p']

=C(f(q").p") +q"[p’ - p'] using Shepard’s Lemma
=p'q' +p"q' -p"q' using (17) for t = 1
=p’q'.

Using (17) for t = 0, (32) and definition (24), we obtain the following first order
approximation to the equivalent variation:

(33) Qe(q’,q',p") = p‘;-ql - p°-0q°
- p .[qO _lq (]) 1
=Vi(p.p.q9.9)

where the observable Laspeyres indicator of quantity change, Vi(p°,p',q’,q"), is defined
as p[q' — q"], the inner product of the base period prices p’ with the quantity change
vector, q' — q°. In a similar fashion, it can be shown that a first order approximation to
the term C(f(q°),p") is p'*q" and so a first order approximation to the compensating
variation QC(qO,ql,pl) defined by (25) is:%6

(34) Qc(q’,q',p") = pi'qll— pl'oqo
- p [q() _lq g 1
= Ve(p,p.q,.q9)

where the observable Paasche indicator of quantity change, Ve(p°,p',q°,q"), is defined as
p"[q' = "], the inner product of the current period prices p' with the quantity change
vector, q' — ¢’

Note that Vi and Vp are the difference counterparts to the ordinary Laspeyres and
Paasche quantity indexes, Qr, and Qp, defined as follows:

35 Qup”p'.a’a) =p"qa'/p"q"; Qe(p’p'.q’a") =p"q'/p"q"

%6 The first order approximations (33) and (34) were obtained by Hicks (1942; 127-134); see also Diewert
(1992a; 568).
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We now turn our attention to the problem of finding observable approximations for the
Laspeyres and Paasche price variation functions defined by (27) and (28) above. An
observable first order approximation to the term C(f(q°),p") in (27) is

(36) C(f(q°).p") = C(f(q").p°) + V,C(£(q").p°)[p' - p’]

= C(f(q").p") + q"[p' - '] using Shepard’s Lemma
=p”q"+p"q" - p*q’ using (17) for t = 0
= pl nqo'

Using (17) for t = 0, (36) and definition (27), we obtain the following first order
approximation to the Laspeyres price variation:

(37) Pur(p’,p'.f(q") = p;'qol— po'oq0
e,
=I.(p.p.q.9)

where the observable Laspeyres indicator of price change, I.(p",p',q°,q"), is defined as
q™[p' - p"], the inner product of the base period quantity vector q” with the price change
vector, p' — p°. In a similar fashion, it can be shown that a first order approximation to
the term C(f(q"),p°) is p”q' and so a first order approximation to the Paasche price
variation PHp(pO,pl,f(ql)) defined by (28) is:

(38) Prr(p’.p",f(q) ~p"d’ = plq'

S el

=Ip(p.p.q.9)
where the observable Paasche indicator of price change, To(p",p',q°,q"), is defined as
q"“[p' - p"], the inner product of the current period quantity vector q' with the price

change vector, p' — p°.%’

Note that I and Ip*® are the difference counterparts to the ordinary Laspeyres and
Paasche price indexes, Pr, and Pp, defined as follows:

39) PL(p’p".q%q) =p"q"p"q"; Pe(p’p'.q%q") =p"q'/p*q".

*" The first order approximations (37) and (38) were obtained by Hicks (1945-46; 72-73) (1946; 331).

% Hicks (1942; 128) (1945-46; 71) called I; and Ip the Laspeyres and Paasche variations but we will
reserve the term “variation” for the (unobservable) theoretical measures of price and quantity change
defined by (23) for changes in quantities and by (26) for changes in prices. We will follow Diewert
(1992a; 556) (2005; 313) and use the term “indicator” to denote a given function of the price and quantity
data pertaining to the two periods under consideration so that the term indicator becomes the difference
theory counterpart to an index number formula in the ratio approach to the measurement of price and
quantity change. Since P and Q are usually used to denote price and quantity indexes, a different notation
is required to denote price and quantity indicators. Using I to denote a price indicator and V to denote a
quantity (or volume) indicator follows the conventions used by Diewert (2005). Note that national income
accountants use the term “volume index” to denote a quantity index.
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In the usual approach to index number theory, it proves to be useful to take the geometric
average of the Laspeyres and Paasche price indexes, leading to the Fisher price index P
defined by (15), since the Fisher index has very good properties from the viewpoint of the
test or axiomatic approach to index number theory; see Diewert (1992b) and Balk (1995).
However, in the axiomatic approach? to price and quantity measurement in the
difference context, it proves to be better to take the arithmetic average of the Paasche and
Laspeyres indicators. This leads to the Bennet (1920) indicators of price and quantity
change defined as follows:

(40) IB(p(’,Opl,IqO,Oql)1 = (1/2)IL<p°,g,9°,§f)l+ (1/2)Ip<p°,p01,ql°,qol) = (1/2)[q°0+q11]-[p11—p°0] :
(41) Ve(p,p .q,q9 ) =(1/2)VL(p,p.q.9 ) + (1/2)Ve(p",p .4 ,q ) = (172)[p+p ]'[9 —q ].

Note that Hicks (1942; 134) (1945-46; 73) obtained the Bennet quantity indicator Vg as
an approximation to the arithmetic average of the equivalent and compensating variations
and he also identified Vg as a generalization to many markets of Marshall’s consumer
surplus concept.

It can be verified that the Laspeyres, Paasche and Bennet price and quantity indicators
can be used in order to obtain the following exact decompositions of the value change in
the aggregate over the two periods under consideration:

(42) pi'qi - pz'qz = IL(pz,pl',qz,qI) + Vp(pz,pi,qz,qi) :
(43) pd-p4q= Ip(po,p 1,qo,ql) +Vi(p ;P d 1) ;
(44)p q _p q :IB(p ap 7q aq)+VB(p ap 7q aq)

We conclude this section by defining indicator counterparts to our index number
definitions of exactness in the case of nonhomothetic preferences. As usual, we assume
that the consumer minimizes cost in periods 0 and 1 so that the consumer has the utility
function f(q) that satisfies the usual regularity Conditions I and has the dual cost function
C(u,p) so that equations (17) are satisfied. Recall that the price index number formula
P(p’,p',q°,q") was defined to be exact for the cost function C if conditions (18) and (19)
were satisfied. The price indicator counterpart to this definition is as follows:
1(p°,p',q°.q") is exact for the cost function C if there exists a u” such that u” is between u’
= f(q") and u' = f(q") so that

(45) either u’ < u =u'oru'<u =u’and
(46) I(p’,p'.q",q") = C(w",p') = C(u",p’) = Pu(p";p',u").

Thus I(p’p'.q°,q") is exact for the preferences that are dual to C(u,p) if under the
assumption of cost minimizing behavior on the part of the consumer, I(p°,p',q°,q") is
exactly equal to the theoretical Hicksian price variation function Py(p’,p',u’) defined by
(26) for a reference utility level u” that is between the period 0 and 1 utility levels
attained by the consumer.

* See Diewert (2005) and Balk (2007) on the axiomatic approach to measures of price and quantity change
using differences.
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Recall that the quantity index number formula Q(p’,p',q’,q") was defined to be exact for
the cost function C if conditions (21) and (22) were satisﬁed. The quantity indicator
counterpart to this definition is as follows V(p p' ,g ,q') is exact for the cost functlon C
if there exists a reference price vector p = [p1 ,--»pN ] such that p is between p’ and p' so
that

(47) either pn” < pn < pn’ OF Pn’ =Pn < pn forn=1,...N and
48) V(p’.p',qq") = C(flq"),p") - C(f(q").p") = Qs(q’q"p).

Thus V(p°p',q°.q") is exact for the preferences that are dual to C(u,p) if under the
assumption of cost minimizing behavior on the part of the consumer, V(p’,p',q>.q") 1s
exactly equal to the theoretical Hicks Samuelson quantity variation function Qs(q’,q',p")
defined by (23) for a reference price vector p* that is between the period 0 and 1 price
vectors faced by the consumer..

In the following section, we will assume that the consumer has homothetic preferences
and we will attempt to find price and quantity indicators that are exact and superlative in
this case. In section 5, we will drop the assumption of homothetic preferences and we
will attempt to find superlative indicators in this more general context.

4. Superlative Price and Quantity Indicators in the Homothetic Preferences Case

We now suppose that the consumer’s utility function f(q) is neoclassical and the dual unit
cost function is ¢(p). Under these conditions, using (6), we have

(49) C(f(q).p) = c(p)f(@).

Thus the family of Hicks Samuelson quantity variations Qs defined by (23) and the
family of Hicksian price variations Py defined by (26) have the following structures
under the assumption of neoclassical preferences:

(50) Qs(q’g'.p) =C(f(g").p) - C(f(q").p) = [f(q") - f(q")]e(p) ;
(51) Pu(p’,p',f(@)) = C(f(q).p") - C(f(q),p") = [c(p") - c(p*)If(q) -

It turns out that if we choose the vector of reference prices p in (50) to be equal to p° or
p', then we can find exact quantity indicator functions V(p°,p',q°,q") and if we choose the
reference quantity vector q in (51) to be equal to q” or q', then we can find exact price
indicator functions I(p’,p',q’,q"), by drawing on exact index number theory in the case of
homothetic preferences. Thus let P(p°p',q°,q") and Q(p’p'.q".q") be an exact pair of
price and quantity indexes; i.e., they satisfy (12), (13) and (14) in section 2. Now let the
reference price vector p in (50) above equal the period 0 price vector, p°. Then
Qs(q’,q',p") becomes the equivalent variation Qg(q’,q',p’) and thus (50) becomes the
following equation:

(52) Qe(q’.q'.p") = [f(q") - f(q")]e(p”)
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= [{f(q)/f(q")} - 11e(®")f(q")

=[Q(p"p".q"q") - 11p"q" using (13) and (10) fort=0

= Ve('.p'.a’.a).
Thus the observable function of the data, Ve(p’,p',q’.q'), defined to be equal to
[Qp’p..a"q") = 11p™q", is exactly equal to the equivalent variation, Qi(q’,q',p°), and
hence is an exact quantity indicator function. If in addition, Q is exact for a flexible
neoclassical utility function f, then we say that the corresponding Ve(p’,p'.q’,q") is a

superlative quantity indicator.

Now let the reference price vector p in (50) above equal the period 1 price vector, p'.
Then Qs(q’.q'.p') becomes the compensating variation Qc(q’,q'.p') and thus (50)
becomes the following equation:

(53) Qc(qq".p") = [fiq") - fig"le(p")

= [1 - {f(q"y/f(q")}le(p)f(q")

=[1-Q(®"p",q"q") " Ip"q' using (13) and (10) for t = 1

= VC(poaplaqO’ql)'
Thus the observable function of the data, Ve(p'p'.q’,q"), is exactly equal to the
compensation variation, Qc(q’,q',p°), and hence is an exact quantity indicator function.
If in addition, Q is exact for a flexible neoclassical utility function f, then we say that the

corresponding Ve(p®,p',q°,q") is a superlative quantity indicator.

Thus each superlative quantity index function, Q(p’.p',q",q"), generates two superlative

quantity indicator functions, Ve(p’,p',q°q') defined in (52) which is exact for the
theoretical equivalent variation, and V(p’,p'.q",q') defined in (53) which is exact for the
theoretical compensating variation. Since there are an infinite number of superlative

quantity indexes™, there are an infinite number of superlative quantity indicators.

The above analysis can be repeated with some modifications in order to find superlative
price indicator functions. Thus again let P(p’,p',q°q") and Q(p°,p',q°,q") be an exact pair
of price and quantity indexes. Now let the reference quantity vector q in (51) above
equal the period 0 quantity vector, q". Then Pu(p’,p',f(q")) becomes the Laspeyres price

variation Py (p’,p',f(q")) defined by (27) and thus (51) becomes the following equation:

(54) Pur(p’.p,f(q") = [c(p") - c(*)1f(q")
= [{c(p")e(P")} - 11e(p)f(q")
= [P(po,pl,qo,ql) - l]po-qo using (14) and (10) for t=0
= I (p’p'9%a")-

Thus the observable function of the data, Iy (p’p'.q°.q'), defined to be equal to
Pep°pLq’q) - 11p%q’, is exactly equal to the Laspeyres price variation,
PuL(p’.p'.f(q°)), and hence is an exact price indicator function. If in addition, P is exact

3% See Diewert (1976).
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for a flexible unit cost function c, then we say that Ly (p’.p'.q".q') is a superlative price
indicator.

Now let the reference quantity vector q in (51) above equal the period 1 quantity vector,
q'. Then Py(p’,p'.f(q")) becomes the Paasche price variation Pyp(p’,p',f(q") and thus (51)
becomes the following equation:

(55) Pup(p”p',f(q") =T[c(p") - c(p")If(q)
=[1 - {c(’)/c(p)}Ic(p)f(q")
=[1- P(po,pl,qo,ql)‘l]pl-q] using (14) and (10) fort=1
= Iup(p”.p".q%q")-

Thus the observable function of the data, Iup(p’,p',q’,q"), defined to be equal to [1 —
Pp’p".q".q") " Ip"q', is exactly equal to the Paasche price variation, Pup(p’.p'.f(q")),
and hence is an exact price indicator function. If in addition, P is exact for a flexible unit
cost function c, then we say that Iup(p",p',q°.q") is a superlative price indicator. Again,
since there are many superlative price index functions P(p°,p',q°,q"), there will be many
superlative price indicator functions.’’

There is one more detail to be settled in this analysis of superlative price and quantity
indicator functions that are generated by traditional index number formulae: we want the
sum of the price indicator and quantity indicator to be exactly equal to the value
difference. Thus suppose that we are given bilateral index number formulae P and Q that
satisfy the product test (12) and we use these indexes to define the quantity indicators
Ve(p’,p',q%q") by (52) and Ve(p®.p'.q°,q") by (53) and the price indicators Iy (p°,p'.q".q")
by (54) and Lup(p°,p',q°,q") by (55). Then using (12), it can be shown that numerically,
the following equations will hold:

'qg = IHP(pZ,pi,qZ,qll) + VE(p‘(’),pll,qZ,qll) ;
‘q@ =la(p.p,9,9) + Velp,p,q9,9) -

(56)pq - p’
(57)p"q' -p’
Thus the equivalent variation indicator Ve(p’,p',q’.q') generated by Q needs to be
matched up with the Paasche price variation indicator Iyp(p’,p',q°,q') generated by P and
the compensating variation indicator Ve(p®,p',q°.q') generated by Q needs to be matched
up with the Laspeyres price variation indicator Iy (p’.p',q°,q") generated by P in order for
the value difference to equal the sum of a price and quantity indicator.

3 Diewert (2005; 333-337) also defined superlative price and quantity indicators in the case where
consumer preferences were homothetic. Diewert’s (2005; 336) superlative economic indicator of price
change was defined as Ir (p°,p'.q°.q") = (/2T (’p".q%q") + (1/2)Ine(p’.p'.q°q") where Iy and Iyp are
defined by the third equation in (54) and (55) respectively where the index number formula P(p°,p',q°.q") is
superlative. Thus our present definition of a superlative price or quantity indicator is a variation of
Diewert’s earlier definition. It should be noted that Fox (2006) generalized Diewert’s (2005) bilateral
approach to multilateral comparisons.
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This completes our discussion of superlative indicators when the consumer’s preferences
are homothetic. In the following section, we address the much more difficult task of
finding superlative indicators in the nonhomothetic case.

5. Strongly Superlative Price and Quantity Indicators

The holy grail of applied welfare economics is to obtain a quantity variation indicator that
is exact for fully flexible preferences. To our knowledge, no one yet has succeeded in
this quest.*” In this section, we will show that the Bennet quantity indicator is exact for
fully flexible preferences, subject to the money metric cardinalization of utility defined
by (20), except that normalized prices that are adjusted for general inflation between the
two periods must be used in place of the original prices facing the consumer. Since our
focus is on quantity variations, this scaling of prices does not seem to be too serious a
drawback to our suggested indicator of quantity change.

We now distinguish the original (unscaled) price vector P' = [P,',...,Px'] >> Oy that the
consumer faces in period t for t = 0,1 from the scaled or normalized price vector p' which
is proportional to P' and will be defined shortly. As in previous sections, the consumer’s
observed quantity vector in period t is q' for t = 0,1. Let the consumer’s utility function
f(q) satisfy Conditions II (which are the usual nonhomothetic assumptions plus the
assumption of money metric utility scaling (20) for some strictly positive reference prince
vector P* >> Oy) and let the corresponding dual cost function be C(u,P). We assume that
the consumer’s cost function has the following translation homothetic normalized
quadratic functional form,>* which is a special case of translation homothetic
preferences:*

(58) C(u,P) = b-P + (1/2) (ovP) 'P-BP + c-Pu

32 Recent attempts by Weitzman (1988) and Diewert (1992a) ended up making homotheticity assumptions
or in the case of Diewert’s (1992a) Theorems 2 and 4, unrealistic assumptions relating the parameters of
preferences to utility levels were made. Chambers and Féare (1998) and Chambers (2001) also came close
but their preference classes fell short of being fully flexible; Chambers (2001; 111) explained the problem
with his class of preferences. Diewert (1976; 123-124) had a fully flexible result but his result was exact
for a Malmquist (1953) quantity index which is not an exact result for a quantity variation and moreover,
the Malmquist index does not have the convenient aggregation properties that a Hicks-Samuelson quantity
variation possesses.

3 Diewert and Wales (1987) (1988a) (1988b) introduced the normalized quadratic cost function which can
be defined as C(u,P) = b-P + [(1/2) (o-P)'P-BP + c¢-PJu where b, ¢ and B satisfy (59)-(62) and they showed
that this functional form was flexible in the class of cost functions that satisfy the money metric utility
scaling restrictions (20) for any predetermined parameter vector a > Oy. The advantage of this functional
form is that it contains a flexible unit cost function as a special case (just set b = Oy). However, since
preferences are generally nonhomothetic, this advantage is not necessarily a huge one.

* Chambers and Fire (1998; 640) and Chambers (2001; 111) introduced the term “translation homothetic
preferences” and studied these preferences in some detail and noted their importance for the measurement
of welfare change; see also Balk, Féare and Grosskopf (2004). Blackorby, Boyce and Russell (1978; 348)
introduced this class of preferences and Dickinson (1980; 1713) referred to this class of preferences as
linear parallel preferences. Dickinson (1980; 1715-1717) exhibited several examples of this class of
preferences that were flexible.
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where o > Oy, b and ¢ are N dimensional parameter vectors and B is parameter matrix.
These parameter vectors and matrix satisfy the following restrictions, where P* >> Oy is
the reference vector which appears in (20), the definition for C to satisfy money metric
utility scaling at the reference prices P":

(59) B = B" so that B is symmetric and B is negative semidefinite;

(60) BP” =0y ;
(61)b-P =0and
(62) c:P = 1.

Using the techniques in Diewert and Wales (1987), it can be shown that (59) implies that
the C defined by (58) is globally concave. In the Appendix, we show that this functional
form is flexible in the class of preferences satisfying the money metric utility scaling
restrictions in (20) for any predetermined parameter vector o > Oy; i.€., given any o > Oy,
we can find vectors b and ¢ and a matrix of parameters B such that the restrictions (59)-
(62) are satisfied and the resulting C defined by (58) is flexible at the arbitrary point
(u*,P*)‘ However, in general, this flexible functional form may not satisty Conditions II
for all u > 0 and all P >> Oyn. In the Appendix, we will define the region of prices and
utility levels where the functional form satisfies the required regularity conditions for a
cost function.

Assuming that the consumer’s preferences can be represented by the cost function
defined by (58)-(62) for the two periods under consideration, then assuming cost
minimizing behavior on the part of the consumer, the following equations will hold:

(63) P'q' = C(f(q"),P") = b-P' + (1/2) (a-P") 'P“BP' + ¢-P' f(q") ; t=0,1.

Using Shephard’s Lemma, the consumer’s observed period t demand vector q' is equal to
the following expression:

(64) q' = VpC(f(q"),P") = b + (a-P")"' BP' = (1/2)(0-P")*P“BP' o + ¢ f(q') ; t=0,1.

If there is a great deal of general inflation between periods O and 1, then the
compensating variation will be much larger than the equivalent variation simply due to
this general inflation and taking an average of these two variations will be difficult to
interpret due to the change in the scale of prices. In order to eliminate the effects of
general inflation between the two periods being compared, it will be useful to scale the
prices in each period by a fixed basket price index of the form o-P where a = [a.,...,0n] >
On is a nonnegative, nonzero vector of price weights.”> Thus, having chosen the price

% A reasonable “standard” choice for the weighting vector o is a = q"/P%q°. For this choice of a, the
vector of period t normalized prices, p' = P'/P"a, can be interpreted as a period t vector of “real” prices
using a fixed base Laspeyres price index to do the deflation of nominal prices. Diewert (2005; 340-341)
commented on the general inflation problem as follows: “The above quotation alerts us to a potential
problem with our treatment of value changes; namely, if there is a great change in the general purchasing
power of money between the two periods being compared, then our indicators of volume change may be
“excessively” heavily weighted by the prices of the period that has the highest general price level. Put
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weighting vector o, the period t real prices that the consumer faces p' are defined as
follows:

(65)p° = P%aP’ ; p' =P'/a-P'.
Note that these real price vectors will satisfy the following restrictions:
(66) ap' = a-P/a-P' =1 t=0,1.

Divide both sides of equation t in (63) by o-P' and using definitions (65), the resulting
equations become:

(67) pq' = C(f(q),p") = b-p' + (1/2)p"Bp' + c-p'f(q') ; t=0,1.

Similarly, substituting equations (65) and (66) into equations (64) leads to the following
equations relating the consumer’s period t quantity vectors q' to the real price vectors p":

(68) q' = VpC(f(q").p") = b +Bp' - (1/2)p"Bp'a + cf(q') ; t=0,1.

With the above preliminaries out of the way, we are ready to state our first Proposition
which relates the Bennet quantity indicator defined earlier by (41), Vs(p".p'.q’.q") =
(1/2)[p™+p'1[q'=q"], to the theoretical equivalent and compensating variations defined by
(24) and (25), Qe(q’.q'.p%) = C(fq").p") - C(f(q°).p") and Qc(q’.q',p") = C(f(q").p") -
C(f(q°),p"), where we are using the scaled real price vectors p' defined by (65) as
reference price vectors in place of the original nominal price vectors P'.

Proposition 1: Let the consumer’s observed period t data be (P',q) and suppose that the
consumer minimizes the cost of achieving the period t utility level for each period t = 0,1.
Let a > Oy be a given vector of price weights that are used in order to construct the period
t real price vectors, p' = P/o-P' for t = 0,1. Suppose a consumer has preferences f(q)
which are dual to the translation homothetic normalized quadratic cost function C(u,P)
defined by (58)-(62) and define u' = f(q') for t = 0,1. Then the Bennet quantity indicator
defined by (41) using the real prices defined by (65) is exactly equal to the arithmetic
average of the equivalent and compensating variations defined by (24) and (25) using the

another way, the units that quantities are measured in do not require any comparisons with other quantities
but the dollar price of a quantity is the valuation of a unit of a commodity relative to a numeraire
commodity, money. Thus the indicators of price change that we have discussed in this paper encompass
both general changes in the purchasing power of money as well as changes in inflation adjusted prices.
Thus if there is high inflation between periods 0 and 1 and quantities have increased, then the use of
symmetric in prices and quantities indicators (like the Bennet and Montgomery indicators) will shift some
of the inflationary increase in values over to the indicator of volume change.” Diewert (2005; 341)
suggested deflating the prices of the second period by a general index of inflation going from period 0 to 1
whereas our solution is more specific in that we choose a Laspeyres type index to do the deflation. Diewert
(1992a; 566) discussed other normalizations that have been used historically by various authors in order to
construct suitable real prices for use in the measurement of welfare change by volume or quantity
indicators.
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real price vectors as reference prices rather than the original nominal price vectors; i.e.,
we have

(69) Ve(p’.p'.q%q") = (1/2)Qe(q’.q".p") + (1/2)Qc(q’.q",p")-

Proof:

(70) 2Ve(p’p'.q’q) = [p’+p'1q' - q"] using definition (41)
= pz'q1 - C(fl‘(qo),po) + C(fgql),pl) —1p1'q° . using (67)
=p-[b+Bp - (12)p -Bp a +cf(q)] - C(f(q),p")

+C(f(q"),p") - p"[b+Bp’ - (122)p*Bp’a + cf(q)]  using (68)
=p”b+p"Bp' - (1/2)p"Bp' + p*cf(q) - C(f(q").p)

+C(f(q").p") - [p"b +p'-Bp’ - (1/2)p"Bp’ + p'-cf(q”)] using (66)
= [p"b + (1/2)p"Bp’ +p”cf(q")] - C(f(q").p")

+C(f(q"),p") - [p"b +(1/2)p"Bp' +p'-cf(q")] using (59)
= C(f(q").p") - C(f(q").p°) + C(f(q").p") - C(f(q").p")  using (67)
= QE(qO,ql,pO) + QC(qO,ql,pl) using definitions (24) and (25)

which is equivalent to (69). Q.E.D.

Corollary 1: Under the conditions of the above Proposition, the following equality holds:

(71) Ve(p’p'.q%q") = C(f(q"),(1/2)[p™+p']) - C(f(q"),(1/2)[p"+p'])
= Qs(q",q,(172)[p*+p'D).

Proof: From (70), we have the following equality:

(72) 2Ve(p’p'.q’q") = C(f(q").p") - C(f(q").p") + C(f(q").p") - C(f(q°).p")
=p%c[f(q") - f(q")] + p"c[f(q") - f(q")] using definition (67)
=[p’+p'lelfq") - f(q")]
= C(f(q"),p™p") - C(f(q").p"+p")

where the last equality follows adding and subtracting terms and using definition (67) for
C. Using the linear homogeneity property of C(u,p) in p, it can be seen that (72) implies
(71). Q.E.D.

The equality (71) shows that the Bennet quantity indicator, Ve(p'.p'.q".q'), is a strongly
superlative indicator, since it 1is exact for the theoretical quantity variation,
Qs(q’,q',(1/2)p"+ (1/2)p"), using reference prices that are between p° and p', namely the
arithmetic average reference prices (1/2)p° + (1/2)p'.

There is a counterpart to Proposition 1 for the Bennet price indicator. Proposition 2
relates the Bennet price indicator defined earlier by (40), Is(p’.p'.q>.q") =
(1/2)[q°+q' 1 [p'-p], to the theoretical Laspeyres and Paasche price variation functions

defined by (27) and (28), Pur(p",p',f(q")) = C(f(q").p") - C(f(q"),p") and Pre(p”,p',f(q")) =
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C(f(ql),pl) - C(f(ql),po), where again we use the scaled real price vectors p' defined by
(65) as reference price vectors in place of the original nominal price vectors P,

Proposition 2: Under the hypotheses listed in Proposition 1, the Bennet price indicator
defined by (40) using the real prices defined by (65) is exactly equal to the arithmetic
average of the Laspeyres and Paasche price variations defined by (27) and (28) using the
real price vectors as reference prices rather than the original nominal price vectors; i.e.,
we have

(73) Ie(p’p',q%q") = (1/2) Pur(p’.p',f(q")) + (1/2)Pup(p’,p',(q")).

Proof:3®
(74) 21s(p’,p',q%q") = [q‘; +0q1]-[p1 ‘OPO]O o using definition (40)
=p-q -C(q)p)+CHq)p)-pq using (67)
=p"[b+Bp’ - (1/2)p"Bp’a + cf(q")] - C(f(q"),p")
+C(f(q").p") - p™[b+Bp' - (12)p"Bp'a +cf(q')]  using (68)
=p'b +pll‘Bp° - (10/2)p°'103p° + p"<>f(q°)1 - Cl(f(q‘?,po) o
+ Cl(f(q )p) - [p '}) +p1 ‘Bp N (12)p '10310 0+ p -cf(q)] using (66)
=[p b+ (1/2)p-Bp +p-cf(q)] - C(f(q"),p")
+C(f(q").p") - [p™b +(1/2)p"Bp” + pcf(q")] using (59)
=C(f(q").p") - C(f(q").p") + C(f(q").p") - C(f(q").p")  using (67)
= Pur(p®,p".f(q°)) + Pup(p”,p'.f(q")) using definitions (27) and (28)
which is equivalent to (73). Q.E.D.

Corollary 2: Under the conditions of the above Proposition, the following equality holds:

(75) Is(p’p'.q".q") = C((1/2)f(q°)+(1/2)f(q").p") - C((1/2)f(q"y+(1/2)f(q"),p")
= Pu(p”,p',(1/2)f(q°)+(1/2)f(q")) .

Proof: From (74), we have the following equality:

(76) 21s(p",p',q",q") = C(f(q°).p") - C(f(q").p°) + C(f(q").p") - C(f(q").p")
=[p"b+(1/2)p"Bp' +p'-cf(q”)] - [p"b + (1/2)p"Bp’ + p”cf(q")]
+[p"b+(1/2)p"Bp' +p'cfig")] - [p*b + (1/2)p™Bp’ + p*cf(q')]  using (58)
=2[p"b+ (1/2)p"Bp' + p'-c(1/2){f(q°)+f(q")}]

- 2[p1-b + (1/2)p1-Bp1 + pl-c(1/2){f(q0)+f(ql)}] rearranging terms

= 2C((1/2)H(Q)+(1/2)f(q").p") - 2C((1/2)f(q°)+(1/2)f(q"),p®)  using definition (58)

=2 Pu(p’.p",(1/2)f(q°)+(1/2)f(q")) using definition (26)
which is equivalent to (75). Q.E.D.

3% Our technique of proof is closely related to the techniques used by Balk, Fire and Grosskopf (2004; 160-
161) but our functional form assumptions are different and they do not establish a flexibility result for the
class of functional forms that they use in their proofs.
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The equality (75) shows that the Bennet price indicator, Is(p",p',q°,q"), is a strongly
superlative indicator, since it is exact for the theoretical Hicksian price variation,
Pu(p’,p',(1/2)u’+(1/2)u"), using the arithmetic average of the period 0 and 1 utility levels,
u’ and u', as the reference utility level.

Bennet (1920) showed that the sum of the Bennet price and quantity indicators,
Ie(p’,p',q%.q") plus Ve@’,p',q’,q'"), is numerically equal to the value difference, p'-q' -
p%q’; recall (44) above. The above two Propositions show that the Bennet indicators
have strong economic interpretations if we use real prices instead of nominal prices when
calculating these indicators; i.e., they are both strongly superlative indexes.”’

Another advantage of the Bennet quantity indicator is that it has a nice aggregation over
households property. Thus let a > Oy and suppose that there are H households in the
economy and household h has normalized quadratic translation homothetic preferences
f'(q) that are dual to the following cost function C" for h = 1,....H:

(77) C*(u",P) = b™P + (1/2) (o-P)"'P-B"P + c"-Pu"

where b", ¢" and B" satisfy the restrictions (59)-(62) for h = 1,..,H. Let q" be household
h’s observed consumption vector for period t and let household h face the price vector P™
in period t for h = 1,....H and t = 0,1. Define the vector of real prices that household h
faces in period t, pht, as follows:

(78) p™ = P"/aP™ ; t=0,1:h=1,. H.

Now make the hypotheses in Proposition 1 for each household and we find that the sum
over households of the Bennet quantity indicators VB(phO hl, ho hl) for each household h
is equal to the average of the sum of the household h equlvalent and compensating
variations, Qg (qho n ho) and Q¢ (qho h hl); 1.e., using Proposition 1, we have:

(79) Zw" Va(pp".q4"q") = Ehr;- AP P e - a0
—(1/2)2}11 QE (qq .p) T (1/12)2h-1" Qc' (@79 p )
=3 Qs"(q™,q" (1/2)[ph0+ph1]) using Corollary 1

where for h = 1,...H, Qs (qho i (1/2)[ph0+ph1]) is the Hicks Samuelson theoretical
quantity Variation for household h using the vector of average real prices facing
household h for the two periods under consideration, (1/2)phO +( 1/2)ph1, as the reference
price vector. Thus if individual household price and quantity data are available, the sum
of these theoretical quantity variations can be calculated as the sum of the observable
Bennet quantity indicators.

37 Diewert (2005) and Balk (2007) indicated that the Bennet indicators had excellent axiomatic properties
as well. Thus the Bennet indicators seem to be the difference counterparts to the Fisher indexes in normal
ratio index number theory, since the Fisher indexes also have strong economic and axiomatic properties.
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If in addition, each household faces the same vector of prices p°’ in period 0 and p'
period 1, then (79) simplifies as follows:

(80) Va(p’,p',q’q") = (1/2)[p +p'Tq' - q"]
= (1/2)301" Qr (qh° *“,p>+(1/2)2h- Q" (@ .q".p"
=S Qs"(q™.q".(1/2)[p"+p'])

where the aggregate period t quantity vectors q' are defined as the sum of the individual
household quantity vectors:

BDq =31"q9"5q =31 q" .

Thus under the assumptions of Proposition 1 and the assumption that each household
faces the same prices in each period, the aggregate Bennet indicator of quantity change,
Ve(’,p',q°,q") defined by the first line in (80), is exactly equal to the arithmetic average
of the sum of the individual household equivalent Variations Eh- (qh0 hl,po), plus
the sum of the individual compensating variations, Su-1" Qc" (q", hl,p ). Under these
hypotheses, the aggregate Bennet indicator of quantity change is also exactly equal to the
sum over households of the Hicks Samuelson theoretical quantity variations using the
Vector of average real prices facing household h for the two periods under consideration,

Shet Qs"(q".qM(1/2)[p"+p']).

6. The Decomposition Properties of the Bennet Indicators

In the production context, Diewert and Morrison (1986), Morrison and Diewert (1990)
and Kohli (1990) (1991) developed a methodology that enables one to obtain exact
decompositions of various Tornqvist indexes into explanatory factors for each price or
quantity change using the assumption of a translog technology.”® It would be useful if we
could provide a similar decomposition result for the Bennet indicators but we are not able
to accomplish this task. However, Diewert and Morrison (1986; 674-676) developed an
average of first order approximations methodology which gave very similar results to
their translog methodology™ and so we will use this second approach below in order to
provide economic interpretations for each separate term in the Bennet indicators.

In this section, we will not make any specific parametric assumptions; we will assume
only that the consumer’s cost function C(u,P) satisfies conditions I and in addition,
C(u,P) and the dual f(q) are once differentiable in a neighbourhood around the observed
period t real price and quantity vectors, p' = P/a-q" and q', and around the observed period
t utility levels, u' = f(q'), for t = 0,1. Hence the following equations will be satisfied by
the data under the assumption that the consumer minimizes costs in each period:

* This result is analogous to Chamber’s (2001; 114) exact result for an aggregate normalized Bennet
quantity indicator in the context of Chamber’s benefit function framework.

¥ Diewert (2002) also developed some decomposition results for the Fisher indexes but these results lack
the simplicity of the Térnqvist decomposition results.

0 See Morrison and Diewert (1990) and Diewert and Lawrence (2006).
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(82) p"q' = C(f(q").,p") ; t=0,1;
(83) q'=VeC(f(q),P) =V, C(f(q"),p) ; t=0,1.

The first set of equalities in (83) follows from Shephard’s Lemma and the second set
follows from the proportionality of the real prices p' to the corresponding nominal prices
P' and the linear homogeneity of the cost function C(u,P) in the components of P so that
the partial derivative functions 0C(u,P)/dP, are homogeneous of degree 0 in their price
variables.

Define the nth partial Bennet price and quantity indicators, Tny(py'spa',dnsdn’) and
Va(Pn sPn' G sqn' ), as follows:

(84) IBn<pn°,01:>nl,lqn‘loqnb1 = (1/2)[qn°0+ qnl]1 [P’ - pn‘j) ; n=1,..N;
(85) Vea(Pn »Pn 5qn »qn ) = (1/2)[pn + Pu J[dn —an |5 n=1,.,N.

Note that the above partial indicators using real prices sum up to the overall Bennet
indicators using real prices; i.e., we have:

(86) IB(p‘;,pll,q(;,qll) = En=ll\;IBn(pnOa(I))nlalqnoaglnl)l;
(87) VB(p ,P :q ,q ) = Enzl VBn(pn apn ,qn ,qn )

We will relate the above observable partial indicators to theoretical partial indicators: for
each n, define the Laspeyres and Paasche partial price variations, o, and Op,, as
follows:*!

(88) aiy = C(f<qf),pll°,...,pn_1°,1 pnl,lpm“,...l,pNOg - C(lf(qo),p(:) ; n=1,.,N;
(89) Opp = C(f(q )ap ) - C(f(q )apl s+esPn_1 5 Pn s Pn+l 55PN ) 5 n= 1,---,N .

Thus the nth partial price Laspeyres variation, oy, is the difference in real expenditure
that would result if the standard of living of the consumer were held constant at the
period 0 utility level, u’ = f(q"), and all real prices are also held constant at their period 0
levels except that we allow the nth real price to increase from the period 0 level, p,’, to
the period 1 level, p,'. The nth partial price Paasche variation, opy,, has a similar
interpretation except that the reference utility level is held constant at the period 1 level,
u' = f(q"), and all real prices are held constant at their period 1 levels and as before, we
allow the nth real price to increase from the period 0 level, p,’, to the period 1 level, py'.

It is possible to adapt the first order approximation methods used to derive the
approximations (36) and (38) in the present context. Thus first order approximations to
the unobservable terms in (88) and (89) can be obtained as follows: for n = 1,...,N, we
have:

(90) C(£(q"),p1"--sPn_1’s Pr's Pust oeeesPNC) = C(£(q"),p°) + [0C(F(G"),p")/pul[Pn’ = Pn']

*! These variations are difference counterparts to the partial indexes defined in Diewert and Morrison
(1986) and Kohli (1990).
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= C(f(q"),p’) + @' [Pn' = Pn’] using Shepard’s Lemma (83) ;

(91) C(f(@"),p1's-sPn_t s Pn’s Prtt 5PN’ ) = C(F(q'),p") + [0C(R(@"),p" )Pl [pn’ = Pa']
= C(f(q"),p") + qn'[pn’ = Pa'] using Shepard’s Lemma (83).

Substituting (90) and (91) into (88) and (89) leads to the following observable first order
approximations, ar, and ap, to the Laspeyres and Paasche partial price variations, oy,

and ocpn:42
(92) oL = qno[pn1 - pnO] =aLn n=1,.,N;
(93) apn = qnl[pn1 - pno] =apn , n=1,...N.

Thus using definitions (84) for the Bennet partial price indicators, Ign(pn .Pn Qnsqn’ ), it
can be seen that they are exactly equal to the arithmetic average of the Laspeyres and
Paasche partial price indicators, (1/2)ar, + (1/2)ap,, which in turn approximate the
average of theoretical Laspeyres and Paasche partial price variations, (1/2)ow, + (1/2)0tpy,
to the first order; i.e., we have:

Proposition 3:
(94) Ia(Prspn o0 sdn’) = (1/2)arn + (1/2)apy = (1/2)0un + (1/2)0tpy ; n=1,..,N.

The above results are nonparametric; i.e., the approximations given by (92)-(94) are first
order Taylor series approximations that are valid no matter what (once differentiable)
preferences the consumer holds. However, if we assume that the consumer has
preferences that can be represented by the translation homothetic normalized quadratic
cost function C(u,P) defined by (58)-(62), then we can obtain an exact expression for the
gap between the Bennet partial indicator on the left hand side of (94) and the average of
the theoretical partial variations on the right hand side of (94); i.e., we can obtain the
following expression for the bias BBP, in the nth Bennet partial price indicator; i.e., we
have:

(95) Ia(Pr P 0 sdn’) = (1/2)0n + (1/2)0tpy + BBP, ; n=1,.,N;
(96) BBP, = —(1/2)ow[p”Bp’ + p'Bp'1[ps' - pa']

where o, is the nth component in the weighting vector o that is used to form real prices.
Since Enle ocnpnt =1 fort= 0,1, it can be seen that:

(97) Su=i” BBP, =0

2 Using simple feasibility arguments for the cost minimization problems defined by the left hand sides of
(90) and (91), it can be shown that a;, = o, and ap, =< ap, so that the Laspeyres partial price indicators a ,
generally biased upwards for the true partial Laspeyres price indexes oy, and the Paasche partial price
indicators ap, generally biased downwards for the true partial Paasche price indexes opy; i.€., these partial
price indicators will generally have some substitution bias, which will tend to cancel out when we take their
averages.
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so that the sum of the bias terms in the Bennet partial indicators Iga(pn spn'+0n sqn’ ) SUMS
to zero.* Let P* be the money metric utility scaling vector which appears in (60)-(62)
and define its real counterpart by p = P"/P™o.. If p’ is proportional to p’, then p”Bp’ is
equal to 0 and if p' is proportional to p*, then p''Bp' is equal to 0 and under these
conditions, it can be seen that all of the bias terms BBP,, will be equal to 0 as well. Hence
if p” and p' are close to each other, then we can choose the reference price vector p* to be
close to p” and p' and the bias terms will all be close to 0.

Finding economic interpretations for the Bennet partial quantity indicators,
VBn(pno,pnl,CInO,qnl), 1s more difficult. For each n, we first define the theoretical
Laspeyres and Paasche partial quantity variations, Br, and Bpy, as follows:

(98) [:))Ln = C(f(qioa"iaqn—loa qnlslqnﬂov'“l’qN(()))’po) 1_ C(f(ﬂo)aPO) ; n= 1»---9N 5
(99) Ben = C(f(q').p) - C(H(Q1 5,01 5Gn »Gn+1 50N )P ) n=1,.N.

Thus the nth partial quantity Laspeyres variation, Prn, is the difference in real expenditure
that would result if the real prices of the consumer are held constant at their period 0
levels p” and all quantities are also held constant at their period 0 except that we allow the
nth quantity to increase from the period 0 level, q.’, to the period 1 level, q,'. The nth
partial quantity Paasche variation, Pp,, has a similar interpretation except that the
reference prices are held constant at their period 1 levels p' and all quantities are also held
constant at their period 1 levels except that we allow the nth quantity to increase from the
period 0 level, q,, to the period 1 level, q,'.

In order to obtain observable first order approximations to the theoretical quantity
variations defined by (98) and (98), it is first necessary to develop some preliminary
material. Define the function h'(q) for q’s in a neighborhood of q' as follows:

(100) h(q) = C(f(q).p) ; t=0,1.

Under our assumptions, h'(q) is once differentiable at q' and we can calculate the vector
of first order partial derivatives as follows:

(101) V4h'(q") = [0C(f(q").p')/du] V4f(q') ; t=0,1.

Under our assumptions, q' solves the cost minimization problem defined by C(f(q"),p') for
t = 0,1 and since f(q) is differentiable at q', there exists a nonnegative Lagrange multiplier
A such that the following first order necessary conditions for the period t cost
minimization problem are satisfied:**

(102) p' = A' Vif(q) ; t=0,1.

* This must be the case in order for Proposition 2 to hold.
* Strictly speaking, we require q' >> Oy to ensure that conditions (102) are satisfied and later we will also
require that marginal cost be positive so that dC(f(q"),p')/du > 0 for t = 0,1.
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But Samuelson (1947) showed that the period t Lagrange multiplier A' which appears in
(102) 1s also equal to the period t marginal cost around the equilibrium point so that we
have:

(103) AL = 9C(f(q),p")/ou ; t=0,1.

Substituting (102) and (103) into (101) gives us the following simple expression for the
derivatives of the function h'(q) defined by (100):

(104) [0C(f(q"),p")/0u]V4f(q") = Vgh'(q) = p'; t=0,1.

Equations (104) seem to have been first derived by Balk (1989; 166) so we can call these
relationships Balk’s Lemma. With the above preliminary material out of the way, we can
now proceed to the task of finding first order approximations to the theoretical partial
quantity variations Pr, and Bp, defined by (98) and (99). Thus a first order approximation
to the unobservable term C(f(qlo,...,qn_lo, qnl, qn+10,...,qNO),p0) in (98) is:

(105) C(f(CIloa~--aqn_10a ina Qn+10,~-~,QNO),pO) n= 1,...,N
~ C(f(q"),p") + [0h°(q*)/9qn][n' = '] using (100) for t = 0
= C(f(q"),p") + pu’[dn' — '] using (104) for t = 0.

Similarly, a  first order approximation to the unobservable term
C(f(q1" s Qo GG 5@ )Y i (99) is:

(106) C(f(q1" .ot o Gn st 1 eeenqn' )P n=1,.,N
~ C(f(q"),p") + [0h'(q')/0qn][dn” - dn'] using (100) for t = 1
= C(f(@").p") + pu'[An” — qu'] using (104) for t = 1.

Substituting (105) and (106) into (98) and (99) leads to the following observable first
order approximations, by, and bp, to the Laspeyres and Paasche partial quantity
variations, By and Bpq:*

(107) Bro =~ pn'[qn' — Gn’] = brn; n=1,.N;
(108) ﬁPn = Pnl[in - qno] = bp, 5 n=1,.,N.

Thus using definitions (85) for the Bennet partial quantity indicators, Ve(Pn'sPn'»Gn dn' )
it can be seen that they are exactly equal to the arithmetic average of the Laspeyres and
Paasche partial quantity indicators, (1/2)br, + (1/2)bp,, which in turn approximate the

* Using simple feasibility arguments for the cost minimization problems defined by the left hand sides of
(102) and (103), it can be shown that by, = B, and bp, = Pp, so that the Laspeyres partial quantity
indicators by, generally biased upwards for the true partial Laspeyres quantity indexes 3, and the Paasche
partial quantity indicators bp, generally biased downwards for the true partial Paasche quantity indexes Ppy;
i.e., these partial quantity indicators will generally have some substitution bias, which will tend to cancel
out when we take their averages.
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average of the theoretical Laspeyres and Paasche partial price variations, (1/2)Pr, +
(1/2) pn, to the first order; i.e., we have:

Proposition 4:
(109) Via(pn'sPn' G sqn’) = (1/2)brn + (1/2)bpy = (1/2)B 1n + (1/2)B pn ; n=1,.N.

This completes our theoretical discussion of the properties of the Bennet indicators. In
the following section, we illustrate the use of these indicators for a Japanese data set.

7. The Bennet Indicators using Japanese Data

In this section, we apply our methodology to Japanese consumption data. These data
were constructed from the Japanese national accounts for 12 classes of expenditure for
the period 1980-2006. The prices for each commodity class were normalized to equal
one in 1980; see Tables B-1 and B-2 in Appendix B for a listing of the data. We chose
food and non-alcoholic beverages to be our numeraire commodity and the resulting real
prices are listed in Table B-3.* Aggregate expenditures evaluated in terms of real prices
are 127753 billion yen in 1980 and 232679 in 2006. Therefore, household expenditures
evaluated in real prices increased by 104927 billion yen over the last 27 years. We
calculate Bennet indicators of quantity changes and real price changes to decompose the
expenditure difference for every year. Table 1 lists value the real expenditure differences
and the Bennet indicators for the period 1981-2006. Table 2 lists their annual averages.
It tells us that the effects of real price changes are much smaller than the effects of
quantity changes. However, the impact of real price changes has been significant for the
last decade.

Table 1: Real Expenditure Differences and Bennet Indicators, 1981-2006

* This choice of deflator means that we used the weighting vector o = (1,0,...0)".
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Bennet Bennet
Year Difference | Quantity Price

Indicator Indicator
1981 2657 .4 1966.8 690.7
1982 8980.9 6252.6 2728.3
1983 31914 40547 -863.3
1984 23627 3456.0 -1103.2
1985 6652.0 6002.3 6497
1986 6622.4 4996.6 1625.7
1987 9040.9 6538.3 25026
1988 8122.2 7847 .4 2748
1989 8089.1 8398.1 -309.0
1990 59923 8497 .3 -2505.0
1991 14895 52759 -3786.4
1992 6674.9 4586.8 2088.1
1993 23247 2438.6 -113.9
1994 52148 52536 -38.8
1995 6675.9 32242 34517
1996 43298 53147 -984.9
1997 1297 .4 1683.8 -386.3
1998 -4934 .2 -2125.0 -2809.2
1999 14247 1188.5 236.3
2000 41206 1851.2 2269.3
2001 3656.7 3969.5 -312.8
2002 19321 2188.8 -256.7
2003 43 1433.0 -1428.7
2004 480.4 3708.4 -3228.0
2005 45799 39449 635.1
2006 3953.4 6167 .5 -2214 1

Table 2: Annual Averages of Real Expenditure Differences and Bennet Indicators

Real

Bennet

Bennet Price

Year Expenditure Quantity Indicator
Difference Indicator
1980-2006 40356 4158.3 -122.6
1981-1390 6170.1 5801.0 369.1
1931-2000 2861.8 2869.2 -7.4
2001-2006 24345 3568.7 -1134.2

Our focus is on real consumption that measures the overall utility or volume of aggregate
consumption. Real consumption can be computed throughout either the traditional ratio
approach to quantity indexes or by the difference approach as outlined in this paper.
However, if we use the ratio approach, the choice of specific index number formula could
matter for the value of real consumption. Therefore, we use the difference approach as
well as alternative index number formulae in order to evaluate the performance of the
difference approach relative to that of the ratio approach.

Real consumption coincides with the corresponding nominal value at the reference year.
Setting 1980 to be the reference year, we calculate different versions of real consumption
for all years using the ratio approach and the difference approach. Fixed base and chained
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quantity indexes were computed using the Laspeyres, Paasche, Fisher and Tornqvist-
Theil formulae.*” The results are listed in Table 3 below. The last column of Table 3
lists the corresponding Bennet estimate of total consumption. The first entry in this
column is simply the 1980 measure of Japanese total consumption expenditures divided
by the price of food; i.e., the first entry in the second column of the Table. The next entry
in the Bennet column just adds the Bennet measure of quantity change or volume change
V3 defined by (41) above where the real price vectors and quantity vectors pertaining to
the years 1980 and 1981 are used in the formula. The 1982 entry in the Bennet column is
just the 1981 entry plus the Bennet measure of quantity change going from 1981 to 1982
and so on.

Looking at Table 3, it can be seen that all of the index number estimates of real Japanese
consumption are very close to each other with the exception of the fixed base Laspeyres
and Paasche estimates. This lack of correspondence is normal since these indexes are
known to differ from their superlative counterparts when a fixed base is used. The
superlative chained indexes are particularly close to each other. But how do these
chained superlative indexes compare to the corresponding Bennet estimates of real
consumption listed in the last column of Table 3? It can be seen that the Bennet
measures are always equal to or greater than their chained superlative counterparts but
the differences are not very large: on average, the Bennet estimate exceeds its chained
Fisher counterpart by 0.74% per year, with a maximum deviation of 1.1%.

Table 3: Comparison of Japanese Real Consumption, 1980-2006

*" Two versions of the Térnqvist-Theil were computed for both fixed base and chained indexes: one that
constructed the price index first using the usual formula (and then the quantity index was defined by
dividing real expenditures by this direct price index) and the other was constructed by directly comparing a
share weighted average of log quantity changes and exponentiating. These two quantity indexes are
superlative as is the Fisher index; see Diewert (1976) for the formula details.
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. Difference
Total Ratio Approach Approach
Expenditures Fixed Base Index Chained Index

Year deflatgd by Laspeyres [ Paasche Fisher Torngvist Impllc!t Laspeyres | Paasche Fisher Torngvist Impllc!t Benngt
the Price of Quantit Quantit Quantit Quantit Tornguist Quantit Quantit Quantit Quantit Tornqvist | Quantity

Food Iuan "y y ¥ y Quantity y ¥ y y Quantity | Indicator

ndex Index Index Index Index Index Index Index
Index Index

1980 127752.7 1277527 | 1277527 1277527 1277527 1277526 1277527  127752.7 1277527 @ 1277527 1277527 1277527
1981 130410.1 1297232  129705.2 1297142 1297145 1297139 1297232 129705.2 1297142 1297145 1297141 1297195
1982 139391.1 1369422 135820.7 135881.4 135885.0 135881.6 135909.6 135830.6 135870.1 135871.1 135870.4 135972.1
1983 142582.5 139930.0 1397239 1398269 139829.8 1398258 139890.4 139778.2 1398343 1398353 1398345 140026.9
1984 144935.2 1433973  143032.0 1432145 143216.7 1432118 143312.0 143160.8 143236.4 143237.4 1432366 1434828
1985 151587.2 1494447  148913.2  149178.7  149179.0 1491735 1492463 149063.8 1491550 149156.0 1491552 149485.1
1986 158209.6 154316.2 153786.8  154051.3 154058.6 @ 154048.9 1541513 153940.0 1540456 154047.0 1540458 1544817
1987 167250.5 160639.7 = 160067.6  160353.4 160365.5 160354.8 160474.4 160251.2 160362.8 160364.3 160363.1 @ 161020.0
1988 175372.7 168160.1 = 167493.2 167826.3 1678419 1678289 168006.2 1677556 167880.8 167882.7 167881.1 168867.4
1989 183461.8 176183.0 175390.8 175786.5 175810.7 1757895 1760725 1757811 1759267 @ 175928.8 1759271 1772655
1990 189454.1 184481.0 183247.0 183863.0 183935.2 183864.1 184306.9 183951.3 184129.0 1841322 1841295 185762.8
1991 190943.7 1897453  188051.9 188896.7 188939.3 188886.0 189504.2 189110.7 189307.3 @ 189310.6 189307.8 191038.7
1992 197618.6 194323.3  192481.4  193400.1 = 193406.1 = 193384.4 194039.0 193622.0 193830.4 193833.8 193830.9 195625.6
1993 199943.2 1967709 = 194760.7 195763.2 195728.0 195727.1 @ 196436.0 196010.0 1962229 196226.7 196223.3 198064.1
1994 205158.0 202159.1  199719.7 200935.7 200849.2 200882.8 2015935 201165.2 201379.3 201383.0 201379.6 203317.7
1995 211834.0 2054232 2028575 204136.3 204059.7 @ 204090.2 2047457 204290.4 2045179 2045218 204518.2 206541.9
1996 216163.8 210890.5 2073909 209133.4 2090195 209049.0 209921.7 209399.4 209660.4 209665.1 @ 209660.4 211856.6
1997 217461.2 2129455  208639.4 210781.4 210627.0 2106454 2115857 @ 211004.4 2112948 2112986 2112945 213540.4
1998 212527.0 210785.1 = 206006.4 208382.1 208221.2 208186.7 209497.1 208936.5 209216.6 209219.0 209216.1 2114154
1999 213951.7 212406.8 206864.1 209617.1 209381.3 209366.7 210687.9 210084.2 2103859 210386.6 2103853 212603.8
2000 218072.3 214655.4 2083947 2115019 211186.4 2112059 2125309 211863.0 212196.7 2121966 2121959 214455.0
2001 221729.0 2191247 21157568 = 215317.2 2148431 2149053 2164492 2156746 216061.6 216061.0 216060.5 218424.6
2002 223661.1 2215645 2132421 2173635 2167576 2169103 218589.8 2178022 2181956 2181945 2181946 220613.4
2003 223665.4 223647.4 2139015 2187202 218000.7 218186.1 2200415 2191549 219597.8 219596.3 219596.3 222046.3
2004 2241458 228274.4  216395.4 2222555  221340.7 2215799 2237756 2227536 223264.0 2232618 2232618 225754.8
2005 228725.7 2331946 2190249 225998.7 2247843 225100.2 2277511 2266255 227187.6 2271845 2271847 229699.6
2006 232679.2 241317.8  223461.4 232218.0 230683.0 230972.0 234019.0 232665.4 233341.2 233336.2 2333365 235867.2

What are we to conclude from the above results? For the Japanese data, it seems that a
standard superlative index number approach to measuring aggregate real consumption
will be fairly close to the results generated by the theoretically preferable Bennet
approach, which has better aggregation over consumer properties and is consistent with
nonhomothetic preferences. However, there seem to be small but significant differences
between the Bennet estimates and those generated by chained superlative indexes.

8. Conclusion

This paper has established satisfactory difference theory counterparts to the standard
results on exact and superlative indexes in the ratio approach to the aggregation over
commodities problem. The counterpart to a superlative index number formula is a
superlative indicator formula. We found that the Bennet indicators of price and quantity
change were (strongly) superlative and thus we recommend their use in practical
applications of cost benefit analysis when ex post variations must be calculated.

In section 7 above, we found that, somewhat surprisingly, the results using the Bennet
indicator of quantity change are rather close to the quantity aggregates generated by a
superlative quantity index. This is somewhat reassuring in that the ratio and difference
approaches to economic aggregation seem to give more or less the same answer, at least
for our Japanese data set.

Finally, we mention one strong advantage of the difference approach over the ratio
approach: the ratio approach fails if the quantity aggregate has a value equal to zero in the
base period whereas the difference approach is unaffected by this complication. This
observation is important if labour supply enters the consumer’s utility function
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(negatively rather than positively) since in this case, zero or negative value aggregates
can readily occur. Although we did not formally model this situation, we are confident
that our techniques can be generalized to cover this situation.

Appendix A: On the Flexibility of the Translation Homothetic Normalized
Quadratic Cost Function.

Let P° >> Oy be an arbitrary predetermined reference price vector and let o > Oy be a
predetermined weighting vector. Define the translation homothetic normalized quadratic
cost function, C(u,P) by (58) where the two parameter vectors b and ¢ and the parameter
matrix B satisfy the restrictions (59)-(62). The restrictions (61) and (62) imply that the b
and ¢ vectors each have only N - 1 independent parameters, b, and c, respectively, while
the restrictions (59) and (60) imply that the N by N matrix B = [b,,] has only N(N-1)/2
independent parameters by,. Thus this functional form has 2N - 2 + N(N-1)/2
independent parameters in all.*® In this Appendix, we will show that this C(u,P) is
flexible in the class of cost functions satisfying Conditions II over a region of utility
levels u and price vectors P.

Let C*(u,P) be an arbitrary cost function satisfying Conditions II and suppose that it is

twice continuously differentiable at u >0 and P >> Oy. We assume that it satisfies
money metric utility scaling at the reference prices P so that

(A1) C'(w,P)=u forallu=0.

In order for C(u,P) defined by (58)-(62) to be flexible at (u*,P*), the following equations
need to be satisfied for some choice of b, ¢ and B:

(A2)C'(u,P) ~ =C@'P)  =u using (58)-(62);
(A3) VpC (u,P) =VpC(u,P) =b+cu using (58)-(62);
(A4) 0C (" ,P")ou =9C@u’ ,P)ou =1 using (58) and (62)
(A5) VZppC'(u',P") =VpCu'P) =(aP)'B using (58)-(60);
(A6) 9°C"(u",P")/au* = 9*C(u’,P")/ou* =0 using (58);

(A7) Vo, C (0" ,P) =V5H,Cu',P) =c using (58).

(AB) V2pC'(u",P) =V2C(u',P) =c"

The number of equations in (A2)-(AS8) is 1+N+1+N*+1+N+N. However, Young’s
Theorem on the equality of second order partial derivatives implies that there are only
N(N+1)/2 independent equations in (A5) instead of N? and the N equations in (A8) are
implied by the N equations in (A7). This leaves 3 + 2N + N(N+1)/2 equations to be
satisfied. However, both C (u,P) and C(u,P) are positively linearly homogeneous in the
prices P. Hence Euler’s Theorem on homogeneous functions implies the following 3 sets
of further restrictions on the derivatives of C" and C:

*¥ This turns out to be the minimal number of parameters required for a functional form to be flexible in the
class of cost functions satisfying Conditions II; hence this flexible functional form is also parsimonious.
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(A9) C'(u,P =PVpC'(u,P); C@,P) =P"VpCu',P);
(A10) V3ppC (u", PP =0y ; VZepC(u",P)P" =0y ;
(A11) P V%, C'(u',P)=9C (" ,PYou; P“V*,Cu ,P)=adCwu P )ou.

Thus there are 1+N+1 further equations which can be dropped which leaves 1 + 2N +
N(N-1)/2 equations to be satisfied.

Finally, both C” satisfies (A1) and C satisfies (20) in the main text; i.e., both C and C"
satisfy money metric utility scaling at the reference prices P . Differentiation of (A1) and
(20) gives us the following additional 3 restrictions on the levels and derivatives of C and

(A12) u'=C'(u,P)=P “VpC'(u’,P); u =C@ . P)=P"VpCu'P)  using(A9);
(A13) 9C (u',P)ou=1; aC",PYou = 1;
(A14) 9°C (u,P)/ou* =0 ; 9*C(u’,P")/ou* =0.

Thus we will require that C have at least 2N — 2 + N(N-1)/2 free parameters so that this
number of independent equations can be satisfied. Using the above material, it can be
seen that we will satisfy all of the equations (A2)-(AS8) if we can find b, ¢ and B which
satisfy equations (A3), (AS5) and (A7) where the chosen b,c and B must satisfy the
restrictions (59)-(62). This can readily be done. Use equations (A5) in order to define B
as follows:

(A15) B = a-P" V*ppC'(u’,P)).

Since o > Oy and P* >> Oy, aP’ is greater than 0. Since C*(u,P) is concave in P,
VZ3pC'(u”,P) is a negative semidefinite symmetric matrix and hence so is B. Since
C’(u,P) is linearly homogeneous in P, (A10) holds and so VZ3pC (u",P)P" = Ox. Thus the
B defined by (A15) satisfies the restrictions (59) and (60). Now use equations (A7) in
order to define c:

(A16) ¢ = V3p,C (u’,P)).

(A11) and (A13) will imply that the ¢ defined by (A16) satisfies the restrictions (62) in
the main text. Now define u” using (A2):

(A17)u = C' (" P).
Finally, define b using (A3) and definitions (A16) and (A17):
(A18) b= VpC (u",P") - V3p,C'(u',PHC (u",PH).

We need to verify that the b defined by (A18) satisfies the restriction (61) in the main
text. Using definition (A18), we have:
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(A19) P b =P"[VpC'(u",P") = V3,C (u"P)C (u",P)]

=C'(u",P") - [0C (" ,P")/ou]C (u",PH] using (A9) and (A11)
= C'(W,PH-1C@W",PH using (A13)
=0.

Thus the parameter vector b defined by (A18) does indeed satisfy the restriction (61) and
this completes our proof of the flexibility of the translation homothetic normalized
quadratic functional form.

Suppose C(u,P) is defined by (58) where B, b and c satisfy the restrictions (59)-(62). The
region of prices and utility levels where C satisfies the appropriate regularity conditions
for a cost function are the set of P and u which satisfy the following inequalities:

(A20)0u=0;P=0y;
(A21) VpC(u,P) =b + (0P)'BP - (1/2) (a-P)>P-BPo. + cu = O ;
(A22) 9 C(u,P)/du = c-P > 0.

We will illustrate what the preferences dual to the normalized quadratic translation
homothetic cost function look like for the case of two commodities. For all of the
examples defined below, we choose the price weighting vector a which is used to form
real prices as o' = [a1,02] = [1,0] and the reference price vector for money metric utility
scaling P tobe PT=[P,",P," ] =[1,1]. For Example 1, define the parameters in (58) as
follows:

b, b 00
(A23)b" =[b,ba] = [-L,1]: ¢ =[ci,ca] = [1/2,12] ; B=| "' 7| = .
b, by, 00

The preferences corresponding to this functional form are graphed in Figure 1.

Figure 1: Leontief Translation Homothetic Preferences with No Inferior Goods
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It can be seen that the regular region of utility levels and price vectors for this cost
function is u = 2 and P = Ox. The dual direct utility function is defined only over the set
of quantity vectors such that q; = 0 and q, = 2. Note that all of the indifference curves are
simply parallel shifts of a base Leontief or L shaped indifference curve that goes through
the point b = [-1,1]. The consumer’s income expansion path or Engel curve is the dashed
line that passes through (0,2) and has slope cy/c; = 1. Note also that b-P* = (=1)(1) +
(1)(1) = 0. Any point q = [q1,q2] that lies along the dashed line through b and the origin
will have the property that ¢'P" will equal 0 and so as we vary b along this dashed line
and vary the c vector, we will be able to approximate an arbitrary Engel curve locally by
using this functional form.* Finally, to illustrate money metric utility scaling, shift the
dashed line through the point b and the origin (0,0) in a parallel fashion until it is just
tangent to an indifference curve; we have drawn two of these parallel budget lines that
are tangent to the u = 2 and u = 3 indifference curves. The distance of these lines from
the origin serves to cardinalize utility.

Now consider Example 2 and define the parameters in (58) as follows:
T T b11 b12 -1 1
(A24) b =[b;,ba] =[-1,1]; ¢ =[ci,c2] =[1/2,1/2] ;B = = ,
12 bzz 1 -1

The preferences that correspond to this functional form are graphed in Figure 2.

Figure 2: Translation Homothetic Preferences with No Inferior Goods

* This is a special case of the class of cost functions studied by Lau and Tamura (1972).
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Q@ - slope is co/cy

q1

The dashed line through the point b and the origin is the set of q; and q that satisfy the
equation

(A25)P,"qi + P2’ g2 =P, b + P, by = 0.

Note that the base indifference curve (which corresponds to the zero utility level u = 0) is
tangent to this budget line defined by (A26) and the higher utility indifference curves are
simply parallel shifts of this base indifference curve. It can be shown that the points (0,
2-3V %)y and (1/2, 0) are on the base indifference curve. It can also be shown that as P,/P,
tends to zero, the upper limiting point on the base indifference curve tends to the point
(=3/2, 2)>"and as P,/P, tends to plus infinity, the lower limiting point on the base
indifference curve tends to (o, —©). As was the case with the Figure 1 preferences, The
consumer’s income expansion path or Engel curve is the dashed line that passes through
(0,2) and has slope cy/c; = 1. Again, to illustrate money metric utility scaling, shift the
dashed line through the point b and the origin (0,0) in a parallel fashion until it is just
tangent to an indifference curve; we have drawn two of these parallel budget lines that
are tangent to the u = 2 and u = 3 indifference curves. The distance of these lines from
the origin serves to cardinalize utility. Thus for example, all of the points on the u = 2
indifference curve are assigned the utility level 2 while all of the points on the u = 3
indifference curve are assigned the utility level 3.

%% This indifference curve can be extended to cover higher levels of g, in the obvious way.
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The regular region of prices and utility levels is more difficult to describe in a succinct
fashion. Basically, given u’' and P >> Oy, use Shephard’s Lemma to generate q =
VpC(u,P) and check whether this q is nonnegative. If so, then the given u and P belong to
the regular region. In our example, the vector ¢ had positive components so the
regularity condition 0C(u,P)/0u = c-P > 0 will automatically be satisfied.

Note that the vector ¢ is equal to V3 C(u,P) which in turn is equal to the vector of
derivatives of the consumer’s Hicksian demand functions, q(u,P) = Vp C(u,P), with
respect to an increase in utility u and thus indicates how the household’s consumption
changes as utility increases. If dqn(u,P)/du = 9°C(u,P)/dP,du is negative, then we say
that commodity n is an inferior commodity at u, P. Although it is easy to show that not
all commodities can be inferior at a particular point, there is nothing to prevent one or
more commodities from being inferior. Hence if the consumer’s preferences are
represented by a translation homothetic normalized quadratic cost function in a
neighbourhood of a point where the consumer has one or more inferior commodities, then
the parameter vector ¢ will have one or more negative components. This means that there
will exist positive price vectors P such that c-P is negative and hence C(u,P) defined by
(58) cannot be regular at these price vectors. Fortunately, it is possible to show that the
cost function defined by (58) can still be locally regular and provide a valid
representation of a consumer’s nonhomothetic preferences in a neighborhood of a point
(u,P) where C(u,P) satisfies the required regularity conditions for a cost function locally.

We conclude this section by considering an example where the second commodity is

inferior. For simplicity, we consider again the case of Leontief preferences. Thus for
Example 3, define the parameters in (58) as follows:
0 O]

0 0

bl 1 bl 2
bl 2 b22

(A26)b" =[b;,ba] = [-1,1]; ¢" =[c1,c2] = [4/3,-1/3] ; B= [

The preferences corresponding to this functional form are graphed in Figure 3.

Figure 3: Leontief Translation Homothetic Preferences with an Inferior Good

> The utility level u does not have to be nonnegative in this example. If we allow negative utility levels,
then the dual preferences f(q) are well defined for all q = Oy; i.e., if we restrict ourselves to u = 0, then we
will not be able to define the consumer’s preferences in the little triangle which is below the u = 0
indifference curve intersected with the nonnegative quadrant.
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The u = 0 indifference curve is the L shaped curve that has its corner at the point A,
which is the point (q;,q2) = (-1,1) = (by,b,) = b. As usual, the point b lies on the line P*-q
= 0 and the dashed line segment AO is part of this line. The dashed line segments ending
in D, F, H and C are all parallel to the line segment AO. The consumer’s Engel curve at
the reference prices P =[P,",P,"] =[1,1] is the intersection of the line segment AC with
the nonnegative orthant which is the line segment BC. The first regular point on this line
segment is the point B which corresponds to the point (q;,q2) = (0,3/4) and the
corresponding money metric utility level is u = 3/4. L shaped indifference curves that are
translations of the base indifference curve corresponding to u = 0 have been drawn for the
utility levels u = 3/4,u =1, u = 2 and u = 3. However, it can be seen that there is a
problem with these indifference curves: they cross each other! Geometrically, it is easy
to solve this problem: for the u = 3/4 indifference curve, replace the lower line segment
BK by the line segment BE, where the point E on this line segment must be strictly
between the points D and C. Similarly replace the bottom part of the u = 1 indifference
curve that passes through M by the line segment that ends at the point G where this line
segment is parallel to the line segment BE, replace the bottom part of the u = 2
indifference curve that passes through N by the line segment that ends at the point I
where this line segment is also parallel to the line segment BE, and so on. The resulting
system of indifference curves no longer cross and are well behaved. Algebraically, we
need to restrict the prices P and P, so that the restrictions (A22), ¢c'P > 0, are satisfied.
Under assumptions (A26), (A22) becomes the following restriction on prices:

(A27) P, <4 P,.

In order to satisfy the restrictions (A21), we require the following restrictions on u:
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(A28) % <u=<3.

The inequalities (A27) and (A28) define the regular region for the Example 3
preferences.

For more information on how local information on a cost function can be used to form
local approximations to utility functions, see Blackorby and Diewert (1979).

Viewing this last example, it can be seen that when there are inferior goods, the regular
region may not be very large; i.e., our suggested functional form will not be able to
provide an adequate global approximation to arbitrary preferences. However, with all of
the examples, it can be seen that if relative prices do not change too much and the utility
levels in the two periods being compared are fairly close, translation homothetic
normalized quadratic preferences will be able to provide a good local approximation to
arbitrary preferences. On the other hand, if relative prices differ markedly and/or utility
levels differ considerably, then the approximation may not be very close. But having
results that are exact for second order approximations to arbitrary preferences is better
than having results that are exact for only first order approximations!

Appendix B: The Japanese Consumption Data

We use the household consumption data in the Japanese national accounts. Household
consumption is classified into 12 categories; (1) Food and non-alcoholic beverages; (2)
Alcoholic beverages and tobacco; (3) Clothing and footwear; (4) Housing, electricity, gas
and water supply; (5) Furnishings, household equipment and household services; (6)
Health; (7) Transport; (8) Communication; (9) Recreation and culture; (10) Education;
(11) Restaurants and hotels; (12) Miscellaneous goods and services.

Expenditure series for each category are provided at current prices and constant prices in
the national accounts. For the years 1980-2003, current and constant yen series for the 12
consumption goods are found in the Annual Report on National Accounts of 2005; see
the Economic and Social Research Institute (2005); Part 1 Flows; 5. Supporting Tables;
(13) Composition of Final Consumption Expenditure of Households classified by
Purpose; Calendar Year, in billions of yen. The constant yen series are at the market
prices of 1995. For the years 1996-2006, current and constant yen series for the 12
consumption goods are found on Annual Report on National Accounts of 2008; see the
Economic and Social Research Institute (2007). The constant yen series are at the market
prices of 2000. We link the current and constant yen series of these two reports to
construct current and constant prices for the 12 goods for the period 1980-2006. For the
years 1996-2006, we use current and constant yen series taken from the Annual Report
on the National Accounts of 2008. We interpolate these series backward by using the
growth rate of current and constant yen series taken from Annual Report on the National
Accounts of 2005. The price of each good is implicitly derived from the current and
constant yen series. We normalize all the prices so that prices in 1980 are one and adjust
the corresponding quantity series in order to preserve values. We regard the constant yen
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series as the quantity series. We list the resulting price and quantity series for 1980-2006
in Table B-1 and Table B-2 respectively.

Table B-1: Prices of Consumption Goods

. Housing Furnishings .
FO::nand bzl\‘/:;’r;o"ecs Clothing and electricity Y:o:liser:::: Communicat] Recreation Restaurants| Mllzcezl)lcangzo
Year alcoholic andg footw:ar ;gas and K a’r:d Health Transport ion and culture Education and hotels agnd
beverages tobacco water household services
supply )
services

1980 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1981 1.04162 1.07216 1.03888 1.05957 1.02152 1.02092 1.04887 1.04322 1.06233 1.07679 1.05108 1.03687
1982 1.04697 1.08538 1.06201 1.10067 1.02653 1.04762 1.12421 1.03614 1.07852 1.14704 1.08435 1.05841
1983 1.07685 1.13687 1.08312 1.13579 1.02254 1.05256 1.12714 1.03037 1.10095 1.20658 1.11704 1.07842
1984 1.11502 1.21343 1.10829 1.16822 1.03326 1.06930 1.14733 1.01435 1.13302 1.26061 1.14997 1.10152
1985 1.12865 1.22243 1.13071 1.19664 1.03306 1.10449 1.16704 1.00670 1.17007 1.31554 1.17421 1.09722
1986 1.12573 1.26110 1.15100 1.20559 1.04714 1.13071 1.15367 1.00081 1.18575 1.36529 1.20012 1.09963
1987 111440 127879 1.16626 1.22047 1.04753 1.15577 1.16040 1.00150 1.18393 1.41058 1.21627 1.10285
1988 1.11997 1.27435 1.17891 123856 1.04888 1.15943 1.16186 0.98687 1.18153 1.45914 1.23302 1.10879
1989 1.14457 127041 1.22581 1.26618 1.05143 1.17543 1.17658 0.993035 1.20139 151821 1.28285 1.12579
1990 1.18888 1.28750 1.28017 1.30016 1.05341 1.19413 1.18787 0.97857 1.23202 1.60228 1.32780 1.14023
19391 1.24622 130227 1.33633 1.33486 1.06092 1.19979 121371 0.95705 1.26447 166855 1.37310 1.15870
1992 1.25307 1.30740 1.37554 1.36658 1.06566 1.24310 1.22328 0.93804 1.29031 1.73603 1.40949 1.17392
19393 126774 130678 1.37512 1.39606 1.05435 1.26089 1.23661 0.91270 1.29919 1.80541 1.43427 1.18747
1994 127496 1.32120 1.36187 1.42254 1.02534 1.27442 123729 0.88941 1.28709 1.86929 1.44748 1.20909
19395 1.25026 1.32541 1.35712 1.44468 1.00444 1.28208 1.22791 0.92536 1.25411 1.92655 1.44237 1.21485
1996 1.256226 1.32096 1.36823 1.46079 0.97937 1.29761 1.21633 0.88694 1.19769 197597 1.44650 1.22327
1997 127192 1.33666 1.39597 150130 0.97486 1.31024 1.22771 086328 1.18973 2.01820 1.48891 1.23723
1998 1.29105 1.34005 1.41566 151774 095657 1.30974 121124 0.82059 1.17403 2.054439 1.49427 1.24117
1999 1.28641 1.38709 1.41436 150993 0.94419 1.29259 121288 0.79750 1.15311 2.08789 1.49443 1.25487
2000 1.26024 1.38261 1.40445 150566 0.90247 1.28611 122926 0.77160 1.11376 2.12104 1.48423 1.25409
2001 1.24679 1.37807 1.38329 1.49958 0.85999 1.28711 123033 0.73706 1.04303 2.13690 1.47162 1.27311
2002 1.23008 1.37027 1.35960 1.48518 0.81462 1.27004 121938 0.73040 1.00066 2.16401 1.46972 1.26947
2003 1.22405 1.39253 1.34381 1.47242 0.77259 1.26163 1.22346 0.73076 0.94145 218028 1.47433 1.26684
2004 1.23003 1.41678 1.34030 1.45303 0.72654 1.24966 123720 0.72653 0.88308 2.19088 1.48340 1.26366
2005 121146  1.41617 1.34573 1.44856 0.69341 1.24689 1.26614 069996 0.81847 221460 1.48515 1.26429
2006 1.21304 1.43922 1.35569 1.44506 0.66537 1.23537 1.28843 0.68186 0.75676 221364 1.43338 1.26730
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i Housing Furnishings )

For?:nand bil\(/:grr;m:s Clothing and electricity onisen:];rl‘.(: Communicat] Recreation Restaurants Mtjlzcecl:ca);l]:o
Year alcoholic anelg footwegar ;gas and K asd Heaith Transport ion and culture Education and hotels agnd

beverages | tobacco water household services

supply services
1980 27979.8 54069 10906.6 22524 67732 52437 128361 1337.6 98511 2899 92795 127151
1981 28510.8 5253 10648.9 232316 6794 59895 128309 15193 99933 29001 90295 130221
1982 29430.6 54477 112605 238158 7622 6779.4 127013 17331 10970.9 2871 94129  13836.9
1983 29734.4 5486.4 11390.7 24493.4 8262 70029 13329.4 20139 11506.7 28352 94329 143821
1984 297269 51527 115623 25417.8 8863.7 70725 133686 22525 12186 2890.3 97517 151522
1985 305252 5111.2 11698.3 26347.2 97227 74482 134541 2418 128795 28652 102649 16710.1
1986 306379 5078.4 120835 26918.3 9555 71175 145538 25123 143287 29332 104151 181825
1987 30901.4 51538 12567 279226 99305 7009.9 157524 25347 15707.7 2987.1 10705 19467 .8
1988 312452 52966 12889.7 29059 10414.3 6843 178324 26319 174043 3065 11013.4  20465.4
1989 31361 5580.8 13143 30659.8 10639.8 6614.8 20079.2 26906 19274.4 3167 110271 219454
1990 31661.6 53936.2 131943 322199 115202 65231 218721 28206 220518 31782 10896.8 22606.2
1991 31936.4 60751 133477 337956 123389 65478 22633.1 30952 223312 32319 11266.2 231461
1992 327246 6207.7 123045 353589 125842 63923 23059.4 33215 221876 3259 120078 243158
1993 32801.6 62478 12806.9 36703.1 128546 63382 231708 3956.9 221382 32637 124633 239599
1994 33203.4 6511.2 128235 37792 13528 6643.4  23599.9 4324 220508 31995 131409 253424
1995 341438 67104 133958 38563.1 14169.2 65879 237727 4586.7 225442 31346 13191.4 246236
1996 341318 67624 13509.2 39533.8 142312 65665 246978 56853 235955 3101.3 136815 253943
1997 33560.4 67292 122868 402065 141789 69119  24888.4 6564 25154 3054.5 13693 257179
1998 341173 70178 112935 408109 135744 71326 22911 72831 248206 29605 13794.4 25069.1
1999 34389.4 6973 99246 416489 13579.8 77981 23125.4 83426 25104 2901.3 138735 247461
2000 34508.9 6952.9 90275  426639.4 13236 80459 23367.4 89468 277521 2852 13658 23638.4
2001 349203 7002.2 8662.9 43505.4 13498.9 84241 23786.1 9856.6 29575.4 2836 14079.2 229777
2002 35032.3 7064.9 7988.3 443446 13301.9 8677 238549 10529.2 30515.1 28125 141635 232742
2003 345448 6660.2 76625 451702 13587.1 92312 23633 11030.7 323341 27739 140039.1 23010.8
2004 34388.1 6540 73832 46038.6 141635 9202.4 237261 11584.3 348946 2829 140296 234348
2005 335839 62772 73472 470459 149454 9563.4 239904 12139.4 369754 28018 142435 242811
2006 33424 6098.5 75827  48066.7 159155 96442 241671 128783 41188.1 2783.1 144011 251685
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