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Abstract 
 
Index numbers are used to aggregate detailed information on prices and quantities into 
scalar measures of price and quantity levels or their growth.  The paper reviews four main 
approaches to bilateral index number theory where two price and quantity vectors are to 
be aggregated: fixed basket and average of fixed baskets, stochastic, test or axiomatic and 
economic approaches.  The paper also considers multilateral index number theory where 
it is necessary to construct price and quantity aggregates for more than two value 
aggregates.  A final section notes some of the recent literature on related aspects of index 
number theory the construction of indexes when there is seasonality in the underlying 
data, sources of bias in consumer price indexes, the use of index numbers in measuring 
productivity, the problem of quality change and  index number theory that is based on 
taking differences rather than ratios.        
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1. Introduction 
 
Each individual consumes the services of thousands of commodities over a year and most 
producers utilize and produce thousands of individual products and services.  Index 
numbers are used to reduce and summarize this overwhelming abundance of 
microeconomic information.  Hence index numbers intrude themselves on virtually every 
empirical investigation in economics. 
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The index number problem may be stated as follows.  Suppose we have price data pt ≡ 
(p1

t,… ,pN
t) and quantity data qt ≡ (q1

t,…,qN
t) on N commodities that pertain to the same 

economic unit at time period t (or to comparable economic units) for t = 0, 1, 2,…,T.  The 
index number problem is to find T+1 numbers Pt and T+1 numbers Qt such that  
 
(1)  PtQt = pt⋅qt ≡ ∑n=1

Npn
tqn

t for t = 0,1,…,T. 
 

Pt is the price index for period t (or unit t) and Qt is the corresponding quantity index.  Pt 
is supposed to be representative of all of the prices pn

t, n = 1,..., N in some sense, while Qt 
is to be similarly representative of the quantities qn

t, n = 1,..., N.  In what precise sense Pt 
and Qt represent the individual prices and quantities is not immediately evident and it is 
this ambiguity which leads to different approaches to index number theory.  Note that we 
require that the product of the price and quantity indexes, PtQt, equals the actual period 
(or unit) i expenditures on the N commodities, pt⋅qt.  Thus if the Pt are determined, then 
the Qt may be implicitly determined using equations (1), or vice versa. 
 
The number Pt is interpreted as an aggregate period t price level while the number Qt is 
interpreted as an aggregate period t quantity level.  The levels approach to index number 
theory works as follows. The aggregate price level Pt is assumed to be a function of the 
components in the period t price vector, pt while the aggregate period t quantity level Qt 
is assumed to be a function of the period t quantity vector components, qt; i.e., it is 
assumed that 
 
(2) Pt = c(pt) and Qt = f(qt)  ;  t = 0,1,…,T. 
 
The functions c and f are to be determined somehow.  Note that we are requiring that the 
functional forms for the price aggregation function c and for the quantity aggregation 
function f be independent of time.  This is a reasonable requirement since there is no 
reason to change the method of aggregation as time changes.   
 
Substituting (2) into (1) and dropping the superscripts t means that c and f must satisfy 
the following functional equation for all strictly positive price and quantity vectors: 
 
(3)     c(p)f(q) = p⋅q ≡ ∑n=1

N pnqn         for all p >> 0N and for all q >> 0N. 
 
Note that p >> 0N means that each component of p is positive, p ≥ 0N means each 
component is nonnegative and p > 0N means each component is nonnegative and at least 
one component is positive. We now could ask what properties should the price 
aggregation function c and the quantity aggregation function f have?  We could assume 
that c and f satisfied various “reasonable” properties and hope that these properties would 
determine the functional form for c and f.  However, it turns out that we only have to 
make the following very weak positivity assumptions on f and c in order to obtain an 
impossibility result:  
 
(4)    c(p) > 0 for all p >> 0N ; f(q) > 0 for all q >> 0N. 
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Eichhorn (1978; 144) proved the following result: if the number of commodities N is 
greater than 1, then there do not exist any functions c and f that satisfy (3) and (4).  Thus 
this levels approach to index number theory comes to an abrupt halt.  As we shall see 
later when the economic approach to index number theory is studied, this is not quite the 
end of the story: in (3) and (4), we allowed p and q to vary independently from each other 
and this is what leads to the impossibility result.  If instead we allow p to vary 
independently but assume that q is determined as the result of an optimizing model, then 
equation (3) can be satisfied. 
 
If we change the question that we are trying to answer slightly, then there are practical 
solutions to the index number problem.  The change is that instead of trying to 
decompose the value of the aggregate into price and quantity components for a single 
period, we instead attempt to decompose a value ratio pertaining to two periods, say 
periods 0 and 1, into a price change component P times a quantity change component Q.  
Thus we now look for two functions of 4N variables, P(p0,p1,q0,q1) and Q(p0,p1,q0,q1) 
such that: 
 
(5) p1⋅q1/p0⋅q0 = P(p0,p1,q0,q1)Q(p0,p1,q0,q1). 
 
Note that if some approach to index number theory determines the “best” functional form 
for the price index P(p0,p1,q0,q1), then the product test (5) can be used to determine the 
functional form for the corresponding quantity index, Q(p0,p1,q0,q1).   
 
If we take the test or axiomatic approach to index number theory, then we want equation 
(5) to hold for all positive price and quantity vectors pertaining to the two periods under 
consideration, p0,p1,q0,q1.  If we take the economic approach, then only the price vectors 
p0 and p1 are regarded as independent variables while the quantity vectors, q0 and q1, are 
regarded as dependent variables.  In section 4 below, we will pursue the test approach 
and in sections 5 to 7, we will take the economic approach.  In sections 2-7, we take a 
bilateral approach to index number theory; i.e., in making price and quantity 
comparisons between any two time periods, the relevant indexes use only price and 
quantity information that pertains to the two periods under consideration.  It is also 
possible to take a multilateral approach; i.e., we look for functions, Pt and Qt, that are 
functions of all of the price and quantity vectors, p0,p1,…,pT,q0,q1,…,qT.  Thus we look 
for 2(T+1) functions, Pt(p0,p1,…,pT,q0,q1,…,qT) and Qt(p0,p1,…,pT,q0,q1,…,qT), t = 
0,1,…,T, such that 
 
(6) pt⋅qt = Pt(p0,p1,…,pT,q0,q1,…,qT) Qt(p0,p1,…,pT,q0,q1,…,qT)     for t = 0,1,…,T. 
 
We briefly pursue the multilateral approach to index number theory in section 9 below.   
 
The four main approaches to bilateral index number theory will be covered in this review: 
(i) the fixed basket approach (section 2), (ii) the stochastic approach (section 3),  (iii) the 
test approach (section 4) and (iv) the economic approach, which relies on the assumption 
of maximizing or minimizing behavior (sections 5-7). 
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Section 8 discusses fixed base versus chained index numbers and section 10 concludes by 
mentioning some recent areas of active research in the index number literature.    
 
2. Fixed Basket Approaches 
 
The English economist Joseph Lowe (1823) developed the theory of the consumer price 
index in some detail. His approach to measuring the price change between periods 0 and 
1 was to specify an approximate representative commodity basket quantity vector, q ≡ 
(q1,…,qN), which was to be updated every five years, and then calculate the level of 
prices in period 1 relative to period 0 as 
 
(7) PLo(p0,p1,q) ≡ p1⋅q/p0⋅q 
 
where p0 and p1 are the commodity price vectors that the consumer (or group of 
consumers) face in periods 0 and 1 respectively.  The fixed basket approach to measuring 
price change is intuitively very simple: we simply specify the commodity “list” q and 
calculate the price index as the ratio of the costs of buying this same list of goods in 
periods 1 and 0.  
 
As time passed, economists and price statisticians demanded a bit more precision with 
respect to the specification of the basket vector q.  There are two natural choices for the 
reference basket: the period 0 commodity vector q0 or the period 1 commodity vector q1.  
These two choices lead to the Laspeyres (1871) price index PL defined by (8)  and the 
Paasche (1874) price index PP defined by (9): 
 
(8) PL(p0,p1,q0,q1) ≡ p1⋅q0/p0⋅q0 ; 
(9) PP(p0,p1,q0,q1) ≡ p1⋅q1/p0⋅q1. 
 
The above formulae can be rewritten in an alternative manner that is very useful for 
statistical agencies.  Define the period t expenditure share on commodity n as follows: 
 
(10)  sn

t ≡ pn
tqn

t/pt⋅qt      for n = 1,…,N and t = 0,1. 
 
Following Fisher (1911), the Laspeyres index (8) can be rewritten as follows: 
 
(11)  PL(p0,p1,q0,q1) = ∑n=1

N pn
1qn

0/p0⋅q0 
                                = ∑n=1

N (pn
1/pn

0) pn
0qn

0/p0⋅q0 
                                = ∑n=1

N (pn
1/pn

0) sn
0                     using definitions (10). 

 
Thus the Laspeyres price index PL can be written as a base period expenditure share 
weighted average of the N price ratios (or price relatives using index number 
terminology), pn

1/pn
0 .  The Laspeyres formula (until the very recent past) has been 

widely used as the intellectual basis for country Consumer Price Indexes (CPIs) around 
the world.  To implement it, the country statistical agency collects information on 
expenditure shares sn

0 for the index domain of definition for the base period 0 and then 
collects information on prices alone on an ongoing basis.  Thus a Laspeyres type CPI can 
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be produced on a timely basis without having to know current period quantity 
information.  In fact, the situation is more complicated than this: in actual CPI programs, 
prices are collected on a monthly or quarterly frequency and with base month 0 say but 
the quantity vector q0 is typically not the quantity vector that pertains to the price base 
month 0; rather it is actually equal to a base year quantity vector qb say, which is 
typically prior to the base month 0.  Thus the typical CPI, although loosely based on the 
Laspeyres index, is actually a form of Lowe index; see (7) above.  Instead of using the 
Lowe formula for their CPI, some statistical agencies use the following Young (1812) 
index: 
 
(12) PY(p0,p1,sb) ≡ ∑n=1

N (pn
1/pn

0) sn
b 

 
where the sn

b are base year expenditure shares on the N commodities in the index.  For 
additional material on Lowe and Young indexes and their use in CPI and PPI (Producer 
Price Index) programs, see the ILO (2004) and the IMF (2004).     
 
The Paasche index can also be written in expenditure share and price ratio form as 
follows: 
 
(13) PP(p0,p1,q0,q1) = 1/ [∑n=1

N pn
0qn

1/p1⋅q1] 
                               = 1/ [∑n=1

N (pn
0/pn

1) pn
1qn

1/p1⋅q1] 
                               = 1/ [∑n=1

N (pn
1/pn

0)−1 sn
1]                     using definitions (10) 

                               = [∑n=1
N (pn

1/pn
0)−1 sn

1]−1. 
  
Thus the Paasche price index PP can be written as a period 1 (or current period) 
expenditure share weighted harmonic average of the N price ratios. 
 
The problem with the Paasche and Laspeyres index number formulae is that they are 
equally plausible but in general, they will give different answers.  This suggests that if we 
require a single estimate for the price change between the two periods, then we need to 
take some sort of evenly weighted average of the two indexes as our final estimate of 
price change between periods 0 and 1.  Examples of such symmetric averages are the 
arithmetic mean, which leads to the Sidgwick (1883; 68) Bowley (1901; 227) index, 
(1/2)PL + (1/2)PP, and the geometric mean, which leads to the Fisher (1922) ideal index, 
PF, which was actually first suggested by Bowley (1899; 641), defined as 
 
(14) PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1) PP(p0,p1,q0,q1)]1/2 . 
 
At this point, the fixed basket approach to index number theory is transformed into the 
test approach to index number theory; i.e., in order to determine which of these fixed 
basket indexes or which averages of them might be “best”, we need criteria or tests or 
properties that we would like our indexes to satisfy.  We will pursue this topic in more 
detail in section 4 below but we will give the reader an introduction to this topic in the 
present section because some of these tests or properties are useful to evaluate other 
approaches to index number theory. 
 



 6 

Let a and b be two positive numbers.  Diewert (1993b; 361) defined a symmetric mean of 
a and b as a function m(a,b) that has the following properties: (i) m(a,a) = a for all a > 0  
(mean property); (ii) m(a,b) = m(b,a) for all a > 0, b > 0 (symmetry property); (iii) m(a,b) 
is a continuous function for a > 0, b > 0 (continuity property) and (iv) m(a,b) is a strictly 
increasing function in each of its variables (increasingness property).  Eichhorn and 
Voeller (1976; 10) showed that if m(a,b) satisfies the above properties, then it also 
satisfies the following property: (v) min {a,b} ≤ m(a,b) ≤ max {a,b} (min-max property); 
i.e., the mean of a and b, m(a,b), lies between the maximum and minimum of the 
numbers a and b.  Since we have restricted the domain of definition of a and b to be 
positive numbers, it can be seen that an implication of the last property is that m also 
satisfies the following property: (vi)  m(a,b) > 0 for all a > 0, b > 0 (positivity property).  
If in addition, m satisfies the following property, then we say that m is a homogeneous 
symmetric mean: (vii) m(λa,λb)  = λm(a,b) for all λ > 0, a > 0, b > 0. 
 
What is the “best” symmetric average of PL and PP to use as a point estimate for the 
theoretical cost of living index?  It is very desirable for a price index formula that 
depends on the price and quantity vectors pertaining to the two periods under 
consideration to satisfy the time reversal test.  We say that the index number formula 
P(p0,p1,q0,q1)  satisfies this test if 
 
(15)  P(p1,p0,q1,q0) = 1/ P(p0,p1,q0,q1)  ; 
 
i.e., if we interchange the period 0 and period 1 price and quantity data and evaluate the 
index, then this new index P(p1,p0,q1,q0) is equal to the reciprocal of the original index 
P(p0,p1,q0,q1).  For the history of this test (and other tests), see Diewert (1992a; 218) 
(1993a). 
 
Diewert (1997; 138) proved the following result: the Fisher Ideal price index defined by 
(14) above is the only index that is a homogeneous symmetric average of the Laspeyres 
and Paasche price indexes, PL and PP, that also satisfies the time reversal test (15) above. 
 
Thus the symmetric basket approach to index number theory leads to the Fisher ideal 
index as the “best” formula.  It is interesting to note that this symmetric basket approach 
to index number theory dates back to one of the early pioneers of index number theory, 
Bowley, as the following quotations indicate: 
 
“If [the Paasche index] and [the Laspeyres index] lie close together there is no further difficulty; if they 
differ by much they may be regarded as inferior and superior limits of the index number, which may be 
estimated as their arithmetic mean … as a first approximation.”  A. L. Bowley (1901; 227). 
 
“When estimating the factor necessary for the correction of a change found in money wages to obtain the 
change in real wages, statisticians have not been content to follow Method II only [to calculate a Laspeyres 
price index], but have worked the problem backwards [to calculate a Paasche price index] as well as 
forwards. … They have then taken the arithmetic, geometric or harmonic mean of the two numbers so 
found.”  A. L. Bowley (1919; 348). 
 
Instead of taking a symmetric average of the Paasche and Laspeyres indexes, an 
alternative average basket approach takes a symmetric average of the baskets that prevail 
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in the two periods under consideration.  For example, the average basket could be the 
arithmetic or geometric mean of the two baskets, leading the Marshall (1887) Edgeworth 
(1925) index PME or the Walsh (1901; 398 ) (1921a; 97-101) index PW: 
 
(16)  PME(p0,p1,q0,q1) ≡ ∑n=1

N pn
1(1/2)(qn

0 + qn
1) / ∑m=1

N pj
0(1/2)(qm

0 + qm
1); 

(17)  PW(p0,p1,q0,q1) ≡ ∑n=1
N pn

1(qn
0qn

1)1/2 / ∑m=1
N pm

0(qm
0qm

1)1/2 . 
 
Diewert (2002b; 569-571) showed that the Walsh index PW emerged as being “best” in 
this average basket framework; see also Chapters 15 and 16 in ILO (2004).  
 
We turn now to the second major approach to bilateral index number theory. 
 
3. The Stochastic Approach to Index Number Theory 
 
“In drawing our averages the independent fluctuations will more or less destroy each other; the one 
required variation of gold will remain undiminished.”  W. Stanley Jevons (1884; 26). 
 
The stochastic approach to the determination of the price index can be traced back to the 
work of Jevons (1865) (1884) and Edgeworth (1888) (1923) (1925) over a hundred years 
ago.  For additional discussion on the early history of this approach, see Diewert (1993a; 
37-38) (1995b). 
 
The basic idea behind the stochastic approach is that each price relative, pn

1/pn
0 for n = 

1,2,…,N can be regarded as an estimate of a common inflation rate α between periods 0 
and 1; i.e., it is assumed that 
 
(18) pn

1/pn
0 = α + εn  ;  n = 1,2,…,N 

 
where α is the common inflation rate and the εn are random variables with mean 0 and 
variance σ2. The least squares estimator for α is the Carli (1764) price index PC defined 
as 
 
(19) PC(p0,p1) ≡ ∑n=1

N (1/N) (pn
1/pn

0). 
 
Unfortunately, PC does not satisfy the time reversal test, i.e., PC(p1,p0) ≠ 1/ PC(p0,p1).  In 
fact, Fisher (1922; 66) noted that PC(p0,p1)PC(p1,p0) ≥ 1 unless the period 1 price vector p1 
is proportional to the period 0 price vector p0; i.e., Fisher showed that the Carli (and  the 
Young) index has a definite upward bias.  He urged statistical agencies not to use these 
formulae. 
 
Now assume that the logarithm of each price relative, ln(pn

1/pn
0), is an unbiased estimate 

of the logarithm of the inflation rate between periods 0 and 1, β say.  Thus we have: 
 
(20) ln(pn

1/pn
0) = β + εn  ;  n = 1,2,…,N 
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where β ≡ lnα and the εn are independently distributed random variables with mean 0 and 
variance σ2. The least squares estimator for β is the logarithm of the geometric mean of 
the price relatives.  Hence the corresponding estimate for the common inflation rate α is 
the Jevons (1865) price index PJ defined as: 
 
(21) PJ(p0,p1) ≡ ∏n=1

N (pn
1/pn

0)1/N. 
 
The Jevons price index PJ does satisfy the time reversal test and hence is much more 
satisfactory than the Carli index PC.   
 
Bowley (1928) attacked the use of both (19) and (21) on two grounds.  First, from an 
empirical point of view, he showed that price ratios were not symmetrically distributed 
about a common mean and their logarithms also failed to be symmetrically distributed.  
Secondly, from a theoretical point of view, he argued that it was unlikely that prices or 
price ratios were independently distributed.  Keynes (1930) developed Bowley’s second 
objection in more detail; he argued that changes in the money supply would not affect all 
prices at the same time.  Moreover, real disturbances in the economy could cause one set 
of prices to differ in a systematic way from other prices, depending on various elasticities 
of substitution and complementarity.  In other words, prices are not randomly distributed, 
but are systematically related to each other through the general equilibrium of the 
economy.  Keynes (1930; 76-77) had other criticisms of this unweighted stochastic 
approach to index number theory, including the point that that there is no such thing as 
the inflation rate; there are only price changes that pertain to well specified sets of 
commodities or transactions; i.e., the domain of definition of the price index must be 
carefully specified.  Keynes also followed Walsh in insisting that price movements must 
be weighted by their economic importance; i.e., by quantities or expenditures: 
 
“It might seem at first sight as if simply every price quotation were a single item, and since every 
commodity (any kind of commodity) has one price-quotation attached to it, it would seem as if price-
variations of every kind of commodity were the single item in question.  This is the way the question struck 
the first inquirers into price-variations, wherefore they used simple averaging with even weighting.  But a 
price-quotation is the quotation of the price of a generic name for many articles; and one such generic name 
covers a few articles, and another covers many.  … A single price-quotation, therefore, may be the 
quotation of the price of a hundred, a thousand, or a million dollar’s worths, of the articles that make up the 
commodity named.  Its weight in the averaging, therefore, ought to be according to these money-unit’s 
worth.”  Correa Moylan Walsh (1921a; 82-83). 
 
Theil (1967; 136-137) proposed a solution to the lack of weighting in (21). He argued as 
follows. Suppose we draw price relatives at random in such a way that each dollar of 
expenditure in the base period has an equal chance of being selected. Then the probability 
that we will draw the nth price relative is equal to sn

0 ≡ pn
0qn

0/p0⋅q0, the period 0 
expenditure share for commodity n. Then the overall mean (period 0 weighted) 
logarithmic price change is ∑n=1

N sn
0ln(pn

1/pn
0).  Now repeat the above mental experiment 

and draw price relatives at random in such a way that each dollar of expenditure in period 
1 has an equal probability of being selected. This leads to the overall mean (period 1 
weighted) logarithmic price change of ∑n=1

N sn
1ln(pn

1/pn
0).  Each of these measures of 

overall logarithmic price change seems equally valid so we could argue for taking a 
symmetric average of the two measures in order to obtain a final single measure of 
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overall logarithmic price change.  Theil (1967; 138) argued that a nice symmetric index 
number formula can be obtained if we make the probability of selection for the nth price 
relative equal to the arithmetic average of the period 0 and 1 expenditure shares for 
commodity n.  Using these probabilities of selection, Theil's final measure of overall 
logarithmic price change was 
 
(22)  lnPT(p0,p1,q0,q1) ≡ ∑n=1

N (1/2)(sn
0 + sn

1) ln(pn
1/pn

0). 
 
We can give the following descriptive statistics interpretation of the right hand side of 
(22).  Define the nth logarithmic price ratio rn by: 
 
(23)   rn ≡ ln(pn

1/pn
0)    for n = 1,…,N. 

 
Now define the discrete random variable, R say, as the random variable which can take 
on the values rn with probabilities ρn ≡ (1/2)[ sn

0 + sn
1] for n = 1,…,N.  Note that since 

each set of expenditure shares, sn
0 and sn

1, sums to one, the probabilities ρn will also sum 
to one.  It can be seen that the expected value of the discrete random variable R is 
 
(24)  E[R] ≡ ∑n=1

N ρn rn = ∑n=1
N (1/2)(sn

0 + sn
1) ln(pn

1/pn
0) = lnPT(p0,p1,q0,q1) 

 
using (22) and (23).  Thus the logarithm of the index PT can be interpreted as the 
expected value of the distribution of the logarithmic price ratios in the domain of 
definition under consideration, where the N discrete price ratios in this domain of 
definition are weighted according to Theil’s probability weights, ρn ≡ (1/2)[ sn

0 + sn
1] for 

n = 1,…,N.    
 
Taking antilogs of both sides of (24), we obtain the Törnqvist (1936), Törnqvist and 
Törnqvist (1937) Theil price index, PT.  This index number formula has a number of good 
properties.  Thus the second major approach to bilateral index number theory has led to 
the Törnqvist Theil price index PT as being “best” from this perspective.   
 
Additional material on stochastic approaches to index number theory and references to 
the literature can be found in Selvanathan and Rao (1994), Diewert (1995b), Wynne 
(1997), ILO (2004), IMF (2004) and Clements, Izan and Selvanathan (2006). 
 
It turns out that formulae (8), (9), (14) and (22) (the Laspeyres, Paasche, Fisher and 
Törnqvist Theil formulae) are the most widely used formulae for a bilateral price index.  
But  Walsh (1901) and Fisher (1922) presented hundreds of functional forms for bilateral 
price indexes—on  what basis are we to choose one as being better than the other?  
Perhaps the next approach to index number theory will narrow the choices. 
 
4. The Test Approach to Index Number Theory 
 
In this section, we will take the perspective outlined in section 1 above; i.e., along with 
the price index P(p0,p1,q0,q1), there is a companion quantity index Q(p0,p1,q0,q1) such that 
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the product of these two indices equals the value ratio between the two periods.  Thus, 
throughout this section, we assume that P and Q satisfy the product test (5) above.   
 
Assuming that the product test holds means that as soon as the functional form for the 
price index P is determined, then (5) can be used to determine the functional form for the 
quantity index Q.  However, as Fisher (1911; 400-406) and Vogt (1980) observed, a 
further advantage of assuming that the product test holds is that we can assume that the 
quantity index Q satisfies a “reasonable” property and then use (5) to translate this test on 
the quantity index into a corresponding test on the price index P. 
 
If N = 1, so that there is only one price and quantity to be aggregated, then a natural 
candidate for P is p1

1/p1
0 , the single price ratio, and a natural candidate for Q is q1

1/q1
0 , 

the single quantity ratio.  When the number of commodities or items to be aggregated is 
greater than 1, then what index number theorists have done over the years is propose 
properties or tests that the price index P should satisfy.  These properties are generally 
multi-dimensional analogues to the one good price index formula, p1

1/p1
0.  Below, 

following Diewert (1992a), we list twenty tests that turn out to characterize the Fisher 
ideal price index. 
 
We shall assume that every component of each price and quantity vector is positive; i.e., 
pt  > > 0N  and qt  > > 0N for t = 0,1.  If we want to set q0 = q1 , we call the common 
quantity vector q; if we want to set p0 = p1 , we call the common price vector p. 
 
Our first two tests, due to Eichhorn and Voeller (1976; 23) and Fisher (1922; 207-215),   
are not very controversial and so we will not discuss them. 
 
T1: Positivity: P(p0,p1,q0,q1) > 0. 
  
T2: Continuity: P(p0,p1,q0,q1) is a continuous function of its arguments. 
 
Our next two tests, due to Laspeyres (1871; 308), Walsh (1901; 308) and Eichhorn and 
Voeller (1976; 24),  are somewhat more controversial. 
  
T3: Identity or Constant Prices Test:   P(p,p,q0,q1) = 1. 
 
That is, if the price of every good is identical during the two periods, then the price index 
should equal unity, no matter what the quantity vectors are.  The controversial part of this 
test is that the two quantity vectors are allowed to be different in the above test. 
 
T4:     Fixed Basket or Constant Quantities Test: P(p0,p1,q,q) = ∑i=1

N pi
1qi /∑i=1

N pi
0qi. 

             
That is, if quantities are constant during the two periods so that q0 = q1 ≡ q, then the price 
index should equal the expenditure on the constant basket in period 1, ∑i=1

N pi
1qi, divided 

by the expenditure on the basket in period 0, ∑i=1
N pi

0qi.  The origins of this test go back 
at least two hundred years to the Massachusetts legislature which used a constant basket 
of goods to index the pay of Massachusetts soldiers fighting in the American Revolution; 
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see Willard Fisher (1913).  Other researchers who have suggested the test over the years 
include: Lowe (1823, Appendix, 95), Scrope (1833, 406), Jevons (1865), Sidgwick 
(1883, 67-68), Edgeworth (1925, 215) originally published in 1887, Marshall (1887, 
363), Pierson (1895, 332), Walsh (1901, 540) (1921b; 544), and Bowley (1901, 227).  
Vogt and Barta (1997; 49) also observed that this test is a special case of Fisher’s (1911; 
411) proportionality test for quantity indexes which Fisher (1911; 405) translated into a 
test for the price index using the product test (5).  
 
The following four tests restrict the behavior of the price index P as the scale of any one 
of the four vectors p0,p1,q0,q1 changes.  The following test was proposed by Walsh (1901, 
385), Eichhorn and Voeller (1976, 24) and Vogt (1980, 68).  
  
T5:     Proportionality in Current Prices: P(p0,λp1,q0,q1) = λP(p0,p1,q0,q1) for  λ  > 0. 
 
That is, if all period 1 prices are multiplied by the positive number λ, then the new price 
index is λ times the old price index.  Put another way, the price index function 
P(p0,p1,q0,q1) is (positively) homogeneous of degree one in the components of the period 
1 price vector p1.  Most index number theorists regard this property as a very fundamental 
one that the index number formula should satisfy.  
 
Walsh (1901) and Fisher (1911; 418) (1922; 420) proposed the related proportionality 
test P(p,λp,q0,q1) = λ.  This last test is a combination of T3 and T5; in fact Walsh (1901, 
385) noted that this last test implies the identity test, T3. 
 
In the next test, due to Eichhorn and Voeller (1976; 28), instead of multiplying all period 
1 prices by the same number, we multiply all period 0 prices by the number λ. 
 
T6: Inverse Proportionality in Base Period  Prices: P(λp0,p1,q0,q1) =  λ−1P(p0,p1,q0,q1) for  
λ  > 0. 
 
That is, if all period 0 prices are multiplied by the positive number λ, then the new price 
index is 1/λ times the old price index.  Put another way, the price index function 
P(p0,p1,q0,q1) is (positively) homogeneous of degree minus one in the components of the 
period 0 price vector p0. 
 
The following two homogeneity tests can also be regarded as invariance tests. 
  
T7:  Invariance to Proportional Changes in Current Quantities: P(p0,p1,q0,λq1) = 
P(p0,p1,q0,q1) for all λ  > 0. 
 
That is, if current period quantities are all multiplied by the number λ, then the price 
index remains unchanged. Put another way, the price index function P(p0,p1,q0,q1) is 
(positively) homogeneous of degree zero in the components of the period 1 quantity 
vector q1.  Vogt (1980, 70) was the first to propose this test and his derivation of the test 
is of some interest. Suppose the quantity index Q satisfies the quantity analogue to the 
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price test T5; i.e., suppose Q satisfies Q(p0,p1,q0,λq1) = λQ(p0,p1,q0,q1) for  λ  > 0. Then 
using the product test (5), we see that P must satisfy T7.   
 
T8:  Invariance to Proportional Changes in Base Quantities: P(p0,p1,λq0,q1) = 
P(p0,p1,q0,q1) for all λ  > 0. 
 
That is, if base period quantities are all multiplied by the number λ, then the price index 
remains unchanged. Put another way, the price index function P(p0,p1,q0,q1) is 
(positively) homogeneous of degree zero in the components of the period 0 quantity 
vector q0.  If the quantity index Q satisfies the following counterpart to T8: 
Q(p0,p1,λq0,q1) = λ−1Q(p0,p1,q0,q1) for all λ > 0, then using (5), the corresponding price 
index P must satisfy T8.  This argument provides some additional justification for 
assuming the validity of T8 for the price index function P.  This test was proposed by 
Diewert (1992a; 216). 
 
T7 and T8 together impose the property that the price index P does not depend on the 
absolute magnitudes of the quantity vectors q0 and q1.   
 
The next five tests are invariance or symmetry tests.  Fisher (1922; 62-63, 458-460) and 
Walsh (1921b; 542) seem to have been the first researchers to appreciate the significance 
of these kinds of tests.  Fisher (1922, 62-63) spoke of fairness but it is clear that he had 
symmetry properties in mind.  It is perhaps unfortunate that he did not realize that there 
were more symmetry and invariance properties than the ones he proposed; if he had 
realized this, it is likely that he would have been able to provide an axiomatic 
characterization for his ideal price index, as will be done shortly below.  Our first 
invariance test is that the price index should remain unchanged if the ordering of the 
commodities is changed: 
 
T9:  Commodity Reversal Test  (or invariance to changes in the ordering of commodities):   
 P(p0*,p1*,q0*,q1*) = P(p0,p1,q0,q1) 
 
where pt* denotes a permutation of the components of the vector pt  and qt*  denotes the 
same permutation of the components of qt for t = 0,1. This test is due to Irving Fisher 
(1922),  and it is one of his three famous reversal tests.  The other two are the time 
reversal test and the factor reversal test which will be considered below. 
 
T10:  Invariance to Changes in the Units of Measurement  (commensurability test):   
 P(α1p1

0,...,αNpN
0; α1p1

1,...,αNpN
1; α1

−1q1
0,...,αN

−1qN
0; α1

−1q1
1,...,αN

−1qN
1) = 

 P(p1
0,...,pN

0; p1
1,...,pN

1; q1
0,...,qN

0; q1
1,...,qN

1) for all  α1 > 0, …, αN > 0. 
 
That is, the price index does not change if the units of measurement for each commodity 
are changed.  The concept of this test was due to Jevons (1884; 23) and the Dutch 
economist Pierson (1896; 131), who criticized several index number formula for not 
satisfying this fundamental test.  Fisher (1911; 411) first called this test the change of 
units test and later, Fisher (1922; 420) called it the commensurability test. 
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T11:  Time Reversal Test:  P(p0,p1,q0,q1) = 1/P(p1,p0,q1,q0). 
 
That is, if the data for periods 0 and 1 are interchanged, then the resulting price index 
should equal the reciprocal of the original price index.  We have already encountered this 
test; recall (15) above.  Obviously, in the one good case when the price index is simply 
the single price ratio; this test is satisfied (as are all of the other tests listed in this 
section).  When the number of goods is greater than one, many commonly used price 
indices fail this test; e.g., the Laspeyres and Paasche price indexes, PL and PP defined 
earlier by (8) and (9) above, both fail this fundamental test.  The concept of the test was 
due to Pierson (1896; 128), who was so upset with the fact that many of the commonly 
used index number formulae did not satisfy this test, that he proposed that the entire 
concept of an index number should be abandoned.  More formal statements of the test 
were made by Walsh (1901; 368) (1921b; 541) and Fisher (1911; 534) (1922; 64). 
 
Our next two tests are more controversial, since they are not necessarily consistent with 
the economic approach to index number theory.  However, these tests are quite consistent 
with the weighted stochastic approach to index number theory discussed in section 3 
above. 
  
T12:  Quantity Reversal Test (quantity weights symmetry test): P(p0,p1,q0,q1) = 
P(p0,p1,q1,q0). 
 
That is, if the quantity vectors for the two periods are interchanged, then the price index 
remains invariant.  This property means that if quantities are used to weight the prices in 
the index number formula, then the period 0 quantities q0 and the period 1 quantities q1  
must enter the formula in a symmetric or even handed manner.  Funke and Voeller (1978; 
3) introduced this test; they called it the weight property. 
 
The next test proposed by Diewert (1992a; 218) is the analogue to T12 applied to 
quantity indices: 
  
T13:  Price Reversal Test (price weights symmetry test):  
{∑i=1

N pi
1 qi

1/ ∑i=1
N pi

0 qi
0}/P(p0,p1,q0,q1) = {∑i=1

N pi
0 qi

1/ ∑i=1
N pi

1 qi
0}/P(p1,p0,q0,q1). 

 
Thus if we use (5) to define the quantity index Q in terms of the price index P, then it can 
be seen that T13 is equivalent to the following property for the associated quantity index 
Q: 
 
(25) Q(p0,p1,q0,q1) = Q(p1,p0,q0,q1).  
  
That is, if the price vectors for the two periods are interchanged, then the quantity index 
remains invariant.  Thus if prices for the same good in the two periods are used to weight 
quantities in the construction of the quantity index, then property T13 implies that these 
prices enter the quantity index in a symmetric manner. 
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The next three tests are mean value tests.  The following test was proposed by Eichhorn 
and Voeller (1976; 10): 
 
T14:  Mean Value Test for Prices: 
         mini (pi

1/pi
0 : i=1,...,N) ≤ P(p0,p1,q0,q1) ≤ maxi (pi

1/pi
0 : i = 1,...,N). 

 
That is, the price index lies between the minimum price ratio and the maximum price 
ratio.  Since the price index is supposed to be some sort of an average of the N price 
ratios, pi

1/pi
0, it seems essential that the price index P satisfy this test.  

 
The next test proposed by Diewert (1992a; 219) is the analogue to T14 applied to 
quantity indexes: 
      
T15:  Mean Value Test for Quantities: 
         mini (qi

1/qi
0 : i=1,...,n) ≤ {V1/V0}/ P(p0,p1,q0,q1) ≤ maxi (qi

1/qi
0 : i = 1,...,n) 

 
where Vt is the period t value aggregate Vt ≡ ∑n=1

N pn
tqn

t for t = 0,1.  Using (5) to define 
the quantity index Q in terms of the price index P, we see that T15 is equivalent to the 
following property for the associated quantity index Q: 
 
(26) mini (qi

1/qi
0 : i = 1,...,N) ≤ Q(p0,p1,q0,q1) ≤ maxi (qi

1/qi
0 : i = 1,...,N). 

  
That is, the implicit quantity index Q defined by P lies between the minimum and 
maximum rates of growth qi

1/qi
0 of the individual quantities. 

 
In section 2, it was argued that it was very reasonable to take an average of the Laspeyres 
and Paasche price indices as a single “best” measure of overall price change.  This point 
of view can be turned into a test:      
 
T16:  Paasche and Laspeyres Bounding Test:  The price index P lies between the 
Laspeyres and Paasche indices, PL and PP, defined by (8) and (9) above.   
 
Bowley (1901; 227) and Fisher (1922; 403) both endorsed this property for a price index. 
 
Our final four tests are monotonicity tests; i.e., how should the price index P(p0,p1,q0,q1)  
change as any component of the two price vectors p0 and p1 increases or as any 
component of the two quantity vectors q0 and q1 increases. 
 
T17:  Monotonicity in Current Prices: P(p0,p1,q0,q1) < P(p0,p2,q0,q1) if p1 < p2. 
 
That is, if some period 1 price increases, then the price index must increase, so that 
P(p0,p1,q0,q1) is increasing in the components of p1.  This property was proposed by 
Eichhorn and Voeller (1976; 23) and it is a very reasonable property for a price index to 
satisfy. 
 
T18:  Monotonicity in Base Prices: P(p0,p1,q0,q1) > P(p2,p1,q0,q1) if p0 < p2.  
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That is, if any period 0 price increases, then the price index must decrease, so that 
P(p0,p1,q0,q1) is decreasing in the components of p0 .  This very reasonable property was 
also proposed by Eichhorn and Voeller (1976; 23). 
 
T19:  Monotonicity in Current Quantities: if  q1 < q2, then   
 {∑i=1

N pi
1 qi

1/ ∑i=1
N pi

0 qi
0}/P(p0,p1,q0,q1) < {∑i=1

N pi
1 qi

2/ ∑i=1
N pi

0 qi
0}/P(p0,p1,q0,q2). 

 
T20:  Monotonicity in Base Quantities: if  q0 < q2, then   
 {∑i=1

N pi
1 qi

1/ ∑i=1
N pi

0 qi
0}/P(p0,p1,q0,q1) > {∑i=1

N pi
1 qi

1/ ∑i=1
N pi

0 qi
2}/P(p0,p1,q2,q1).  

  
If we define the implicit quantity index Q that corresponds to P using (1), we find that 
T19 translates into the following inequality involving Q: 
 
(27)  Q(p0,p1,q0,q1) < Q(p0,p1,q0,q2) if q1 < q2. 
 
That is, if any period 1 quantity increases, then the implicit quantity index Q that 
corresponds to the price index P must increase.  Similarly, we find that T20 translates 
into: 
 
(28)  Q(p0,p1,q0,q1) > Q(p0,p1,q2,q1) if q0 < q2. 
 
That is, if any period 0 quantity increases, then the implicit quantity index Q must 
decrease.  Tests T19 and T20 are due to Vogt (1980, 70). 
 
Diewert (1992a; 221) showed that the only index number formula P(p0,p1,q0,q1) which 
satisfies tests T1-T20 is the Fisher ideal price index PF  defined earlier by (14); i.e., as the 
geometric mean of the Laspeyres and Paasche price indexes. 
 
It turns out that PF satisfies yet another test, T21, which was Irving Fisher’s (1921; 534) 
(1922; 72-81) third reversal test (the other two being T9 and T11): 
 
T21:  Factor Reversal Test  (functional form symmetry test):    
          P(p0,p1,q0,q1) P(q0,q1,p0,p1) = ∑i=1

N pi
1 qi

1/ ∑i=1
N pi

0 qi
0 . 

 
A justification for this test is the following one:  if P(p0,p1,q0,q1) is a good functional 
form for the price index, then if we reverse the roles of prices and quantities,  
P(q0,q1,p0,p1) ought to be a good functional form for a quantity index (which seems to be 
a correct argument) and thus the product of the price index P(p0,p1,q0,q1) and the quantity 
index Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) ought to equal the value ratio, V1/V0 .  The second 
part of this argument does not seem to be valid and thus many researchers over the years 
have objected to the factor reversal test.  However, if one is willing to embrace T21 as a 
basic test, Funke and Voeller (1978; 180) showed that the only index number function 
P(p0,p1,q0,q1) which satisfies T1 (positivity), T11 (time reversal test), T12 (quantity 
reversal test) and T21 (factor reversal test) is the Fisher ideal index PF  defined by (14).    
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Other characterizations of the Fisher price index can be found in Funke and Voeller 
(1978) and Balk (1985) (1995). 
  
The Fisher price index PF satisfies all 20 of the tests listed above.  Which tests do other 
commonly used price indexes satisfy?  Recall the Laspeyres index PL defined by (8), the 
Paasche index PP defined by (9) and the Törnqvist Theil index PT defined by (22).  
Straightforward computations show that the Paasche and Laspeyres price indexes fail 
only the three reversal tests, T11, T12 and T13.  Since the quantity and price reversal 
tests, T12 and T13, are somewhat controversial and hence can be discounted, the test 
performance of PL and PP seems at first sight to be quite good.  However, the failure of 
the time reversal test, T11, is a severe limitation associated with the use of these indexes. 
 
The Törnqvist Theil price index PT fails nine tests: T4 (the fixed basket test), the quantity 
and price reversal tests T12 and T13, T15 (the mean value test for quantities), T16 (the 
Paasche and Laspeyres bounding test) and the 4 monotonicity tests T17 to T20. Thus the 
Törnqvist Theil index is subject to a rather high failure rate from the perspective of this 
particular axiomatic approach to index number theory. 
 
However, it could be argued that the list of tests or axioms that was used to establish the 
superiority of the Fisher ideal index might have been chosen to favor this index.  Thus 
Diewert (2004), following the example of Walsh (1901; 104-105) and Vartia (1976), 
developed a set of axioms for price indexes of the form P(p0,p1,v0,v1) where v0 and v1 are 
vectors of expenditures on the N commodities in the index and these vectors replace the 
quantity vectors q0 and q1 as weighting vectors for the prices.  In this new axiomatic 
framework, the Törnqvist Theil index PT emerged as being “best”.            
 
The consistency and independence of various bilateral index number tests was studied in 
some detail by Eichhorn and Voeller (1976).  Our conclusion at this point echoes that of 
Frisch (1936): the test approach to index number theory, while extremely useful, does not 
lead to a single unique index number formula.  However, two test approaches that take 
alternative approaches to the methods for weighting prices do lead to the Fisher and 
Törnqvist Theil indexes as being “best” in their respective axiomatic frameworks. 
 
For additional material on the test approach to bilateral index number theory, see Balk 
(1995), Reinsdorf and Dorfman (1999), Balk and Diewert (2001), Vogt and Barta (1997) 
and Reinsdorf (2007). 
 
In the following 3 sections, we consider various economic approaches to index number 
theory.  In the economic approach to price index theory, quantity vectors are no longer 
regarded as being exogenous variables; rather they are regarded as solutions to various 
economic optimization problems.    
 
5.  The Economic Approach to Price Indexes 

 
Before a definition of a microeconomic price index is presented, it is necessary to make a 
few preliminary definitions. 
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Let F(q) be a function of N variables, q ≡ (q1,...,qN).  In the consumer context, F 
represents a consumer's preferences; i.e. if F(q2) > F(q1), then the consumer prefers the 
commodity vector q2 over q1.  In this context, F is called a utility function.  In the 
producer context, F(q) might represent the output that could be produced using the input 
vector q.  In this context, F is called a production function.  In order to cover both 
contexts, we follow the example of Diewert (1976a) and call F an aggregator function.  
 
Suppose the consumer or producer faces prices p ≡ (p1,…, pN) for the N commodities.   
Then the economic agent will generally find it is useful to minimize the cost of achieving 
at least a given utility or output level u; we define the cost function or expenditure 
function C as the solution to this minimization problem: 
 
(29) C(u,p) ≡ min q {p⋅q : F(q) ≥ u} 
 
where p⋅q ≡∑n-1

Npnqn  is the inner product of the price vector p and quantity vector q. 
 
Note that the cost function depends on 1 + N variables; the utility or output level u and 
the N commodity prices in the vector p.  Moreover, the functional form for the aggregator 
function F completely determines the functional form for C. 
 
We say that an aggregator function is neoclassical if F is: (i) continuous, (ii) positive; i.e. 
F(q) > 0 if q >> 0N and (iii) linearly homogeneous; i.e. F(λq) = λF(q) if λ > 0.  If F is 
neoclassical, then the corresponding cost function C(u,p) equals u times the unit cost 
function, c(p) ≡ C(1,p), where c(p) is the minimum cost of producing one unit of utility 
or output; i.e., 
 
(30) C(u,p) = uC(1,p) = uc(p). 
 
Shephard (1953) formally defined an aggregator function F to be homothetic if there 
exists an increasing continuous function of one variable g such that g[F(q)] is 
neoclassical.  However, the concept of homotheticity was well known to Frisch (1936) 
who termed it expenditure proportionality.  If F is homothetic, then its cost function C 
has the following decomposition: 
 
(31) C(u,p) ≡ min q {p⋅q : F(q) ≥ u}  
    =  min q {p⋅q : g[F(q)] ≥ g(u)}  
              =  g(u)c(p)  
 
 
where c(p) is the unit cost function that corresponds to g[F(q)]. 
 
Let p0 >> 0N and p1 >> 0N be positive price vectors pertaining to periods or observations 
0 and 1.  Let q > 0N be a nonnegative, nonzero reference quantity vector.  Then the Konüs 
(1924) price index or cost of living index is defined as: 
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(32)  PK(p0,p1,q) ≡ C[F(q),p1]/C[F(q),p0]. 
 
In the consumer (producer) context, PK may be interpreted as follows.  Pick a reference 
utility (output) level u ≡ F(q).  Then PK(p0,p1,q) is the minimum cost of achieving the 
utility (output) level u when the economic agent faces prices p1 relative to the minimum 
cost of achieving the same u when the agent faces prices p0.  If N = 1 so that there is only 
one consumer good (or input), then it is easy to show that PK(p1

0,p1
1,q1) = p1

1q1/p1
0q1  = 

p1
1/p1

0. 
 
Using the fact that a cost function is linearly homogeneous in its price arguments, it can 
be shown that PK has the following homogeneity property:  PK(p0,λp1,q) = λPK(p0,p1,q) 
for λ > 0 which is analogous to the proportionality test T5 in the previous section.  PK 
also satisfies PK(p1,p0,q) = 1/PK(p0,p1,q) which is analogous to the time reversal test, T11. 
 
Note that the functional form for PK is completely determined by the functional form for 
the aggregator function F which determines the functional form for the cost function C. 
 
In general, PK depends not only on the two price vectors p0 and p1, but also on the 
reference vector q.  Malmquist (1953), Pollak (1983) and Samuelson and Swamy (1974) 
have shown that PK is independent of q and is equal to a ratio of unit cost functions, 
c(p1)/c(p0), if and only if the aggregator function F is homothetic. 
 
If we knew the consumer's preferences or the producer’s technology, then we would 
know F and we could construct the cost function C and the Konüs price index PK.  
However, we generally do not know F or C and thus it is useful to develop bounds that 
depend on observable price and quantity data but do not depend on the specific functional 
form for F or C. 
 
Samuelson (1947) and Pollak (1983) established the following bounds on PK.  Let p0 >> 
0N, and p1 >> 0N.   Then for every reference quantity vector q > 0N, we have 
 
(33)  min n{pn

1/pn
0} ≤ PK(p0,p1,q) ≤ max n{pn

1/pn
0}; 

 
i.e., PK lies between the smallest and largest price ratios.  Unfortunately, these bounds are 
usually too wide to be of much practical use. 
 
To obtain closer bounds, we now assume that the observed quantity vectors for the two 
periods, qi ≡ (q1

i,…,qN
i), i = 0,1, are solutions to the producer’s or consumer’s cost 

minimization problems; i.e., we assume: 
 
(34)  pi⋅qi  = C[F(qi),pi],  pi >> 0N,      qi > 0N,  i = 0,1. 
 
Given the above assumptions, we now have two natural choices for the reference quantity 
vector q that occurs in the definition of PK(p0,p1,q): q0 or q1.  The Laspeyres-Konüs price 
index is defined as PK(p0,p1,q0) and the Paasche-Konüs price index is defined as 
PK(p0,p1,q1). 
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Under the assumption of cost minimizing behavior (34), Konüs (1924) established the 
following bounds: 
 
(35)  PK(p0,p1,q0) ≤ p1⋅q0/p0⋅q0 ≡ PL(p0,p1,q0,q1); 
  
(36)  PK(p0,p1,q1) ≥ p1⋅q1/p0⋅q1 ≡ PP(p0,p1,q0,q1), 
 
where PL and PP are the Laspeyres and Paasche price indexes defined earlier by (8) and 
(9).  If in addition, the aggregator function is homothetic, then Frisch (1936) showed that 
for any reference vector q > 0N, 
 
(37)  PP ≡ p1⋅q1/p0⋅q1 ≤ PK(p0,p1,q) ≤ p1⋅q0/p0⋅q0 ≡ PL. 
 
In the consumer context, it is unlikely that preferences will be homothetic; hence the 
bounds (37) cannot be justified in general.  However, Konüs (1924) showed that bounds 
similar to (37) would hold even in the general nonhomothetic case, provided that we 
choose a reference vector q ≡ λq0 + (1−λ)q1 which is a  λ,  (1−λ) weighted average of the 
two observed quantity points.  Specifically, Konüs showed that there exists a λ between 0 
and 1 such that if PP ≤ PL, then 
 
(38)  PP ≤ PK[p0,p1,λq0 + (1−λ)q1] ≤ PL 
 
or if PP > PL, then  
 
(39)  PL ≤ PK[p0,p1,λq0 + (1−λ)q1] ≤ PP. 
 
The bounds on the microeconomic price index PK given by (37) in the homothetic case 
and  (38)-(39) in the nonhomothetic case are the best bounds that we can obtain without 
making further assumptions on F.  In the time series context, the bounds given by (38) or 
(39) are usually quite satisfactory: the Paasche and Laspeyres price indexes for 
consecutive time periods will usually differ by less than 1 percent (and hence taking the 
Fisher geometric average will generally suffice for most practical purposes).  However, in 
the cross section context where the observations represent, for example, production data 
for two producers in the same industry but in different regions, the bounds are often not 
very useful since PL and PP can differ by 50 percent or more in the cross sectional context; 
see Ruggles (1967) and Hill (2006). 
 
For generalizations of the above single household theory to many households, see Pollak 
(1980; 276) (1981; 328), Diewert (1983a) (2001) and chapter 18 in ILO (2004). 
 
In Section 7 below, we will make additional assumptions on the aggregator function F or 
its cost function dual C that will enable us to determine PK exactly.  Before we do this, in 
the next section, we will define various quantity indexes that have their origins in 
microeconomic theory. 
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6. Economic Approaches to Quantity Indexes 
 

In the one commodity case, a natural definition for a quantity index is q1
1/q1

0, the ratio of 
the single quantity in period 1 to the corresponding quantity in period 0.  This ratio is also 
equal to the expenditure ratio, p1

1q1
1/p1

0q1
0, divided by the price ratio, p1

1/p1
0.   This 

suggests that in the N commodity case, a reasonable definition for a quantity index would 
be the expenditure ratio divided by the Konüs price index, PK.  This type of index was 
suggested by Pollak (1983).  Thus the Konüs-Pollak quantity index, QK, is defined by: 
 
(40) QK(p0,p1,q0,q1,q) ≡ p1⋅q1/p0⋅q0 PK(p0, p1,q)  
     = {C[F(q1),p1]/C[F(q),p1]}/{C[F(q0),p0]/C[F(q),p0]} 
 
where the second line follows from the definition of PK, (32), and the assumption of cost 
minimizing behavior in the two periods, (34). 
 
The definition of QK depends on the reference vector q which appears in the definition of 
PK.  The general definition of QK simplifies considerably if we choose the reference q to 
be q0 or q1.  Thus define the Laspeyres-Konüs quantity index as 
 
(41)  QK(p0,p1,q0,q1,q0) ≡ C[F(q1),p1]/C[F(q0),p1] 
 
and the Paasche-Konüs quantity index as 
 
(42)  QK(p0,p1,q0,q1,q1) ≡ C[F(q1),p0]/C[F(q0),p0]. 
 
It turns out that the indexes defined by (41) and (42) are special cases of another class of 
quantity indexes.  For any reference price vector p >> 0N, define the Allen (1949) 
quantity index by 
 
(43)  QA(q0,q1,p) ≡ C[F(q1),p]/C[F(q0),p]. 
 
If p is chosen to be p0, (43) becomes (42) and if p = p1, then (43) becomes (41). 
 
Using the properties of cost functions, it can be shown that if F(q1) ≥ F(q0), then 
QA(q0,q1,p) ≥ 1 while if F(q1) ≤ F(q0),  then QA(q0,q1,p) ≤ 1.  Thus the Allen quantity 
index correctly indicates whether the commodity vector q1 is larger or smaller than q0.  It 
can also be seen that QA satisfies a counterpart to the time reversal test; i.e., QA(q1,q0,p) = 
1/QA(q0,q1,p). 
 
Just as the price index PK depended on the unobservable aggregator function, so also do 
the quantity indexes QK and QA.  Thus it is useful to develop bounds for the quantity 
indexes that do not depend on the particular functional form for F. 
 
Samuelson (1947) and Allen (1949) established the following bounds for (41) and (42): 
 
(44) QA(q0,q1,p0) = QK(p0,p1,q0,q1,q1) ≤ p0⋅q1/p0⋅q0 ≡ QL;  
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(45) QA(q0,q1,p0) = QK(p0,p1,q0,q1,q0) ≥ p1⋅q1/p1⋅q0 ≡ QP.  
 
Note that the observable Laspeyres and Paasche quantity indexes, QL and QP, appear on 
the right hand sides of (44) and (45). 
 
Diewert (1981), utilizing some results of Pollak (1983) and Samuelson and Swamy 
(1974), established the following results:  if the underlying aggregator function F is 
neoclassical and (32) holds, then for all p >> 0N and q >> 0N , 
 
(46)  QP ≤ QA(q0,q1,p) = QK(p0,p1,q0,q1,q) = F(q1)/F(q0) ≤ QL. 
 
Thus if the aggregator function F is neoclassical, then the Allen quantity index for all 
reference vectors p equals the Konüs quantity index for all reference quantity vectors q 
which in turn equals the ratio of aggregates, F(q1)/F(q0).  Moreover, QA and QK are 
bounded from below by the Paasche quantity index QP, and bounded from above by the 
Laspeyres quantity index QL in the neoclassical case. 
 
In the general nonhomothetic case, Diewert (1981) showed that there exists a λ between 
0 and 1 such that  QK(p0,p1,q0,q1,λq0 +(1−λ)q1]  lies between QP and QL and there exists a 
λ* between 0 and 1 such that QA(q0,q1,λ*p0+(1−λ*)p1) also lies between QP  and QL.  Thus 
the observable Paasche and Laspeyres quantity indexes bound both the Konüs quantity 
index and the Allen quantity index, provided that we choose appropriate reference 
vectors between q0 and q1 and p0 and p1 respectively. 
 
Using the linear homogeneity property of the cost function in its price arguments, we can 
show that the Konüs price index has the desirable homogeneity property, PK(p0,λp0,q) = λ 
for all λ > 0;  i.e., if period 1 prices are proportional to period 0 prices, then PK equals this 
common proportionality factor.  It would be desirable for an analogous homogeneity 
property to hold for quantity indexes.  Unfortunately, it is not in general true that 
QK(q0,λq0,p0,p1,q) = λ or that QA(q0,λq0,p) = λ.  Thus we turn to a third economic 
approach to defining a quantity index which does have the desirable quantity 
proportionality property. 
 
Let q1 and q2 be the observable quantity vectors in the two situations as usual, let F(q) be 
an increasing, continuous aggregator function, and let  q >> 0 be a reference quantity 
vector.  Then the Malmquist  (1953) quantity index QM is defined as: 
 
(47)  QM(q0,q1,q) ≡ D[F(q),q1]/D[F(q),q0] 
 
where D(u,qt) ≡ max k {k : F(qt/k) ≥ u, k > 0} is the deflation or distance function which 
corresponds to F.  Thus D[F(q),q1] is the biggest number which will just deflate the 
quantity vector q1 onto the boundary of the utility (or production) possibilities set {z : 
F(z) ≥ F(q)} indexed by the reference quantity vector q while D[F(q),q0] is the biggest 
number which will just deflate the quantity vector q0 onto the set {z : F(z) ≥ F(q)} and QM 
is the ratio of these two deflation factors.  Note that there is no optimization problem 
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involving prices in the definition of the Malmquist quantity index but the definition of the 
distance function involves certain deflation problems that can be interpreted as technical 
efficiency optimization problems. 
 
QM depends on the unobservable aggregator function F and as usual, we are interested in 
bounds for QM. 
 
Diewert (1981) showed that QM satisfied bounds analogous to (33); i.e., 
 
(48)  min n{qn

1/qn
0} ≤ QM(q0,q1,q) ≤ max n{qn

1/qn
0}. 

 
As noted above, the assumption of cost minimizing behavior is not required in order to 
define the Malmquist quantity index or to establish the bounds (46).  However, in order 
to establish the following bounds due to Malmquist (1953) for QM, we do need the 
assumption of cost minimizing behavior (32) for the two periods under consideration and 
we require the reference vector q to be q0 or q1: 
 
(49)  QM(q0,q1,q0) ≤ p0⋅q1 /p0⋅q0 ≡ QL; 
 
(50)  QM(q0,q1,q1) ≥ p1⋅q1/p1⋅q0 ≡ QP. 
 
Diewert (1981) showed that under the hypothesis of cost minimizing behavior, there 
exists a λ between 0 and 1 such that QM(q0,q1,λq0+(1−λ)q1) lies between QP and QL. Thus 
the Paasche and Laspeyres quantity indexes provide bounds for a Malmquist quantity 
index for some reference indifference or product surface indexed by a quantity vector 
which is a λ, (1−λ) weighted average of the two observable quantity vectors, q0 and q1. 
 
Pollak (1983) showed that if F is neoclassical, then we can extend the string of equalities 
in (46) to include the Malmquist quantity index QM(q0,q1,q), for any reference quantity 
vector q.  Thus in the case of a linearly homogeneous aggregator function, all three 
theoretical quantity indexes coincide and this common theoretical index is bounded from 
below by the Paasche quantity index QP and bounded from above by the Laspeyres 
quantity index QL. 
 
In the general case of a nonhomothetic aggregator function, our best theoretical quantity 
index, the Malmquist index, is also bounded by the Paasche and Laspeyres indexes, 
provided that we choose a suitable reference quantity vector.  In order to improve upon 
the bounding approach, Caves, Christensen and Diewert (1982b) show that if one is 
willing to assume optimizing behavior and make certain functional form assumptions 
about the underlying technology, then it is possible to obtain exact expressions for the 
Malmquist quantity index.  
 
We noted in the price index context that the Paasche and Laspeyres price indexes were 
usually quite close in the time series context.  A similar remark also applies to the 
Paasche and Laspeyres quantity indexes.  Thus taking an average of the Paasche and 
Laspeyres indexes, such as the Fisher price and quantity indexes, will generally 
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approximate underlying microeconomic price and quantity indexes sufficiently accurately 
for most practical purposes.  However, this observation does not apply to the cross 
sectional context, where the Paasche and Laspeyres indexes can differ widely.  In the 
following section, we offer another microeconomic justification for using the Fisher 
indexes that also applies in the context of making interregional and cross country 
comparisons. 
 
7.  Exact and Superlative Indexes 

 
Assume that the producer or consumer is maximizing a neoclassical aggregator function f 
subject to a budget constraint during the two periods.  Under these conditions, it can be 
shown that the economic agent is also minimizing cost subject to a utility or output 
constraint.  Moreover, the cost function C that corresponds to f can be written as  
C[f(q),p] = f(q)c(p) where c is the unit cost function (recall (28) above). 
 
Suppose a  bilateral price index P(p0,p1,q0,q1) and the corresponding quantity index 
Q(p0,p1,q0,q1) that satisfy (5) are given.  The quantity index Q is defined to be exact for a 
neoclassical aggregator function f with unit cost dual c if for every p0 >> 0N, p1 >> 0N and 
qi >> 0N which is a solution to the aggregator maximization problem max q{f(q) : pi ⋅q ≤ 
pi⋅qi}  = f(qi) > 0 for i = 0,1, we have 
 
(51)  Q(p0,p1,q0,q1) = f(q1)/f(q0).  
 
Under the same hypothesis, the price index P is exact for f and c if we have 
 
(52)  P(p0,p1,q0,q1) = c(p1)/c(p0). 
 
In (51) and (52), the price and quantity vectors are not regarded as being independent.  
The pi can be independent, but the qi are solutions to the corresponding aggregator 
maximization problem involving pi, for i = 0,1.  Note that if Q is exact for a neoclassical 
f, then Q can be interpreted as a Konüs, Allen or Malmquist quantity index and the 
corresponding P defined implicitly by (5) can be interpreted as a Konüs price index. 
 
The concept of exactness is due to Konüs and Byushgens (1926).  Below, we shall give 
some examples of exact index number formulae.  Additional examples may be found in 
Afriat (1972), Pollak (19783), Samuelson and Swamy (1974) and Diewert (1976) 
(1992b). 
 
Konüs and Byushgens (1926) showed that Irving Fisher’s ideal price index PF defined by 
(14) and the corresponding quantity index QF defined implicitly by (5) are exact for the 
homogeneous quadratic aggregator function f defined by 
 
(53)  f(q1,...,qN) ≡ (∑n-1

N ∑m-1
N anmqnqm)1/2 ≡ (q⋅Aq)1/2 

 
where A ≡ [anm] is a symmetric N × N  matrix of constants.  Thus under the assumption 
of maximizing behavior, we can show that f(q1)/f(q0) = QF and c(p1)/c(p0) = PF where f is 
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defined by (51) and c is the unit cost function that corresponds to f.  The important point 
to note is that f depends on N(N+1)/2 unknown anm parameters but we do not need to 
know these parameters in order to be able to calculate f(q1)/f(q0) and c(p1)/c(p0). 
 
Diewert (1976) showed that the Törnqvist Theil price index PT defined by (22) is exact 
for the unit cost function c(p) defined by: 
 
(54)  ln c(p) ≡ α0 + ∑n=1

N αn ln pn + (1/2) ∑m=1
N∑n=1

N αmn ln pm ln pn 
 
where the parameters αn and αmn satisfy the following restrictions: 
 
(55) ∑n=1

Nαn = 1, ∑n=1
N αmn = 0 for m = 1,..., N and  αmn = αnm for all m, n. 

 
Thus we may calculate c(p1)/c(p0) = PT and f(q1)/f(q0) = p1⋅q1/p0⋅q0 PT ≡ QT where c is 
the unit cost function defined by (54), f is the aggregator function which corresponds to 
this c, and QT is the implicit Törnqvist Theil quantity index.  Note that we do not have to 
know the parameters αn and αmn in order to evaluate c(p1)/c(p0) and f(q1)/f(q0). 
 
The unit cost function defined by (54) is the translog unit cost function defined by 
Christensen, Jorgenson and Lau (1971).  Since PT is exact for this translog functional 
form, PT  is sometimes called the translog price index. 
 
Define the following family of quantity indexes Qr that depend on a number, r ≠ 0: 
 
(56)  Qr(p0,p1,q0,q1) ≡ [∑n=1

N sn
0(qn

1 /qn
0)r/2]1/r [∑m=1

N sm
1(qm

1/qm
0)−r/2]−1/r 

 
where sn

i ≡ pn
iqn

i/pi ⋅qi is the period i expenditure share for good n.  For each r ≠ 0, define 
the corresponding implicit price index by: 
 
(57)  Pr

*(p0,p1,q0,q1) ≡ p1⋅q1/p0⋅q0 Qr(p0,p1,q0,q1). 
 
A bit of algebra will show that when r = 2, P2

* = PF, the Fisher price index defined by 
(14) and when r equals 1, P1

* equals: 
 
(58) P1

* = ∑n=1
N pn

1(qn
0qn

1)1/2 / ∑m=1
N pm

0(qm
0qm

1)1/2 = PW 
  
 where PW is the Walsh price index defined earlier by (17). 
 
Diewert (1976) showed that Qr and Pr

* are exact for the quadratic mean of order r 
aggregator function fr  defined as follows: 
 
(59)  fr(q1,...,qN) ≡ (∑m=1

N ∑n=1
N amn qr/2 qn

r/2)1/r 
 
where A ≡ [amn] is a symmetric matrix of constants.  Thus the Walsh and Fisher price 
indexes, PW and PF, are exact for f1(q) and f2(q) respectively, defined by (59) when r = 1 
and 2. 
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Diewert (1974) defined a linearly homogeneous function f of N variables to be flexible if 
it could provide a second order approximation to an arbitrary twice continuously 
differentiable linearly homogeneous function.  It can be shown that f defined by (53), c 
defined by (54) and (55) and fr defined by (59) for each r ≠ 0 are all examples of flexible 
functional forms. 
 
Let the price and quantity indexes P and Q satisfy the product test equality, (5).  Then 
Diewert (1976) defined P and Q to be superlative indexes if either P is exact for a flexible 
unit cost function c or Q is exact for a flexible aggregator function f.  Thus PF, PW, PT and 
Pr

*
 are all superlative price indexes.  Thus from the viewpoint of the economic approach 

to index number theory, all of these indexes can be judged to be equally good. 
 
At this point, it is useful to review the various approaches to bilateral index number 
theory discussed in the previous sections.  In section 2, it was found that the “best” 
average basket approaches led to the Fisher or Walsh price indexes.  In section 3, the 
“best” index from the viewpoint of the stochastic approach was the Törnqvist Theil 
index.  In section 4, the test approach led to the Fisher or the Törnqvist Theil indexes as 
being “best”.  Finally, in this section, the economic approach led to the Fisher, Walsh and 
Fisher or the Törnqvist Theil indexes as being equally good.  Thus all four major 
approaches to index number theory led to the same three indexes as being best.  But 
which one of these three formulae, PF, PW and PT, should we choose?  Fortunately, it does 
not matter very much which of these formulae we choose to use in applications; they will 
all give the same answer to a reasonably high degree of approximation.  Diewert (1978; 
889) showed that all known superlative index number formulae approximate each other 
to the second order when each index is evaluated at an equal price and quantity point.  
This means the PF, PW, PT and each Pr

*
 have the same first and second order partial 

derivatives with respect to all 4N arguments when the derivatives are evaluated at a point 
where p0 = p1 and q0 = q1.  A similar string of equalities also holds for the corresponding 
implicit quantity indexes defined using the product test (5).  In fact, these derivative 
equalities are still true provided that p1 = λp0 and q1 = µq0 for any numbers λ > 0 and µ > 
0.  However, although Diewert’s approximation result is mathematically true, Hill (2006) 
has shown that superlative indexes of the form Pr

* for r very large in magnitude do not 
necessarily empirically approximate the standard superlative indexes PF, PW and PT very 
closely.  But these standard superlative indexes typically approximate each other to 
something less than 0.2 percent in the time series context and to about 2 percent in the 
cross section context; see Fisher (1922), Ruggles (1967), Diewert (1978; 894-895) and 
Hill (2006) for empirical evidence on this point. 
 
Diewert (1978) also showed that the Paasche and Laspeyres indexes approximate the 
superlative indexes to the first order at an equal price and quantity point.  In the time 
series context, for adjacent periods, the Paasche and Laspeyres price indexes typically 
differ by less than 0.5 percent; hence these indexes may provide acceptable 
approximations to a superlative index. 
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Having considered the case of two observations at length, the many observation case is 
considered in the following two sections.   
 
8. The Fixed Base Versus the Chain Principle 

 
In this section, the merits of using the chain system for constructing price indexes in the 
time series context versus using the fixed base system are discussed. 
 
The chain system, introduced independently into the economics literature by Lehr (1885; 
45-46) and Marshall (1887; 373), measures the change in prices going from one period to 
a subsequent period using a bilateral index number formula involving the prices and 
quantities pertaining to the two adjacent periods.  These one period rates of change (the 
links in the chain) are then cumulated to yield the relative levels of prices over the entire 
period under consideration.  Thus if the bilateral price index is P, the chain system 
generates the following pattern of price levels for the first three periods: 
 
(60) 1, P(p0,p1,q0,q1), P(p0,p1,q0,q1) P(p1,p2,q1,q2) . 
  
On the other hand, the fixed base system of price levels using the same bilateral index 
number formula P simply computes the level of prices in period t relative to the base 
period 0 as P(p0,pt,q0,qt).  Thus the fixed base pattern of price levels for periods 0,1 and 2 
is:  
 
(61) 1, P(p0,p1,q0,q1), P(p0,p2,q0,q2) .   
 
Due to the difficulties involved in obtaining current period information on quantities (or 
equivalently, on expenditures), as was indicated in section 2, many statistical agencies 
loosely base their Consumer Price Index on the use of the Laspeyres formula and the 
fixed base system.  Therefore, it is of some interest to look at some of the possible 
problems associated with the use of fixed base Laspeyres indexes. 
 
The main problem with the use of the fixed base Laspeyres index is that the period 0 
fixed basket of commodities that is being priced out in period t can often be quite 
different from the period t basket.  Thus if there are systematic trends in at least some of 
the prices and quantities in the index basket, the fixed base Laspeyres price index 
PL(p0,pt,q0,qt) can be quite different from the corresponding fixed base Paasche price 
index, PP(p0,pt,q0,qt).  This means that both indexes are likely to be an inadequate 
representation of the movement in average prices over the time period under 
consideration.          
 
As Hill (1988) noted, the fixed base Laspeyres quantity index cannot be used forever:  
eventually, the base period quantities q0 are so far removed from the current period 
quantities qt that the base must be changed.  Chaining is merely the limiting case where 
the base is changed each period. 
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The main advantage of the chain system is that under normal conditions, chaining will 
reduce the spread between the Paasche and Laspeyres indexes; see Diewert (1978; 895) 
and Hill (1988) (1993; 387-388).  These two indexes each provide an asymmetric 
perspective on the amount of price change that has occurred between the two periods 
under consideration and it could be expected that a single point estimate of the aggregate 
price change should lie between these two estimates. Thus the use of either a chained 
Paasche or Laspeyres index will usually lead to a smaller difference between the two and 
hence to estimates that are closer to the “truth”.  
 
Hill (1993; 388), drawing on the earlier research of Szulc (1983) and Hill (1988; 136-
137), noted that it is not appropriate to use the chain system when prices oscillate or 
“bounce” to use Szulc’s (1983; 548) term.  This phenomenon can occur in the context of 
regular seasonal fluctuations or in the context of price wars.  However, in the context of 
roughly monotonically changing prices and quantities, Hill (1993; 389) recommended the 
use of chained symmetrically weighted indexes.  The Fisher, Walsh and Törnqvist Theil 
indexes are examples of symmetrically weighted indices. 
 
It is possible to be more precise under what conditions one should chain or not chain.  
Following arguments due to Walsh (1901; 206) (1921a; 84-85) and Fisher (1911; 204 and 
423-424), one should chain if the prices and quantities pertaining to adjacent periods are 
more similar than the prices and quantities of more distant periods, since this strategy 
will lead to a narrowing of the spread between the Paasche and Laspeyres indices at each 
link.  Of course, one needs a measure of how similar are the prices and quantities 
pertaining to two periods.  The similarity measures could be relative ones or absolute 
ones.  In the case of absolute comparisons, two vectors of the same dimension are similar 
if they are identical and dissimilar otherwise.  In the case of relative comparisons, two 
vectors are similar if they are proportional and dissimilar if they are nonproportional.  
Once a similarity measure has been defined, the prices and quantities of each period can 
be compared to each other using this measure and a “tree” or path that links all of the 
observations can be constructed where the most similar observations are compared with 
each other using a bilateral index number formula.  Fisher (1922; 271-276) informally 
suggested this strategy.  However, the recent literature on this approach is due to Robert 
Hill.  Initially, Hill (1999a) (1999b) (2001) defined the price structures between the two 
countries to be more dissimilar the bigger is the spread between PL and PP; i.e., the bigger 
is max {PL/PP, PP/PL}.  The problem with this measure of dissimilarity in the price 
structures of the two countries is that it could be the case that PL = PP (so that the Hill 
measure would register a maximal degree of similarity) but p0 could be very different 
than pt.  Thus there is a need for a more systematic study of similarity (or dissimilarity) 
measures in order to pick the “best” one that could be used as an input into Hill’s (1999a) 
(1999b) (2001) (2004) (2006b) (2007) spanning tree algorithm for linking observations; 
see Diewert (2007a). 
 
The method of linking observations explained in the previous paragraph based on the 
similarity of the price and quantity structures of any two observations may not be 
practical in a statistical agency context since the addition of a new period may lead to a 
reordering of the previous links.  However, the above “scientific” method for linking 
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observations may be useful in deciding whether chaining is preferable or whether fixed 
base indexes should be used while making month to month comparisons within a year.  
 
Some index number theorists have objected to the chain principle on the grounds that it 
has no counterpart in the spatial context: 
 
“They [chain indexes] only apply to intertemporal comparisons, and in contrast to direct indices they are 
not applicable to cases in which no natural order or sequence exists.  Thus the idea of a chain index for 
example has no counterpart in interregional or international price comparisons, because countries cannot be 
sequenced in a ‘logical’ or ‘natural’ way (there is no k+1 nor k−1country to be compared with country k).”  
Peter von der Lippe (2001; 12). 
 
This is of course correct but the approach of Robert Hill does lead to a “natural” set of 
spatial links.  Applying the same approach to the time series context will lead to a set of 
links between periods which may not be month to month but it will in many cases justify 
year over year linking of the data pertaining to the same month.   
 
It is of some interest to determine if there are index number formulae that give the same 
answer when either the fixed base or chain system is used.  Comparing the sequence of 
chain indexes defined by (60) above to the corresponding fixed base indexes defined by 
(61), it can be seen that we will obtain the same answer in all three periods if the index 
number formula P satisfies the following functional equation for all price and quantity 
vectors: 
 
(62) P(p0,p2,q0,q2) = P(p0,p1,q0,q1) P(p1,p2,q1,q2).   
 
If a bilateral index number formula P satisfies (62), then P satisfies the circularity test; 
see Westergaard (1890; 218-219) and Fisher (1922; 413).   
 
If it is assumed that the index number formula P satisfies certain properties or tests in 
addition to the circularity test above, then Funke, Hacker and Voeller (1979) showed that 
P must have the following functional form due originally to Konüs and Byushgens (1926; 
163-166): 
 
(63) ln PKB(p0,p1,q0,q1) ≡ ∑i=1

N αi ln(pi
1/pi

0)  
 
where the N constants αi satisfy the following restrictions: 
 
(64) ∑i=1

N αi = 1 and αi  > 0 for i = 1,…,N.   
 
Thus under very weak regularity conditions, the only price index satisfying the circularity 
test is a weighted geometric average of all the individual price ratios, the weights being 
constant through time.  This result vindicates Irving Fisher’s (1922; 274) intuition who 
asserted that “the only formulae which conform perfectly to the circular test are index 
numbers which have constant weights…”. 
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The problem with the indexes defined by Konüs and Byushgens is that the individual 
price ratios, pn

1/pn
0, have weights that are independent of the economic importance of 

commodity n in the two periods under consideration.  Put another way, these price 
weights are independent of the quantities of commodity n consumed or the expenditures 
on commodity n during the two periods.  Hence, these indexes are not really suitable for 
use by statistical agencies at higher levels of aggregation when expenditure share 
information is available. 
 
The above results indicate that it is not useful to ask that the price index P satisfy the 
circularity test exactly.  However, it is of some interest to find index number formulae 
that satisfy the circularity test to some degree of approximation since the use of such an 
index number formula will lead to measures of aggregate price change that are more or 
less the same no matter whether we use the chain or fixed base systems.  Irving Fisher 
(1922; 284) found that deviations from circularity using his data set and the Fisher ideal 
price index PF were quite small.  This relatively high degree of correspondence between 
fixed base and chain indexes has been found to hold for other symmetrically weighted 
formulae like the Walsh index PW defined earlier.  It is possible to give a theoretical 
explanation for the approximate satisfaction of the circularity test in the time series 
context for symmetrically weighted index number formulae, such as PF and PW.  Another 
symmetrically weighted formula is the Törnqvist Theil index PT.  Alterman, Diewert and 
Feenstra (1999; 61) showed that if  the logarithmic price ratios ln (pn

t/pn
t-1) trend linearly 

with time t and the expenditure shares sn
t also trend linearly with time, then the Törnqvist 

index PT will satisfy the circularity test exactly.  Since many economic time series on 
prices and quantities satisfy these assumptions approximately, then the Törnqvist index 
PT will satisfy the circularity test approximately.  As was noted earlier, the Törnqvist 
index generally closely approximates the symmetrically weighted Fisher and Walsh 
indexes, so that for many economic time series (with smooth trends), all three of these 
symmetrically weighted indexes will satisfy the circularity test to a high enough degree 
of approximation so that it will not matter whether we use the fixed base or chain 
principle. 
 
Walsh (1901; 401) (1921a; 98) (1921b; 540) introduced the following useful variant of 
the circularity test: 
 
(65) 1 = P(p0,p1,q0,q1) P(p1,p2,q1,q2)…P(pT−1,pT,qT−1,qT) P(pT,p0,qT,q0). 
     
The motivation for this test is the following one.  Use the bilateral index formula 
P(p0,p1,q0,q1) to calculate the change in prices going from period 0 to 1, use the same 
formula evaluated at the data corresponding to periods 1 and 2, P(p1,p2,q1,q2), to calculate 
the change in prices going from period 1 to 2, … , use P(pT−1,pT,qT−1,qT) to calculate the 
change in prices going from period T−1 to T, introduce an artificial period T+1 that has 
exactly the price and quantity of the initial period 0 and use P(pT,p0,qT,q0) to calculate the 
change in prices going from period T to 0.  Finally, multiply all of these indexes together 
and since we end up where we started, then the product of all of these indexes should 
ideally be one.  Diewert (1993a; 40) called this test a multiperiod identity test.  Note that 
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if T = 2 (so that the number of periods is 3 in total), then Walsh’s test reduces to Fisher’s 
(1921; 534) (1922; 64) time reversal test. 
 
Walsh (1901; 423-433) showed how his circularity test could be used in order to evaluate 
how “good” any bilateral index number formula was.  What he did was invent artificial 
price and quantity data for 5 periods and he added a sixth period that had the data of the 
first period.  He then evaluated the right hand side of (65) for various bilateral formula, 
P(p0,p1,q0,q1), and determined how far from unity the results were.  His “best” formulae 
had products that were close to one.  Fisher (1922; 284) later used this methodology as 
well.     
 
This same framework is often used to evaluate the efficacy of chained indexes versus 
their direct counterparts.  Thus if the right hand side of (65) turns out to be different than 
unity, the chained indexes are said to suffer from “chain drift”.  If a formula does suffer 
from chain drift, it is sometimes recommended that fixed base indexes be used in place of 
chained ones.  However, this advice, if accepted would always lead to the adoption of 
fixed base indexes, provided that the bilateral index formula satisfies the identity test, 
P(p0,p0,q0,q0) = 1.  Thus it is not recommended that Walsh’s circularity test be used to 
decide whether fixed base or chained indexes should be calculated.  However, it is fair to 
use Walsh’s circularity test  as he originally used it i.e., as an approximate method for 
deciding how “good” a particular index number formula is.  In order to decide whether to 
chain or use fixed base indexes, one should decide on the basis of how similar are the 
observations being compared and choose the method which will best link up the most 
similar observations.  
 
Robert Hill’s method for linking observations can be regarded as a multilateral index 
number method; one which is based on a suitable bilateral formula, a measure of the 
similarity of any two price and quantity vectors and an algorithm for linking the 
observations via a path that links the most similar observations.  In the following section, 
we review some other multilateral methods. 
 
9. Multilateral Indexes 
 
Assume that there are I positive price vectors pi ≡ (p1

i,…,pN
i) and I quantity vectors qi ≡ 

(q1
i,…,qN

i) with pi⋅qi > 0 for i = 1,…,I.  We wish to find 2I positive numbers Pi (price 
indexes) and Qi (quantity indexes) such that PiQi  = pi⋅qi for i = 1,…,I.  The I data points 
(pi,qi) will typically be observations on production or consumption units that are 
separated spatially but yet are still comparable.  For the sake of definiteness, we shall 
refer to the I data points as countries.  Each commodity n is supposed to be the same 
across all countries.  This can always be done by a suitable extension of the list of 
commodities. 
 
Our first approach to the construction of a system of multilateral price and quantity 
indexes is based on the use of a bilateral quantity index Q.  In this method, the first step is 
to pick the ‘best’ bilateral index number formula: e.g., the Fisher quantity index QF 
defined by (14) and (5) or the implicit Törnqvist Theil quantity index QT defined by (22) 
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and (5).    Secondly, pick a numeraire country, say country 1, and then calculate the 
aggregate quantity for each country i relative to country 1 by evaluating the quantity 
index Q(p1,pi,q1,qi).  In order to put these relative quantity measures on a symmetric 
footing, we convert each relative to country 1 quantity measure into a share of world 
quantity by dividing through by ∑k=1

I Q(p1,pk,q1,qk).   For a general numeraire country j, 
define the share of world quantity for country i, using country j as the numeraire country, 
by: 
 
(66)  σi

j(p,q) ≡ Q(pj,pi,qj,qi) / ∑k=1
I Q(pj,pk,qj,qk) ;                                             i = 1,…,I, 

 
where p ≡ (p1,…,pI) is the N by I  matrix of price data and q ≡ (q1,…,qI) is the N by I  
matrix of quantity data.  Once the numeraire country j has been chosen and the country i 
shares σi

j calculated, we may set Qi ≡ σi
j and Pi ≡ pi⋅qi/Qi for i = 1,…,I.   Thus we have 

provided a solution to the multilateral index number problem (1).  Of course, one is free 
to renormalize the resulting Pi and Qi if desired; i.e., all Qi can be multiplied by a number 
provided all Pi are divided by this same number.  Kravis (1984) called this method the 
star system, since the numeraire country plays a starring role: all countries are compared 
with it and it alone. 
 
Of course, the problem with the star system for making multilateral comparisons is its 
lack of invariance to the choice of the numeraire or star country.  Different choices for 
the base country will in general give rise to different indexes Pi and Qi.   This problem 
can be traced to the lack of circularity of the bilateral formula Q: if Q satisfies the time 
reversal test and the circular test for quantity indexes, then σi

j = σi
k for all i, j and k; i.e., 

the shares σi
j defined by (66) do not depend on the choice of the numeraire country j.   

However, given that the chosen “best” bilateral formula does not satisfy the circularity 
test (as is the case with QF and QT), how can we generate multilateral indexes that treat 
each country symmetrically? 
 
Fisher (1922; 305) recognized that the simplest way of achieving symmetry was to 
average base specific index numbers over all possible bases.  Thus define country i's 
share of world output Si(p,q) by 
 
(67)  Si(p,q) ≡∑j=1

I  σi
j(p,q)/I,     i = 1,…,I 

 
where the σi

j are defined by (66).  We can now define country i quantities and 
prices by 
 
(68)  Qi ≡ Si(p,q);  Pi ≡ pi⋅qi/Qi,    i =1,…,I. 
 
Fisher (1922; 305) called this method of constructing multilateral indexes the blend 
method while Diewert (1986) called it the democratic weights method, since each share 
of world output using each country as the base is given an equal weight in the formation 
of the average. 
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Of course, there is no need to use an arithmetic average of the σi
j as in (67); one can use a 

geometric average: 
 
(69)  σi(p,q) ≡ [∏j=1

I σi
j(p,q)]1/I,             i = 1,…,I. 

 
Using (69), the resulting shares no longer sum to one in general, so country i’s share of 
world output is now defined as: 
 
(70)  Si(p,q) ≡ σi(p,q) / ∑k=1

I σk(p,q),                                                              i = 1,…,I. 
 
If the Fisher index QF is used in the definition of the σi

j, then 
 
(71)  Si(p,q)/Sj(p,q) = [∏k=1

I QF(pk,pi,qk,qi) / ∏m=1
I QF (pm,pj,qm,qj)]1/I 

 
and in this case, the multilateral method defined by (71) reduces to a method 
recommended by Gini (1924) (1931), Eltetö and Köves (1964) and Szulc (1964), the 
GEKS method.  Instead of using the Fisher formula in (71), Caves, Christensen and 
Diewert (1982a) advocated the use of the (direct) Törnqvist Theil quantity index while 
Diewert (1986) suggested the use of the implicit translog quantity index QT defined by 
(5) when P is PT defined by (22), since QT is well defined even in the case where some 
quantities qn

i are negative.  We call the indexes generated by (69) and (70) for a general 
bilateral index Q generalized GEKS indexes. 
 
When forming averages of the σi

j as in (67) or (69), there is no necessity to use equal 
weights: one can define country j’s value share of world output as βj ≡ pj⋅qj / ∑k=1

I pk⋅qk 
(this requires all prices to be measured in units of a common currency) and then we may 
define a plutocratic share weighted average of the σi

j: 
 
(72) Si(p,q) ≡∑j=1

I βj(p,q) σi
j(p,q). 

 
Diewert (1986) called this method of constructing multilateral indexes the plutocratic 
weights method. 
 
Another multilateral method that is based on a bilateral index Q may be described as 
follows.  Define 
 
(73) σi(p,q) ≡∑j=1

I [Q(pj,pi,qj,qi)−1]−1 ;                                                         i = 1,…,I. 
 
If there is only one commodity so that N = 1 and the bilateral index Q satisfies quantity 
counterparts to tests T3 and T5, then αi = [∑j=1

I(qi/qj)−1]−1 = [∑j=1
I qj/qi]−1 = qi/∑j=1

I qj 

which is country i’s share of world product.   In the general case where N > 1, the 
“shares” αi do not necessarily sum up to unity, so it is necessary to normalize them: 
 
(74)  Si(p,q) ≡ αi(p,q) / ∑k=1

I αk(p,q) ;                                                          i = 1,…,I. 
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Diewert (1986) (1988) (1999b) called this the own share method for making multilateral 
comparisons. 
 
The above methods for achieving consistency and symmetry rely on averaging over 
various bilateral index number comparisons.  Fisher (1922; 307) realized that symmetry 
could be achieved by making comparisons with an average; he called this broadening the 
base.  Thus the average basket method (see Walsh (1901; 431), Gini (1931; 8))  Fisher 
(1922; 307), Ruggles (1967) and Diewert (1999b; 24-25)) may be described as follows.  
The price level of country I relative to country j is set equal to pi⋅(∑k=1

J qk/I)/pj⋅(∑k=1
J 

qk/I).  Now define Qji ≡[pi⋅qi/pj⋅qj]/[pi⋅(∑k qk)/pj⋅(∑k qk)] to be the implicit output of 
country i relative to j.  Choose a j as a numeraire country and calculate country i’s share 
of world output as: 
 
(75) Si(p,q) ≡ Qji  / ∑k=1

I Qjk  = (pi⋅qi/pi⋅∑k qk) / ∑m=1
I (pm⋅qm/pm⋅∑k qk) ;       i = 1,…,I. 

 
Note that the final expression for Si does not depend on the choice of the numeraire 
country j.  As usual, once the share functions, Si, have been defined, the aggregate Qi and 
Pi may be defined by (68). 
 
A variation on the basket method due to Geary (1958) and Khamis (1972) is defined by 
(76)-(78) below: 
 
(76)  πn ≡ ∑i=1

I pn
iqn

i  / Pi ∑k=1
I qn

k,   n = 1,…,N; 
(77)  Pi ≡ ∑n=1

N pn
iqn

i / ∑m=1
N πm qm

i,  i = 1,…,I; 
(78)  Qi ≡ pi⋅qi/Pi,     i = 1,…,I. 
 
πn is interpreted as an average international price for good n.  From (77), it can be seen 
that Pi,  the price level or purchasing power parity for country i,  is a Paasche-like price 
index for country i except that the base prices are chosen to be the international prices πn.  
The πn and (Pi)−1 can be solved for as a system of simultaneous linear equations (up to a 
scalar normalization) or the (Pi)−1 may be determined as the components of the 
eigenvector that corresponds to the maximal positive eigenvalue of a certain matrix.  The 
Pi can be normalized so that the quantities Qi defined by (78) sum up to unity.  This GK 
method for making multilateral comparisons has been widely used in empirical 
applications; e.g., see Kravis, Kenessey, Heston and Summers (1975). 
 
We have defined seven methods for making multilateral comparisons: the star method 
(66), the democratic (67) and plutocratic (72) weights methods, the GEKS method (71), 
the own share method (74), the average basket method (75) and the GK method (78).  
Many additional methods have been suggested; e.g., see Hill (1997), Diewert (1986) 
(1988) (1999b), Rao (1990) and Balk (1996).   How can we discriminate among them?  
One helpful approach would be to define a system of multilateral tests and then evaluate 
how the above methods satisfy these tests.  Space does not permit the development of this 
approach in this short survey; for applications of this approach, see Diewert (1988) 
(1999b) and Balk (1996).  A clear consensus on the “best” multilateral method has not 
yet emerged. 
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We conclude this section by looking at a stochastic or descriptive statistics approach to 
making multilateral comparisons: namely Summer’s (1973) Country Product Dummy 
(CPD) method for making multilateral comparisons.  If there are I countries in the 
comparison and N products, the relationship of the prices between the various countries 
using the CPD model is given (approximately) by the following model: 
 
(79) pn

c ≈ αcβn ;                                                                            c = 1,....,I ; n = 1,...,N; 
(80) α1 = 1 
 
where pn

c is the price (in domestic currency) of commodity n in country c.  Quantities  for 
each commodity in each country are assumed to be measured in the same units. Equation 
(80) above is an identifying normalization; i.e., we measure the price level of each 
country relative to the price level in country 1.  Note that there are IN prices in the model 
and there are I − 1 + N parameters to “explain” these prices.  Note also that the basic 
hypothesis that is implied by (79) is that commodity prices are approximately 
proportional between the two countries.  Taking logarithms of both sides of (79) and 
adding error terms leads to the following CPD regression model: 
 
(81) ln pn

c = ln αc + ln βn + εn
c ;                                                    c = 1,....,I ; n = 1,...,N. 

 
The main advantage of the CPD method for comparing prices across countries over 
traditional index number methods is that we can obtain standard errors for the country 
price levels α2, α3,..., αI.  This advantage of the stochastic approach to index number 
theory was stressed by Summers (1973) and more recently by Selvanathan and Rao 
(1994). 
 
The recent literature on the CPD method notes that it is a special case of a hedonic 
regression model and this recent literature makes connections between weighted hedonic 
regressions and traditional index number formulae; see Triplett and McDonald (1977), 
Diewert (2003) (2005b) (2005c) (2007b), de Haan (2004a) (2004b), Silver (2003) and 
Silver and Heravi (2005).   
 
10. Other Aspects of Index Number Theory 
 
There are many important recent developments in index number theory that we cannot 
cover in any depth in this brief survey. Some of these developments are: 
 

• Sampling problems and the construction of indexes at the first stage of 
aggregation; see Dalén (1992), Diewert (1995a), ILO (2004) and IMF (2004). 

• The treatment of seasonality; see Turvey (1979), Balk (1980) (2005), Diewert  
(1983c) (1998b) (1999a), Hill (1996), Alterman, Diewert and Feenstra (1999), 
ILO (2004) and Armknecht and Diewert (2004). 

• The analysis of sources of bias in consumer price indexes.  This topic was greatly 
stimulated by the Boskin Commission Report; see Boskin, Dullberger, Gordon, 
Griliches and Jorgenson (1996).  For additional contributions to this subject, see 
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Diewert (1987) (1998a), Reinsdorf (1993), Schultze and Mackie (2002), Lebow 
and Rudd (2003), Balk and Diewert (2004) and ILO (2004).      

• Productivity indexes.  As more and more countries start programs to measure 
sectoral and economy wide productivity, this topic has become more important .  
The original methodology for measuring productivity using index number 
techniques is due to Jorgenson and Griliches (1967) (1972) and it was first 
adopted by the U.S, Bureau of Labor Statistics (1983) and subsequently by 
Canada, Australia and more recently by New Zealand and Switzerland.  Diewert 
(1976)  (1983b)  Caves, Christensen and Diewert (1982b), Diewert and Morrison 
(1986), Kohli (1990), Morrison and Diewert (1990), Balk (1998) (2003), 
Schreyer (2001), Diewert and Fox (2004), Diewert and Nakamura (2003) and 
Diewert and Lawrence (2006) all made contributions connecting productivity 
measurement with index number theory. 

• Contribution analysis.  Suppose an aggregate price or quantity index shows a 
certain change over a certain period.  Many analysts want to be able to compute 
the contribution of price or quantity change of specific components of the overall 
index and the problem of precisely defining such contributions has given rise to a 
fairly substantial recent literature.  Contributors to this literature include Diewert 
(1983b) (2002a), Diewert and Morrison (1986), van IJzeren (1987), Kohli (1990) 
(2003) (2004) (2007), Morrison and Diewert (1990), Fox and Kohli (1998) and 
Reinsdorf, Diewert and Ehemann (2002). 

• Quality change.  The analysis thus far has assumed that the list of commodities in 
the aggregate is fixed and is unchanging and thus it is not able to deal with the 
problem of quality change.  For extensive discussions of this problem, see 
Triplett (2004) and the chapters on quality change in ILO (2004) and IMF (2004). 

• Index number theory in terms of differences rather than ratios.  Hicks (1941-42) 
noticed the similarities between measuring welfare change (difference measures) 
and index numbers of quantity change (ratio measures).  The early literature on 
the difference approach dates back to Bennet (1920) and Montgomery (1929) 
(1937).  More recent contributions to this subject may be found in Diewert 
(1992b) (2005a). 

 
The last 20 years has seen an increase in interest in index number theory and economic 
measurement problems in general.  Perhaps influenced by Hill (1993), national statistical 
agencies are moving towards using chained superlative indexes as their target indexes; 
see Moulton and Seskin (1999) and Cage, Greenlees and Jackman (2003) for U.S. 
developments.  International agencies have also endorsed the use of superlative indexes 
as target indexes; see the Manuals produced by the ILO (2004) and the IMF (2004).  
These Manuals are a useful development since they help disseminate best practices and 
they help to harmonize statistics across countries, leading to a higher degree of accuracy 
and comparability.  Hopefully, these positive developments will continue.  
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