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Abstract

We provide a new interpretation of mixed strategy equilibria that incor-
porates both von Neumann and Morgenstern’s classical concealment role of
mixing as well as the more recent Bayesian view originating with Harsanyi.
For any two-person game, G, we consider an incomplete information game,
IG, in which each player’s type is the probability he assigns to the event
that his mixed strategy in G is “found out” by his opponent. We show
that, generically, any regular equilibrium of G can be approximated by an
equilibrium of IG in which almost every type of each player is strictly opti-
mizing. This leads us to interpret i’s equilibrium mixed strategy in G as a
combination of deliberate randomization by i together with uncertainty on
j’s part about which randomization i will employ. We also show that such
randomization is not unusual: For example, i’s randomization is nondegen-
erate whenever the support of an equilibrium contains cyclic best replies.
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1. Introduction

The purpose of this paper is to better understand mixed strategy Nash equilibria
in finite two-person games. In particular, we show that a player’s equilibrium
mixture can be usefully understood partly in terms of deliberate randomization
by the player, and partly as an expression of the opponent’s uncertainty about
which randomization the player will employ. This allows us to unify the other-
wise sharply distinct views of mixed strategies proposed by von Neumann and
Morgenstern (1944) for zero-sum games and by Harsanyi (1973) for nonzero-sum
games.
Von Neumann and Morgenstern (vNM (1944)), when focusing on two-person

zero-sum games, unequivocally interpret mixing as an act of deliberate random-
ization whose purpose is to conceal. They point out that each player strictly
prefers any one of his equilibrium strategies over any other strategy if he is cer-
tain that the mixed strategy he chooses will be found out by his opponent prior
to his opponent’s choice.
For example, in Matching Pennies player 1 strictly prefers the fifty-fifty mixture

over every other mixed strategy when he knows that player 2 will find out the
mixed strategy he chooses. VNM conclude from this that there is a defensive or
concealment rationale for mixing in zero-sum games:

Thus one important consideration for a player in such a game is to protect him-
self against having his intentions found out by his opponent. Playing several such
strategies at random, so that only their probabilities are determined is a very ef-
fective way to achieve a degree of such protection: By this device the opponent
cannot possibly find out what the player’s strategy is going to be, since the player
does not know it himself (vNM (1944, p. 146)).

According to the classical rationale, then, a mixed strategy represents delib-
erate randomization on a player’s part. Everyone, including the player himself,
is uncertain about that player’s pure choice. However, because it is based on the
desirability of concealment, the classical rationale for mixing runs into difficulties
in nonzero-sum games. As Schelling notes:

The essence of randomization in a two-person zero-sum game is to preclude the
adversary from gaining intelligence about one’s mode of play... In games that
mix conflict with common interest, however, randomization plays no such central
role... (Schelling (1960, p. 175)).
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Consider, for example, the mixed equilibrium in the Battle of the Sexes. In
this equilibrium, neither player can be thought of as deliberately randomizing to
conceal his pure choice because, in this game, each player prefers to reveal his
pure choice, whatever it is, to the other player. Thus, the classical rationale is
inappropriate here.
But if concealment is not the rationale for mixing in general games, what

is? Harsanyi (1973) provides an ingenious answer. He shows that virtually any
mixed equilibrium can be viewed as an equilibrium of a nearby game of incomplete
information in which small private variations in the players’ payoffs lead them to
strictly prefer one of their pure strategies. Thus, from Harsanyi’s point of view no
player ever actually randomizes and a player i is uncertain about another player
j’s pure choice only because it varies with j’s type, which is private information.
The significant conceptual idea introduced by Harsanyi is that a player’s mixed
strategy expresses the ignorance of the other players–not of the player himself–
about that player’s pure strategy choice.1

Aumann (1987; see especially Section 6) takes Harsanyi’s idea further. By
eliminating the payoff perturbations altogether, he directly interprets a player’s
mixed strategy solely as an expression of the other players’ uncertainty about that
player’s pure strategy choice. This view is now widespread.2 Indeed, as Aumann
and Brandenburger (1995) remark:

In recent years, a different view of mixing has emerged. According to this view,
players do not randomize; each player chooses some definite action. But other
players need not know which one, and the mixture represents their uncertainty,
their conjecture about his choice.

Thus, the view of mixing that has emerged, the Bayesian view let us call it,
bears no resemblance to the classical view that mixing represents a deliberate
decision to randomize in order to conceal one’s choice. The concealment role of
mixing has been entirely left behind.
In contrast, we argue here that the intuitively appealing classical view can

be incorporated into a general interpretation of mixed equilibria. In fact, the
approach we propose is tied to both the Bayesian and classical views.

1We thank Bob Aumann for suggesting to us that this conceptual contribution by Haranyi
was at least as important as his formal purification theorem.

2For example, see Armbruster and Boege (1979), Tan and Werlang (1988) and Brandenburger
and Dekel (1989).
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Our approach is tied to the Bayesian view by incorporating Harsanyi’s idea that
a player’s private information can lead to uncertainty about that player’s choice
from the opponent’s perspective. However, our approach differs crucially from
Harsanyi’s in terms of the precise nature of the players’ private information. In
our setup, there is no uncertainty about payoffs. Rather, each player is concerned
that his opponent might find out his choice of mixed strategy, and it is the level of
this concern that is private information. As in Harsanyi, such private information
can make the opponent more uncertain about a player’s choice than is the player
himself. But, in our approach, because each player is concerned that his mixed
strategy might be found out by his opponent, he may benefit from the concealment
effect of deliberate randomization. This simultaneously ties our approach to the
classical view.
More precisely, we interpret equilibria of any finite two-person game G as lim-

its of equilibria of certain sufficiently nearby games of incomplete information,
IG. Each incomplete information game, IG, is derived from G as follows. Nature
moves first by independently choosing, for each player i, a type, ti ∈ [0, 1], accord-
ing to some continuous distribution. Each player is privately informed of his own
type, which is his assessment of the probability that the opponent will find out
his mixed strategy before the opponent moves. We shall be concerned with the
equilibria of IG as the type distributions become concentrated around zero and
so as the players’ concerns for being found out vanish.
As in Harsanyi, our model provides the players with strict incentives. Indeed,

as we show, any regular equilibrium ofG can be approximated by an equilibrium of
IG in which almost every type of each player is strictly optimizing. But there is an
important difference. Harsanyi’s players strictly prefer to use only pure strategies,
while our players in general strictly prefer to use mixed strategies. When our
players mix, they do so deliberately, because the benefits of concealment make
this strictly optimal, not because the equilibrium requires them to make the other
player indifferent. Conversely, when our players choose pure strategies, they do
so because randomization is harmful and they actively wish to reveal their choice
to the other player.
For example, in the unique equilibrium of our incomplete information pertur-

bation, IG, of Matching Pennies, all types of both players strictly optimize by
choosing the fifty-fifty mixture (see Section 2). Thus, neither player’s behavior
depends upon his private information and each player deliberately randomizes.
Such randomization is strictly beneficial because each player believes the other
might find out his mixed strategy. Our approach therefore supports the classical
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view of the mixed equilibrium in Matching Pennies, namely, that each player de-
liberately randomizes fifty-fifty and is certain that his opponent will do so as well.
Indeed, Theorem 4.1 generalizes this to all zero-sum games.
On the other hand, all equilibria of IG near the completely mixed equilibrium

of Battle of the Sexes require almost every type of each player to employ one of
his two pure strategies (see Section 2). Concealment is shown to play no role in
this equilibrium precisely because each player prefers to reveal his pure choice in
this game. Moreover, our rationale for the mixed equilibrium here coincides with
the Bayesian view: Each player i employs one or the other pure strategy; player
j does not know which pure strategy i will employ, but assigns some probability
to each one, where these probabilities are given by i’s equilibrium mixture. This
is generalized in Theorem 6.4 which states that if, starting from any cell in G’s
payoffmatrix, both players’ payoffs increase whenever either one of them switches
to a best reply, then every equilibrium of our incomplete information perturbation
requires almost every type of each player to employ a pure strategy.
So, our interpretation coincides with the classical view in zero-sum games, and

it coincides with the Bayesian view in a class of coordination games. But what
about the vast majority of games lying between these two extremes? As shown
by example in Section 2, our interpretation will typically differ from both the
Bayesian and classical views. The example is a 3x3 nonzero-sum game with a
unique completely mixed equilibrium, m∗. In our incomplete information pertur-
bation, no type of either player chooses his completely mixed equilibrium strategy,
yet no type of either player chooses a pure strategy either. Instead, almost every
type of each player i strictly optimizes by using one of three mixed strategies,
mi1,mi2, or mi3, each of which gives positive weight to just two pure strategies.
Each randomization, mik, benefits i by optimally concealing the two pure strate-
gies in its support. Further, if µik denotes the fraction of player i’s types using
mik in the limit as the players’ concerns for being found out converge to zero, then
m∗

i = µi1mi1 + µi2mi2 + µi3mi3.
The above three games serve to exemplify the following general interpretation

of any equilibrium, m∗, of the original game G :

Each player i’s equilibrium mixture, m∗
i , can be expressed as a convex combi-

nation of a fixed finite set of i’s mixed strategies, mik, say. Each mixed strategy
in the convex combination represents a strategy that i might deliberately employ,
while the weight on that mixed strategy represents the opponent’s belief that i will
employ it.
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Such convex combinations reveal the role of deliberate randomization. In our
perturbed game, where players are slightly concerned that their mixed strategy
might be found out, the strategiesmik are strictly optimal for the types employing
them and, when the mik are non-degenerate, they optimally conceal the pure
strategies in their support.
One might wonder when at least one of the mik above is nondegenerate, be-

cause then our interpretation involves deliberate randomization. Theorem 6.2
states that if the support of an equilibrium, m∗, of any game G contains a best-
reply cycle, then a positive (and bounded away from zero) measure of both players’
types must use non-degenerate mixed strategies, mik, in any approximating equi-
librium of IG. Hence, the presence of best reply cycles in the support of an
equilibrium of a two-person game indicates a role for deliberate randomization in
that equilibrium.
From the perspective offered here, the classical and Bayesian views are ex-

treme. On the one hand, our interpretation coincides with the classical view only
when the above convex combination is degenerate, placing full weight on i’s equi-
librium mixed strategy, as in matching pennies. On the other, our interpretation
coincides with the Bayesian view only when every mixed strategy in the above
convex combination is pure, with weights given by i’s equilibrium mixture, as
in the Battle of the Sexes. In general, our interpretation differs from both the
classical and Bayesian views, as typified by the third example above.
A strength of our interpretation is that it eliminates the sharp distinction be-

tween zero-sum and nonzero-sum games insofar as the role of randomization is
concerned. For example, according to our view, when moving from matching pen-
nies to the battle of the sexes through continuous payoff changes, the role played
by deliberate randomization in their mixed equilibria continuously diminishes to
zero.
We restrict attention to two-person games. Additional issues arise with three

or more players. For example, one must then specify how many opponents find
out a player’s mixed strategy. There does not appear to be a single natural choice
here. However, there is no reason to doubt that any reasonable choice will yield
strict incentives to mix in some games, as we obtain here.
In addition to the work cited above, a rich literature on purification has grown

out of Harsanyi’s (1973) seminal contribution. (See, for example, Radner and
Rosenthal (1982) and Aumann et al. (1983).) The central issue in this literature
is whether every mixed strategy equilibrium of an incomplete information game
is (perhaps approximately) equivalent to some pure strategy equilibrium. In our
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model, this is not an issue because, as we shall show, all equilibria of IG are pure,
generically. But note that a pure strategy in IG allows the players’ to choose
non-degenerate mixed strategies from G.
More closely related are Rosenthal (1991) and Robson (1994).3 Both papers

are concerned with the robustness of equilibria of two-person games to changes
in the information structure. Rosenthal observes that equilibria of some nonzero-
sum games remain equilibria even when the opponent is sure to find out one’s
mixed strategy choice.
Robson perturbs arbitrary two-person games by supposing that each player’s

pure or mixed strategy is found out by the opponent with a common known
probability. Equilibria that survive arbitrarily small perturbations of this kind
are called “informationally robust.” Robson shows that informationally robust
equilibria exist and refine Nash equilibria.4 He also observes that informational
robustness with respect to mixed strategies yields strict incentives to mix in some
2x2 nonzero-sum examples. However, in a typical informationally robust equilib-
rium, the players will not have strict incentives and they randomize in order to
make the opponent indifferent.
The remainder of the paper is organized as follows. Section 2 contains three

leading examples illustrating the main ideas. Section 3 describes our incomplete
information perturbation of an arbitrary two-person game. Section 4 provides our
results concerning zero-sum games, while Section 5 analyzes the more challeng-
ing nonzero-sum case and contains our main approximation theorem. Section 6
provides conditions under which our interpretation necessarily involves the classi-
cal view that players deliberately randomize, as well as a condition under which
our interpretation involves only the Bayesian view in which no player randomizes.
Section 7 provides an example showing the potential significance of unused strate-
gies. Finally, Section 8 briefly discusses how our static model, in which a player’s
mixed strategy is revealed with some probability, is the reduced form of a dynamic
game in which only a player’s past history of pure actions is ever revealed.

3Less closely related is Matsui (1989). He considers a repeated game with a small probability
that one player’s entire supergame strategy will be revealed to the other player. In contrast,
in a repeated game interpretation of our model (see Section 8), an opponent observes, at most,
one’s history of past actions, not one’s entire supergame strategy.

4Our results here imply that, generically, the sets of informationally robust equilibria and
Nash equilibria coincide.
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2. Three Leading Examples

The scope of the present approach can be demonstrated by considering three
examples: Matching Pennies, Battle of the Sexes, and Modified Rock-Scissors-
Paper. To each of these normal form games, G, say, we associate a nearby game
of incomplete information, IG, which we now describe informally.
For 0 ≤ ε < ε̄ ≤ 1, the players’ types, t1 for player 1 and t2 for player 2,

are drawn independently and uniformly from [ε, ε̄]. The players choose a mixed
strategy in G as a function of their type. With probability 1− ti player i receives
the payoff in G from the pair of mixed strategies chosen, whereas with probability
ti he receives the payoff in G resulting from his mixed strategy choice together
with a best reply for j against it.5 More precisely, letting ui denote i’s payoff in
G, if i chooses the mixed strategy mi from G and j chooses mj, then i’s payoff in
IG when his type is ti is

(1− ti)ui(m1,m2) + tivi(mi),

where vi(mi) = maxxj∈Bj(mi) ui(mi, xj) and Bj(mi) is the set of best replies for j
against mi.
Accordingly, we interpret a player’s type to be the probability he assigns to

the event that the opponent finds out his mixed strategy and best replies to
it. However, note that neither player believes he will find out the opponent’s
mixed strategy.6 Hence each type of each player makes only the single decision
of choosing a mixed strategy in G. Note also that player i cares only about the
overall distribution over pure strategies in G induced by the opponent’s strategy
in IG. This is because, from i’s point of view, the opponent’s strategy in IG is
relevant for determining i’s payoff only when the opponent does not find out i’s
mixed strategy.
We are interested in the limiting equilibria of IG as ε̄ and ε tend to zero, so

that IG tends to the original game G.
5If there are multiple best replies for j against i’s mixed strategy, then one that is best for i

is employed. See Section 3.
6It would be equivalent to consider an extensive form game in which it is common knowledge

that each player might find out the other’s mixed strategy (see Appendix A). A player’s single
decision in IG corresponds to his only nontrivial decision in the extensive form, arising when he
does not find out the opponent’s mixed strategy.
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Figure 2.1: Matching Pennies

2.1. Matching Pennies

Recall vNM’s observation that inMatching Pennies (Figure 2.1) the players strictly
prefer the fifty-fifty mixture when they are sure to be found out. We shall show
that for every ε̄ > ε > 0, including those near zero, IG has an equilibrium in
which every type of each player chooses to randomize fifty-fifty over H and T and
that this non-degenerate mixture is strictly optimal.
So, suppose that every type of player 2 uses the fifty-fifty mixture. Consider

player 1’s payoff as a function of the probability, p, that his mixed strategy assigns
to H, given that player 2 finds out this mixed strategy. Player 1’s payoff is negative
both for p ∈ [0, 1/2), where 2’s best reply is H, and for p ∈ (1/2, 1] where 2’s best
reply is T, and so is uniquely maximized at p = 1/2, where it is zero, regardless
of 2’s reply.
Now consider player 1 in IG when his type, the probability he assigns to being

found out, is t1 ∈ [ε, ε̄]. Because the other player is mixing equally, any type
of player 1 is indifferent among all his mixed strategies conditional on not being
found out. Hence, because player 1 of type t1 > 0 assigns positive probability
to the event that he is found out, the fifty-fifty mixture is the uniquely optimal
choice for every type of player 1, as claimed. A similar argument holds when the
players’ roles are reversed. Thus, the incomplete information game associated with
Matching Pennies captures the classical point of view that mixing is a deliberate
attempt to conceal one’s choice.

2.2. Battle of the Sexes

Consider next the Battle of the Sexes (henceforth BoS; see Figure 2.2) and the
mixed equilibrium in which each player chooses his favorite pure strategy with
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Figure 2.2: Battle of the Sexes

probability 2/3. (A player’s “favorite” pure strategy yields him a payoff of 2 if
coordination is achieved.)
For this example, set ε = 0, so that in IG the player types are drawn indepen-

dently and uniformly from [0, ε̄]. We will show first that, regardless of the value
of ε̄ > 0, almost every type of each player has a unique optimal pure strategy
in every equilibrium of IG and second that, for ε̄ > 0 small enough, there exists
an equilibrium of IG in which approximately 2/3 of each player’s types choose
that player’s favorite BoS pure strategy and the remainder choose the other pure
strategy.7 Taken together, this leads to a purely Bayesian interpretation of the
strictly mixed equilibrium in BoS.
So, let us begin by consulting Figure 2.3. The solid lines in the figure show

player 1’s payoff as a function of the probability p he places on T, given that player
2 finds out player 1’s mixed strategy. When p ∈ [0, 2/3), player 2’s best reply is
R and 1’s payoff is decreasing in p. When p ∈ (2/3, 1], player 2’s best reply is L
and 1’s payoff is increasing in p. When p = 2/3, player 2 is indifferent between L
and R, but player 1 strictly prefers that player 2 choose L, which accounts for the
discontinuity.
Now, a mixed strategy in IG specifies, for each of a player’s types, a probability

distribution, or “lottery,” over the player’s mixed strategies in G. Such a lottery
therefore determines which mixed strategy, mi from the game G, the player’s type
will employ in IG. Consequently, if player i of type ti uses such a lottery, then he
assigns probability ti to the event that his opponent finds out the mixed strategy
mi that is the outcome of this lottery. To avoid confusion, we will refer to mixed
strategies in IG as “lotteries,” reserving the term “mixed strategies” for strategies

7Because Battle of the Sexes has multiple equilibria, so does its associated incomplete infor-
mation game IG.
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Figure 2.3: Player 1 Found Out in Battle of the Sexes

mi in G.
Consider now the dotted line in Figure 2.3 connecting player 1’s payoffs when

he chooses the two pure strategies B (p = 0) and T (p = 1). We claim that,
conditional on being found out, any payoff along the dotted line can be achieved
by employing an appropriate lottery over the degenerate mixed strategies B and T.
In particular, if player 1 of type t1 uses the lottery that chooses T with probability
π and B with probability 1−π, then player 1’s payoff is 2π+1(1−π), conditional
on being found out. That is, because player 2 finds out the outcome of the lottery,
2’s best reply always yields coordination, giving player 1 an average of his payoffs
along the diagonal.
The dotted line lies above player 1’s payoff in Figure 2.3 and so player 1 prefers

such a lottery π ∈ (0, 1) to the mixed strategy giving T the same probability
p = π, conditional on being found out. In contrast to the lottery, the mixed
strategy, when combined with the opponent’s best reply, leads to miscoordination
with positive probability.
On the other hand, conditional on not being found out, the lottery π yields

the same payoff as does the mixed strategy p = π. Altogether then, every positive
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type of player 1 must strictly prefer the lottery π = p to the mixed strategy p, for
any p ∈ (0, 1).
Thus, regardless of player 2’s strategy, every positive type of player 1 strictly

prefers at least one of the two pure strategies T or B to any mixed strategy
p ∈ (0, 1). Furthermore, because T and B yield distinct payoffs conditional on
being found out, the linearity of 1’s payoff in his type implies that at most one of his
types can be indifferent between T and B.We conclude that in every equilibrium of
IG, all but perhaps one of player 1’s positive types strictly optimizes by employing
a pure strategy. Since a similar argument applies to player 2, we have shown
that almost every player type employs a unique optimal pure strategy in every
equilibrium of IG.
We now show that if ε̄ > 0 is small enough, IG has an equilibrium whose

distribution over the pure strategies in G is arbitrarily close to the strictly mixed
equilibrium of BoS. Given what we have already shown, we may restrict attention
to strategies in IG in which player 1 chooses either T or B, and player 2 chooses
either L or R. The equilibrium of IG we seek is such that roughly 2/3 of player
1’s types choose T and roughly 2/3 of player 2’s types choose R. This equilibrium
is determined by a critical type for each player i, namely t̂i = αε̄ for α near 1/3,
where type t1 of player 1 chooses

B if t1 < t̂1; and T if t1 ≥ t̂1 (2.1)

and type t2 of player 2 chooses

L if t2 < t̂2; and R if t2 ≥ t̂2. (2.2)

Note that larger types, who assign a higher probability to being found out, choose
their favorite pure BoS strategy.
For this to be an equilibrium, αmust be such that the critical type t̂i is indiffer-

ent between his two pure BoS strategies, T and B. A straightforward calculation
yields

α =
1

3
−
√
4ε̄2 + 9− 3
6ε̄

,

which for ε̄ small is close to 1/3. By symmetry, this value of α also makes player
2’s critical type t̂2 = αε̄ indifferent between L and R.8

8From (2.1) and (2.2), the payoff to player 1’s critical type t̂1 = αε̄ from choosing T is
α2+(1−α)0, if he is not found out, since a fraction α of player 2’s types choose L, and 2, if he is
found out. Hence, player t̂1’s payoff from T is πt̂1(T) = (1− t̂1)(α2+(1−α)0)+2t̂1 = 2(−ε̄α

2+

12



Now, all types of player 1 below the critical type strictly prefer B to T, whereas
all types above strictly prefer T to B. Indeed, for a typical type t1 of player 1, the
difference in payoff from choosing T versus B is

πt1(T)− πt1(B) = (1− t1)(3α− 1) + t1,

which, for α close enough to 1/3 (for ε̄ close enough to zero) is strictly increasing
in t1, and vanishes at t̂1. A similar preference holds between L and R for player 2.
Therefore, the strategies (2.1) and (2.2) form an equilibrium of IG. Con-

sequently, our interpretation of the mixed equilibrium of Battle of the Sexes is
Bayesian: Each player chooses some particular pure strategy, yet the opponent
is unsure of which one. The probabilities associated with a player’s equilibrium
mixture represent the opponent’s beliefs about which pure strategy the player will
choose.
Thus our incomplete information perturbation is, like Harsanyi (1973), able

to rationalize the mixed equilibria of Matching Pennies and Battle of the Sexes
as strict equilibria. But the interpretations of the two models are quite distinct.
The player types in our perturbation optimally choose whether to reveal or to
conceal their choices, choosing to conceal them in Matching Pennies (producing
a classical interpretation) and to reveal them in Battle of the Sexes (producing a
Bayesian interpretation); whereas in Harsanyi, almost all player types always use
only pure strategies.
Our final example leads to a new interpretation of mixed strategy equilibria.

2.3. Modified Rock-Scissors-Paper

Consider the nonzero-sum modification of the zero-sum game Rock-Scissors-Paper
shown in Figure 2.4, where a < b < c < 1 and a is close to 1. Modified Rock-
Scissors-Paper (MRSP) differs from the usual version in two respects. First the
game is no longer zero-sum because each player receives a payoff near -1 along the
diagonal. Second, the off-diagonal payoffs have been perturbed slightly.
The new diagonal payoffs add an element of common interest in that both

players now wish to avoid the diagonal. The perturbation of the off-diagonal
payoffs avoids a particular non genericity, clarified below.9

(1 + ε̄)α). Similarly, t̂1’s payoff from B is πt̂1(B) = (1− t̂1)(α0 + (1− α)1) + 1t̂1 = ε̄α2 − α+ 1.
Equating the two gives the value of α.

9The remaining coincidences in payoffs are unimportant.
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Figure 2.4: Modified Rock-Scissors-Paper

If a = b = c = 1, then MRSP has a unique equilibrium in which both players
choose each of their pure strategies with probability 1/3. Moreover, because
a < b < c < 1 and a is near 1, there is a unique equilibrium in which each pure
strategy is chosen with probability near 1/3 and in which each player’s equilibrium
payoff is near −1/3.
Figure 2.5 shows player 1’s payoff in the incomplete information game IG as a

function of his mixed strategy, conditional on being found out. Triangle TMB in
the figure is player 1’s simplex of mixed strategy choices. Its vertices are labelled
with the pure strategies, T, M and B, they represent. The hyperplanes above
the triangle depict player 1’s payoff, conditional on player 2 finding out his mixed
strategy and choosing a best reply. Each hyperplane is labelled with the 2’s best
reply. Because a is almost equal to one, the three hyperplanes almost meet at
player 1’s equilibrium strategy in the center of the figure, yielding player 1 a
payoff there close to −1/3, regardless of 2’s best reply.
If player 1 were sure that his strategy would be found out, he would not choose

a pure strategy, which would result in a payoff close to−1; neither would he choose
the equilibrium mixture, which yields a payoff near −1/3. Instead, player 1 would
choose the mixed strategy placing probability 1/2 on T and 1/2 on B. It is then
a best reply for player 2 to choose C resulting in a positive payoff of (1− a)/2 for
player 1.10 Evidently, the fifty-fifty mixture reveals enough so that player 2 can
avoid the diagonal, which is in their common interest, but it still conceals 1’s final

10Player 2 is indifferent between C and R, but breaks this tie in player 1’s favor by choosing
C.
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Figure 2.5: Player 1 Found Out in Modified Rock-Scissors-Paper

pure choice, reflecting the conflict of interest off the diagonal.
Indeed, the three mixed strategies 1/2-1/2 on T-B; 1/2-1/2 on T-M; 1/2-1/2

on M-B all yield player 1 a positive payoff conditional on being found out. Figure
2.5 shows that these strategies yield attractive payoffs relative to all other mixed
strategies, when player 2 chooses a best reply.
If ε̄ is small enough and ε is close enough to ε̄, then these particular three

mixed strategies yield an equilibrium of IG, as follows. For each player i there
are two critical types, t̂i1 < t̂i2. Player 1 chooses

1/2-1/2 on M-B if t1 ∈ [ε, t̂11)

1/2-1/2 on T-M if t1 ∈ [t̂11, t̂12)

1/2-1/2 on T-B if t1 ∈ [t̂12, ε̄]

and player 2 chooses

1/2-1/2 on C-R if t2 ∈ [ε, t̂21)

1/2-1/2 on L-C if t2 ∈ [t̂21, t̂22)

1/2-1/2 on L-R if t2 ∈ [t̂22, ε̄].
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Moreover, each of these intervals of types occurs with probability approximately
1/3. Each player’s strategy therefore induces a probability near 1/3 for each of
the original pure strategies, and so approximates the mixed equilibrium of MRSP.
Thus, we are led to the following interpretation of the completely mixed equi-

librium of MRSP: Each player i deliberately randomizes by choosing one of the
mixed strategies that place probability one-half on each of two pure strategies.
The opponent, player j, unaware of which one of the three possible fifty-fifty ran-
domizations player i will employ, assigns probability roughly one-third to each
possibility. Player i’s equilibrium mixture is obtained by combining the three ran-
domized strategies i might employ according to the weights j’s beliefs assign to
those strategies.
Let us emphasize the strategic benefits of the above strategies. By choosing a

fifty-fifty mixture, enough information is revealed so that, if this mixture is found
out, the opponent can successfully avoid the diagonal but cannot take undue
advantage. Hence, our analysis uncovers the manner in which players strike a
balance between revealing information and concealing it in nonzero-sum games.
Finally, because a, b, and c are distinct, it can be shown that these equilibrium

mixed strategies are strictly optimal. That is, all types of each player except the
two critical types strictly prefer their fifty-fifty equilibrium mixture to any other
strategy.11

We now proceed with the formal analysis of the general case and also explore
conditions under which concealment is helpful–as in Matching Pennies and Mod-
ified Rock-Scissors-Paper–and conditions under which it is not–as in Battle of
the Sexes.

3. The Incomplete Information Perturbation

Let G = (ui,Xi)i=1,2 be a finite two-person normal form game in which player i’s
finite pure strategy set is Xi, his mixed strategy set is Mi, and his vNM payoff
function is ui : X1 × X2 → R. We wish to capture the idea that each player
is concerned that the other player might find out his mixed strategy, where the
extent to which each player is concerned is private information. Ultimately, we
shall be interested in the players’ limiting behavior as these concerns vanish.
Given the game G, consider the following associated game of incomplete in-

11This is why we perturbed the off-diagonal payoffs.
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formation.
IG = (U1, U2,M1,M2, F1, F2) :

• Each Fi is a cdf with Fi(0) = 0 and support Ti ⊆ [0, 1].

• Player i’s type set is Ti.

• Types are drawn independently according to F1 and F2.

• Player i’s pure action set is Mi, his set of mixed strategies in G.

• When i’s type is ti and the vector of actions is (m1,m2), player i’s payoff is

Ui(m1,m2, ti) = (1− ti)ui(m1,m2) + tivi(mi),

where vi(mi) is i’s payoff in G resulting from mi together with a best reply
against it. If there are multiple best replies for j against mi, one that is best
for i is employed.12

Thus, Ui(m1,m2, ti) is the payoff i would receive in G when he plays mi and
his opponent plays mj with probability 1 − ti and plays a best reply to mi with
probability ti. Player i’s type ti can therefore be interpreted as the probability he
assigns to the event that his choice of mixed strategy in G will be found out by
the opponent.
The above definition actually yields a collection of incomplete information

games indexed by the distribution functions F1 and F2. We shall often be con-
cerned with atomless cdf’s. Such cdf’s, Fi, in addition to satisfying Fi(0) = 0, are
continuous on [0, 1]. Note that the incomplete information game approaches the
original game G as the measure on each player’s types tends to a mass point at
zero.

3.1. Strategies, Lotteries and Induced Distributions

A strategy for player i in IG is a measurable map from Ti into ∆(Mi), where
∆(Mi) denotes the set of Borel probability measures on Mi. We shall refer to
elements of Mi as mixed strategies in G, and to elements of ∆(Mi) as lotteries

12That is, vi(mi) = maxxj ui(mi, xj), s.t. xj ∈ argmaxx0j∈Xj
uj(mi, x

0
j). So defined, vi(·) is

upper semicontinuous. The tie-breaking rule is innocuous because generically, some m0
i near mi

leaves j with a unique best reply and gives i a payoff near vi(mi).
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on Mi. So, in the incomplete information game IG, a strategy specifies for each
type of each player a lottery over that player’s mixed strategies in G. Each player
believes that, with the probability given by his type, his opponent finds out the
mixed strategy in G that is the outcome of his type’s lottery. Pure strategies in
the incomplete information game are then degenerate lotteries and so specify a
mixed strategy in G for each of a player’s types.
An equilibrium of IG is a pair of strategies that constitute a Nash equilibrium

from the ex-ante perspective. Equivalently, an equilibrium strategy pair must be
such that given the other player’s strategy, the element of ∆(Mi) chosen by ti
must be optimal for i conditional on ti, for Fi-almost every ti.
Let σi(·|·) be a strategy for player i in IG. Hence, σi(·|ti) is for each ti in Ti a

lottery on Mi. Because each mi in Mi induces a distribution over i’s set of pure
strategies Xi in G, σi(·|·) gives xi in Xi the probabilityZ

Ti

Z
Mi

mi(xi)dσi(mi|ti)dFi(ti).

Let us denote this induced probability by σ̄i(xi), and the induced mixed strategy
in Mi by σ̄i.
Because player i’s payoff in IG does not directly depend upon j’s type, and

because j’s strategy σj matters to i only when i’s strategy is not found out, i’s
payoff depends only on the induced distribution σ̄j over Xj and not otherwise on
σj.
This can be seen by considering player i’s payoff when his type is ti and he

chooses mi while his opponent employs the strategy σj. Player i’s payoff is then

(1− ti)

Z
Tj

Z
Mj

ui(mi,mj)dσj(mj|tj)dFj(tj) + tivi(mi),

which, owing to the linearity of ui in mj is equal to

(1− ti)ui(mi, σ̄j) + tivi(mi).

4. Zero-Sum Games

In our informal analysis of Matching Pennies in Section 2, we claimed that the
equilibrium of IG in which every type of each player chooses the fifty-fifty mixture
is the essentially unique equilibrium. This is a consequence of a more general result
for zero-sum games that is given below.
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Recall that a maxmin strategy in a zero-sum game is one that yields a player
his value if the opponent employs a best reply. We then have the following result,
whose proof can be found in Appendix B.

Theorem 4.1. Suppose that G is a zero-sum game. Then a joint strategy in IG
is an equilibrium if and only if almost every type of each player employs, with
probability one, a maxmin strategy for G. Furthermore, in every equilibrium of
IG, every type of each player is indifferent among all of his maxmin strategies,
and every positive type strictly prefers each of his maxmin strategies to each non
maxmin strategy.

Note that when a player has more than one maxmin strategy, no equilibrium
of IG is strict since all maxmin strategies are then best replies. But the in-
determinacy caused by this indifference is inconsequential because any mixture
of maxmin strategies is itself a maxmin strategy. Consequently, neither player
is forced to employ any particular randomization over his maxmin strategies in
order to maintain equilibrium.
Theorem 4.1 leads to a purely classical interpretation of equilibria of two-

person zero-sum games, because each player deliberately employs a maxmin strat-
egy (which often involves randomization) and each is certain that the other will
do so. We now explore the interpretation our model yields for equilibria of general
two-person games.

5. General Two-Person Games

Our objective, as above, is to interpret any equilibrium of G through a nearby
equilibrium of IG. To do so requires the game G to be sufficiently robust. The
following assumptions make this precise.

5.1. Genericity

Recall from Section 3 that G = (ui,Xi)i=1,2 is a finite two-person game with mixed
strategy sets Mi, and that vi(mi) is i’s payoff in G when he chooses mi and his
opponent plays a best reply to mi (breaking ties in i’s favor if necessary).
For each xj ∈ Xj, let Ci(xj) denote those elements of Mi against which xj

is a best reply for j. Consequently, each Ci(xj) is a convex polyhedron and so
possesses finitely many extreme points. Let {mi1, ...,miKi} denote the union over
xj of the extreme points contained in all the Ci(xj).
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We shall require the following genericity assumptions:

A.1. Every equilibrium of G is regular.13

A.2. For each player i, vi(mi1), ..., vi(miKi) are distinct.

Both A.1 and A.2 are satisfied for all but perhaps a closed subset of games, G,
having Lebesgue measure zero (in payoff space for any fixed finite number of pure
strategies). The proof of this is standard in the case of A.1 (van Damme (1991,
Chapter 2.6, Theorem 2.6.1, p. 42)) and can be found in Appendix B for A.2.
An equilibrium of IG = (U1, U2,M1,M2, F1, F2) is essentially strict if Fi-almost

every type of each player i has a unique best choice in Mi. The role of genericity
assumption A.2 is to ensure essential strictness, as the following result shows.

Proposition 5.1. If G satisfies genericity assumption A.2 and each Fi is atom-
less, then every equilibrium of IG is essentially strict and almost every type of
each player i employs some mixed strategy in {mi1, ...,miKi

}.

The proof can be found in Appendix B. Consequently, for generic games, the
problem of indifference does not arise in our incomplete information game. This
is important because our player types in general employ non-degenerate mixed
strategies. Essential strictness ensures that when non-degenerate mixed strategies
are employed, this is not to make the other player indifferent. Rather, they are
employed because it is strictly optimal to do so (because concealment happens to
be beneficial). We now provide the main result of this section which establishes
that our incomplete information game can approximate all equilibria of a generic
game G.

5.2. The Main Approximation Theorem

Theorem 5.2. If G satisfies genericity assumptions A.1 and A.2, then for every
ε > 0 there is a δ > 0 such that for all atomless F1, F2 satisfying Fi(δ) ≥ 1−δ and
every equilibriumm∗ of G, IG has an essentially strict equilibrium whose induced
distribution on the joint pure strategies in G is within ε of m∗.

13For the definition of “regular equilibrium,” see e.g., van Damme (1991, Chapter 2.5, Defin-
ition 2.5.1, p. 39).
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Remark. According to this theorem, for any sufficiently nearby game IG, every
equilibrium of G can be approximated by some equilibrium distribution of IG. A
standard upper hemicontinuity argument establishes the converse, namely that all
equilibrium distributions of nearby games IG must be close to some equilibrium
of G.
The proof is given in Appendix B. The idea is to exploit the fact that player

i’s behavior in IG depends only upon the distribution mj in Mj induced by j’s
strategy in IG. Moreover, because by A.2 the vi(mik) are distinct, all but finitely
many types of player i have a unique best reply against any such distribution mj

and this best reply is one of the mik. Letting gi(mj) denote the Fi-average over
i’s best replies as his type varies, it is not difficult to show that gi is continuous.
Moreover, if the mass of Fi is sufficiently concentrated near 0, then gi(mj) is
very close to a best reply in G against mj. Consequently, g = g1 × g2 is close to
the product of the players’ best reply correspondences for G. Because any regular
equilibrium of G is an “essential” fixed point of G’s best-reply correspondence and
g is continuous, powerful results from algebraic topology allow us to conclude that
g must have a fixed point near any such equilibrium of G. But, by construction,
fixed points of g are the distributions on M of equilibria of IG. The desired
conclusion follows.
The theorem establishes that our incomplete information perturbation, IG,

can rationalize any equilibrium of a generic game G through a nearby equilib-
rium of IG in which the players have strict incentives to play their part. While
this result is reminiscent of Harsanyi (1973), we have already seen that such an
equilibrium of IG sometimes involves a positive measure of a player’s types using
non-degenerate mixed strategies.

5.3. The Interpretation

Let m∗ be an equilibrium of a two-person game G that satisfies A.1 and A.2.
Suppose that IGn converges to G, 14 that σn is an equilibrium of IGn for every
n, and that the induced distributions, σ̄n, converge to m∗. By 5.1, almost every
type of player i strictly optimizes in σn by employing one of the mixed strategies
{mi1, ...,miKi}, so that σni entails some fraction of i’s types, µnik, say, employing
mik for each k. Hence, the other player is certain that player i will employ one
of the mik, but is uncertain about which of the mik player i will employ. His
conjecture, or belief, is that player i will employ mik with probability µnik. Finally,

14That is, the cdf’s Fn
i of IGn converge to mass points at zero as n→∞.
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because the distribution of σn converges to m∗, we must have that for each player
i,

m∗
i = µ∗i1mi1 + ...+ µ∗iKi

miKi ,

where µ∗ik is the limiting fraction of i’s types employingmik.
15 This decomposition

of m∗
i therefore leads us to the following interpretation.

Each player i’s equilibrium mixture, m∗
i , can be expressed as a convex combination

of the mixed strategies {mi1, ...,miKi
}. Each mixed strategy given positive weight

in the convex combination represents a strategy that i might deliberately employ,
while the weight on that mixed strategy represents the opponent’s belief that i will
employ it.

We have already seen that strictly mixed equilibria in zero-sum games have
degenerate decompositions in which all of the weight is placed on the equilibrium
mixed strategy. Consequently, such equilibria can always be interpreted from the
purely classical point of view where the players deliberately randomize because
concealment is beneficial.
Under what conditions is concealment beneficial in the nonzero-sum case?

Equivalently, when does the above decomposition place positive weight on at least
one non-degenerate mixed strategy? In such cases our interpretation of a mixed
equilibrium will involve the classical view. Alternatively, under what conditions
will the players instead wish to reveal their pure choices? Equivalently, when does
the above decomposition give positive weight only to pure strategies. In such
cases, our interpretation is similar to the Bayesian view. (See, for example, The
Battle of the Sexes, in Section 2). These questions are taken up next.

6. When To Conceal, When To Reveal

In IG, when a player of a given type strictly prefers to employ a non-degenerate
mixed strategy from G, it is because that type strictly prefers concealing the
pure choices in the support of that mixed strategy. When this occurs and the
equilibrium of IG is near an equilibrium of G, our interpretation of G’s equilib-
rium will involve (perhaps only partially) the classical view that randomization is
deliberate. This motivates the following definition.

15Assume without loss that µnik → µ∗ik.
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Definition 6.1. An equilibriumm of G is strongly concealing for player i if there
exists η > 0 such that for all sufficiently small ε > 0 and all atomless distributions
F1, F2 satisfying Fi(ε) ≥ 1− ε, every equilibrium of IG ≡(U1, U2;M1,M2, F1, F2)
whose distribution on X1 × X2 is within ε of m has the property that the Fi-
measure of player i’s types employing non-degenerate mixed strategies from G is
at least η.16

Thus, an equilibrium m of G is strongly concealing if for all nearby atomless
incomplete information games IG, a positive fraction of types must strictly mix
in all equilibria near m.17

Theorem 4.1 implies that a mixed equilibrium of a zero-sum game is strongly
concealing for i if and only if i has no pure maxmin strategy. Consequently, the
fifty-fifty equilibrium of Matching Pennies is strongly concealing for both players.
As we shall see, the unique mixed equilibrium of the nonzero-sum game Modi-

fied Rock-Scissors-Paper from Section 2 is also strongly concealing for both players
because, like the Matching Pennies’ equilibrium, its support contains a “cyclic best
reply sequence.”
Formally, a best reply sequence in G is a finite sequence x1, x2, ..., xn of joint

pure strategies such that in each step, say from xk to xk+1, one player’s strategy is
unchanged and the other player’s strategy in xk+1 is a best reply to the opponent’s
strategy in xk. A best reply sequence is cyclic if at least two of its elements are
distinct and the first and last are identical.
The proofs of the following results can be found in Appendix B.

Theorem 6.2. Suppose that m∗ is an equilibrium of G. If the support of m∗

contains a cyclic best reply sequence along which best replies are unique, then m∗

is strongly concealing for both players.

For generic games, players have unique best replies against pure strategies and
so along best reply sequences. This leads to the following corollary.

16Reny and Robson (2002) also define an equilibrium to be merely concealing if these con-
ditions hold for some, as opposed to all, atomless distributions Fi. They point out that some
games possess equilibria that are concealing but not strongly concealing. We shall not discuss
this weaker concept here.
17Theorem 5.2 ensures that under A.1 and A.2 nom can be strongly concealing simply because

the particular Fi admit no equilibria of IG near m.
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Corollary 6.3. Generically, if a completely mixed equilibrium is not strongly
concealing for either player, then beginning from any joint pure strategy, alter-
nately best replying to one another eventually leads the players to a pure strategy
equilibrium.

Theorem 6.2 is driven in part by the fact that when best replies are unique,
a best reply sequence can cycle only if, somewhere along it, some player’s payoff
strictly falls when the other player switches to a best reply.
On the other hand, suppose that player i’s payoff falls nowhere along any best

reply sequence. This means that beginning from any joint pure strategy, player i
is, generically, made better off when player j switches to a best reply against i’s
strategy. Simply put, player i benefits when j finds out i’s pure strategy choice. In
such cases one would expect that concealment is harmful, i.e. that player i would
prefer to reveal his choice. Our final result shows that this is indeed the case.
Note that this result applies, in particular, to The Battle of the Sexes as well as to
a whole class of coordination games. In all such games then, our interpretation of
their equilibria involves only the Bayesian view. No player deliberately randomizes
because randomization is actually harmful.

Theorem 6.4. Suppose G satisfies genericity assumption A.2. If player i’s payoff
is weakly increasing along every best reply sequence inG, then in every equilibrium
of IG, all but perhaps finitely many types of player i strictly optimize by employing
a pure strategy. In particular then, no equilibrium of G is strongly concealing for
i.

7. The Significance of Unused Strategies

We now demonstrate that whether an equilibrium is strongly concealing or not
can depend on the payoffs to unused strategies. The reason for this is that unused
strategies may be best replies when the opponent’s mixed strategy is found out.
Consider, for example, the game of Figure 7.1. The 2×2 matrix in the top-

left corner is Matching Pennies and the fifty-fifty Matching Pennies equilibrium
remains a regular equilibrium of this game. However, although the fifty-fifty
mixture is strongly concealing in Matching Pennies, without the strategies U and
D, it is not strongly concealing here, when they are present.
The reason that the fifty-fifty equilibrium is not strongly concealing here is

that each player knows that if he uses the pure strategy H or T and his opponent
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Figure 7.1: The Role of Unused Strategies

finds this out, the opponent will choose either U or D, giving the player his highest
possible payoff of 2. Indeed, any nondegenerate mixture over H and T is strictly
worse for a player than one of the pure strategies H or T.
To see this, consult Figure 7.2, where the solid line is player 1’s payoff when

player 2 finds out that 1 employs the mixed strategy: H with probability p and
T with probability 1 − p. (The labels H, T, U and D refer to player 2’s best
reply.) The dotted line gives 1’s payoff, conditional on being found out, from the
lottery in which the pure strategies H and T are chosen with probability p and
1− p, respectively. Player 1’s payoff from any such lottery is constant and equal
to 2. Since every nondegenerate mixture gives a payoff strictly less than 2, and
the lottery and the mixture are equivalent if player 1 is not found out, the lottery
is strictly better than the mixture for any positive type of player 1. Hence, no
positive type will employ any such mixture, and the fifty-fifty equilibrium is not
strongly concealing.
Another way to see that the fifty-fifty equilibrium is not strongly concealing is

to note that both players’ payoffs in Figure 7.1 are strictly increasing along every
best reply sequence. Because A.2 holds generically, we can perturb the game
slightly so that A.2 holds and then appeal to Theorem 6.4.
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Figure 7.2: Player 1’s payoff when observed by player 2

8. IG as the Reduced Form of a Dynamic Game

Finally, we address a key issue with a static model. This issue was described by
von Neumann and Morgenstern as follows (VNM, 17.3, pp.146-8):

On the one hand we have always insisted that our theory is a static
one and that we analyze the course of one play and not that of a
sequence of successive plays. But on the other hand we have placed
considerations concerning the danger of one’s strategy being found
out into an absolutely central position. How can the strategy of a
player–particularly one who plays a random mixture of several differ-
ent strategies–be found out if not by repeated observation!

Although von Neumann and Morgenstern went on to argue that a dynamic model
was nevertheless unnecessary, their argument is not entirely convincing. It is
therefore worth pointing out that the static game IG from Section 3 is consistent
with a fully dynamic interpretation in which no player’s mixed strategy choice
is ever directly revealed to the opponent. Rather, each player’s mixed strategy
choice is deduced by an opponent only after many observations of the realizations
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of the player’s mixed strategy. We now sketch a simple dynamic model leading to
this interpretation of IG.
Suppose that the two-person nonzero-sum game, G, is repeatedly played by

randomly matching, in each period, players from two large populations, so that
there is no possibility of two particular players meeting more than once. Within
each population there are two “varieties” of players. Variety I players, the focus
of attention, do not observe the history of an opponent and must pay a small
positive cost to implement any strategy that is other than zero-recall. Variety
II players are not subject to such a cost and observe their opponent’s history
(i.e., the opponent’s past pure actions) before play. Each player’s type is fixed
once and for all, and a player’s type is the probability that he is matched with
a variety II opponent in any given period. Hence, sending the type distributions
to mass points at zero is equivalent to sending the fraction of variety II players
in each population to zero. When there are no variety II players, the dynamic
game is simply an infinite repetition of G between players who meet at most once
and observe only their own histories. Both variety I and variety II players have
expected liminf of the mean payoffs.
It can be shown that, if the fraction of variety II players in each population

is close enough to zero, then for any equilibrium, (σ1, σ2), of the static game IG,
there is an equilibrium of the dynamic game in which a variety I player of type ti
employs σi(·|ti) in each period, regardless of the history. Further, it can be shown
that almost every type of variety I player strictly prefers this zero-recall strategy
to any other strategy available in the dynamic game, whether finite-recall or not.18

Hence the static game IG has the following dynamic interpretation. A player’s
type, ti, is not the probability that the opponent finds out his mixed strategy.
Rather, it is the probability that the opponent observes the realizations of his
mixed strategy choices in all previous periods. Thus, a player’s mixed strategy
is deduced by an opponent through repeated observations of the player’s past
actions. The reduced form model, IG, is a parsimonious representation of this.
18The presence of a complexity cost is for simplicity. Similar conclusions can be shown to

hold without such a complexity cost (see Reny and Robson (2002)).
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Appendices

A. Compatibility of Beliefs

The game IG can be interpreted as part of the following extensive form game,
where the players know that they will be playing G, but do not necessarily know
whether their mixed strategy choices are made simultaneously.

• Nature begins by choosing each ti, i = 1, 2, independently according to Hi

on [0, 1].

• Each player i is privately informed of ti and Nature then determines whether
the game is simultaneous according to the following event partition.

• With probability (1 − t1)(1 − t2) neither player receives any additional in-
formation before simultaneously choosing a mixed strategy.

• With probability ti(1− tj) player i receives no additional information but in
fact makes his mixed strategy choice inMi first, before player j, who is then
informed of i’s mixed strategy choice prior to choosing a mixed strategy in
Mj .

• With probability t1t2 it is common knowledge that the two players choose
their mixed strategies simultaneously.

• After the players choose their mixed strategies, G is played with those strate-
gies and the game ends.

Note first that in the extensive form, each player knows he may find out
the other player’s mixed strategy. Of course, in these subgames, he simply best
replies to the revealed mixed strategy of the opponent. Second, note that when it
is common knowledge that the players choose their strategies simultaneously, the
resulting game is simply G, and so any equilibrium of G can be specified in this
event.
Thus the remaining decision faced by a player i in the above extensive form

occurs when he receives no additional information prior to making his mixed
strategy choice. In this case, player i assigns probability ti to the event that the
opponent finds out his strategy, just as in IG.
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Further, when i receives no additional information, he must update his beliefs
concerning j’s type. According to Bayes’ rule, i’s updated beliefs about j’s type
are given by the distribution

Fj(tj) =

R tj
0
(1− t)dHj(t)R 1

0
(1− t)dHj(t)

.

These distributions provide the F1 and F2 given in the definition of IG and can
be shown to yield the appropriate expected payoffs. In particular, the posterior
for the opponent’s type is independent of own type.
Thus, IG is the part of this extensive form game in which each player has

not found out the opponent’s mixed strategy but believes it is possible that the
opponent will find out his.

B. Proofs

Proof of Theorem 4.1. The “if” part of the first statement is straightforward.
Hence, we proceed with the “only if” part.
Even though G is a zero-sum game, IG will typically not be. However, IG is

best reply equivalent to the zero-sum game of incomplete information, IG0, that
results when each player i’s payoff function is replaced by

ui(m1,m2) +
ti

1− ti
vi(mi)−

tj
1− tj

vj(mj).
19

The two games of incomplete information therefore have the same sets of equi-
libria. Throughout the remainder of the proof, the term “maxmin strategy” will
refer to a maxmin strategy in the zero sum game G (not the zero-sum game IG0).
IG0 clearly has an equilibrium in which every type of each player chooses a

maxmin strategy, giving IG0 a value of v0, say.20 Moreover, because beginning
from such an equilibrium player 1’s payoff rises above v0 when a positive measure
of player 2’s types choose a non-maxmin strategy (owing to the term −v2(m2)
appearing in 1’s payoff and because F2(0) = 0), every equilibrium must involve

19This particularly simple argument requires each
R

t
1−tdFi(t) to be finite. A similar proof,

which involves a separate argument for types near unity, delivers the result even when one or
both integrals are infinite.
20If the value of the zero-sum game G is v, then v0 = v{1 +

R
t
1−tdF1(t)−

R
t
1−tdF2(t)}.
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almost every type of player 2 employing, with probability one, a maxmin strategy.
A similar argument applies to player 1. This proves of the “only if” part.
So, in IG, Fj-a.e. type of player j employs one of his maxmin strategies.

Consequently, player i can obtain at most his value whether or not he is found
out and so is indifferent among all of his maxmin strategies. Furthermore, by
employing a non maxmin strategy player i’s payoff cannot be above his value if he
is not found out and his payoff will be strictly below his value if he is found out.
Therefore, every positive type strictly prefers every maxmin strategy to every non
maxmin strategy.

Proof of Genericity of A.2. We wish to show that for fixed finite sets of pure
strategies X1 and X2, and for all but a closed and Lebesgue measure zero set of
pairs of the players’ payoffmatrices, for each i = 1, 2 the values vi(mi1), ..., vi(miKi)
are distinct.
Let ni = |Xi| and let U2 denote the set of n1 × n2 payoff matrices for player 2

in which every submatrix with at least two entries: (i) has full rank after adding
a single row of 1’s, and (ii) if square, is non singular.
The set of n1×n2 payoff matrices U1 for player 1 is defined analogously except

that “row” is replaced by “column” in (i) above. The usage of “row” and “column”
in the following paragraph assumes that i = 1 and j = 2. In the analogous
alternative case, interchange “row” and “column” throughout the paragraph.
Viewing Uj as a subset of Rn1n2 , Uj is open and its complement has Lebesgue

measure zero. For any payoff matrix uj ∈ Uj, we may construct for each xj in Xj

the convex polyhedral set Ci(xj) ⊆ Mi–which we now write Ci(xj;uj) to make
explicit the dependence upon uj. Let Ei(uj) be the finite union over xj ∈ Xj of
the finite sets of extreme points of Ci(xj;uj). An implication of conditions (i) and
(ii) in the definition of Uj is: (∗) if a sequence unj ∈ Uj converges to u0j ∈ Uj, and
for every n, mn

i1 andm
n
i2 are distinct elements of Ei(u

n
j ) converging tom

0
i1 andm

0
i2

respectively, thenm0
i1 andm

0
i2 are distinct elements of Ei(u

0
j). To see this we shall

first show that for every uj ∈ Uj, mi ∈ Ei(uj) if and only if the submatrix of uj
whose rows are determined by i’s pure strategies in the support of mi and whose
columns are determined by j’s pure uj-best replies against mi, is square.21 So,
suppose first that for some xj ∈ Xj, mi is extreme in Ci(xj;uj). If the submatrix
has fewer rows than columns, then because mi makes j indifferent between the
columns, the submatrix will not have full rank after the addition of a row of 1’s,
in violation of (i). But if there are fewer columns than rows, then in addition

21See also Shapley (1974, Assumption 2.2).
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to mi, there are many linear combinations of the rows, with weights summing to
unity, that are proportional to a row of 1’s. If z(xi) denotes the weight on each
row xi in one such solution, z, distinct from mi, then for |α| > 0 small enough
(1−α)mi+αz is in Ci(xj;uj) contradicting the fact that mi is extreme.22 Hence,
the submatrix must be square. Conversely, suppose the submatrix is square.
Choose any xj ∈ Xj that is uj-best against mi. Consequently, mi is in Ci(xj;uj)
and we shall show that mi is actually extreme in Ci(xj;uj). This is obviously the
case if the submatrix is 1×1, so suppose that it is 2×2 or larger and that mi is
a strict convex combination of distinct elements, m0

i, in Ci(xj;uj). Each x0j that
is uj-best against mi must also be best against each of the m0

i, otherwise such an
x0j would not be as good as xj against mi. But by (ii) the non singularity of the
submatrix implies that, among strategies inMi–like the m0

i–whose supports are
contained inmi’s, mi is the only one against which each such x0j is best for j. Thus
each m0

i = mi and we conclude that mi is extreme in Ci(xj;uj). Returning to (∗),
let us show that m0

ik ∈ Ei(u
0
j), k = 1, 2. For each k = 1, 2, assume without loss

that the rows and columns of the submatrix determined by mn
ik and unj are fixed.

By the above characterization of the extreme points this submatrix is square and
it suffices to show that the submatrix determined bym0

ik and u
0
j is square. But the

set of rows of the latter submatrix is a subset of those along the sequence because
mn

ik → m0
ik, while its set of columns is a superset of those along the sequence

because limits of j’s best replies remain best replies at the limit. Consequently,
the limit matrix has at least as many columns as rows. But it cannot have strictly
fewer rows, and so must be square, because m0

ik makes j indifferent between the
columns, and the submatrix would then not have full rank after the addition of
a row of 1’s, contradicting (i). It remains to show that m0

i1 and m0
i2 are distinct.

We have just seen that, for k = 1 and 2, the rows and columns determined by
mn

ik and unj are the same as those determined by m0
ik and u0j . Thus it suffices to

show that the rows and columns determined by mn
i1 and unj are not identical to

those determined by mn
i2 and unj . But this follows immediately from the fact that

if they were identical, then the common submatrix they determine is 1x1 or non
singular, by (ii), either of which would imply that mn

i1 = mn
i2, a contradiction.

This establishes (∗).
For each of player j’s payoff matrices uj ∈ Uj define a set of player i’s matrices

Ui(uj) = {ui ∈ Rn1n2 :
P

xi∈Xi
mi1(xi)ui(xi, xj1) 6=

P
xi∈Xi

mi2(xi)ui(xi, xj2), for

22Because (1 − α)mi + αz makes j indifferent between the columns, continuity implies that
the columns, and so xj in particular, are best replies to (1−α)mi+αz for |α| > 0 small enough.
Hence, (1− α)mi + αz ∈ Ci(xj ;uj).
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all xj1, xj2 ∈ Xj and all mi1 6= mi2 s.t. mik is extreme in Ci(xjk;uj) for k = 1, 2}.
Because Xj is finite and each Ci(xj;uj) has finitely many extreme points, Ui(uj)
is an open subset of Rn1n2 whose complement has Lebesgue measure zero.
Let U(i) = {(u1, u2) ∈ R2n1n2 : uj ∈ Uj and ui ∈ Ui(uj)}. Note that if

(u1, u2) ∈ U(1) ∩ U(2) then for i = 1 and 2, vi(mik) 6= vi(mik0) for all distinct
mik,mik0 in Ei(uj), as desired. It therefore suffices to show that each U(i) is open
with a Lebesgue measure zero complement. To see that U(i) is open, suppose that
(un1 , u

n
2) → (u01, u

0
2) ∈ U(i). Because Uj is open, unj is eventually in Uj, and (∗)

implies that uni is eventually in Ui(unj ). Hence, (un1 , un2) is eventually in U(i). To
see that the complement of U(i) has Lebesgue measure zero in R2n1n2 , note that
for every uj ∈ Uj, the complement of the section Ui(uj) has Lebesgue measure
zero in Rn1n2. Applying Fubini’s theorem gives the desired result.

Proof of Proposition 5.1. The proof relies on two facts. First, for every
mi ∈ Mi, there is a lottery µi on {mi1, ...,miKi} that is at least as good for i as
mi regardless of i’s type and regardless of j’s strategy. To see this, choose xj so
that mi ∈ Ci(xj) and vi(mi) = ui(mi, xj). Clearly, such an xj exists. Because
mi ∈ Ci(xj), mi is a convex combination of the extreme points of Ci(xj). We
may view the weights in this convex combination as defining a lottery, µi, on
{mi1, ...,miKi}. Hence, we obtain, for every ti ∈ Ti and every strategy σj for
player j in IG,

(1− ti)ui(mi, σ̄j) + tivi(mi) = (1− ti)ui(mi, σ̄j) + tiui(mi, xj)

=
X
k

µik [(1− ti)ui(mik, σ̄j) + tiui(mik, xj)]

≤
X
k

µik [(1− ti)ui(mik, σ̄j) + tivi(mik)] ,

as desired, where the inequality follows because µik is positive only when xj is
uj-best for j against mik and because, by definition, vi(mik) ≥ ui(mik, xj) for all
such xj. Note that a consequence of the above inequality is that a player’s type
has a unique best reply against the opponent’s strategy if and only if he has a
unique best reply among {mi1, ...,miKi}.
Second, for a fixed mixture mi ∈ Mi and a fixed distribution, σ̄j, over Xj

induced by the opponent’s strategy in IG, player i’s payoff, (1 − ti)ui(mi, σ̄j) +
tivi(mi), is linear in his type ti. Consequently, because vi(·) takes on distinct values
for distinct extreme points mik, at most one type can be indifferent between any
two of the extreme points.
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Together, the two facts imply that at most finitely many types can have mul-
tiple best replies among all the extreme points and hence also among all the mi

in Mi. The result then follows because Fi is atomless.

The proof of Theorem 5.2 relies on an intuitive corollary of powerful results
from algebraic topology.

Corollary B.1. Suppose U is a bounded, open set in Rk and f , g : cl(U)→ Rk

are continuous.23 Further, suppose that f is continuously differentiable on U, that
x0 is the only fixed point of f in U, and that |I −Df(x0)| 6= 0. If, for every
t ∈ [0, 1], the function (1− t)f + tg has no fixed point on the boundary of U, then
g has a fixed point in U.

Proof of Corollary B.1. Since x0 is the unique fixed point of f in U, and |I −Df(x0)|
6= 0, it follows that 0 is a regular value of c(x) = x− f(x). Hence, by Dold (1972,
IV-5.13.4, p. 71), deg0 c = sgn|I −Df(x0)| = ±1. If d(x) = x − g(x), then by
hypothesis, for every t ∈ [0, 1], (1−t)c+td has no zero on the boundary of U. Conse-
quently, by Dold (1972, IV-5.13.3, p. 71 and IV-5.4, p. 67), deg0 d = deg0 c = ±1
and d has a zero in U . Hence, g has a fixed point in U.
Loosely, Corollary B.1 states that if x0 is the only fixed point of f in some

neighborhood, and f is not tangent to the forty-five-degree line, then continuous
shifts of f will also have a fixed point in the neighborhood, so long as no fixed
point escapes through the neighborhood’s boundary.

Proof of Theorem 5.2.24 Because, by A.1, every equilibrium of G is regular,
G has finitely many isolated equilibria. Consequently, it suffices to establish the
result for a single equilibrium, m∗, of G. Let ni = |Xi| , and for every mi ∈ Mi,
extend ui(mi, ·) linearly to all of Rnj . Because, by A.2, the vi(mik) are distinct
for each player i, for every zj ∈ Rnj there is a unique solution, bi(zj|ti) ∈ Mi, to
maxmi∈Mi(1− ti)ui(mi, zj) + tivi(mi) for all but perhaps finitely many ti ∈ [0, 1].
Moreover, by the argument given in the proof of Proposition 5.1, the unique
maximizer must be one of the mik. Define gi(zj) =

R 1
0
bi(zj|ti)dFi(ti). Because

Fi is atomless and sufficiently small changes in zj do not affect the unique best
reply of an arbitrarily large fraction of i’s types, gi : Rnj → Mi is continuous.
Also, note that if m̂ is a fixed point of g = g1 × g2 : Rn1+n2 → M, then m̂ ∈ M

23cl(U) denotes the closure of U.
24We owe a substantial debt to Hari Govindan who greatly simplified our original proof by

providing detailed suggestions upon which the following proof is based.
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and for each player i, m̂i =
R 1
0
bi(m̂j|ti)dFi(ti), so that (b1(m̂2|·), b2(m̂1|·)) is an

equilibrium of IG whose induced distribution on M is m̂. Thus, given ε > 0, it
suffices to show that for all δ small enough, g has a fixed point within ε of m∗

whenever Fi(δ) ≥ 1− δ for i = 1, 2. Henceforth we shall write gδ to make explicit
the dependence of g upon δ.
Because m∗ is regular and there are just two players, the number of pure

strategies in the support of each player’s mixed strategy is the same, l say. So, as-
sume, without loss, that the support ofm∗

i is {xi1, ..., xil}. Define the continuously
differentiable function fi : Rn1+n2 → Rni by

fi(z1, z2) = zi +

⎛⎜⎜⎜⎜⎝
1−

P
k zik

zi2(ui(xi2, zj)− ui(xi1, zj))
.
.

zini(ui(xini , zj)− ui(xi1, zj))

⎞⎟⎟⎟⎟⎠ . (B.1)

Let U be an open ball in Rn1+n2 containing m∗such that (i) every z ∈ U is
within ε of m∗ and m∗ is the only equilibrium of G in cl(U), (ii) z ∈ cl(U) implies
zik > 0 for every k ≤ l and i = 1, 2, (iii) z ∈ cl(U) implies ui(xik, zj)−ui(xi1, zj) <
0 for every k > l and i = 1, 2. Property (i) can be satisfied because, by regularity,
m∗ is isolated. Property (ii) can be satisfied because mik > 0 for every k ≤ l,
and property (iii) can be satisfied because xi1 is in the support of m∗

i and, by
regularity, m∗ is quasi-strict.

Remark 1. Letting f = f1 × f2, we see that if ẑ ∈ cl(U) is a fixed point of f,
then ẑik(ui(xik, ẑj)−ui(xi1, ẑj)) = 0 for every k > 1, so that by property (ii) of U,
ui(xik, ẑj)− ui(xi1, ẑj) = 0 for every k ≤ l, and by property (iii) of U, ẑik = 0 for
every k > l. Also, ẑ fixed implies 1−

P
k ẑik = 0 so that, by property (ii) of U and

ẑik = 0 all k > l, ẑ ∈ M. Consequently, ẑ is an equilibrium of G, which means,
by property (i) of U, that ẑ = m∗. Hence, m∗, a fixed point of f in U, is the only
fixed point of f in cl(U).

Remark 2. Because m∗ is regular, |I −Df(m∗)| 6= 0, by definition. (See van
Damme (1991, p.39).)

Let ∂U denote the boundary of U. We claim that there exists δ̄ > 0 small
enough such that:

∀δ < δ̄ and ∀t ∈ [0, 1], (1− t)f + tgδ has no fixed point in ∂U. (B.2)
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Suppose not. Then, because ∂U is compact, there exists zδ → ẑ, tδ → t̂, and
gδ(zδ)→ m̂ ∈M as δ → 0 such that for every δ, (1−tδ)f(zδ)+tδgδ(zδ) = zδ ∈ ∂U.
Consequently,

(1− t̂)f(ẑ) + t̂m̂ = ẑ ∈ ∂U. (B.3)

Furthermore, t̂ > 0 because otherwise ẑ would be a fixed point of f, implying, by
Remark 1, that m∗ = ẑ ∈ ∂U, a contradiction.
Because, for every δ > 0, gδi (z

δ
j ) is the Fi-average over ti of maximizers of (1−

ti)ui(mi, z
δ
j )+ tivi(mi), and Fi(δ) ≥ 1−δ, m̂i is a maximizer of (1− ti)ui(mi, ẑj)+

tivi(mi) when ti = 0. Hence,

m̂i solves max
mi∈Mi

ui(mi, ẑj). (B.4)

So, because, by property (iii) of U, ui(xik, ẑj)− ui(xi1, ẑj) < 0 for every k > l, we
must have m̂ik = 0 for all k > l. Consequently, (B.3), (B.1), and t̂ > 0 together
imply ẑik = 0 for all k > l.
We’ll now show that fik(ẑ) = ẑik, for every 1 < k ≤ l. If fik(ẑ) < ẑik for some

1 < k ≤ l, then property (ii) of U and (B.1) imply ui(xik, ẑj) − ui(xi1, ẑj) < 0
and so by (B.4) m̂ik = 0 < ẑik. But this contradicts (B.3). Consequently, for
every 1 < k ≤ l, fik(ẑ) ≥ ẑik and so by (B.3), and because t̂ > 0, m̂ik ≤ ẑik.
On the other hand, if fik(ẑ) > ẑik for some 1 < k ≤ l, then property (ii) of
U and (B.1) imply ui(xik, ẑj) − ui(xi1, ẑj) > 0 and so m̂i1 = 0. By (B.3), this
implies (1 − t̂)(1 −

P
k ẑik) + t̂(−ẑi1) = 0, and because ẑi1 > 0 by property (ii)

of U, we must then have 0 < t̂ < 1 and 1 −
P

k ẑik > 0. But this contradicts
1 =

P
k m̂ik =

P
1<k≤l m̂ik ≤

P
1<k≤l ẑik <

P
k≤l ẑik =

P
k ẑik. Hence, fik(ẑ) = ẑik

for every 1 < k ≤ l, so that by (B.3) and the result of the previous paragraph,
m̂ik = ẑik for all k > 1.
Finally, (B.3) implies (1 − t̂)(1 −

P
k ẑik) + t̂(m̂i1 − ẑi1) = 0. But because

m̂ik = ẑik for all k > 1 and
P

k m̂ik = 1, we have 1−
P

k ẑik = m̂i1 − ẑi1. Hence,
m̂i1 = ẑi1 and we may conclude that ẑ = m̂. However, this implies, by (B.3), that
ẑ ∈ ∂U is a fixed point of f , contradicting Remark 1, and completing the proof
of (B.2).
By (B.2) and Remarks 1 and 2, we may appeal to Corollary B.1 and conclude

that for all δ < δ̄, gδ : Rn1+n2 →M has a fixed point in U .

Proof of Theorem 6.2. Consider the point (x0i, xj) on the cyclic best reply
sequence that maximizes i’s payoff when j’s pure strategy is a best reply against
i’s. Consider also the next two points along the sequence, (xi, xj) and (xi, x0j).
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Because the sequence is a cycle and best replies are unique along it, xi 6= x0i and
x0j 6= xj. Because the cycle is contained in the support of m∗, m∗

i (xi) > 0 and
m∗

i (x
0
i) > 0.
Now, by construction, ui(x0i, xj) ≥ ui(xi, x

0
j). Also, because best replies are

unique along the sequence, ui(x0i, xj) < ui(xi, xj) and we may choose γ > 0 small
enough so that xj is j’s unique best reply against the mixed strategy mγ

i giving
x0i probability (1− γ) and xi probability γ. Consequently,

vi(m
γ
i ) = (1− γ)ui(x

0
i, xj) + γui(xi, xj)

> ui(x
0
i, xj)

≥ ui(xi, x
0
j).

But vi(x0i) = ui(x
0
i, xj) and vi(xi) = ui(xi, x

0
j) then imply that vi(m

γ
i ) > vi(x

0
i) ≥

vi(xi). Consequently, m
γ
i is strictly better for i than each of the pure strategies xi

and x0i when i’s strategy is found out.
Suppose σ is an equilibrium of IG. Given the equilibrium strategy σj of

player j and the distribution, σ̄j ∈ Mj it induces, suppose without loss that
min(ui(x

0
i, σ̄j), ui(xi, σ̄j)) = ui(x

0
i, σ̄j). Then ui(m

γ
i , σ̄j) = (1−γ)ui(x0i, σ̄j)+γui(xi, σ̄j)

≥ ui(x
0
i, σ̄j). Consequently, m

γ
i is at least as good as x

0
i when i’s strategy is not

found out. Altogether, this means that mγ
i is strictly better than x0i for every

positive type of player i against σj.
Consequently, if the distribution σ̄i is close enough to m∗

i , then because the
fraction of types employing x0i is zero and m∗

i (x
0
i) > 0, a positive and bounded

away from zero measure of types must employ non-degenerate mixed strategies.

Proof of Theorem 6.4. Suppose that σ is an equilibrium of IG. As can be seen
from the proof of Proposition 5.1, A.2 implies that i’s best reply to σj, σi(ti), is
unique for all but perhaps finitely many ti. It therefore suffices to show that when
ti’s best reply is unique, it is pure.
So, let mi be ti’s unique best reply against σj. . Suppose that, upon finding

out mi, a best reply for player j which breaks ties in i’s favor is xj. Consider
the lottery, µi, in ∆(Mi) giving probability mi(xi) to each pure strategy xi. If j
does not find out i’s strategy choice, this lottery yields player i the same payoff
as the mixed strategy mi. If j finds out i’s strategy choice, the lottery yields i
an expected payoff of

P
xi∈Xi

mi(xi)vi(xi), because j finds out the outcome of the
lottery. This payoff must be at least as large as vi(mi) =

P
xi∈Xi

mi(xi)ui(xi, xj),
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since if player j has a best reply to xi that differs from xj, switching to it cannot
hurt player i, by hypothesis. Hence,

(1− ti)ui(mi, σ̄j) + tivi(mi)

≤
X
xi∈Xi

mi(xi)[(1− ti)ui(xi, σ̄j) + tivi(xi)],

which says that, against σj, ti’s payoff from employing his unique best reply mi

is no higher than his payoff from employing the lottery µi. Hence, one of the pure
strategies in the support of the lottery must be a best reply against σj, which, by
uniqueness, implies that mi must be this pure strategy.
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