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Abstract

We study an adverse selection problem, where an agent is able to understate his productivity,

but not allowed to overstate it. The solution to this problem is generally different than the

solution to the standard problem, where no restriction is made on the statements of the agent.

We identify a sufficient condition, that does not depend on the distribution of types, under

which these two solutions coincide.
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1 Introduction

The adverse selection problem is often studied in the context of an environment where a “prin-

cipal” (she) is the residual claimant of a commodity that is produced by an “agent” (he). The

productivity parameter (type of the agent) is observed by the agent, but unknown to the princi-

pal. The principal’s task is designing an “incentive compatible” mechanism that would provide

the incentive for the agent not to imitate another type. In most adverse selection papers, the

agent is assumed to be capable of imitating any type of his choice. Yet, there is another strand

of the literature, which is based on the partial verifiability of the agent’s type.1 Under partial

verifiability, the agent is able to imitate only a subset of the other types. In this paper, we will

study a specific form of partial verifiability, where the agent is able to understate his type but

not able to overstate it.

In order to demonstrate how such a restriction to the agent’s imitation capacity could arise,

we will invoke the frequently used example of regulation of a monopolist. Suppose the pro-

ductivity level of the monopolist is determined by its access to certain pieces of equipment.

Suppose further that concealing some equipment is sufficient for an understatement of pro-

ductivity, whereas an overstatement requires disclosing an equipment that does not actually

exist. Under the standard paradigm, the monopolist is assumed to be capable of carrying out

either one of these activities costlessly. In contrast, our partial verifiability model depicts an

environment, where the concealment of an existing equipment is costless but disclosure of a

non-existing equipment is prohibitively costly.2

Elimination of the agent’s ability to overstate his type enlarges the set of incentive com-

patible mechanisms for the principal. Therefore it introduces the potential of improving the

principal’s rent extraction from the agent. In this paper, we present a sufficient condition for

the elimination of overstatements not to change the principal’s maximized payoff. This condi-

tion depends on how the value and the cost of production change with productivity, but unlike
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the widely used “regularity” conditions, does not depend on the distribution of productivity.

One result that is directly related to the current analysis is provided by Moore (1984). In

an auction environment, where the principal is a seller and the agent is a buyer whose valuation

for the object depends on his type, Moore shows that removing the agent’s ability to imitate

higher valuation types does not change the optimal solution to the principal’s expected revenue

maximization problem (his Theorem 1).3 We diverge from Moore’s setup by allowing for the

principal’s payoff to depend on the agent’s type as well as the output level. The sufficient

condition we identify is weaker than assuming that the principal’s payoff is not responsive to

the agent’s type.

2 The Model

The principal is the residual claimant of the production, and the agent incurs the production

costs. The principal can commit to a contract that assigns output and transfer levels to messages

sent by the agent. Both players have utility functions quasilinear in money.

We assume a discrete type space for the agent, {1, 2, ...,N}. Let n be the generic element of

this set. fn is the prior probability that the agent’s type is n. Fn =
P
i≤n fi is the cumulative

distribution function associated with {fn}. The cost of producing x units of output when the

type is n is c (x, n). This cost function is strictly increasing, convex, differentiable in x and

strictly decreasing in n. We also make the following “sorting” assumption:

c (x, n)− c (x, n+ 1) is increasing in x for all n. (1)

Note that the sorting condition can also be written as c1 (x, n) is declining in n for all x, where

the subscript 1 after a function indicates the derivative with respect to its first argument.

The value of production of x units of output for the principal is v (x, n), provided that the

type of the agent is n. This function is strictly increasing, strictly concave, and differentiable

in x. Note that we are not stating any specification regarding the dependence of the function
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v (x, n) on the agent’s type n. Finally, to guarantee that the optimization problems we will

introduce have solutions, we assume that for all n, v1 (x, n)− c1 (x, n) approaches to a negative

number (or to −∞) as x tends to infinity.

If the type of the agent were known by the principal, the optimal mechanism would require

maximizing the value of production net of the production cost. Accordingly, xfbn , the “first

best” output level for type n is defined as xfbn ∈ argmaxx {v (x, n)− c (x, n)}.4

We will start with stating the standard problem that an uninformed principal faces, when

the agent is capable of imitating any type of his choice. This problem can be formulated as

choosing the utility and output levels for each type such that there exists no type willing to

imitate another one, and all types are given a non-negative utility level. Let un and xn represent

the utility and output levels for agent type n. Here is the principal’s optimization program:

Program A1:

max
{un,xn}

X
n

fn (v (xn, n)− c (xn, n)− un) s.t.

IC (m|n) : un ≥ um + c (xm,m)− c (xm, n) for all m, all n

IR (n) : un ≥ 0 for all n

where IC stands for “incentive compatibility” and IR stands for “individual rationality.”

One immediate implication of the incentive compatibility constraints is the monotonicity of

the output levels in the productivity of the agents, i.e., xn+1 ≥ xn for all n < N . By using

this monotonicity requirement and the sorting condition on the cost function, one can show

that the only relevant constraints of Program A1 are the “downward adjacent” IC constraints,

the IR constraint of the least productive type, and the monotonicity constraints. Accordingly,

Program A1 has the same solution as the “reduced” program below.
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Program A2:

max
{un,xn}

X
n

fn (v (xn, n)− c (xn, n)− un) s.t.

IC (n|n+ 1) : un+1 ≥ un + c (xn, n)− c (xn, n+ 1) for n < N

IR (1) : u1 ≥ 0

xn+1 ≥ xn for n < N

At the solution to Program A2, constraints IC (n|n+ 1) for n < N and IR (1) are always

binding. If we ignore the monotonicity constraints, the output levels to maximize the objective

function are identified as x∗n ∈ argmaxx P (x, n) where

P (x, n) =

⎧⎪⎨⎪⎩ v (x, n)− c (x, n)− 1−Fn
fn

[c (x, n)− c (x, n+ 1)] for n < N

v (x, n)− c (x, n) for n = N .

Most researchers assume “regularity” conditions which secure that {x∗n} satisfies the monotonic-

ity constraints and therefore constitutes an optimal output profile.5 If the regularity conditions

hold and {x∗n} is indeed a solution to Programs A1 and A2, removing the upward IC constraints

(or removing all the IC constraints other than the downward adjacent ones) would not change

the optimal solution to the problem. Notice that, since P (x, n) involves the terms Fn and fn,

any such regularity conditions require assumptions on the distribution function.

On the other hand, if {x∗n} is not monotonic and therefore is not an optimal output pro-

file, then the monotonicity constraints are relevant for Program A2.6 For the purpose of this

paper, what is significant about this case is that the removal of the upward IC constraints

might improve the principal’s rent extraction. Monotonicity is a joint implication of all the IC

constraints, both the upward and the downward ones. Hence the principal is able to implement

non-monotonic output profiles if upward IC constraints are eliminated. In what follows, we

will not introduce any restrictions on the distribution of types. Therefore we will not be able

rule out the case where monotonicity constraints are relevant for Program A2. However, we will

present an alternative condition, which does not depend on the type distribution, but which
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guarantees that removing the upward IC constraints would not change the optimal solution to

the mechanism design problem.

3 The Modified Problem

In this section, we consider the modification of Program A1, where the agent is able to under-

state his productivity but is unable to overstate it.

Program B1:

max
{un,xn}

X
n

fn (v (xn, n)− c (xn, n)− un) s.t.

IC (m|n) : un ≥ um + c (xm,m)− c (xm, n) for m < n, for all n

IR (n) : un ≥ 0 for all n

The only IC constraints for Program B1 are the downward IC constraints. In order to induce

the truthful revelation of the type, it is sufficient for the principal to make sure that there exists

no type who is willing to imitate a less productive one.7 As a first step to the simplification of

the set of constraints for Program B1, we will define the function ñ (·) as

ñ (n) = max

½
argmax

i≤n
{xi}

¾
for a given output profile {xn}. That is, ñ (n) is the type which is associated with the highest

production level among the types weakly smaller than n. If there are more than one such type,

ñ (n) represents the highest one among them. Note that ñ (·) is a weakly increasing function.

ñ (n) takes the value of n if and only if xn ≥ xñ(n−1), otherwise ñ (n) = ñ (n− 1). Also note

that {xn} is monotonic if and only if ñ (n) = n for all n.

Now we will introduce a simpler variant of Program B1 by removing all the constraints

other than IC (ñ (n) |n+ 1) for n < N and IR (1).
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Program B2:

max
{xn,un}

X
n

fn (v (xn, n)− c (xn, n)− un) s.t.

IC (ñ (n) |n+ 1) : un+1 ≥ uñ(n) + c
¡
xñ(n), ñ (n)

¢− c ¡xñ(n), n+ 1¢ for n < N
IR (1) : u1 ≥ 0

Proposition 1 The solutions to programs B1 and B2 are equivalent.

Proof. We need to establish that the solution to B2 satisfies the constraints of B1. First,

we will show that the solution to B2 satisfies certain equations. Then we will show that those

equations imply the constraints of B1.

Step 1: The solution to B2 satisfies

C (n+ 1) : un+1 = un + c
¡
xñ(n), n

¢− c ¡xñ(n), n+ 1¢ for all n < N.
To see this, first note that at the solution to B2, all constraints of B2 must be binding.

Otherwise by reducing the value of some un, we could increase the value of the objective

function without violating any of the constraints. To show that C (n+ 1) is satisfied, there are

two cases two consider. If ñ (n) = n, then C (n+ 1) is implied by the binding IC (ñ (n) |n+ 1)

constraint. If ñ (n) = ñ (n− 1), then with a change of variables, we can rewrite the binding

IC (ñ (n− 1) |n) constraint as

un = uñ(n) + c
¡
xñ(n), ñ (n)

¢− c ¡xñ(n), n¢ . (2)

When we add c
¡
xñ(n), n

¢− c ¡xñ(n), n+ 1¢ to both sides, we get
un + c

¡
xñ(n), n

¢− c ¡xñ(n), n+ 1¢ = uñ(n) + c ¡xñ(n), ñ (n)¢− c ¡xñ(n), n+ 1¢ . (3)

It follows from the binding IC (ñ (n) |n+ 1) constraint again that the right hand side of this

last equation is equal to un+1. Therefore, C (n+ 1) holds for this case as well.

Step 2: IR (1) and C (n+ 1) for all n < N imply the constraints of B1.

6



C (n+ 1) for all n < N imply un is increasing in n. Therefore IR (1) is sufficient for the

other IR constraints. To see that downward IC constraints are satisfied, let n and m be two

types such that n > m. Sum up equations C (n) to C (m+ 1) to get

un = um +
£
c
¡
xñ(n−1), n− 1

¢− c ¡xñ(n−1), n¢¤+ £c ¡xñ(n−2), n− 2¢− c ¡xñ(n−2), n− 1¢¤+
.....+

£
c
¡
xñ(m),m

¢− c ¡xñ(m),m+ 1¢¤ . (4)

By definition of ñ (·), we know that xñ(i) is larger than xm for all i larger than m. IC (m|n)

follows from the above equation and the sorting condition (1). Since n and m are arbitrarily

chosen, any downward IC constraint is an implication of C (n+ 1) for all n < N .

Unlike in Program A2, where the focus is on the downward adjacent type, in Program B2

the principal has to provide the incentive not to imitate the type that produces the highest

output level among the less productive types. This points to an important distinction of our

modified problem. The relevant IC constraints of Program B1 are endogenously determined

by the output profile {xn}. The exogenous ordering of the types does not reveal the relevant

constraints in the absence of the upward IC constraints. In essence, the modified problem here

is similar to the design problems, where the global incentive constraints are relevant as well as

the local ones. (See Moore (1984, 1988), and Matthews and Moore (1987).)

We will close this section by presenting two properties of the solution to Program B1.

Lemma 1 If {xn} is the output profile that solves Program B1 (and B2), then

i) xn ≤ xfbn for all n.

ii) xn = xfbn for n such that ñ (n) < n.

Proof. i) Consider the solution to B1. From the sorting condition, the right hand sides of

the IC constraints are increasing in output levels. Suppose there exists n such that xn > x
fb
n .

Replace xn with x
fb
n . The constraints of the problem are still satisfied. The objective function

is higher. Contradiction.
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ii) Consider the solution to B2. Suppose there exists n such that ñ (n) < n and xn < x
fb
n .

Increase xn in such a way that it is still smaller than xñ(n) and x
fb
n . There is no change in the

right hand sides of the IC constraints. The objective function is higher. Contradiction.

4 A Sufficient Condition

Consider the following example, where there are 3 possible types of the agent with f1 =
3
4 and

f2 = f3 =
1
8 . The principal’s value and the agent’s cost functions are respectively v (x, n) =

vn lnx and c (x, n) = cnx, where vn and cn are given below:

c1 = 3 c2 = 2 c3 = 1

v1 = 9 v2 = 7 v3 = 4

Since ∂v(x,n)
∂x = vn

x is decreasing in n and
1−Fn
fn

is non-monotonic, this example does not satisfy

the regularity conditions stated in footnote 5. The solution to Program A1 requires “bunching”

types 1 and 2, with the optimal output levels x1 = x2 = 2.65, and x3 = 4. It is worth noting that

constraint IC (2|1), an upward adjacent incentive compatibility constraint, is binding at this

solution. Therefore we cannot immediately conclude that removal of the upward IC constraints

would not change the optimal output levels. However, due to the small number of types in this

example, we can provide a solution to Program B1 without much difficulty and observe that it

is the same as the solution to Program A1. Even though IC (2|1) is removed from the set of

constraints, IC (1|3), a downward “non-adjacent” constraint comes into effect and the principal

still chooses the same outcome in the less constrained environment.

This example introduces the possibility that solutions to Programs A1 and B1 may be

equivalent even when the monotonicity constraints are relevant for Program A2. With the

following proposition we present a sufficient condition for equivalence.

Proposition 2 If
n
xfbn
o
is weakly increasing, then the solution to Program B1 (B2) is equiv-

alent to the solution to Program A1 (A2).
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Proof. To prove the proposition, it suffices to show that the solution to B2 satisfies the

constraints of A2, i.e., ñ (n) = n for all n. Suppose there exists m, such that ñ (m) < m. This

implies xm = x
fb
m . It follows from xñ(m) ≤ xfbñ(m) and weakly increasing

n
xfbn
o
that xñ(m) ≤ xm,

which is a contradiction to the definition of function ñ (·).

In the example above, the first best output levels (xfb1 = 3, xfb2 = 3.5, xfb3 = 4) satisfy the

sufficient condition stated in Proposition 2. This confirms our initial finding that Programs

A1 and B1 yield the same solutions for this example. Moreover, since this sufficient condition

does not depend on the type distribution, the equivalence of the solutions would persist under

different values for f1, f2, and f3.

On the other hand, if the first best output levels are not weakly increasing, solutions to

Programs A1 and B1 could differ. To see this, consider a variant of the above example, where

v2 equals 5, instead of 7. Now, x
fb
2 equals 2.5 and the first best output levels are not weakly

increasing any more. The solution to Program A1 would still involve bunching with the optimal

output levels x1 = x2 = 2.56, and x3 = 4. But the solution to Program B1 is different and

yields a higher payoff for the principal with the output levels x1 = 2.57, x2 = 2.5, and x3 = 4.
8

Finally, we turn our attention to a condition that would guarantee that the first best output

levels are weakly increasing. If the marginal value of production, v1 (·, n), is weakly increasing

in n then the first best output levels are weakly increasing as well.9 A special case of this

condition would be the value of production not being responsive to the type of the agent at all.

The corollary below follows from this observation.

Corollary 1 (Moore (1984)) If v (·, n) = v (·,m) for all n and m, then the solution to Program

B1 (B2) is equivalent to the solution to Program A1 (A2).
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Notes

1See Green and Laffont (1986), Deneckere and Severinov (2001). Also see Maggi and

Rodriguez-Clare (1995) for a model of costly misreporting.

2Alternatively, the regulator could be inspecting the profit generated by the monopolist

rather than its access to equipment. In that case, our model would be describing a situation,

where the monopolist can hide a portion of the profits but cannot inflate them. For simi-

lar assumptions, see Hurwicz et al. (1995), Hong and Page (1995) on partial verifiability of

endowments; and Beaudry and Blackorby (2000) on partial verifiability of market productivity.

3Moore (1984) employs this result in his characterization of the optimal auction with risk

aversion. Matthews and Moore (1987), and Moore (1988) apply a similar methodology to study

(i) a monopolist’s optimal menu of quality - warranty pairs, and (ii) the second best contract

between a buyer and a seller respectively.

4Strict concavity of v (·, n) and convexity of c (·, n) imply that xfbn is unique.

5The following set of assumptions would do the trick: (i) v1 (x, n) is increasing in n, (ii)

c1 (x, n)− c1 (x, n+ 1) is decreasing in n, (iii) the hazard rate of the distribution is monotonic,

i.e., 1−Fnfn
is decreasing in n.

6In that case, providing a solution to Programs A1 and A2 is a slightly more involved process.

Fudenberg and Tirole (1991) outline this process for a model with continuous type space in the

appendix to Chapter 7.

7One note is in order to justify our implicit reliance on the revelation principle. Since our

assumptions on the agent’s capacity to imitate other types satisfy the “nested range condition,”

i.e., since an agent who can imitate type n can also imitate all the other types that can be

imitated by type n, it follows from Green and Laffont (1986) that any implementable outcome
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is implementable through truthful equilibria of direct mechanisms.

8To see how the removal of the upward IC constraints helps in this variant of the example,

note that the solution to Program A1 exhibits an “upward distortion” in the output levels.

That is, the optimal level of x2 is higher than its first best level. If the principal could reduce

x2 without changing the other output levels, she would have increased her expected payoff.

However, such a reduction in x2 violates the constraints of Program A1, since it would make

imitating type 2 optimal for type 1. In contrast, since the upward IC constraints are not

present in Program B1, the principal could reduce the output level for type 2 without fearing

that type 1 could imitate type 2. When the first best output levels are weakly increasing, such

upward distortions are ruled out in the solution to Program A1.

9Note that this condition is not a necessary condition. The example we provide above have

weakly increasing first best output levels even though v1 (·, n) is decreasing in n.
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