
Pure Strategy and No-Externalities with
Multiple Agents

Michael Peters
Department of Economics

University of Toronto

First version November 6, 2001

Abstract

This note considers two properties of common agency models - pure
strategy equilibria with simple competition are robust and equilibria in
mechanisms can be reproduced as equilibria with simple competition
provided an appropriate no-externalities assumption holds. This note
provides counter examples to both these theorems when there are
multiple agents.

In a recent paper (Peters 2001b) shows two properties of common agency
models in which multiple principals compete by interacting through a single
agent. First, if the principals compete in simple incentive schemes (con-
tracts that specify the way that the principal’s action will depend on the
contractible parts of the agent’s effort), then every pure strategy equilibrium
in incentive schemes will be robust to the possibility that principals might
use more complex mechanisms (the simple incentive contract the principal
uses can depend on messages sent by the agent). This ’pure strategy theo-
rem’ is a helpful result since it is common to focus attention on pure strategy
equilibria in applications. The theorem suggests that modelling competition
in the naive way will reveal ’legitimate’ equilibrium allocations, though not
necessarily all of them.

The second result is that if the environment has the property that there
are ’no externalities’ in the sense that once the agent has chosen his effort,
his ranking of the various actions available to any principal is independent of
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the actions taken by other principals, then every pure strategy equilibrium
allocation that can be supported by having principals compete in mecha-
nisms, can also be supported by having principals compete in simple incen-
tive schemes. Thus, in environments without externalities (most well known
papers on common agency analyze environments that have this property),
there is nothing new to be learned by studying competition in mechanisms
(at least if one is interested in pure strategy equilibria).

This is somewhat surprising since the agent typically has market informa-
tion that principals would like to exploit. The would learn this information
by communicating with the agent before selecting an incentive scheme.1 The
pure strategy theorem could be interpreted to mean that in a pure strat-
egy equilibrium the principal already has all relevant market information
through his knowledge of the equilibrium strategies. The ’no-externalities’
result hinges on the idea that even though the agent has information that
the principal would like to extract, there is no way for the principal to do
this in an incentive compatible way.

The point of this note is to show that neither of these theorems extend
to the case where there are multiple agents.

The pure strategy theorem for common agency starts with a group of
principals offering incentive schemes that choose actions that potentially de-
pend on the efforts taken by all of the agents.2 In a pure strategy equilibrium
no principal finds it profitable to deviate to any alternative incentive scheme
given the schemes that are being offered by his competitors. When the
principal tries to deviate to a more complex mechanism, he effectively offers
the agent a menu of alternative incentive schemes. The agent then faces
a simple maximization problem - choose the item from the menu of incen-
tive schemes which, along with the schemes offered by the other principals
and some appropriately chosen action, yields the agent the highest expected
payoff. Select any one of the incentive schemes in the principal’s menu that
solve this problem for the agent. Whatever effort the agent was supposed to
choose in the original game when the principal offered this incentive scheme
in isolation, must also be optimal for the agent when he chooses this scheme
from a menu. So there is a continuation equilibrium in which the principal’s
payoff when he offers the menu is the same as the payoff he would have re-

1Examples of equilibria supported by this sort of communication are given in (Marti-
mort and Stole 1999),(Epstein and Peters 1999),(Peters 2001a) among others.

2The particular application determines the extent to which agents’ efforts are con-
tractible. None of the statements made here depend on this.
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ceived by offering some simple incentive scheme by itself in the original game.
In the original game this deviation would be unprofitable by the definition
of equilibrium. This proves the pure strategy theorem.

This argument fails with multiple agents because the principal can offer
mechanisms that change the set of continuation equilibrium efforts associated
with any particular incentive scheme. In the example given below, there are
multiple equilibrium efforts associated with a particular incentive scheme,
and the agents play one that the principal does not like. By offering a more
complex communication scheme, the principal can eliminate the undesirable
continuation equilibrium outcome. The example suggests that the intuition
that principals have all the market information they need in a pure strategy
equilibrium is correct, but incomplete. Communications mechanisms play a
strategic role that goes beyond this simple argument.

The essence of the no-externalities argument is that the way the agent
ranks the different actions of the principal does not depend on the actions
chosen by other principals. With symmetric information, the actions of
the other principals define the agents type in some weak sense. So the
no externalities condition ensures that the agents ranking of the actions of
any principal are independent of his type. It is very difficult to extract
this market information from agents in an incentive compatible way under
these conditions. This is exactly analogous to the argument that it will be
impossible to extract information on the agents willingness to pay if the only
action the principal controls is price.

This fails with multiple agents essentially because market information is
not fully private - each agent knows what the other does. It is possible for
a principal in this case to create a mechanism in which each agent honestly
reports market information because he or she expects the other agent to, and
fears the consequences of disagreeing with the other agent about this.

1 Basics

Competing mechanism problems have the following general structure: there
are n principals dealing with m agents. Each principal j ∈ {1, . . . n} controls
a simple action in the set Yj, while each agent i ∈ {1, . . .m} takes some effort
from a set Ei. The principal can write contracts contingent on all or part of
the effort levels e ∈

∏
iEi taken by each of the agents. The set of feasible

contracts Aj for seller j is a subset of the set of mappings α :
∏

iEi → Yj
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These contracts are referred to henceforth as pay for effort contracts even
though the actions taken by the principals could be more general than simple
monetary transfers. To simplify it will be assumed that the sets Yj and Ei
are subsets of finite dimensional linear vector spaces (essentially probability
distributions over finite sets) and that these sets, along with the set of feasible
pay for effort contracts Aj, are the same for all sellers.

Each agent’s preferences are private information and are parameterized
by elements in some set Ω. We refer to elements of the set Ω as valuations
instead of types though the valuations themselves may be more complex than
simple willingness to pay. Principals and agents commonly believe that the
agents’ valuations are jointly distributed according to some distribution F
on Ωm.

Agents and principals have expected utility preferences. The payoff to
principal j ∈ {1, . . . , n} is represented by vj :

∏n
k=1 Yk ×

∏m
i=1 Ei × Ωm −→

[0, 1], while for each agent i, payoffs are represented by the function ui :∏n
k=1 Yk ×

∏m
i=1 E × Ωm −→ [0, 1].

Principals and agents choose a pay for effort contract by engaging in a
communication process or mechanism designed by the principal. Formally, a
mechanism for principal j is a measurable message space Cj and a measurable
mapping γj : Cm

j →4 (Aj) that associates a distribution over pay for effort
contracts with each array of messages that the agents send. To simplify the
notation a bit, the message space Cj will be assumed to be fixed and common
to all sellers. Also it will be assumed that the set of feasible mechanisms Γ
is the same for each principal. With a slight abuse of notation, γj will be
referred to as the mechanism offered by principal j.

Mechanisms are endogenous and allocations are determined by a two
step process: first each principal simultaneously selects and publicly offers a
mechanism from Γ; next each agent simultaneously sends a message to each
principal and chooses an effort level.3

Agent behavior in each mechanism depends on the agent’s valuation and
on the mechanisms that he or she observes being offered by the other prin-
cipals. A communications strategy for agent i is a mapping c̃i : Ω × Γn →
4 (Cn × E) that describes the (joint probability distribution over) messages

3An alternative formulation would allow the principal to communicate with the agent
before the agent takes his effort as in (Peters 2001a). This additional bit of communication
from the principal to the agent would be useful if the principal uses a random device to
hide his true mechanism from other principals, yet wishes the agents to take actions based
on the outcomes of this randomizing device.
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and actions that the agent will use as a function of the his valuation and the
array of mechanisms that he is offered by the principals. We will sometimes
refer to the decision strategy for agent i, given by π̃i : Ω× Γn×Cn →4 (E)
which probability distribution over effort that the agent uses conditional on
the messages he sends to the principals. The array c̃ = {c̃1, c̃2 . . . c̃m} of con-
tinuation strategies for the agents constitute a continuation equilibrium if for
every array of mechanisms γ ∈ Γn offered by the principals, the continuation
strategies constitute a Bayesian equilibrium for the continuation game played
by the agents. An equilibrium relative to the set of feasible mechanisms Γ
is an array of randomizations {δ1, . . . δn} and a continuation equilibrium (c̃)
such that {δ1, . . . δn} is a Nash Equilibrium for the normal form game defined
by the continuation equilibrium (c̃).

Let ΓD be the set of ’direct mechanisms’ defined here to be the set of mech-
anisms for which C = Ω. Formally ΓD = {(γ, C) : C = Ω, γ : Ωm →4 (A)}.
These mechanisms are not direct mechanisms in the formal sense since they
do not allow the agents to report their full types. On the other hand, it is
natural to model competition in ΓD since a principal operating by himself
will always be able to find his best mechanism by searching in ΓD. Observe
that when the agents have no private information about their own prefer-
ences, then the set of direct mechanisms is simply the set of probability
distributions over incentive schemes.4

Suppose that ΓD ⊂ Γ for some large set of mechanisms Γ. Then (Peters
2001b) shows that if there is only a single agent, then every pure strategy
equilibrium relative to ΓD is also a pure strategy equilibrium relative to Γ,
and if the payoff functions ui and vj satisfy the no externalities assumption
(described below) then every allocation that is supported by some equilibrium
relative to Γ can also be supported as equilibrium relative to ΓD.

2 Pure Strategies

To begin, we consider the pure strategy theorem. This example illustrates a
pure strategy equilibrium in simple incentive schemes that does not survive
when principals are allowed to communicate with agents.

There are two principals and two agents in the example. The principals

4At this stage, we do not want to rule out the possibility that principals want to
associate random outcomes with agent efforts. This might be useful for incentive reasons
if agents are risk averse.
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cannot contract on agents’ effort and simply choose between one of two simple
actions called A and B. Agents have no private information and simply
choose one of two effort levels. To help interpretation, it is possible to
interpret the efforts as agent choice among the two principals, but this is not
essential. To make the example relevant, the game has to involve at least
four players, so it is somewhat difficult to write the payoffs. In the following
table, each cell corresponds with a pair of actions chosen by the principals.
Each of the cells itself contains a table with payoffs corresponding to the
effort levels taken by each of the agents. The first payoff is the payoff to
principal 1 who chooses the row in the outer table. The second payoff is the
payoff to principal 2 who chooses the column in the outer table. The third
payoff is to agent 1 who chooses the row in the inner table, and similarly for
the last payoff. So, for example, if both principals choose the simple action
B, and both agents choose effort 1 (or go to principal 1), then the payoff is
3 for principal 1, 0 for principal 2 and −1 for each agent.

A B

A
1 2

1 ∗ ∗
2 ∗ ∗

1 2
1
(

7
8
, 7

8
,−3

2
, 5

4

) (
7
8
, 7

8
, 5

4
,−3

2

)
2
(

7
8
, 7

8
, 5

4
,−3

2

) (
7
8
, 7

8
,−3

2
, 5

4

)
B

1 2
1
(
0, 0,−3

2
, 5

4

) (
0, 0, 5

4
,−3

2

)
2
(
0, 0, 5

4
,−3

2

) (
0, 0,−3

2
, 5

4

) 1 2
1 (3, 0,−1,−1) (1, 1, 1, 1)
2 (1, 1, 1, 1) (0, 3,−1,−1)

We focus on the pure strategy equilibrium for this game in which both
principals use action B. No attempt is made to characterize the entire set
of equilibria in this table, the point is simply to show that pure strategy
equilibria might not survive if principals are allowed to communicate with
agents before they select their action. So no attempt is made to fill in the
box where principals both use action A.

Since the principals are unable to write contracts contingent on the agents
efforts, a simple incentive contract for each principal is just a specification of
the action that they plan to take. Suppose that the continuation equilibrium
is such that when both principals announce action B, the agents coordinate
their actions with agent 1 choosing principal 2 and agent 2 choosing principal
1. Everyone’s payoff in this case is 1. If principal 1 deviates to action A,
(while the other continues to offer action B) the agents face the following
continuation payoff matrix
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1 2

1
2

(
−3

2
, 5

4

) (
5
4
,−3

2

)(
5
4
,−3

2

) (
−3

2
, 5

4

)
as indicated in the upper right hand box of the diagram. This subgame has
a unique mixed strategy equilibrium in which both agents mix equally over
both actions. The payoff in this equilibrium is −1

8
to both agents. Whatever

this continuation equilibrium happens to be, the payoff to the principal who
deviates to action A is 7

8
. So it is clear that having both principals offer action

B with agents then coordinating their choice over principals is a subgame
perfect equilibrium for this process.

In this example, there is another equilibrium for the subgame that occurs
when both principals offer the action B. In this equilibrium the agents fail to
coordinate their choices, and instead mix equally between the two principals.
It is straightforward that the continuation payoff that the agents receive in
this case is zero - so they much prefer the outcome that does prevail in which
each of them gets payoff 1. The principals, however, do better with this
mixed continuation equilibrium and receive a payoff of 5

4
because the large

payoff 3 occurs with a high enough probability to compensate them for the
0 payoff that occurs when no buyers choose them.

The point of this example is to show that if one of the principals can
negotiate with the agents before choosing his action, this outcome can no
longer be supported. The reason is that the deviating principal can offer a
contract that eliminates the coordination equilibrium that the agents play,
leaving only mixed continuation equilibrium in which the principal’s payoff
exceeds 1.

The deviation involves a mechanism γ′ in which the principal promises to
make his action contingent on a message sent by the agent. The mechanism
works as follows: the agents can send either the message A or the message
B. If exactly one of the two agents (it doesn’t matter which one) sends
the message A, then the principal will use action A, otherwise the principal
commits himself to action B.

The claim is that the deviating principal is better off along every contin-
uation equilibrium path associated with this offer than he is in the original
equilibrium. Showing this is a bit tedious because there are a number of
potential continuation equilibrium depending on which combinations of mes-
sages and efforts the agents use with positive probability. However, the
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idea behind the deviation can be see by focusing on just one of them - the
completely mixed equilibrium.

To see the argument, note first that in the original equilibrium action
B is used by both principals for sure, and everyone receives payoff 1. The
problem with reproducing this outcome with prior communication is that
the actions and efforts of all players are perfectly predictable. Suppose that
agent 1 believes that agent 2 reports B and uses effort 1 for sure, as in the
original equilibrium. Further suppose that principal 1 deviates and offers the
communications mechanism where agents are asked to report either A or B.
To reproduce the outcome from the original equilibrium, the agents would
have to coordinate on a predictable report, say B. If this occurred, the agent
1 could profitably deviate by sending the message A to the deviating principal
then choosing effort level 2. Principal 1 would then switch his action to A.
Since communication and effort are chosen simultaneously, agent 2 would not
be expecting this to occur - agent 1’s payoff rises to 5

4
while agent 2’s payoff

falls to −3/2. It would appear that the coordinated outcome in which all
players receive payoff 1 can no longer be supported as an equilibrium with
prior communication.

What are the continuation equilibria associated with this offer? It is
straightforward, but tedious to show that there are three continuation equi-
librium (up to permutations of messages). In one of the equilibria the agents
coordinate for sure on message B (or equivalently, coordinate for sure on
message A since both things lead to action B by the deviating principal),
but then randomize equally over efforts. This yields payoff 0 to the agents
and payoff 5/4 to each of the principals. It doesn’t pay either agent to devi-
ate and send message A in this case, because if he does, principal 1 changes
his action to A and both agents’ payoffs fall to −1

8
. Call this equilibrium E1.

In the continuation game that they play, agents have four pure actions
made up by combining each of the reports A or B with a different action 1
or 2. Let ai refer to the pure action where the agent reports A to principal 1
then takes action i, and similarly for bi. A second equilibrium occurs when
the agents randomize using each of their pure actions {a1, a2, b1, b2} with
equal probability. The payoff to the principal in this case is 17

16
which again

exceeds his payoff in the original pure strategy equilibrium. Refer to this as
equilibrium E2.

Finally, there is a third equilibrium in which each agent randomizes
equally over pure actions a1 and b2 (or equivalently b1 and a2). In this
case the payoff to the principal is 19

16
. This is equilibrium E3.
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Claim 1 The continuation game in which one principal offers the mecha-
nism γ′ while the other offers the pure action B has exactly three equilibria
described by E1, E2 and E3.

Proof. First observe that there can be no equilibria in which either agent
takes a single effort for sure. For example, suppose that agent 2 takes effort
1 for sure. Then no matter how the agents randomize over messages, agent
1 must take action 2 for sure. Let p be the probability with which agent
1 sends message A in equilibrium. Agent 2 has payoff (1− p) − 3/2 if she
sends message B and payoff p − (1− p) 3

2
if she sends message A and uses

pure effort 1. Suppose that p ≥ 1
2

(≤ 1
2
). Then the payoff if agent 2 sends

message B (message A) and switches to effort 2 is

p
5

4
− (1− p)

so there must exist a profitable deviation. By symmetry the argument is
identical for the other agent and the other action.

Now suppose there is a mixed equilibrium in which one of the players
sends a single message with probability 1. Then it is straightforward to
check that whatever mixed strategy that player is using to choose his action,
the other player will strictly prefer to send the message that induces the
action B by principal 1. Thus apart from equilibrium E1 (and its variant
where both agents send the message A with probability 1), both players must
mix over messages in every equilibrium.

This leaves equilibria in which agents mix over all pure actions, and equi-
libria in which they mix over alternate signal effort pairs. It is straight-
forward to use the indifference relations in mixed strategy equilibria and
symmetric of the payoff matrices to show that the only equilibria of this type
are E2 and E3.

The important point in all this is that the deviating principal’s payoff
is strictly higher in each of these equilibria than it was in the initial pure
strategy equilibrium. As a consequence, the pure strategy equilibrium is not
robust to an expansion of the set of feasible mechanisms.

3 No Externalities

The no externalities assumption in (Peters 2001b) requires two things: that
the agent’s ranking of the actions of each principal conditional on the agent’s
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effort is independent of the actions of the other principals, and that principals’
payoffs are affected only by their own actions and the agents efforts. Any
common agency problem in which the principal transfers (or receives) money
from the agent while the agent takes some effort that the principal observes
satisfies the no-externalities assumption. This makes the theorem quite useful
since all but one of the most widely cited papers on common agency have
this property.

When no externalities holds, then equilibrium allocations supported by
competition in mechanisms in a common agency problem can always be sup-
ported as equilibrium allocations when principals simply compete in incentive
contracts. The argument works as follows: for any equilibrium in indirect
mechanisms, the agent is offered a menu of incentive contracts by the princi-
pal. Whichever incentive contract the agent chooses from each menu, imag-
ine that the principals simply offer these incentive contracts to the agent
directly without giving him any choice. The effort the agent chose in the
initial equilibrium must still be optimal for him in this new situation, and so
is an appropriate continuation equilibrium response for the agent. Replacing
indirect mechanisms with incentive contracts in this way clearly preserves
the payoffs of the agent and all the principals.

This argument by itself does not prove the theorem. The real problem is
to show that a continuation equilibrium can be constructed for each possible
deviation so that no principal has any incentive to deviate from this configu-
ration by offering some alternative incentive scheme. Now suppose that some
principal deviates by offering an alternative incentive scheme. This deviation
would have been feasible in the initial equilibrium, so suppose that the agent
responds by choosing the same effort in response to this deviation as he would
have used in response to the same deviation in the original equilibrium. It is
here that the no externalities assumptions first comes into play. In the origi-
nal game, it is possible that this deviation would induce the agent to change
his selection from the other principals’ menus. It could be exactly this that
makes the deviation unprofitable. Yet by no externalities, the principal cares
only about his own action and the agent’s effort, so provided the agent uses
the same effort as in the original continuation equilibrium, the principal’s
payoff must be the same as it was when he made the same deviation in the
original equilibrium. In other words, it must be unprofitable.

It remains only to argue that the effort level the agent chose in the original
equilibrium is, in fact, a best response the principal’s deviation in incentive
contracts. For a second time the no externalities assumption plays a role. To
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see how, it helps to have a bit of notation. In the original equilibrium all the
principals offer menus of incentive contracts, the agent selects one from each
of the principals. This defines a series of incentive contracts {γ∗1 , . . . γ∗n}.
When one of the principals, say principal j deviates to an incentive contract
γ in the original equilibrium, the agent responds by selecting effort e and
choosing a new set of incentive contracts, not necessarily γ∗−j from the menus
offered by the non-deviators. We want to show that it is optimal for the agent
to choose effort e when he is offered the simple incentive schemes

{
γ, γ∗−j

}
by the principals. If it is, then this describes the continuation equilibrium
that will make the deviation unprofitable.

Suppose the agent can do strictly better that
{
γ (e) , γ∗−j (e)

}
by choosing

some level of effort other than e. Whatever effort the agent uses to improve
upon this, the outcome he achieves would certainly have been feasible in the
original continuation equilibrium in which the non-deviating agents offered
menus. So it can be no better than some outcome {γ (e) , a−j} where the
actions a−j are attainable with effort e by appropriately selecting incentive
contracts from each of the non-deviating principals’ menus. Of course, the
actions a−jneed not coincide with γ∗−j (e). Here is where the no externalities
assumption comes into play. For each non-deviating principal, the action
γ∗k (e) must be the best available action for the agent who takes effort e, and
since this best action is independent of what the other principals do, the out-
come {γ (e) , a−j} can be no better for the agent than

{
γ (e) , γ∗−j (e)

}
. This

contradicts the assumption that the agent can improve upon this outcome.
This argument assumes that agents use pure actions throughout and have

no private information. Nonetheless the argument can be generalized to show
that the allocations and payoffs associated with any pure strategy equilibrium
in mechanisms can be supported as equilibria in which principals compete
in simple incentive schemes. This is very useful since it is very common to
restrict attention to pure strategy equilibria. Once you do, all equilibrium
allocations can be characterized by assuming simple competition in incentive
schemes.

So what is the appropriate generalization of the no-externalities condition
in the multiple agent case? Part of the extension would say that the payoff
to each principal depends only on his own action and the actions of all the
agents. If this doesn’t hold, then it will be possible to support some equilib-
rium allocations with menus by having agents play a different continuation
equilibrium (resulting in changes in other principals incentive schemes) when
there is a deviation than when there isn’t. The most obvious extension for
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the agent is that conditional on the effort level used by each of the agents,
each agent ranks the actions of each principal in a way that is independent
of the actions of the other principals.

This definition allows the possibility that the way an agent ranks the
actions of one principal depend on the efforts of other agents. These efforts
will implicitly depend on the actions that other principals plan to take. So
this condition will evidently not be strong enough to support the theorem.
A counter example to the no-externalities theorem under these conditions is
given in (Epstein and Peters 1999). So we wish to go a step beyond this here
and extend the no-externalities condition to make the agents ranking of each
principals actions independent of both the actions of the other principals and
the efforts of other agents. This assumption may at first glance appear quite
strong, but it is consistent with, for example, Prat and Rustichini (Prat and
Rustichini 2000) who assume that principals simply make monetary transfers
to agents, while agents suffer some additively separable cost of exerting effort.

Formally

Definition 2 The no-externalities assumption holds if

(i) for each principal j, for each array of actions (y1, . . . , yj−1, yj, yj+1, . . . yn)
and for each array of effort levels e ∈ Em and types ω ∈ Ωn for the
agents;

v (y1, . . . yj, . . . yn, e, ω) = ṽ (yj, e, ω) ;

and

(ii) similarly for each agent i, each principal j, each effort level ei ∈ E, and
for any subset B ⊂ Y there is a y ∈ B such that,

Ui (y, y−j, ei, e−i, ω
′) ≥ Ui (y

′, y−j, ei, e−i, ω
′)

for all y′ ∈ B; ω′ ∈ Ωm ; y−j ∈ Y n−1 and e−i ∈ Em−1.

The most effective way to think about this assumption is to imagine the
framework of (Prat and Rustichini 2000) in which the principal makes a
transfer to each agent (so the agent’s payoff has to depend on the actions of
all the principals). For any set of possible transfers, the agent always prefers
the largest one no matter what transfers are offered by the other principals
no matter what efforts the agents make.
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The objective in all this is to try to show conditions under which prior
communication with agents can be ignored. The principal wants to commu-
nicate with the agent to learn market information, for example, to learn when
one of the other principals has deviated from the equilibrium path. When
agents’ rankings of the various options offered by principals is independent
of this information, there will be no way for principals to accomplish this
in an incentive compatible way. This intuition is simply inadequate in the
multiple agent setting. The following example illustrates this.

The payoffs for the principals and agents are given in the following table,
which is interpreted exactly as the table above. If principal 1 uses action
A, principal 2 uses action B, agent 1 uses effort 1 while agent 2 uses effort
2 the payoffs to principal 1 and principal 2 is −1 the payoff to agent 1 is 0,
while the payoff to principal 2 is −1. It is completely straightforward, but
also completely tedious to check that the no-externalities condition holds.
For example, the entry at A,B, 1, 1 must have the same first component as
A,A, 1, 1 in order that principal 1’s payoff conditional on the efforts of the
agents is independent of principal 2’s action.

A B

A
1 2

1 (1, 1, 1, 1)∗ (−1,−1, 1,−1)
2 (−1,−1,−1, 1) (1, 1,−1,−1)

1 2
1 (1, 2, 0, 0)∗ (−1,−1, 0,−1)
2 (−1,−1,−1, 0) (1, 0,−1,−1)

B
1 2

1 (2, 1, 0, 0)∗ (−1,−1, 0,−1)
2 (−1,−1,−1, 0) (0, 1,−1,−1)

1 2
1 (2, 2,−2,−2) (−1,−1,−2,−1)
2 (−1,−1,−1,−2) (0, 0,−1,−1)∗

Principals are not able to write contracts contingent on the agents efforts
in this example, and agents have no private information. So the set of
direct mechanisms is simply the set of take it or leave it offers in which each
principal proposes one of the two actions to the agent. There are two pure
Nash equilibrium for this game occurring when the principals use different
actions while the agents both take effort 1.

To see this, observe that the form of the no-externalities assumption being
employed here makes the continuation equilibrium for the agents trivial. For
each pair of actions chosen by the principals each agent has a unique optimal
effort that is independent of what the other agent chooses to do. The contin-
uation equilibrium is simply the outcome where each of the agents chooses
this optimal action. So, for example, when both principals offer the action
B, then the unique continuation equilibrium occurs when both agents take
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effort 2. The continuation equilibrium outcomes are starred (∗) in the table
to make it a bit easier to read.

Notice, however, that the optimal effort level for the agents does depend
on the simple actions taken by the principals. The agents want to take effort
1 unless both principals use action B in which case they both switch and
want effort 2. This effort level provides the principals with much lower
payoffs than effort 1 does.

Using these unique continuation equilibria, the induced normal form game
between the principals has payoffs as given in the following table

A B

A
B

1, 1, 1, 1 1, 2, 0, 0
2, 1, 0, 0 0, 0,−1,−1

from this table, it is clear that the pure equilibrium in direct mechanisms
occur when the principals use different actions. In particular the pair of
actions AA, which is particularly good for the agents, cannot be supported.

This latter outcome where both principals use action AA, can be sup-
ported when principals are allowed to use more complex contracts. In par-
ticular, suppose that both principals start by allowing agents to send either
the message A or B. If both agents send the message A, the principal
uses action A, otherwise, the principal uses action B. In this case, both the
agents send both the principals the message A, then choose effort 1, resulting
in payoffs (1, 1, 1, 1).

If either principal deviates from this, then the agents use the following
strategies - if the deviating contract provides one or more pairs of messages
that the agents can send that will induce action A, then the agents coordinate
on one of these pairs. In this case they both send the non-deviator the
message A as well and take effort 1. In this case, of course, the outcome does
not change. If there are no messages that can be used to induce the deviator
to take action A, then both agents send the message B to the non-deviator
and take action 2. These strategies ensure that the deviator’s payoff will
either fall (in the case where the action A is not supported by the deviator)
or stay the same (when A is supported).

It remains to check the strategies of the agents. It is straightforward
that no agent wants to unilaterally send messages that induce either or both
of the principals to change their actions from A to B. The payoff 1 + ε can
only be attained when both principals take action A. Otherwise the agents
payoffs will be lower no matter what happens in the continuation.
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In the case where the deviator offers a contract that makes it impossible
for the agents to induce action A, the agents could send messages that induce
the non-deviating principal to stick with that action. Neither of them does
so, however, because they believe the other agent is bound to send a message
that will induce B anyway (since the non-deviator only requires a single
report B to switch). Given this belief, neither of them can do better than
to send the message B to the non-deviator and choose effort 2.

The many examples provided in the literature to illustrate why mech-
anisms will generally lead to new equilibrium outcomes share the property
that the contract ensures that deviators cannot move unilaterally. When
the try to switch actions, the non-deviator responds with a change in actions
that punishes. In the common agency case this is accomplished using ex-
ternalities in the payoff functions. The deviator’s change in actions causes
the agents preference ranking over actions of the non-deviator to change in a
way that hurts the deviator. This is not happening in this example because
the agent’s ranking of the non-deviator’s actions do not depend in any way
on the actions of the deviator. Furthermore, the deviator doesn’t care per se
what action the non-deviator uses - that is ruled out by the no-externalities
assumption.

The punishment is accomplished here by a change in the joint efforts of
the agents. The agents change their efforts because they expect the other
agent to send a signal that changes the non-deviator’s action in a way that
makes the new effort level optimal. This change in effort is what hurts the
deviator.5

4 Conclusion

The literature on competing mechanisms with multiple agents makes ad hoc
assumptions about the set of mechanisms that are feasible for the principals

5To give a slightly less abstract story about what this example is doing, imagine that
agents can take either high or low effort which generates outcomes for two different prin-
cipals. If either of the principals uses a high powered incentive scheme (uses action A)
then both agents want to exert high effort. Since it only takes one high powered incentive
scheme to induce the high effort, each principal would like to free ride on the incentive
scheme of the other, which explain the pair of asymmetric equilibria. The signalling game
between the principals and the agents has the property that when one of the principals
deviates and tries to adopt the low powered incentive scheme, the agents send messages
to the other principal which induce him to do so as well.
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- for example they may be allowed to use direct mechanisms in which agents
report information about their preferences.6 Though there is some support
for this approach in the case of common agency, it appears to be unjustified
with multiple agents for two reasons. First, equilibria with direct mecha-
nisms in which type is improperly defined are not robust to the possibility
that principals might allow agents to send more complex signals. Second,
there are equilibrium allocations that are supportable when principals can
use complex mechanisms which cannot be supported when principals are
restricted to naive direct mechanisms.
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