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Abstract
We study the optimal auction problem with participation costs in the

symmetric independent private values setting, where bidders know their
valuations when they make independent participation decisions. After
characterizing the optimal auction in terms of participation cuto¤s, we
provide an example where it is asymmetric. We then investigate when
the optimal auction will be symmetric/asymmetric and the nature of
possible asymmetries. We also show that, under some conditions, the
seller obtains her maximal pro�t in an (asymmetric) equilibrium of an
anonymous second price auction. In general, the seller can also use non-
anonymous auctions that resemble the ones that are actually observed
in practice.
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1 Introduction

In many auction environments bidders incur participation costs even when
they know their valuations for the object being sold or how much they will
bid: Bidders are sometimes required to purchase bid documents, to pre-qualify
or register for the auction, or to be present at the auction site, all of which
may be costly. In procurement and sales of public assets, a �bid� is often
more than a dollar amount; it must also include a detailed plan with the
requisite documentation. Procurement auctions usually require the posting of
bid bonds by all bidders before the auction and a performance bond by the
winner immediately after. There may be �xed costs associated with securing
bid bonds and making arrangements in advance for performance bonds, or for
�nancing in general in other environments.
In this paper, we study the optimal (pro�t-maximizing) auction problem

with costly participation in the standard symmetric independent private val-
ues setting.1 ;2 After the seller, who owns an indivisible object, announces her
selling mechanism, bidders independently decide whether to participate in it
or not.3 Bidders know their valuations when they make their decisions. We
model costly participation in a simple and stylized manner: Any bidder who
chooses to participate incurs a real resource cost that is independent of both
the seller�s mechanism and her planned action in it.
We show that the search for the optimal auction need not involve consid-

ering stochastic bidder participation decisions. Each bidder will participate
in the optimal auction i¤ her valuation is greater than a cuto¤ value. Given
an arbitrary pro�le of these (bidder-speci�c) participation cuto¤s, the optimal
allocation rule is a familiar one: The bidder with the highest valuation among
participants shall receive the object. The seller�s problem is therefore reduced
to �nding the optimal participation cuto¤s.
We give an example where the optimal auction is asymmetric in our sym-

metric environment, i.e., bidders have di¤erent cuto¤s.4 We then provide a

1Bidder asymmetries do not present any conceptual di¢ culties. We assume that bidders
are ex-ante symmetric to keep the notation simple, since we will later focus on properties
of optimal auctions in a symmetric environment.

2Our results are also applicable to the e¢ cient auction problem, as we will elaborate
later.

3Our use of the term �auction� therefore is more restrictive than in Myerson (1981):
We only allow mechanisms where bidders� participation decisions depend solely on their
own valuations. This constraint may be binding, unlike in the standard setup, due to the
existence of participation costs.

4Since the environment is symmetric, ex-ante randomization by the seller among auc-
tions with the same set of cuto¤s (with bidders� identities permuted) will restore pre-
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su¢ cient condition for this to happen in general. As an immediate corollary,
this result identi�es valuation distribution functions for which the optimal
auction is asymmetric independent of the magnitude of the participation cost
c and the number of bidders n. Note that in asymmetric auctions the ob-
ject is not necessarily assigned to the highest valuation bidder (who may be
a nonparticipant). The optimal auction does not have this type of allocative
ine¢ ciency when there are no participation costs.5 We then characterize distri-
bution functions for which the optimal auction is symmetric independent of c
and n. We also provide some results about the nature of possible asymmetries
that simplify the task of �nding the optimal cuto¤s.
We analyze the case of uniformly distributed valuations in detail, where it

is possible to give a complete characterization of optimal auctions by using our
previous results. In particular, depending on the support of the distribution,
the optimal auction will be either symmetric or it will have only two distinct
cuto¤s where the smaller one is used by only one of the bidders. An interesting
feature of the optimal auction is that whenever it is asymmetric the seller will
exclusively deal with a single bidder, i.e., �sole-source,� if the participation
cost is high enough.
The implementation of asymmetric optimal auctions is the �nal issue we

address. We show that, under some conditions, the seller will obtain her
maximal pro�t in an (asymmetric) equilibrium of a second price auction that
is anonymous, i.e., with rules that do not discriminate among bidders. In
general, the seller can use �rst or second price auctions where some bidders
are preferentially treated.6

In our model the cost incurred by participating bidders is independent of
the auction chosen by the seller. Yet, in many cases, this cost is endogenous; it
is the seller who requires pre-quali�cation, a detailed plan with documents, or
bid and performance bonds. However, there are good reasons for these types
of requirements that are outside of our standard models, like making sure that

randomization symmetry in a trivial sense. In this paper we study the auction that ends up
being used, which the seller might have chosen through such a randomization.

5We are referring to the �regular� case of increasing virtual valuation functions with
symmetric bidders. However, there is a di¤erence also with the asymmetric bidders case:
In our setup, the optimal auction does not necessarily assign the object to the bidder with
the highest virtual valuation either.

6Examples include government-run auctions where domestic/in-state/small businesses
are preferentially treated (see Section 3). We are not claiming that the objective of these
policies is pro�t maximization. The examples illustrate that discrimination among bidders
does happen, and that it may not be as detrimental to the seller�s pro�t as one may have
thought, even in a symmetric environment. McAfee and McMillan (1989) and Ayres and
Cramton (1996) make the latter point in asymmetric environments.
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the winner can and will do as she promises, and securing, or at least improving,
the integrity of the auction process.7 The participation cost in our setup can
be thought as the smallest amount necessary for running any auction as in
our textbook models, where doing so is preferable to the alternatives.8

We assume that, after the seller chooses her mechanism, bidders make their
participation decisions independently, and thus study a constrained problem.
The class of mechanisms allowed by this assumption, which includes standard
auctions and their variations, is large enough and has received considerable
interest both in academia and in practice. However, it leaves out sequential
participation mechanisms where a bidder�s participation decision can be con-
ditioned on participation decisions and the revealed valuations of the bidders
who are contacted earlier by the mechanism.9 Note that even when such mech-
anisms are available, auctions with simultaneous participation may be favored
because of transparency bene�ts, or due to the high cost of time delay, among
other factors.10

There are a few papers that use our setup where bidders know their valu-
ations when they make simultaneous costly participation decisions.11 Samuel-
son (1985) shows that both ex-ante total surplus and the seller�s revenue may
decline with the number of bidders n in symmetric equilibria of �rst price

7The last one may be critically important when an agent must run the auction for the
principal, which is the case for government procurement or sales of public assets. This issue
is also relevant when comparing auctions to private negotiations.

8Note that the seller would like the participation cost to be as small as possible in our
setup.

9Ehrman and Peters (1994) provide the following formalization: They assume that the
seller contacts the bidders in a pre-determined (by nature) sequence unobservable to bidders.
Each time the seller meets an additional bidder, she sends a costless binary signal revealing
only whether she is willing to negotiate with this bidder or not. After receiving this signal,
the bidder updates her belief on the valuations of the bidders who are already contacted by
the seller and then decides whether to incur the participation cost.
10For example, the general rule for government procurement in the US, as well as in many

other countries, is �full and open competition,�see the Federal Acquisition Regulation.
11There is another strand of literature where costly entry, or information acquisition,

decisions are made ex ante. See, among others, Matthews (1984), McAfee and McMillan
(1987), Harstad (1990), Tan (1992), Engelbrecht-Wiggans (1993), Levin and Smith (1994),
Persico (2000), and Bergeman and Valimaki (2002). Compte and Jehiel (2007) study dy-
namic formats, e.g., ascending price auctions, that allow bidders to observe the number of
competitors remaining when they make costly information acquisition decisions. In a similar
vein, McAfee and McMillan (1988) and Cremer et al. (2007) consider sequential (costly)
search mechanisms where the seller incurs a cost when she invites an additional bidder to
the mechanism. In all these papers, the players who make costly entry/search decisions
do not have any private information. In contrast, we consider an environment where each
bidder�s participation decision can be conditioned on her privately known valuation.
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auctions with reserve prices, which are chosen optimally (given the respective
criterion) for �xed n.12

Stegeman (1996) studies ex-ante e¢ cient auctions (maximizing social sur-
plus). He shows that the e¢ cient auction is characterized by participation
cuto¤s and provides an example where it is asymmetric. He also shows that
the second price auction always has an e¢ cient equilibrium, whereas the �rst
price auction has one i¤ the symmetric equilibrium of the second price auction
is e¢ cient. Our paper di¤ers from Stegeman�s (1996) in that we consider opti-
mal auctions, which necessitates an independent proof for the characterization
result in term of cuto¤s.13 More importantly, we investigate the conditions
under which the optimal auction will be symmetric, the nature of possible
asymmetries, and the implementation question.
At this juncture, we would like to point out that our results about the

properties of optimal cuto¤s are pertinent in the e¢ cient auction problem as
well. In particular, corresponding results for e¢ cient auctions can be obtained
via a simple substitution in our results, which we will identify after the formal
analysis. Therefore, our paper also provides a contribution in terms of e¢ cient
auctions, complementing Stegeman�s (1996).
Campbell (1998) gives a su¢ cient condition for existence of asymmetric

equilibria in second price auctions when there are two bidders. He shows that,
under some conditions, the bidders bene�t from coordinating on the most
asymmetric of these equilibria via a correlating device with publicly observable
signals, and that preplay communication will help even more.
Finally, we bene�ted signi�cantly from the methods used by a related paper

by Tan and Yilankaya (2006) who study equilibria of second price auctions and
provide su¢ cient conditions for uniqueness and multiplicity.
The rest of the paper is organized as follows: We study optimal auctions

in Section 2 and how to implement them in Section 3. All the proofs, except
that of Lemma 1, are in the Appendix.

12His �nding also applies to any symmetric and increasing equilibrium of any anonymous
auction where the highest bidder receives the object. Menezes and Monteiro (2000) and
Lu (2009) show that the auctions considered by Samuelson (1985) are optimal if the seller
is restricted to consider symmetric equilibria of anonymous auctions. Lu (2009) concludes
from this observation that the seller�s maximized revenue within this class of equilibria may
decline in n, pointing to the possibility that the unrestricted optimal auction is asymmetric.
13Transfers from bidders to the seller, which is of paramount importance for the optimal

auction problem, do not a¤ect the social surplus.
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2 Optimal Auctions

2.1 The Environment

We consider a symmetric independent private values environment. There is
a risk-neutral seller who wants to sell an indivisible object for which her val-
uation is zero. There are n � 2 risk-neutral potential buyers, or �bidders.�
Let vi denote the valuation of bidder i 2 N = f1; :::; ng. Bidders�valuations
are independently distributed according to the cumulative distribution func-
tion F (�) with continuously di¤erentiable and positive density f (�) on [vl; vh],
where 0 � vl < vh < 1. Bidders know their own valuations. All of this is
common knowledge. We assume throughout that the virtual valuation func-
tion, i.e., J(v) = v � 1�F (v)

f(v)
; is increasing.14 The seller�s problem is to choose

an auction mechanism (to which we assume she can commit) that maximizes
her expected pro�t in one of its Bayesian-Nash equilibria.15

We depart from this standard optimal auction problem in two ways. The
�rst is �costly participation.�Any bidder who chooses to participate in the
seller�s auction incurs a commonly known real resource cost of c 2 (0; vh).
Note that this cost is independent of both the particular auction chosen by
the seller and the bidder�s (planned) behavior in it. We also assume that
nonparticipating bidders neither receive the object nor make any payments.16

The second di¤erence is that we consider a restricted class of mechanisms in
that bidders make independent participation decisions. At the time of these
decisions, bidders already possess their private information, i.e., they know
their own valuations.
A few remarks are in order. We rule out agent-to-agent communication

with our independent participation assumption.17 We do not allow, for exam-
ple, the seller to communicate with only one of the bidders, and let her freely
learn the valuations of other bidders. Note that the lack of communication
among agents is a su¢ cient condition for our assumption that bidders behave

14Myerson (1981) shows how to dispense with this standard regularity assumption.
15In what follows we investigate the properties of the mechanism that is communicated

to the bidders which the seller may have chosen through an ex-ante randomization, see
Footnote 4.
16Stegeman (1996) calls this the �no passive reassignment rule.�Note that it may be seen

as a consequence of the costly participation issue we are addressing: Voluntarily receiving
the object (a premise we maintain throughout) negates the idea of nonparticipation.
17See McAfee and McMillan (1988) for a detailed and very useful discussion of these issues.

In their terminology, we restrict attention to principal-centered mechanisms (without any
agent-to-agent communication), just as they do.
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noncooperatively in the seller�s auction, which is a standard premise in the
optimal auction literature.18

The independent participation assumption does not preclude dynamic auc-
tions, such as English or Dutch formats, where participating bidders observe
the set of participants (or, more generally, some noisy signal about it), as long
as the (costly) participation decisions are made before the (costless) bidding
process starts. Note, however, that the seller does not gain anything by con-
sidering dynamic auctions of this kind. That would only introduce additional
(incentive) constraints to the problem in which bidders simultaneously make
participation and �bidding�decisions.19 Moreover, it turns out that the seller
does not lose anything either if bidders were to observe the set of participants
and update their beliefs about them: As we will discuss in Section 3, a sec-
ond price auction is optimal in our (unconstrained) problem, and since its
equilibrium is in dominant strategies, what the bidders know about the set of
participants is immaterial.

2.2 Optimal Auction up to Participation Cuto¤s

In this section we will show that the seller can restrict attention to those with
deterministic participation decisions when searching for optimal auctions.20

In particular, each bidder will participate in the optimal auction i¤ her valua-
tion is greater than her participation cuto¤. Once we �x these bidder-speci�c
cuto¤s the seller�s problem becomes identical to that in the standard envi-
ronment, i.e., c = 0, except the requirement that nonparticipating types do
not receive the object. Therefore, the solution is similar as well: The bidder
with the highest valuation among participants will receive the object (Lemma
1). After this characterization of the optimal allocation rule given arbitrary
participation cuto¤s, we investigate the optimal cuto¤s and present our main
results in Section 2.3.
Consider any (Bayesian-Nash) equilibrium of any auction that the seller

may choose. Since bidder i is risk-neutral, she cares only about her expected
probability of winning the object, denoted by Qi, and her expected payment,

18The seller obviously does not want the bidders to collude, everything else being constant,
but she would save in terms of participation costs if bidders were able to communicate freely
among themselves.
19Therefore, without any loss of generality (in terms of �nding the optimal auction), the

setup we consider can be represented as follows: The bidders simultaneously choose messages
from fNog [ [vl; vh], where No (denoting nonparticipation) is free and all other messages
cost c. The seller�s mechanism consists of assignment and transfer rules that map message
pro�les. Bidders who send No receive the object with probability zero.
20This is not necessarily true for arbitrary auctions. Optimality is crucial in our argument.
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denoted by Pi. Notice two di¤erences from the standard setup: Qi incor-
porates i�s probability of participating in the auction, denoted by �i; and Pi
incorporates the expected participation cost that i incurs. The equilibrium
expected payo¤ of type-vi bidder i (vi for short) can thus be written as

�i(vi) = Qi(vi)vi � Pi(vi). (1)

It must be the case that vi does not want to imitate the equilibrium behavior
of any v0i, which consists of v

0
i�s participation decision �i(v

0
i) as well as her

actions in the auction when she participates. Using standard arguments, this
implies that

�i(vi) = �i(vl) +

Z vi

vl

Qi(y)dy, (2)

and that Qi(�) is weakly increasing.21 ;22
However, in our setup, where bidders have full control of the participation

decisions that they make, we also need to make sure that vi does not have an
incentive to choose any participation probability, not only �i(v

0
i). This will

indeed be the case for the optimal auction for which all participation decisions
can be taken to be deterministic, without any loss of generality.
The seller�s expected pro�t (also revenue, since her valuation is zero) is

�s =
X
i2N
f
Z vh

vl

[J(vi)Qi(vi)� �i(vi)c]f(vi)dvi � �i(vl)g, (3)

where the term in braces is bidder i�s expected payment to the seller, calculated
by using (1), (2), and the fact that the participation cost is incurred by bidders,
but not received by the seller.
In the optimal auction, the lowest type of each bidder will obtain zero

equilibrium expected payo¤, i.e., �i(vl) = 0; 8i 2 N . Moreover, for each i,
since Qi (�) is weakly increasing, there exists a cuto¤ evi 2 [vl; vh] such that
Qi(vi) = 0 for vi < evi and Qi(vi) > 0 for vi > evi. It follows from (2) that
�i(vi) = 0 for vi � evi and �i(vi) > 0 for vi > evi. This in turn implies that
21Note that �i (�) is also weakly increasing, and it is increasing whenever Qi (�) > 0.
22Suppose that the seller�s auction is dynamic (e.g., English or Dutch formats) in the sense

that bidders �rst make their participation decisions and then bid after observing the set of
participants (or a signal about it) and updating their priors about other bidders. Condition
(2) is still necessary, as it is obtained by �averaging� the incentive constraints over all
possible signals that bidder i can observe in equilibrium. We do not need to characterize
the su¢ cient conditions, since they will be just additional constraints in the optimal auction
problem. However, as we will show in Section 3, they are nonbinding anyway.
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bidders�participation decisions will be deterministic for almost all types for
the optimal auction. To see this, �rst note that �i(vi) = 0 for all but a mea-
sure zero set of vi < evi: We have Qi(vi) = �i(vi) = 0 for vi < evi. If a
positive measure set of these types were participating in an auction, then the
seller can simply save the participation costs that must be incurred to induce
their participation without a¤ecting others�incentives.23 ;24 Secondly, we have
�i(vi) = 1 for all vi > evi, which follows from these types�optimal participa-
tion decisions: Since their overall payo¤ is strictly positive, their payo¤ from
participation must be strictly positive as well (notice that payo¤ from nonpar-
ticipation is zero). Combining these two steps, we conclude that bidder i will
participate in the optimal auction with probability one (respectively, zero) if
her valuation is greater (respectively, less) than evi 2 [vl; vh].25 Incorporating
these deterministic participation decisions and �i(vl) = 0; 8i 2 N into (3), we
have

�s =
X
i2N

Z vh

vl

J(vi)Qi(vi)f(vi)dvi � c
X
i2N
[1� F (evi)], (4)

with Qi(vi) = 0 for vi < evi. Let qi(v1; :::; vn) be i�s equilibrium probability of
winning the object when the valuations are (v1; :::; vn). Since

Qi(vi) =

Z 1

0

:::

Z 1

0

qi(v1; :::; vn)
Q
j 6=i
j2N

f(vj)dvj, (5)

23Suppose we modify the auction so that types of bidder i who participate but have zero
probability of receiving the object are not participating in the new one. There is no change
in Qi (�). Moreover, we can construct an allocation rule for the new auction that does not
change any Qj (�), j 6= i either, even when bidder i�s participation made a di¤erence to
other bidders. For instance, consider an auction where bidder 2 never receives the object,
bidder 1 receives the object if and only if bidder 2 participates, and all types of bidder 2
participate with probability � > 0. We modify this auction by excluding all types of bidder
2 and assigning the object to bidder 1 with probability �: Incentives for bidder 1 do not
change and the seller saves on the cost she must incur to induce bidder 2�s participation in
the old auction.
24In what follows we will let �i(vi) = 0 for all vi < evi. Clearly, this is without loss of

generality in terms of expected payo¤s of the bidders and the seller.
25Note that if it is not pro�table for vi to imitate any v0i (inclusive of �i(v

0
i) 2 f0; 1g), then

it will not be pro�table for vi to use a nondegenerate participation probability (and then
imitate the action of v0i in the auction), since this will yield an expected payo¤ which is just
a convex combination of what vi would receive if she were to imitate v0i and the payo¤ from
nonparticipation.
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we can rewrite the seller�s expected pro�t as

�s =

Z vh

vl

:::

Z vh

vl

[
X
i2N

J(vi)qi(v1; :::; vn)]
nQ
i=1

f(vi)dvi � c
X
i2N
[1� F (evi)]. (6)

It is useful to think the seller�s problem in two steps. We �rst �nd equilib-
rium winning probabilities that maximize the seller�s expected pro�t for �xed
cuto¤s.26 We then turn our attention to optimal cuto¤s in Section 2.3.
For the �rst step, consider arbitrary cuto¤s where virtual valuations are

nonnegative.27 The following notation will be useful throughout the paper.
Let v0 2 [vl; vh] be the smallest valuation for which the virtual valuation is
nonnegative. That is, if J(vl) < 0; then v0 2 (vl; vh) is given by J(v0) = 0; if
J(vl) � 0; then v0 = vl. (Note that J (�) is increasing and J(vh) = vh > 0.)
Given the cuto¤s, the seller�s problem is to maximize (6) with respect

to qi (�)�s subject to the constraints that these are probabilities, they indeed
imply the given cuto¤s, nonparticipating bidders neither obtain the object
nor a¤ect any participating bidder�s probability of obtaining the object, and
the induced expected winning probabilities are weakly increasing. That is,
given evi�s, qi(v1; :::; vn) (and the resulting Qi(vi)�s) must satisfy the following
constraints for all i 2 N , (v1; :::; vn) 2 [vl; vh]n, and vi; v0i 2 [vl; vh]:

� qi(v1; :::; vn) � 0 and
P

i2N qi(v1; :::; vn) � 1.

� qi(v1; :::; vn) = 0 for vi < evi and qi(v1; :::; vj; :::vn) = qi(v1; :::; v0j; :::vn) for
all j 2 N and vj; v0j < evj.

� Qi(vi) > 0 for vi > evi.28
� Qi(vi) � Qi(v0i) for vi > v0i.

Notice that the seller�s problem is identical to that of the standard optimal
auction setup (c = 0), except that participation cuto¤s of the bidders must be
respected.29 Maximizing (6) pointwise results in the object being assigned with

26Notice that equilibrium winning probabilities and cuto¤s are related: qi (�) determines
Qi (�) (see (5)), which in turn determines evi. Therefore, our search for qi (�)�s for �xed evi�s
is constrained to be among those that would imply these evi�s.
27Notice that this is indeed the case for optimal cuto¤s: The seller is better o¤ not selling

to negative virtual types.
28We also need Qi(vi) = 0 for vi < evi, but this is implied by the second constraint.
29Given cuto¤s, total participation cost incurred is �xed, and hence plays no role.
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positive probability only to bidders who have the highest virtual valuations,
and hence valuations, among participants.30

We have characterized the optimal auction up to the level of participation
cuto¤s, which we summarize next.

Lemma 1 In the optimal auction there exists a cuto¤ point for each bidder
such that she participates in the auction if and only if her valuation is greater
than her cuto¤, i.e., 8i 9evi � v0 such that �i(vi) = 0 (hence Qi(vi) = �i(vi) =
0) for vi < evi and �i(vi) = 1 for vi > evi. For each (v1; :::; vn) the equilibrium
winning probabilities satisfy:
i) If vj < evj 8j 2 N , then qi(v1; :::; vn) = 0 8i 2 N . If 9j s.t. vj > evj,

then
P

i2N qi(v1; :::; vn) = 1.
ii) qi(v1; :::; vn) > 0) vi � vj 8j 2 N s.t. vj � evj.

Remark 1 (Revenue Equivalence) Consider two auctions, say A and B, that,
in equilibrium, assign the object to the highest-valuation participant and have
the same participation cuto¤ for each bidder, i.e., evAi = evBi 8i 2 N (with
the associated cuto¤ rule in participation we discussed above), where expected
payo¤s of the marginal types are equal as well, i.e., �i(evAi ) = �i(evBi ) 8i 2 N .
The expected payo¤ of every type of every bidder, and hence that of the seller,
is the same in both auctions.

2.3 Optimal Participation Cuto¤s

We now turn our attention to optimal cuto¤s. For this purpose, we �rst express
the seller�s expected pro�t in terms of solely bidders� participation cuto¤s,
utilizing what we know about optimal auctions (Lemma 1). We show with an
example that the optimal auction may be asymmetric, i.e., not all bidders have
identical cuto¤s in our symmetric environment. We then identify a su¢ cient
condition for the optimal auction to be asymmetric given the number of bidders
n, the participation cost c, and the distribution function of the valuations F (�)
(Proposition 1). As a corollary, this result gives a condition on F (�) under
which the optimal auction will be asymmetric for all c and n. We next provide
a characterization result for the symmetry of the optimal auction for all c
and n (Proposition 2). Finally, we present some results about the nature
of possible asymmetries that will also simplify the task of �nding optimal
cuto¤s (Proposition 3). Taken together, these results enable us to completely

30If bidders are ex-ante asymmetric, the object will still be assigned to the bidder with
the highest virtual valuation (who may not have the highest valuation anymore).
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characterize optimal auctions in some cases, e.g., when bidders�valuations are
uniformly distributed.
We start with indexing the set of bidders with respect to their participation

cuto¤s so that
v0 � ev1 � ev2 � ::: � evn � vh. (7)

We adopt the convention that evn+1 = vh. Recall that in the optimal auction
the object is assigned to the bidder who has the highest valuation among
participants (we can ignore ties). Consider an arbitrary bidder i with valuation
v who is a participant, i.e., with v > evi. For her to receive the object in the
optimal auction, all other participating bidders must have valuations less than
v. This means that bidders whose cuto¤s are lower than v need to have
valuations lower than v. Bidders with cuto¤s higher than v on the other hand,
need to have valuations lower than their respective cuto¤s, not v. Therefore,
bidder i�s probability of receiving the object in the optimal auction is given by

Qi(v) = F (v)
j�1

n+1Q
k=j+1

F (evk) if evj � v � evj+1 (8)

for v > evi, with Qi(v) = 0 for v < evi. Notice that, for any pair of bidders, the
probability of winning functions di¤er at only those valuations for which only
one of them is a participant: For any i and j with evi > evj, Qi(v) = Qj(v) for
v > evi or v < evj, and Qj(v) > Qi(v) = 0 for v 2 (evj; evi).
Using these probability of winning functions and (4), the expected pro�t

of the seller can be expressed solely as a function of the cuto¤s (suppressing
the dependence on exogenous variables):

�s(ev1; :::; evn) =X
i2N

i

Z evi+1
evi J(v)[F (v)i�1

n+1Q
k=i+1

F (evk)]f (v) dv� cX
i2N
(1�F (evi)).

(9)
The seller�s problem is thus reduced to choosing a cuto¤ for each bidder to
maximize �s(ev1; :::evn), which is continuous, subject to the ranking constraint of
the cuto¤s, i.e., (7), de�ning a nonempty and compact constraint set. There-
fore, a solution exists.
Let ev�i denote the optimal evi. Note that the maximized expected revenue

of the seller increases as c decreases, since the seller can choose the same
cuto¤s and claim the participation cost savings as direct revenue.31 Similarly,
an exogenous increase in n weakly increases the seller�s maximized expected

31Note that at least one of the bidders will participate in the optimal auction with positive
probability, i.e., at least one of the cuto¤s will be less than vh.
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revenue, since the seller has the option to restrain newcomers�participation in
the auction (by setting their cuto¤s as vh).32

If there are no participation costs, the optimal auction is symmetric: The
object is assigned to the bidder with the highest valuation as long as her virtual
valuation is positive, i.e., ev�i = v0 8i 2 N (Myerson, 1981).
In our setup where participation is costly the seller�s pro�t maximization

problem always admits a symmetric critical point, i.e., the �rst order necessary
conditions for this problem are satis�ed at evi = vs 8i 2 N , where

J(vs)F (vs)n�1 = c. (10)

This condition has a straightforward interpretation. Suppose all the bidders
have cuto¤ vs. Increasing the cuto¤ of one of the bidders slightly will decrease
the gross pro�t of the seller by J(vs)F (vs)n�1 (losing J(vs), the virtual val-
uation, when all the others�valuations are less than vs, i.e., with probability
F (vs)n�1), while saving her c, the marginal cost of inducing participation.33

The symmetric cuto¤ is uniquely determined, and we have v0 < vs <
vh. The existence or the uniqueness of this symmetric critical point does not
depend on the data of the problem, namely F (�), c, and n, but, naturally, its
magnitude does.
If the seller is restricted to use a symmetric auction, it is easy to show thatevi = vs 8i 2 N , is indeed the solution to her pro�t maximization problem.34

For this reason, we call vs the optimal symmetric cuto¤.
We want to remark at this point the connection between the optimal and ef-

�cient (maximizing ex-ante social surplus) auction problems. Stegeman (1996)
shows that the e¢ cient auction in this setup is characterized by participation
cuto¤s (with the associated allocation rule) as well. Given this observation,
the e¢ cient auction problem also reduces to the problem we are studying, once
we replace J(v) (virtual valuations, or �marginal revenue�) by v (valuations,
or �marginal social surplus�) in (9), and hence in (10). Therefore, with only
this substitution, our results about optimal auctions are directly applicable to
e¢ cient auctions.35

32As we will show in Section 2.4, sometimes there will be �sole-sourcing� in the optimal
auction, and increasing n will have no impact on the seller�s revenue.
33These are normalized (by dividing by the density) marginal gross pro�t and the marginal

cost. The marginal pro�t is given by �J(vs)F (vs)n�1f(vs) + cf(vs):
34This does not mean that the seller cannot do better in an asymmetric equilibrium of an

anonymous auction. See Section 3.
35Naturally, v0 becomes irrelevant in this case, and so should be replaced by vl in the

results.
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Returning to our problem, we �rst show that the optimal auction may be
asymmetric:

Example 1 There are two bidders whose valuations are distributed according
to F (v) = v4 on [0; 1]; and the participation cost is 0:4.

It turns out that, for this example, the optimal auction is asymmetric. The
optimal cuto¤s are ev�1 � :816 and ev�2 � :92; yielding a pro�t of :2525 for the
seller. If we impose symmetry, however, the seller�s pro�t decreases to :25155
(with the optimal symmetric cuto¤ vs � :868). Notice the allocative ine¢ -
ciency of the optimal auction that we mentioned before. When the valuations
of both bidders are between ev�1 and ev�2, the �rst bidder will obtain the object
even when her valuation is less than that of the second bidder.

45'
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We use Figure 1 not only to explain why the optimal auction is asymmetric
for this example, but also to provide some pictorial intuition for Proposition
1 below and its proof. Let �i denote the marginal pro�t of the seller with
respect to bidder i�s cuto¤, i.e., �i =

@�s(ev1;ev2)
@evi , i = 1; 2. First order necessary

conditions for optimality are satis�ed, i.e., �1 = �2 = 0, at two points: (vs; vs)
and (ev�1; ev�2). However, (vs; vs) is not even a local maximizer. At any point to
the right (respectively, left) of the �1 = 0 curve, the seller can increase her
pro�t by decreasing (respectively, increasing) the �rst bidder�s cuto¤ while
keeping the second bidder�s cuto¤ constant.36 Similar arguments apply for the
second bidder�s cuto¤ above and below the �2 = 0 curve. Therefore, starting
from the optimal symmetric cuto¤s (vs; vs), decreasing ev1 while simultaneously
increasing ev2 by an appropriate amount, i.e., moving inside the lens-shaped
area, will increase the seller�s pro�t.37

From this discussion, it is clear that the existence of such a lens-shaped
area emanating from (vs; vs) in the admissible side of the constraint boundary
(where ev2 � ev1) is a su¢ cient condition for the suboptimality of symmetric
cuto¤s, which gives us our next result.

Proposition 1 (ASYMMETRY) If J(v)
F (v)

is decreasing at the optimal sym-
metric cuto¤ vs, then the optimal auction is asymmetric. Moreover, for every
k 2 f1; 2; :::; n � 1g, there is an auction where k bidders use one cuto¤ (evi =
a < vs for i = 1; :::; k) and the remaining bidders use another one (evi = b > vs
for i = k+1; :::; n) that gives the seller higher pro�t than the optimal symmetric
auction (evi = vs 8i 2 N).
We prove Proposition 1 (in the Appendix) by showing that, starting from

the optimal symmetric cuto¤s, the seller can increase her pro�ts by decreasing
an arbitrary group of bidders�cuto¤s and increasing the cuto¤s of the comple-
mentary set of bidders, as long as J(v)

F (v)
is decreasing. In other words, if J(v)

F (v)
is

decreasing at vs, then a lens-shaped improvement area, like that of Figure 1,
will exist for any partition of bidders into two groups.
In order to gain some understanding of why asymmetry may be bene�cial

to the seller, consider the optimal symmetric cuto¤s in the two-bidders case.
Suppose we decrease the �rst bidder�s cuto¤ slightly and increase the second
bidder�s cuto¤ so that the total expected participation cost incurred remains
the same. This has an obvious negative e¤ect: The object is sometimes sold
to a low (virtual) valuation bidder 1 instead of a high valuation bidder 2

36Note that we have �11 < 0, using the standard notation for second derivatives.
37The optimal cuto¤s are indeed given by (ev�1 ; ev�2), where the second order su¢ cient con-

ditions are satis�ed, as can also be seen in Figure 1.
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(when she is not participating). However, there is also a positive e¤ect: Total
probability of selling the object increases.38 Our su¢ cient condition ensures
that this positive e¤ect outweighs the negative one.
It seems that these intuitive arguments should also work when c = 0, but

we know that the optimal auction is symmetric in this case. What is special
about positive c? When c = 0 the virtual valuation is zero at the optimal
symmetric cuto¤.39 Therefore, decreasing a bidder�s cuto¤ results in selling
the object to her even when her virtual valuation is negative, reducing the
seller�s revenue, see (6). In contrast, the virtual valuation for the bidder with
the lower cuto¤ is still positive when c > 0.
An asymmetric auction does not always assign the object to the bidder

with the highest valuation, causing allocative ine¢ ciency. If there are no
participation costs, the optimal auction will have this type of ine¢ ciency only
when bidders are heterogenous. However, even in that case the object is always
assigned to the bidder with the highest virtual valuation, unlike the solution
in our setup.40

When there are more than two bidders, Proposition 1 goes further than
identifying a su¢ cient condition for the suboptimality of symmetric cuto¤s. It
shows that, whenever this condition is satis�ed, even an arbitrary classi�cation
of the bidders into only two groups and implementation of a di¤erent cuto¤ for
each group would improve over the optimal symmetric outcome. We �nd this
observation relevant for analyzing the performance of auctions where one group
of bidders receives preferential treatment from the seller. For example, domes-
tic �rms are sometimes given a price preference in government procurement
(see McAfee and McMillan, 1989), and minority and women owned businesses
received bidding credits and guaranteed �nancing in some FCC auctions (see
Ayres and Cramton, 1996). We will come back to the preferential treatment
issue when we discuss implementing asymmetric auctions in Section 3.
Our su¢ cient condition for the asymmetry of the optimal auction depends

on both the magnitude of the participation cost and the number of bidders
through the optimal symmetric cuto¤ vs. For certain distribution functions
(for example, uniform with vh < 2vl) this su¢ cient condition will always be

38Let ev1 < vs < ev2, where 2F (vs) = F (ev1) + F (ev2). The probability of making a sale is
1�F (vs)2 when the cuto¤s are symmetric, and 1�F (ev1)F (ev2) when they are asymmetric.
The latter is larger than the former, since F (vs)2�F (ev1)F (ev2) = F (vs)2�F (ev1)(2F (vs)�
F (ev1)) = (F (vs)� F (ev1))2 > 0.
39This is the case unless v0 = vl (with J(vl) > 0) making it impossible to even create the

type of asymmetry we are considering.
40We are considering the regular case of increasing virtual valuation functions.
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satis�ed, i.e., the optimal auction will be asymmetric regardless of the partic-
ipation cost level and the number of bidders.41

Corollary 1 If J(v)
F (v)

is decreasing on (vl; vh), then the optimal auction is asym-
metric (independent of c and n).

The optimal auction is symmetric when c = 0, with the cuto¤ v0. The
corollary identi�es cases where even an in�nitesimally small c causes the op-
timal auction to be asymmetric. However, the asymmetry will also be small:
As c approaches to 0, bidders�optimal cuto¤s all approach to v0. In other
words, even though there is no �continuity�in the symmetry property of the
optimal auction at c = 0, there is continuity in terms of outcomes, and hence
the seller�s pro�t.
We next turn our attention to conditions under which the optimal auction

is symmetric.

Proposition 2 (SYMMETRY) The optimal auction is symmetric for all
c (and n), i.e., ev�i = vs 8i 2 N , if and only if J(v)

F (v)
is weakly increasing on

(v0; vh).

The necessity part of the result is a consequence of Proposition 1. If J(v)
F (v)

is not weakly increasing at some v0 in (v0; vh), then, for any given number of
bidders, we can �nd a participation cost level for which the optimal symmet-
ric cuto¤ vs equals to v0, so that the su¢ cient condition of Proposition 1 is
satis�ed, i.e., the optimal auction is asymmetric.42

The main interest in Proposition 2 stems from the su¢ ciency part. If
the distribution of valuations is such that J(v)

F (v)
is weakly increasing on the

relevant range, then the optimal auction is symmetric and hence completely
characterized: Each bidder has the same participation cuto¤ vs, as de�ned
in (10). For this result, obviously, it is not enough to consider only local
improvements around vs. In order to gain some understanding for the result
and the condition, consider the two bidders case with asymmetric cuto¤s, i.e.,ev1 < ev2. Suppose the seller increases ev1 and decreases ev2 slightly in such a
way that total participation cost incurred stays the same. As a result of these
changes in the cuto¤s, the seller�s pro�t from bidder 1 (net of the participation

41Since v0 < vs < vh, we need
J(v)
F (v) to be decreasing only on (v0; vh) for this result.

However, when v0 > vl,
J(v)
F (v) cannot be decreasing on (v0; vh) (since

J(v0)
F (v0)

= 0 and J(vh)
F (vh)

=

vh), so this case is irrelevant.
42We can see from the de�nition of vs in (10) that vs is a continuous and increasing

function of c (for any given n), where vs ! v0 as c! 0 and vs ! vh as c! vh.
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cost) decreases by J(ev1)F (ev2) + R ev2ev1 J(v)f(v)dv, where the �rst term arises
from increasing ev1 slightly and the second term is the result of types in (ev1; ev2)
receiving the object with a lower probability due to a decrease in ev2. This
loss is bounded above by J(ev1)F (ev2) + J(ev2)[F (ev2) � F (ev1)]. On the other
hand, the pro�t from bidder 2 (again, net of the participation cost) increases
by J(ev2)F (ev2) due to the decrease in ev2. Therefore, the seller�s pro�t will
increase if J(ev2)F (ev1)� J(ev1)F (ev2) � 0, or J(ev2)

F (ev2) � J(ev1)
F (ev1) .

Remark 2 For distribution functions that satisfy the monotone hazard rate
condition (1�F (v)

f(v)
is decreasing), if v

F (v)
is increasing, then so is J(v)

F (v)
. Therefore,

if vl = 0, F (v) is concave and satis�es the monotone hazard rate condition,
then the optimal auction will be symmetric.

We next present two results about the nature of (possible) asymmetries
in the optimal auction. First, we show that, when the su¢ cient condition
for the asymmetry of the optimal auction in Corollary 1 is satis�ed, only one
bidder will have the lowest cuto¤. Second, we identify a class of distribution
functions for which the optimal auction is either symmetric or uses only two
cuto¤s. Notice that both of these results are independent of the number of
bidders and the magnitude of the participation cost, and they simplify the
task of �nding the optimal auction considerably whenever they apply.

Proposition 3 i) If J(v)
F (v)

is decreasing on (vl; vh), then in the optimal auction
only one bidder has the lowest cuto¤, i.e., ev�i > ev�1 for all i 2 f2; :::; ng.
ii) If J 0(v)F (v)

f(v)
is weakly increasing on (v0; vh), then the optimal auction

has at most two distinct cuto¤s.

The proof of part (i) parallels that of Proposition 1: If J(v)
F (v)

is decreasing
and two or more bidders are using the lowest cuto¤, the seller can increase
her pro�t by splitting these bidders into two arbitrary groups and setting a
di¤erent cuto¤ for each group. In a similar fashion, we can �nd conditions for
optimality of separating or bunching di¤erent bidders who are using cuto¤s
other than the lowest one. There is one additional complication: Changing the
lowest cuto¤ a¤ects the seller�s rent extraction only from bidders using that
cuto¤, since it does not alter the expected probability of winning for the other
bidders. However, changing a higher cuto¤ also a¤ects the seller�s revenue
from bidders using lower cuto¤s than the modi�ed one. Therefore, conditions
regarding bunching bidders at higher cuto¤s are di¤erent from conditions for
bunching them at the lowest cuto¤: Having J 0 (v) F (v)

f(v)
weakly increasing is

su¢ cient to rule out the optimality of separating bidders into three or more
groups with di¤erent cuto¤s.
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2.4 Uniform Distributions

In this section, using our previous results, we characterize optimal auctions
when bidders�valuations are uniformly distributed and provide some compar-
ative statics results.
We have n � 2 bidders whose valuations are uniformly distributed on

[vl; vh], where 0 � vl < vh, i.e., F (v) =
v�vl
vh�vl . The participation cost is

c 2 (0; vh). The virtual valuation function is given by J (v) = 2v � vh, which
is increasing. If 2vl � vh � 0, then v0 = vl; otherwise v0 = vh

2
. When c = 0,

the object is assigned to the highest valuation bidder in the optimal auction
as long as her valuation is higher than v0.
We �rst observe that J 0 (v) F (v)

f(v)
= 2 (v � vl) is increasing. Therefore, at

most two distinct cuto¤s will be used in the optimal auction (Proposition 3ii).
We next note that J(v)

F (v)
= (2v�vh)(vh�vl)

v�vl is either weakly increasing (if vh � 2vl)
or decreasing (if vh < 2vl) on the entire support [vl; vh]. So, if vh � 2vl, then it
follows from Proposition 2 that the optimal auction is symmetric. The optimal
cuto¤s are given by ev�1 = ::: = ev�n = vs, where

J(vs)F (vs)n�1 = (2vs � vh)(
vs � vl
vh � vl

)n�1 = c.

If vh < 2vl, then the optimal auction is asymmetric (Corollary 1) with
exactly two cuto¤s. Moreover, only one bidder will have the lower cuto¤
(Proposition 3i). Using these, solving the seller�s problem becomes a straight-
forward exercise. We provide the solution here for completeness. Let ev�1 = a
and ev�2 = ::: = ev�n = b > a.
� If c � minfvh � vl; (2vl�vh)

n

(vh�vl)n�1g, then a = vl and b = vl + c
1
n (vh � vl)

n�1
n .

� If vh � vl < c < 2vl � vh, then a = vl and b = vh.

� If (2vl�vh)n
(vh�vl)n�1 < c < 3vh � 4vl, then a satis�es (2a � vh)(

a+vl�vh
vh�vl )

n�1 = c
and b = a+ 2vl � vh.

� If c � maxf2vl � vh; 3vh � 4vlg, then a = vh+c
2
and b = vh.43

Note that the optimal cuto¤s are weakly increasing in n. If vh � 2vl,
then the optimal auction is symmetric, and as n increases the seller chooses
to restrict participation symmetrically, i.e., vs is increasing in n with vs ! vh

43Note that when vh < 2vl we have, vh � vl < (2vl�vh)n
(vh�vl)n�1 , vh � vl < 2vl � vh ,

(2vl�vh)n
(vh�vl)n�1 > 3vh � 4vl , 2vl � vh > 3vh � 4vl:
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as n ! 1. If vh < 2vl, both a and b are weakly increasing in n, and b ! vh
as n!1.
The optimal cuto¤s are also weakly increasing in c. All cuto¤s approach

v0 as c! 0 and vh as c! vh.
Dealing exclusively with one bidder, or �sole-sourcing,�is a commonly ob-

served phenomenon in government procurement. In our setting, sole source
contracting emerges as an optimal response to high participation costs in cer-
tain cases: Whenever the optimal auction is asymmetric, the seller deals with
one of the bidders exclusively when the participation cost is high enough. Ob-
serve that this threshold cost level, and hence whether sole-sourcing is optimal
or not, is independent of the number of bidders.

3 Implementing the Optimal Auction

Our objective in this section is to show that using common auction formats,
augmented with �familiar� instruments or variations, can be optimal for the
seller.44 This task is trivial if the optimal auction is symmetric, i.e., each bidder
has the same cuto¤ vs, de�ned in (10). The standard auctions, e.g., �rst
and second price auctions (FPA and SPA, respectively), with appropriately
chosen reserve price and/or entry fee will be optimal. To see this, let r denote
the reserve price and ce e¤ective participation cost, i.e., ce is the sum of the
participation cost c and the entry fee (which could be negative, implying an
entry subsidy). Suppose r and ce satisfy the following equation:

(vs � r)F (vs)n�1 = ce. (11)

Both FPA and SPA, with r and ce satisfying (11), are optimal, since each has
a symmetric equilibrium where all bidders use the participation cuto¤ vs (at
which their expected payo¤s are zero) and their bids are increasing in their
valuations, implying that the highest-valuation participant receives the object.
Our results concerning second price auctions are valid also for English

auctions as long as bidders make the (costly) participation decision prior to
the start of bid calling, which is assumed to be costless: Participating bidders
will bid their valuations in all (undominated) equilibria regardless of what they
observe about the set of participants.

44We will not be concerned with �strong implementation�in what follows. So, we call an
auction form optimal if the seller obtains her maximal pro�t in one (as opposed to all) of
its (Bayesian-Nash) equilibria.

19



The seller can accomplish her goal in a simple way that also works when
the optimal auction is asymmetric. Consider a SPA where each bidder has an
individualized reserve price given by her optimal cuto¤(only bids exceeding her
reserve price are allowable), and an entry subsidy of c is provided to any bidder
who submits an allowable bid, i.e., the e¤ective participation cost is zero.
There is an equilibrium in dominant strategies where bidders participate (and
bid their valuations) i¤their valuations are greater than their respective reserve
prices. This gives the seller her maximal pro�t, since the object is assigned
to the highest-valuation participant and bidders use the optimal cuto¤s where
their expected payo¤s are zero.
We nevertheless believe that further investigation of implementing asym-

metric optimal cuto¤s is a worthwhile endeavor for two reasons. First, the
above auction is not anonymous, i.e., the bidders are not treated identically
by its rules. Second, even when non-anonymous auctions are used in prac-
tice (we provide a few examples below), bidder-speci�c reserve prices have
never been employed, to the best of our knowledge. In what follows, we will
�rst show that under some conditions the seller can obtain her maximal pro�t
by using an anonymous auction. We will then discuss some non-anonymous
auctions that resemble the ones that are actually observed in practice.

3.1 Anonymous Second Price Auctions

There may be multiple equilibria (in undominated strategies) in SPAs with
costly participation even in the symmetric independent private values envi-
ronment we are considering.45 In any equilibrium in undominated strategies,
bidders employ cuto¤ rules in participation and bid their valuations whenever
they submit a bid. There is always a symmetric equilibrium where the cuto¤s
used are all identical, but there may be asymmetric equilibria as well. There-
fore, it may be possible for the seller to achieve her optimal pro�t level in an
asymmetric equilibrium of an anonymous SPA. To demonstrate this point, we
return to Example 1, where there are two bidders, F (v) = v4 on [0; 1], and
c = 0:4. The optimal auction is asymmetric, with ev�1 � :816 and ev�2 � :92.
Now, consider a SPA with reserve price r � :598 and e¤ective participation
cost ce � :156 (there is an entry subsidy). There is an equilibrium where one
of the bidders participate i¤ her valuation is greater than :816, the other use
:92 as her cuto¤, and both bid their valuations whenever they participate.46 In

45See Campbell (1998) and Tan and Yilankaya (2006) for conditions under which this
would happen.
46There is also a symmetric equilibrium which gives the seller a lower pro�t.
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this equilibrium, the highest-valuation participant receives the object. In ad-
dition, the expected payo¤s of bidders are zero at their respective cuto¤s, since
these are determined by indi¤erence (to participation) conditions. Therefore,
the seller obtains her optimal pro�t.
This example can be generalized as follows:

Proposition 4 Suppose that the optimal auction has two cuto¤s, and that
the monotone hazard rate condition is satis�ed (1�F (v)

f(v)
is decreasing). An

anonymous second price auction (with appropriately chosen reserve price and
e¤ective participation cost) has an equilibrium in undominated strategies that
is optimal for the seller.

Two cuto¤ requirement is obviously an important restriction.47 However,
we know that under some conditions the optimal auction will indeed have
at most two distinct cuto¤s (Proposition 3ii provides a su¢ cient condition).
Moreover, whenever our su¢ cient condition for the asymmetry of the optimal
auction is satis�ed, the seller needs to implement only two distinct cuto¤s to
improve over the optimal symmetric cuto¤ vs (Proposition 1), which can again
be accomplished by using an anonymous SPA.48

We use the optimality of the cuto¤s and the monotone hazard rate condi-
tion to make sure that the reserve price is nonnegative. If we do not impose
this restriction (a negative reserve price implies that a bidder gets a subsidy
if she is the only participant), then no assumptions are needed: Virtually all
arbitrary pairs of cuto¤s are equilibrium cuto¤s for some anonymous second
price auction.49

3.2 Di¤erential E¤ective Participation Costs

Not all bidders incur the same participation cost in all auctions, and sometimes
this happens by the design of the seller. One obvious way of doing this is by
charging bidders di¤erent entry fees. There are also indirect ways. The seller
may provide guaranteed �nancing for some bidders, thus saving them the �xed
costs associated with credit arrangements. This was done, for example, in the
FCC spectrum auctions; see, e.g., Ayres and Cramton (1996). Also, the rules

47For example, when there are three bidders, F (v) = v4 on [0; 1], and c = 0:327, the
optimal auction has three distinct cuto¤s and cannot be implemented using an anonymous
SPA with any r and ce pair.
48The proof of this result is contained in our proof of Proposition 4 in the Appendix.
49The only exception is if the lower cuto¤ is vl and two or more bidders are supposed

to use it. Note that this will never be optimal. (See the proof of Proposition 4 in the
Appendix.)
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of the auction may be such that some bidders face higher participation costs.
For example, participation costs of foreign �rms are sometimes increased in
government procurement by imposing residency requirements, giving a very
tight deadline for submission of bids, etc.; see, e.g., McAfee and McMillan
(1989).
If the seller can induce di¤erential e¤ective participation costs, then a SPA

or FPA will be optimal for the seller. We demonstrate these for the two-bidders
case for expositional simplicity. Let ev�1 be the cuto¤ of bidder 1 and ev�2 > ev�1
that of bidder 2 in the optimal auction. Consider the SPA with r = ev�1, ce1 = 0,
and ce2 =

R ev�2ev�1 F (v)dv, where cei is the e¤ective participation cost of bidder i. It
is a dominant strategy for the �rst bidder to participate and bid her valuation
i¤ her valuation is greater than ev�1. Given this, the second bidder�s expected
payo¤ (for v2 > ev�1) if she participates and bids her valuation is

(v2 � ev�1)F (ev�1) + Z v2

ev�1 (v2 � v)dF (v)� c
e
2 =

Z v2

ev�1 F (v)dv � c
e
2.

Note that ce2 is chosen in such a way that bidder 2 participates (and bids her
valuation) i¤ her valuation is greater than ev�2. Therefore, the seller obtains her
maximal pro�t.50

The seller can also achieve her goal by using the FPA with r = ev�1, ce1 = 0,
and ce2 =

R ev�2ev�1 F (ev�2)dv, since there is an equilibrium of this auction where i
uses ev�i as her cuto¤ (at which her expected payo¤ is zero) and both bidders
use the same strictly increasing bid function for types greater than ev�2, so that
the highest-valuation participant receives the object.51 To calculate the bid
functions, and to see where these e¤ective participation costs are coming from,
suppose such an equilibrium exists.52 Let Q�i (�) be i�s probability of winning
function in this equilibrium (and hence in the optimal auction). From the

50For arbitrary n, the same method would yield the SPA with r = ev�1 and cei =

i�1P
j=1

n+1Q
k=j+1
k 6=i

F (ev�k) ev�j+1Rev�j F (v)jdv, 8i 2 N .
51The equilibrium bid functions for arbitrary n are given by (14) as well, so the FPA with

r = ev�1 and cei = R ev�iev�1 Q�1(v)dv = i�1P
j=1

n+1Q
k=j+1

F (ev�k) ev�j+1Rev�j F (v)j�1dv, 8i 2 N; will be optimal.
52The bid functions we �nd below indeed constitute an equilibrium. The proof is identical

to that of the similar claim for standard FPAs.
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incentive compatibility conditions, we have, for v � ev�i ,
�i(v) = Q

�
i (v)v � Pi(v) =

Z v

ev�i Q
�
i (y)dy, (12)

where
Pi(v) = c

e
i + bi(v)Q

�
i (v) (13)

is i�s equilibrium expected payment and bi (�) is i�s equilibrium bid. Combining
(12) and (13),

bi(v) = v �
R vev�i Q�i (y)dy + cei

Q�i (v)
. (14)

Notice that b0i(v) > 0. Consider v > ev�2. We have Q�1(v) = Q�2(v) = F (v), since
both participate and the highest-valuation participant wins, and so b1(v) =
b2(v) if ce1 = 0 and c

e
2 =

R ev�2ev�1 Q�1(y)dy = R ev�2ev�1 F (ev�2)dv.
3.3 Bidding Preferences

In some government auctions certain groups of bidders are given explicit bid-
ding preferences. For example, the Buy American Act of the US (and compa-
rable provisions in other countries) gives bidding preferences to domestic �rms
over foreign �rms in government procurement. Similarly, small businesses or
in-state bidders are favored in some government auctions.
We now show that, in our setup, a FPA with bidding preferences could

be optimal for the seller. To see this, �rst note that in the optimal auction,
bidder i�s expected payment is given by, see (12) for example,

P �i (v) = Q
�
i (v)v �

Z v

ev�i Q
�
i (y)dy,

where Q�i (�) is i�s probability of winning function (given by (8) and the optimal
cuto¤s). Now consider the FPA with r = ev�1 and e¤ective bid functions, for all
i 2 N ,

�i (b) =

8>><>>:
ev�i � c

Q�i (v
�
i )

ev�1 � b < ev�i
b�

R bev�
i
Q�i (v)dv+c

Q�i (b)
ev�i � b � vh

b� (
R vhev�i Q�i (v)dv + c) vh < b

,

so that bidder i receives the object if her bid b is the highest bid (as long as
it is higher than the reserve price ev�1), but pays only her e¤ective bid �i (b)
rather than her actual bid b. There is an equilibrium of this auction where
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bidder i participates i¤ her valuation is higher than ev�i and all participating
bidders bid their valuations, giving the seller her maximal pro�t. To see that
this is indeed an equilibrium, suppose that all bidders but i are following their
equilibrium strategies. Bidding ev�i is better than bidding anything lower, since
the winning probability is higher (strictly, unless i = 1) and the e¤ective bid,
i.e., the payment conditional on winning, is the same. Similarly, bidding vh
is better than bidding anything higher, since the winning probability is con-
stant and the e¤ective bid is lower. Finally, note that i�s e¤ective bidding
function is constructed so that if she bids v0 2 [ev�i ; vh], then her expected prob-
ability of winning is Q�i (v

0) and her expected payment is P �i (v
0), i.e., we have

�i (v
0)Q�i (v

0) + c = P �i (v
0). Since the optimal auction is incentive compatible

and individually rational, it is a best-response for i to participate (and bid her
valuation) i¤ her valuation is higher than ev�i .
4 Appendix

Proof of Proposition 1. Fix an integer k such that 1 � k < n. Suppose
that the seller considers only two cuto¤ auctions, where the cuto¤ of the �rst
k bidders is a and the others�is b � a. The expected pro�t of the seller in
terms of a and b is

R(a; b) =

Z b

a

J(v)F (b)n�kdF (v)k +

Z vh

b

J(v)dF (v)n

�kc(1� F (a))� (n� k)c(1� F (b)).

Raa; Rbb < 0 at vs, using the standard notation for second derivatives. At
a = b = vs, using the fact that Ra = Rb = 0,

Raa
Rab

=
J 0(vs)F (vs) + (k � 1)J(vs)f(vs)

(n� k)J(vs)f(vs) > 0,

Rab
Rbb

=
kJ(vs)f(vs)

J 0(vs)F (vs) + (n� k � 1)J(vs)f(vs) > 0.

Therefore, if J(v)
F (v)

is strictly decreasing at vs; then

0 <
Raa
Rab

<
Rab
Rbb

, (15)

at a = b = vs, proving the result: We can �nd �1; �2 > 0 such that R(vs �
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�1; v
s + �2) > R(v

s; vs).53

Proof of Proposition 2. The necessity part is straightforward and
discussed in the text. For su¢ ciency, suppose to the contrary that J(v)

F (v)
is

weakly increasing on (v0; vh), but the optimal auction is asymmetric, so that
at least two distinct cuto¤s are chosen. Consider two smallest cuto¤s: a � v0
is used for bidders 1; :::;m, and b > a is used for bidders m + 1; :::;m0, where
1 � m < m0 � n. From the �rst order condition for a,

c� J(a)F (a)m�1F (b)m0�m
n+1Q

k=m0+1

F (ev�k) � 0, (16)

which is satis�ed with equality whenever a > vl.
From the �rst order condition with respect to b,

c� J(b)F (b)m0�1
n+1Q

k=m0+1

F (ev�k) + F (b)m0�m�1
n+1Q

k=m0+1

F (ev�k)Z b

a

J(v)dF (v)m � 0,

which is satis�ed with equality whenever b < vh. Combining these, we have

J(a)F (a)m�1F (b) � J(b)F (b)m �
Z b

a

J(v)dF (v)m

> J(b)F (b)m � J(b)(F (b)m � F (a)m)
= J(b)F (a)m,

or,
J(a)

F (a)
>
J(b)

F (b)
,

which is a contradiction.
Proof of Proposition 3. i) Suppose by contradiction that ev�1 is the

cuto¤ of the �rst m > 1 bidders in the optimal auction. Let k be an arbitrary
positive integer smaller than m. Consider the class of auctions, where the �rst
k cuto¤s are equal to a, the following m� k cuto¤s are equal to b, and cuto¤s
m+1 to n are given as ev�m+1 to ev�n, such that a < b < ev�m+1. We can write the
53At (vs; vs) we are on the boundary of the feasible set (b � a constraint), so showing

that the Hessian is not negative de�nite at (vs; vs) would not have been su¢ cient. The
inequalities in (15), which imply that the Hessian is not negative de�nite, but not implied
by it, ensure that there is an improvement by �moving towards the feasible side of the
boundary.�
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expected pro�t from such an auction as a function of a and b:

R(a; b) = k

Z b

a

J(v)[F (v)k�1F (b)m�k
n+1Q

j=m+1

F (ev�j )]f(v)dv
+m

Z ev�m+1
b

J(v)[F (v)m�1
n+1Q

j=m+1

F (ev�j )]f(v)dv
�kc(1� F (a))� (m� k)c(1� F (b))

+
nX

i=m+1

i

Z ev�i+1
ev�i J(v)[F (v)i�1

n+1Q
j=i+1

F (ev�j )]f(v)dv
�c

nX
i=m+1

(1� F (ev�i )).
The optimal auction must also be optimal within this class. Therefore, R(a; b)
is maximized at a = b = ev�1. First, note that, since J(v)

F (v)
is decreasing on [vl; vh],

the optimal auction is asymmetric (Corollary 1), i.e., ev�1 < vh. Note also thatev�1 > vl, since when a = b = vl, the �rst order condition for a is violated, i.e.,
Ra(vl; vl) = kf(vl)[c� J(vl)F (vl)m�1

n+1Q
j=m+1

F (ev�j )] > 0,
since F (vl) = 0 and f(vl) > 0. Hence, a = b = ev�1 could satisfy the �rst
order necessary conditions only at an interior point. Following the proof of
Proposition 1, note that, at a = b = ev�1, we have

Raa
Rab

=
J 0(v�1)F (v

�
1) + (k � 1)J(v�1)f(v�1)

(m� k)J(v�1)f(v�1)
> 0,

Rab
Rbb

=
kJ(v�1)f(v

�
1)

J 0(v�1)F (v
�
1) + (m� k � 1)J(v�1)f(v�1)

> 0.

Therefore, if J 0(ev�1)F (ev�1) < J(ev�1)f(ev�1), i.e., J(v)
F (v)

is decreasing at ev�1, then
Raa
Rab

< Rab
Rbb

at a = b = ev�1, implying that a = b = ev�1 cannot be optimal, a
contradiction.
ii) The proof is by contradiction. Suppose to the contrary that at least

three cuto¤s are used in the optimal auction, and consider three smallest of
these cuto¤s, vl � a1 < a2 < a3 � vh, where the number of bidders using
these cuto¤s are n1; n2, and n3 respectively. From the �rst order condition
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with respect to the cuto¤s of n1 bidders who use a1 � v0 (using (9)), we have

c� J (a1)F (a1)n1�1 F (a2)n2F (a3)n3
n+1Q

j=n1+n2+n3+1

F (ev�j ) � 0, (17)

with equality if a1 > vl.
From the �rst order condition with respect to the cuto¤s of bidders using

a2,

c� [J(a2)F (a2)n1 � n1
Z a2

a1

J(v)F (v)n1�1f(v)dv]

F (a2)
n2�1F (a3)

n3
n+1Q

j=n1+n2+n3+1

F (ev�j ) = 0,
or, after integration by parts,

c = [J (a1)F (a1)
n1 +

Z a2

a1

J 0(v)F (v)n1dv]F (a2)
n2�1F (a3)

n3
n+1Q

j=n1+n2+n3+1

F (ev�j ).
(18)

Finally, from the �rst order condition with respect to a3 bidders,

c� [J(a3)F (a3)n1+n2 � n1
Z a2

a1

J(v)F (v)n1�1F (a2)
n2f(v)dv �

(n1 + n2)

Z a3

a2

J(v)F (v)n1+n2�1f(v)dv]F (a3)
n3�1

n+1Q
j=n1+n2+n3+1

F (ev�j ) � 0,
or, after integration by parts,

c � [J (a1)F (a1)
n1 F (a2)

n2 +

Z a2

a1

J 0(v)F (v)n1F (a2)
n2dv +Z a3

a2

J 0(v)F (v)n1+n2dv]F (a3)
n3�1

n+1Q
j=n1+n2+n3+1

F (ev�j ). (19)

From (17) and (18),

J (a1)F (a1)
n1�1 [F (a2)� F (a1)] �

Z a2

a1

J 0(v)F (v)n1dv.

with equality if a1 > vl. Multiply both sides with F (a1). Now, either F (a1) =
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0 or the above inequality holds as an equality. In either case,

J (a1)F (a1)
n1 =

F (a1)

F (a2)� F (a1)

Z a2

a1

J 0(v)F (v)n1dv.

Adding
R a2
a1
J 0(v)F (v)n1dv to both sides,

J (a1)F (a1)
n1 +

Z a2

a1

J 0(v)F (v)n1dv =
F (a2)

F (a2)� F (a1)

Z a2

a1

J 0(v)F (v)n1dv.

(20)
Similarly, from (18) and (19), we have

J (a1)F (a1)
n1 +

Z a2

a1

J 0(v)F (v)n1dv

�
R a3
a2
J 0(v)F (v)n1+n2dv

F (a2)n2�1 [F (a3)� F (a2)]
>
F (a2)

R a3
a2
J 0(v)F (v)n1dv

F (a3)� F (a2)
,

where the strict inequality follows from the fact that F (v) is larger than F (a2)
on [a2; a3]. Together with equality (20), this last inequality yieldsR a2

a1
J 0(v)F (v)n1dv

F (a2)� F (a1)
>

R a3
a2
J 0(v)F (v)n1dv

F (a3)� F (a2)
,

or,
'(x2)� '(x1)
x2 � x1

>
'(x3)� '(x2)
x3 � x2

, (21)

where xi = F (ev�i ) and '(x) = R F�1(x)0
J 0(v)F (v)n1dv. Now notice that,

'0(x) =
J 0(F�1(x))F (F�1(x))n1

f(F�1(x))
> 0,

and '00(x) � 0 (since J 0(v)F (v)
f(v)

is weakly increasing), which contradicts (21).

Proof of Proposition 4. Suppose that in the optimal auction k bidders
have the cuto¤ a and n � k bidders have the cuto¤ b, where 1 � k � n � 1
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and vl � a < b � vh. The following �rst order conditions must be satis�ed:54

J(a)F (a)k�1F (b)n�k � c � 0, (22)

J(b)F (b)n�1 � F (b)n�k�1
Z b

a

J(v)dF (v)k � c � 0. (23)

Combining these, and using integration by parts,

J(a)F (a)k�1(F (b)� F (a)) �
Z b

a

J 0(v)F (v)kdv. (24)

We will show the existence of r � 0 and ce such that there is an equilibrium
of the second price auction with reserve price r and e¤ective participation cost
ce in which k (respectively, n � k) bidders participate i¤ their valuations are
greater than a (respectively, b), and all the participating bidders bid their
valuations.55 We only need to check (the rest is standard, see, for example,
Tan and Yilankaya, 2006) that k bidders who have a as their cuto¤s have
nonnegative (zero if a > vl) expected payo¤s when their valuations are a, and
that the remaining bidders have nonpositive (zero if b < vh) expected payo¤s
when their valuations are b:

(a� r)F (a)k�1F (b)n�k � ce � 0. (25)

F (b)n�k�1((b� r)F (a)k +
Z b

a

(b� v)dF (v)k)� ce � 0,

or, after using integration by parts,

F (b)n�k�1((a� r)F (a)k +
Z b

a

F (v)kdv)� ce � 0. (26)

(25), with equality if a > vl, and (26), with equality if b < vh, have an

54Note that these conditions must be satis�ed even in the constrained problem where two
distinct cuto¤s are used (with k bidders using the smaller one), and the only choice variables
are the magnitudes of these cuto¤s. Therefore, we are also proving the claim in the text that
an anonymous SPA can be used to improve over the optimal symmetric auction whenever
our su¢ cient condition for asymmetry is satis�ed (Proposition 1).
55The following will be true for r and ce we �nd: 0 � ce; r; ce + r � a.
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admissible solution in r and ce, i.e., with r � 0 i¤56

aF (a)k�1(F (b)� F (a)) �
Z b

a

F (v)kdv. (27)

Since a � J(a) and J 0(v) � 1 (because 1�F (v)
f(v)

is decreasing), (24) implies
(27), proving the result.
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