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Abstract

We explore the role of private information in bilateral matching and bargaining.
Our model is a replica of Mortensen and Wright (2002), but with private information.
A simple necessary and su¢ cient condition on the parameters of the model for existence
of equilibrium with entry is obtained. As in Mortensen and Wright (2002), we �nd that
equilibrium is unique and has the property that every meeting results in trade when the
discount rate is su¢ ciently small. There are also equilibria in which not every meeting
results in trade. All equilibria converge to perfect competition as the frictions of search
costs and discounting are removed. We �nd that private information may deter entry.
Because of matching externalities, this entry-deterring e¤ect of private information may
be welfare-enhancing.

Keywords: Matching and Bargaining, Search, Foundations for Perfect Competi-
tion, Two-sided Incomplete Information

JEL Classi�cation Numbers: C73, C78, D83.

1 Introduction

Can making information private increase e¢ ciency of a dynamic matching and bargaining
market? When a bargaining situation is taken as a stand-alone game, economists generally
believe that private information reduces e¢ ciency (following the classic result of Myerson
and Satterthwaite (1983)). This is because privately informed traders can demand the
terms of trade that are better than those they are willing to accept, which can result in no
trade even when trade would be mutually pro�table.

Many bargaining situations are not, however, stand-alone games but are imbedded in
markets. Think of a buyer of a house who is currently bargaining with the seller. Should
they not agree on the price, it is likely that each of them will pursue other options, with
values that are endogenously determined by demand and supply conditions of the market.

�We thank Arthur Robson, Mark Satterthwaite, and seminar participants at Northwestern, SFU and
UWO for helpful comments. We thank SSHRC for �nancial support made available through grants 12R27261
and 12R27788.
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Or think about the labor market where workers search for jobs and bargain with employers,
with their outside options once again determined by demand and supply.1

In dynamic matching and bargaining models, private information can have a role that
goes beyond the pure ine¢ ciency e¤ect in bargaining. In the environments of these models,
the cost of searching for a trading partner may be important. Traders who are not very
optimistic about their prospects in the market may abstain from entering altogether, cre-
ating a negative search externality on traders who are on the opposite side of the market
and a positive externality on those who are on the same side. Of course, the incentives to
enter are a¤ected by the expected payo¤s traders hope to obtain when they are matched
and bargain. So what happens in bargaining a¤ects the incentives to enter, which provides
a channel for the private information to a¤ect entry.

In order to explore these multiple roles of private information, we develop a dynamic
matching and bargaining model that has many features found in the labor search literature.
Our model is a private-information replica of the dynamic matching and bargaining model
of Gale (1987), enriched with a general Pissarides (2000)-style matching function as in
Mortensen and Wright (2002).

We study the steady state of a market with continuously in�owing cohorts of buyers and
sellers who are randomly matched pairwise and bargain under private information. The
in�owing buyers are heterogeneous in that buyers have valuations (and sellers have costs)
that are drawn from some distribution and remain unchanged through their lifetime. The
valuations and costs are private information.

As in most of the literature, we consider what we call the take-it-or-leave-it o¤er protocol
in which seller proposes an o¤er with probability �, and the buyer makes an o¤er with a
complementary probability.2 There are frictions due to costly search, at the rates �B for
buyers and �S for sellers, and time discounting at the rate r � 0.

We �nd that under private information equilibria have structure that is essentially the
same as under full information, as in Mortensen and Wright (2002). We �nd that even with
private information, there may be a full-trade equilibrium, the one in which every meeting
results in a trade.3 We derive a necessary and su¢ cient condition for existence of such an
equilibrium. In particular, again similar to Mortensen and Wright (2002), it exists provided
r is su¢ ciently small.

But there is also a usual possibility that not every meeting results in a trade. We show
however that this cannot happen if r is small, implying that the full-trade equilibrium is the
unique equilibrium of the model. The intuition for this is as follows. Recall that Myerson
and Satterthwaite (1983) show that the bargaining outcome is necessarily ine¢ cient in a
static model provided that the supports of type distributions of buyers and sellers overlap,

1Cognizant of this, labor economists have created a large literature on two-sided search in the labor
market, surveyed for example in Mortensen and Pissarides (1999) and more recently Rogerson, Shimer, and
Wright (2005). By focusing on a real-world matching and bargaining market, and in order to reproduce
empirical patterns, papers in this literature have incorporated realistic features of search costs and matching
technology. But most if not all of this literature assumes that bargaining transpires under full information.

2The take-it-or-leave-it o¤er protocol has also been in the focus of the vast literature on two-sided search
in the labor market, see for example the survey by Mortensen and Pissarides (1999). Atakan (2007) extend
the results of Riley and Zeckhauser (1983) and shows that even if traders are allowed to o¤er general
mechanisms, they can do not better than making take-it-or-leave-it o¤ers.

3The notion of a full-trade equilibrium is due to Satterthwaite and Shneyerov (2007).
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but can be e¢ cient if they do not overlap. We show that, although the setting is dynamic,
in the steady state it can essentially be reduced to a static setting in which the types are
replaced by what we call dynamic types.4 As the discount rate gets small, we show that
the support of the distribution of dynamic types shrinks, and that the presence of search
costs makes the supports non-overlapping for small r. Given this, it is plausible (and we
prove that this is in fact the case) that traders make o¤ers that are always accepted.

The uniqueness of equilibrium is important in its own sake, but it also allows us to com-
pare welfare under private and public information. We �nd that, with private information
and when r is small, there is less entry. Why this is so can be understood through the
following logic. In both models, there are marginal entrants: the lowest-value participating
buyers and the highest-cost participating sellers. These marginal entrants have di¤erent
incentives to enter depending on whether information is private or public. Under public
information, the traders ceteris paribus obtain positive rents when they propose, and ob-
tain zero rents when they accept o¤ers that must be only marginally good to them. Under
private information, the proposers obtain (again ceteris paribus) smaller rents when they
propose, but larger rents when they are on the responding side. But for the marginal en-
trants, in both models, the rents are zero when they are responding. This means that the
marginal entrants enjoy larger rents under full information. These rents make it attractive
for additional, less e¢ cient traders to enter the market.

Because of entry costs and matching externalities, this additional entry may not neces-
sarily be socially bene�cial. Our �nding is that social welfare may be larger if information
is private if the following two conditions are satis�ed. First, the elasticity of the matching
function with respect to the mass of one side of traders is higher than bargaining weight
of that side (� for sellers and 1� � for buyers). For concreteness, take sellers and suppose
their elasticity �S is higher than their bargaining weight. Then our second condition is that
the share of the total surplus attributable to buyers when r = 0, is large. This is intuitive
because sellers impose a positive externality on buyers, allowing the latter to match quicker.

Our uniqueness result has yet another implication. Convergence to perfect competition
has always been in the focus of the matching and bargaining literature, although most of it
until very recently has assumed full information. As a by-product of our uniqueness result,
we are also able to show convergence to perfect competition in our model.

We are also able to prove a necessary and su¢ cient condition for existence of a non-
trivial equilibrium (i.e. equilibrium with positive entry). The presence of search costs can
obviously lead to market breakdown if the costs are very large, but it is also interesting
to know how large these are. In our model, the arrival processes of buyers and sellers are
Poisson with arrival rates `B and `S respectively. (They are functions of �, the equilibrium
ratio of the mass of buyers to the mass of sellers in the market.) The average waiting
times are 1=`B and 1=`S , and the accumulated search cost until the next meting is equal
to K = �B=`B + �S=`S . The maximal gain from trading is 1 (the type supports are
assumed to be [0; 1]). So one can see that K < 1 is a necessary condition for the market
to be sustainable. Remarkably, we are also able to show that this condition is su¢ cient.
To our knowledge, this is the �rst general no-breakdown result for bilateral matching and

4The dynamic type of a buyer is the di¤erence between his valuation and the continuation value; the
dynamic type of a seller is the sum of his cost and continuation value. The notion of a dynamic type is due
to Satterthwaite and Shneyerov (2007).
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bargaining markets with search costs.
The structure of the paper is as follows. Section 2 introduces our model. Section 3

presents and discusses our results about existence and uniqueness of a full-trade equilibrium,
and its convergence to perfect competition. Section 4 states the general existence theorem
and outlines its proof. Section 5 contains welfare comparison to the full information model.
Section 6 reviews the related literature and provides some directions for future research.
The proofs of most results are in the Appendix.

2 The Model

The players of our model are potential buyers and potential sellers of a homogeneous,
indivisible good. Each buyer has a unit demand for the good, while each seller is able to
produce one unit of the good. Potential buyers are heterogeneous in their valuations (or
types) v over the good. Potential sellers are also heterogeneous in their costs (or types) c of
producing the good. For simplicity, we assume v; c 2 [0; 1]. Time is continuous and in�nite
horizon. The details of the model are described as follows:

� Entry: Potential buyers and potential sellers are continuously born at rate b and s
respectively. The type of a new-born buyer is drawn i.i.d. from the c.d.f. F (v) and
the type of a new-born seller is drawn i.i.d. from the c.d.f. G(c). Each trader�s type
will not change once it is drawn. Entry (or participation, or being active) is voluntary.
Each potential trader decides whether to enter the market once they are born. Those
who does not enter will get zero payo¤. Those who enter must incur the participation
cost continuously at the rate �B for buyers and �S for sellers, until they leave the
market.

� Matching: Active buyers and active sellers are randomly and continuously matched
pairwise with the rate of matching given by a matching function M(B;S), where B
and S are the numbers of active buyers and active sellers currently in the market.

� Bargaining: Once a pair of buyer and seller is matched, they bargain: with probability
� 2 (0; 1), the seller makes a take-it-or-leave-it o¤er to the buyer, then the buyer
chooses either to accept or reject. And with probability 1�� the buyer proposes and
the seller responds. We call this the take-it-or-leave-it bargaining protocol.

� If a type v buyer and a type c seller successfully trade at a price p, then they leave the
market with (current value) payo¤ v � p, and p� c respectively. If the matched pair
fails to trade, both traders can either stay in the market waiting for another match
(and incur the participation costs) as if they were never matched, or simply exit and
never come back. The instantaneous discount rate is r � 0.

We make the following assumptions on the primitives of our model.

Assumption (distributions of in�ow types) The cumulative distributions F (v) and
G(c) of in�ow types have densities f(v) and g(c) on (0; 1), bounded away from 0 and
1: 0 < f � f(v) � �f <1, 0 < g � g (c) � �g <1.
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Assumption (matching function) The matching function M is continuous on R2++,
nondecreasing in each argument, constant returns to scale (i.e. homogeneous of degree
one), and satis�es limB!0M (B;S) = limS!0M (B;S) = 0.

It turns out to be more convenient to work with a normalized matching function. Let

� � B

S

be the steady-state ratio of buyers to sellers, and de�ne

m(�) �M(�; 1):

Since the matching technology is assumed to be constant returns to scale, it is easy to see
that m(�) is also equal to M (B;S) =S, the expected probability that a seller is matched
over a time period of length 1. Similarly, m (�) =� is equal to M (B;S) =B, the expected
probability that a buyer is matched over a time period of length 1. Note that m(�) and
m(�)=� are nondecreasing and nonincreasing respectively in �, andm is continuous on R++.
In this notation, the Poisson arrival rates for buyers and sellers become

`B (�) � m (�)

�
;

`S (�) � m (�) :

Notice that an uninteresting no-trade equilibrium always exists in which all potential
traders do not enter. In the following, we will study steady-state market equilibria in which
positive trade occurs. Let us simply call them nontrivial steady-state equilibria.

We now proceed to the de�nition of a nontrivial steady-state equilibrium. It is useful to
represent each trader�s world as a continuous-time Markov chain, as shown in Figure 1 for
buyers.A trader is born into the �inactive� state, and has to decide immediately whether
to enter to the market and search a partner, or simply exit. Let �B : [0; 1] ! f0; 1g and
�S : [0; 1]! f0; 1g be the buyers�and sellers�entry-decision functions in the inactive state.
For example, �B(v) = 1 means type v buyer enters; �S(c) = 0 means type c seller does not
enter. Let AB � [0; 1] and AS � [0; 1] be the sets of active buyers�and sellers�types, i.e.

AB � fv 2 [0; 1] : �B(v) = 1g;
AS � fc 2 [0; 1] : �S(c) = 1g:

Once in the �searching�state, the trader waits until a new trading opportunity arrives.
This happens after a time period of random length t has elapsed. (Recall that t is ex-
ponentially distributed with mean 1=`B for buyers and 1=`S for sellers.) The arrival of a
trading opportunity moves a trader from the searching state to the �matched�state. Once
in the matched state, the trader immediately proceeds either to the proposing state (with
probability � for sellers and 1�� for buyers), or to the responding state (with the compli-
mentary probabilities). Let pB(v) and pS(c) be the proposing strategies used by buyers and
sellers respectively.5 Similarly, let ~v(v) and ~c(c) be the acceptance levels, characterizing the

5 Implicitly, every traders are assumed to use symmetric pure strategies. However, we will claim that it
is essentially without loss of generality. See the remark below.
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rejected
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rejected

Time period of random
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αProb.

( )vpB

( )vv~

Searching
state( )vWB

Born

( ) 0:Exit =vBχ

Figure 1: Markov chain of a buyer

responding policies of buyers and sellers respectively. Precisely, in a proposing state, type
v buyers will propose the trading price pB(v), while in a responding state, they will accept
a proposed price p if and only if ~v(v) � p. Analogous meanings apply to pS(c) and ~c(c).

In the event when trading is successful, the matched pair leaves the market forever with
their realized gains from trade. If trading is unsuccessful, each trader is immediately back
in the inactive state of her Markov chain and the cycle repeats.

Let �(v);�(c) be the (endogenous) steady-state cumulative distributions of types of
buyers and sellers who are active. The equilibria of our model can be de�ned as a collection6

E � f�B; �S ; pB; pS ; ~v; ~c;B; S;�;�g

such that:
(i) given the relevant beliefs made from E, every potential and active buyers (resp.

sellers) �nd the entry policy given by �B (resp. �S), the proposing policy pB(�) (resp.
pS(�)) and the responding policy characterized by ~v(�) (resp. ~c(�)) to be their optimal
policies sequentially;

(ii) E generates B;S;�;� in steady state.
The mathematical conditions for our equilibrium are as follows. Let us consider the

sequential optimality of the responding strategies �rst. Let WB(v) be the (steady-state)
equilibrium continuation payo¤ of a type v buyer in her inactive state, and let WS(c) be
the equilibrium continuation payo¤ of a type c seller in her inactive state. Pick a type v
buyer.7 If she is in her responding state with an o¤er p at hand, her continuation payo¤

6This de�nition is similar to the one in Satterthwaite and Shneyerov (2007).
7This type v buyer could be either active or not. If she is not active, we are considering an o¤-equilibrium

path.
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is maxfv � p;WB(v)g. The �rst element v � p is the continuation payo¤ if she accepts
the o¤er p, while the second element WB(v) is the continuation payo¤ if she rejects and
hence immediately get back to the inactive state. Similar logic applies to sellers�situation.
Therefore, sequential optimality in the responding states requires the acceptance levels to
be equal to what we shall call dynamic trader types8

~v (v) � v �WB (v) ; (1)

~c (c) � c+WS (c) : (2)

Turning to the sequential optimality in proposing states. Our dynamic type functions
~v (v) and ~c (c) allow us to characterize the proposing strategies in a simple manner. To this
end, it is useful to consider the distributions of traders�dynamic types, denoted as

~�(x) �
Z
~v(v)�x

d�(v); (3)

~�(x) �
Z
~c(c)�x

d�(c): (4)

Consider the situation where a type v buyer is in a proposing state and suppose sellers use
their equilibrium responding policy characterized by ~c (c) and sellers�distribution is at the
equilibrium value �. If the buyer propose � (one can think � as a one-shot deviation) and
this o¤er is accepted, her continuation payo¤ will be v � �; and if her o¤er is rejected, she
will be back to the inactive state immediately and her continuation payo¤would beWB(v).
Therefore, her continuation payo¤ in a proposing state, conditional on proposing �, isZ

~c(c)��
(v � �)d�(c) +

Z
~c(c)>�

WB(v)d�(c);

which can be rewritten as
~�(�)[~v(v)� �] +WB(v):

Only the �rst term, which is the �capital gain part�, depends on �. Similar logic applies to
sellers�situation. It is clear that sequential optimality in the proposing states is satis�ed if
and only if

pB(v) 2 argmax
�

~�(�)[~v(v)� �]; (5)

pS(c) 2 argmax
�
[1� ~�(�)][�� ~c(c)]: (6)

It follows that the equilibrium proposing policies are determined as best-responses in the
static monopoly problems where the distributions of responders�types are replaced by the
distributions of the responders�dynamic types and the proposers�types are replaced by the
proposers�dynamic types. As we have seen, this principle applies to the responding policies
as well. In general, the bargainers behave as if they are in a one-shot game with their types
replaced by their dynamic types. Intuitively, trading with current partner lead a trader to
give up the opportunity of searching and trading with another partner. Our dynamic type

8The notion of dynamic trader types is due to Satterthwaite and Shneyerov (2007).
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notions are simply adjusted with the traders�opportunity cost of further searching. This
observation plays a very important role in both intuition and proofs of our results.

Turn to the matched state. Suppose that all traders always use their prescribed equilib-
rium strategies, f�B; �S ; pB; pS ; ~v; ~cg and that the stationary distributions of active seller
and buyer types are at their equilibrium values � and �. Then a type v buyer�s expected
bargaining surplus from the meeting is equal to

�B(v) � (1� �)
Z
~c(c)�pB(v)

[v � pB(v)]d�(c) + �
Z
pS(c)�~v(v)

[v � pS(c)]d�(c): (7)

Further denote

qB(v) � (1� �)
Z
~c(c)�pB(v)

d�(c) + �

Z
pS(c)�~v(v)

d�(c); (8)

the buyer�s probability of a successful trade in a given meeting. With probability 1�qB (v),
the bargaining turn unsuccessful. The buyer�s Markov chain then moves to the inactive
state, giving a continuation payo¤WB(v).

Now suppose a type v buyer chooses to enter, she has to wait and stay in the searching
state until the next meeting. Since the buyer�s waiting time before her next meeting is
exponentially distributed with mean 1=`B,9 the discounted value of one dollar to be received
at the time of next meeting is equal to

RB(�) �
Z 1

t=0
e�rtd(1� e�`B(�)t) = `B(�)

r + `B(�)
: (9)

Similarly, the accumulated discounted participation cost over the period until next meeting
is equal to

KB(�) �
Z 1

t=0

�Z t

0
�Be

�rxdx

�
d(1� e�`B(�)t) = �B

r + `B(�)
: (10)

Then the searching state continuation payo¤, provided that the type v buyer enters, is

RB(�)[�B(v) + (1� qB(v))WB(v)]�KB(�):

Since the entry decision is made in the inactive state and the trader gets 0 if she exits,
the inactive state continuation payo¤,WB(v), must satisfy the following recursive equation:

WB(v) = max fRB(�)[�B(v) + (1� qB(v))WB(v)]�KB(�); 0g (11)

where the �rst maximand represents the payo¤ for entry, the second represents the payo¤
for exiting. Solve (11) for WB(v), we obtain an equivalent ratio-form formula:

WB(v) = max

�
`B(�)�B(v)� �B
r + `B(�)qB(v)

; 0

�
:

Therefore, the buyers�sequentially optimal entry policy in the inactive state is

9That is, the distribution function of waiting time t is 1� exp(�`Bt).
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�B(v) = I f`B(�)�B(v) � �Bg (12)

where I (�) is the indicator function. Note that (12) implicitly assumes that traders enter if
they are indi¤erent between entering or not. This is only for expositional simplicity because
it turns out that the set of such indi¤erent traders is of measure 0.

Complete parallel logic applies to the sellers�side. We can de�ne �S , qS , RS and KS
similarly:

�S(c) = �

Z
~v(v)�pS(c)

[pS(c)� c] d�(v) + (1� �)
Z
pB(v)�~c(c)

[pB(v)� c] d�(v) (13)

qS(c) = �

Z
~v(v)�pS(c)

d�(v) + (1� �)
Z
pB(v)�~c(c)

d�(v) (14)

RS(�) =
`S(�)

r + `S(�)
; KS(�) =

�S
r + `S(�)

: (15)

Then we have the recursive equation for WS :

WS(c) = max fRS(�)[�S(c) + (1� qS(c))WS(c)]�KS(�); 0g ; (16)

and the sellers�sequentially optimal entry policy in the inactive state is

�S(c) = I f`S(�)�S(c) � �Sg : (17)

This completes the description of the strategic part of a nontrivial steady-state equi-
librium. To complete the description of nontrivial steady-state equilibrium, we turn to the
steady state equations for the distributions of active buyer and seller types � and � and
active trader masses B and S. In a steady-state market equilibrium, the in�ow rate of
every types of traders must be equal to the corresponding out�ow rate. Therefore,

b

Z 1

v
�B(x)dF (x) = B`B(�)

Z 1

v
qB(x)d�(x) 8v 2 [0; 1] (18)

s

Z c

0
�S(x)dG(x) = S`S(�)

Z c

0
qS(x)d�(x) 8c 2 [0; 1]: (19)

These preparations allow us to formally de�ne nontrivial steady-state equilibrium as follows.

De�nition 1 A collection E � f�B; �S ; pB; pS ; ~v; ~c;B; S;�;�g is a nontrivial steady-state
equilibrium if there exists a pair of equilibrium payo¤ functions fWB;WSg such that the
proposing strategies pB and pS, responding strategies ~v and ~c; entry strategies �B and �S
satisfy the sequential optimality conditions (5), (6), (1), (2), (12) and (17), and the distri-
butions of active buyer and seller types � and � and active trader masses B and S solve
the steady-state equations (18) and (19), and the payo¤ functions WB and WS solve the
recursive equations (11) and (16).
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Remark 2 Although we implicitly assume that traders use symmetric pure strategies, this
is merely for simplicity of exposition. At a cost in notation we could de�ne trader-speci�c
and mixed strategies and then prove that they must be (essentially) symmetric and pure be-
cause of independence, anonymity in matching, and monotonicity (proved below) of strate-
gies. To see this, �rst consider the implication of independence and anonymous matching
for buyers. Even if di¤erent traders follow distinct strategies, every buyer with the same
type v would still face the same market environment. (This is strictly true because we as-
sume a continuum of traders.) Therefore, for a given value v, every buyers will have the
identical continuation payo¤, implying essentially identical responding and entry strategies.
Moreover, every buyers have identical best-response correspondence for proposing strategy.
We show below that every selection from this correspondence is nondecreasing; consequently,
the best-response is pure apart from a measure zero set of values where jumps occur. These
jump points are the only points where mixing can occur. But because their measure is zero,
the mixing has no consequence for the maximization problems of the other traders. The
same logic applies to sellers.

Our characterization of equilibria begins with showing that the equilibrium utilities
WB (v) and WS (c) are necessarily nondecreasing and nonincreasing respectively. Then,
since the marginal entering types v and �c must recover their participation costs, it follows
that the sets of active types AB and AS must be intervals, AB = [v; 1] and AS = [0; �c]
(recall that we resolve the ties of the marginal types by requiring them to enter).

Lemma 3 In any nontrivial steady-state equilibrium, WB(v) andWS(c) are absolutely con-
tinuous and convex. WB(v) is nondecreasing and WS(c) is nonincreasing. Moreover,

WB(v) =

Z v

v

`BqB (x)

r + `BqB (x)
dx for all v 2 [v; 1] (20)

WS(c) =

Z �c

c

`SqS (x)

r + `SqS (x)
dx for all c 2 [0; �c] : (21)

Corollary 4 (a) AB = [v; 1] and AS = [0; �c]. (b) qB(v) is nondecreasing in v, while qS(c)
is nonincreasing in c.

Next, since the derivatives W 0
B(v) 2 [0; 1) and W 0

S(c) 2 (�1; 0], Lemma 3 implies that
the acceptance strategies ~v and ~c (dynamic types) must be nondecreasing.

Lemma 5 In any nontrivial steady-state equilibrium, the acceptance strategies ~v(v) = v �
WB(v) and ~c(c) = c+WS(c) are absolutely continuous and nondecreasing respectively. The
slopes of the acceptance strategies are

~v0(v) =
r

r + `BqB (v)
(a.e. v 2 AB) (22)

~c0(c) =
r

r + `SqS (v)
(a.e. c 2 AS) (23)

Moreover, if r > 0, then the acceptance strategies are strictly increasing on AB and AS; if
r = 0, then ~v(�) and ~c(�) are constant on AB and AS.
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It can also be shown (in the Appendix) that the proposing strategies pB and pS must
be nondecreasing as well.

Lemma 6 In any nontrivial steady-state equilibrium, the proposing policies pB(v) and
pS(c) are nondecreasing on AB and AS respectively.

Since the dynamic opportunity costs of trading for marginal entering types of traders
are zero (i.e. WB(v) = WS(�c) = 0), we can see that the marginal entering types are equal
to the corresponding dynamic types:

�c = ~c (�c) ; v = ~v (v) :

The sellers�minimum acceptable price c and the buyers�maximum acceptable price �v are
de�ned by:

c � inf
c
f~c(c) : c 2 ASg = ~c (0)

�v � sup
v
f~v(v) : v 2 ABg = ~v (1) ;

which, taken together de�ne what we call the acceptance interval [c; �v]. The smallest and
largest o¤ers by buyers and sellers are

p
B

� inf
v
fpB(v) : v 2 ABg = pB (v) ;

�pB � sup
v
fpB(v) : v 2 ABg = pB (�v) ;

p
S
� inf

c
fpS(c) : c 2 ASg = pS (c) ;

�pS � sup
c
fpS(c) : c 2 ASg = pS (�c) :

We de�ne the price interval as [p
B
; �pS ]:

It is not too hard to see that, in order for the trade �ows to be balanced in steady state,
the marginal entering types v and �c must be on di¤erent sides of the Walrasian price p�,
and that, p� must always fall within the acceptance interval, i.e. p� 2 (c; �v).

The following lemma (proved in Appendix) further describes the patterns of equilibrium
strategies.

Lemma 7 In any nontrivial steady-state equilibrium, ~c(c) < pS(c) and pB(v) < ~v(v) for
all c 2 [0; �c] and all v 2 [v; 1]. (They imply p

B
< v and �c < �pS.) Moreover, if r > 0, then

c < v � p
S
� �pS < �v and c < pB � �pB � �c < �v, while if r = 0, then c < v = pS = �pS = �v

and c = p
B
= �pB = �c < �v.

In particular, in equilibrium, the buyers�o¤ers must be lower than their dynamic op-
portunity valuation, and the sellers�o¤ers must be higher than their dynamic opportunity
cost. Moreover, buyers never propose anything below the lowest acceptable price of sellers
c, and sellers never propose anything above the highest acceptable price of buyers �v. In
other words, c � pB (v) < ~v (v) and �v � pS (c) > ~c (c). Furthermore, in order for the
marginal entrants to recover participation costs, we must also have c < v and �c < �v. Figure
2 visualizes the proposing and responding strategies of an equilibrium.
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Figure 2: A non-full-trade equilibrium

3 Full-trade equilibria

The following important lemma gives participation conditions for the marginal types.

Lemma 8 In any nontrivial steady-state equilibrium, p
B
= pB(v), �pB = pB(1), pS =

pS(0), and �pS = pS(�c). Moreover,

`B(�)(1� �)~�(pB)(v � pB) = �B (24)

`S(�)�[1� ~�(�pS)](�pS � �c) = �S : (25)

In the left-hand sides of equations (24) and (25) in the lemma we have marginal traders�
expected pro�ts from trading, gross of participation costs, over a short period dt, divided
by the length of the period. To see the intuition behind equation (24), note that a marginal
participating buyer v makes positive pro�t only if he meets a seller, proposes, and his o¤er
is accepted (the combined probability is `B � (1� �) � ~�(pB)), and conditional on that, the
pro�t is equal to the di¤erence between his valuation and the price he proposes, v � p

B
.

Similar logic applies to equation (25).
There are two qualitatively di¤erent possibilities. First, it can be that at least one of the

trading probabilities ~�(p
B
) or 1� ~�(�pS) is less than 1. We call such an equilibrium a non-

full-trade equilibrium because not every meeting results in a trade. The bargaining outcome
in this class of equilibria is not ex-post e¢ cient, in the sense that there are buyer-seller pairs
with positive matching surplus (i.e. v � c > WB(v) +WS(c) or equivalently ~v(v) > ~c(c))
who do not trade when they meet. If, for example, ~�(p

B
) < 1, then the buyers with types

in a right-neighborhood of v do not trade with the sellers for whom ~c (c) 2 (p
B
; v]. An

equilibrium of this kind is shown in Figure 2.

12
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Figure 3: A full-trade equilibrium under take-it-or-leave-it o¤ering

It may happen that the supports of the types in the market are separated, so that the
marginal entrants trade with probability 1, i.e. ~�(p

B
) = 1 � ~�(�pS) = 1. We call such

equilibria full-trade equilibria. Lemmas 7 and 8 imply that full-trade equilibria must have
the following properties: (i) the supports for active buyers�types and active sellers�types
are separate, i.e. v > �c; (ii) the lowest buyer�s o¤er p

B
is exactly at the o¤er acceptable

to all active sellers, i.e. p
B
= �c; and (iii) the highest seller�s o¤er �pS is exactly at the o¤er

acceptable to all active buyers: �pS = v. It is easy to see that the converse is also true. Thus
we alternatively de�ne full-trade equilibrium to be a nontrivial steady-state equilibrium
with p

B
= �c and �pS = v. An example of such an equilibrium is shown in Figure 3.

A full-trade equilibrium admits a simple characterization. Conditions (24) and (25) of
Lemma 8 take the form

`B(�)(1� �) (v � �c) = �B; (26)

`S(�)� (v � �c) = �S : (27)

Noticing that `S(�)=`B(�) = �, the entry equations (26) and (27) can be easily solved for �
and v � �c:

� =
1� �
�

�S
�B

� z; (28)

v � �c =
�B
`B (z)

+
�S
`S (z)

� K (z) : (29)

To complete the description of a full-trade equilibrium, note that in a steady state, the
incoming �ow of active buyers must equal the incoming �ow of active sellers:

b[1� F (v)] = sG (�c) : (30)

13
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Since v��c are determined, v and �c are uniquely pinned down by (30). Full-trade equilibrium,
if exists, is uniquely characterized by equations (26), (27), and (30).10

It is clear from (29) that K (z) < 1 is a necessary and su¢ cient condition for existence
of a solution to equations (28)� (30). The function

K (�) =
�B
`B (�)

+
�S
`S (�)

will play an important role in our analysis. It can be interpreted as the expected par-
ticipation cost incurred by a buyer-seller pair (i.e. �B=`B (�) + �S=`S (�)) in a full-trade
equilibrium until their meeting, if there is no discounting. A further insight about K (z)
is provided by the following lemma that will be used frequently in the proofs. The lemma
shows that K (z) can be interpreted either as the following maximin value or the minimax
value of adjusted accumulated participation costs until the next meeting.

Lemma 9 We have

K (z) = max
�>0

min

�
�B

(1� �) `B (�)
;

�S
�`S (�)

�
= min

�>0
max

�
�B

(1� �) `B (�)
;

�S
�`S (�)

�
:

Proof. Consult Figure 4. Note that `B (�) is a nonincreasing function, while `S (�) is an
nondecreasing function. The maximin and minimax values are realized at the intersection
of the curves

�B
(1� �) `B (�)

=
�S

�`S (�)

which occurs if and only if � = z. Q.E.D.

10Other endogenous variables are easily obtained. In particular, for v 2 AB and c 2 AS , WB(v) =
`B(z)

r+`B(z)
(v � v), WS(c) =

`S(z)
r+`S(z)

(�c� c), �(v) = F (v)�F (v)
1�F (v) and �(c) = G(c)

G(�c)
.

14



But even if K (z) < 1, so that a solution to equations (28) � (30) exists, it may not
characterize an equilibrium, since buyers may have an incentive to bid higher than �c, and
similarly sellers may have an incentive to bid below v. To rule out such deviations, we need
additional conditions. Denote the virtual trader types as JB and JS :

JB (v) = v �
1� F (v)
f (v)

; JS (c) = c+
G (c)

g (c)

Assuming that the virtual types are increasing functions, an assumption commonly made
in the literature, we are able to show (in the Appendix) that the following necessary and
su¢ cient conditions for a solution to equations (28) � (30) to characterize a full-trade
equilibrium:

r � min

�
`B (z) (v � �c)

max f�c� JB (v) ; 0g
;

`S (z) (v � �c)
max fJS (�c)� v; 0g

�
(31)

� r�:

(If both denominators are 0, there is no upper bound so a full-trade equilibrium exists for
all r � 0.) Since the marginal types v and �c in a full-trade equilibrium do not depend on the
discount rate r, we can see that these conditions will be satis�ed when r � 0 is su¢ ciently
small.

We are also able to show that a full-trade equilibrium is a unique equilibrium for small
r > 0. That is to say, there cannot be a non-full-trade equilibrium when r is small. The
proof of this is based on the following lemma. This lemma proves that one important
property of the full-trade equilibrium, that K (z) separate the entry gap v � �c (if any) and
the length of the acceptance interval �v � c, carries over to all equilibria.

Lemma 10 In any nontrivial steady-state equilibrium, we have

�v � c � K (z) ; (32)

v � �c � K (z) : (33)

The �rst inequality (32) is strict if r > 0.

Proof. Since c � p
B
< v � �v and �v � �pS > �c � c; it follows from the entry conditions

(24) and (25) that

(1� �) `B (�v � c) � �B;

�`S (�v � �c) � �S ;

so that

�v � c � max
�

�B
(1� �) `B

;
�S
�`S

�
� K (z) :

This proves (32). If r > 0, we have �v > v and �c� c, which make (32) strict. (33) is proved
by applying a revealed-preference argument to the same entry conditions (24) and (25).
Consider the deviations in which the v-buyers o¤er �c and �c-sellers o¤er v:

(1� �) `B (v � �c) � �B;

�`S (v � �c) � �S ;
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from which it follows that

v � �c � min
�

�B
(1� �) `B

;
�S
�`S

�
� K (z) :

Q.E.D.

From Lemma 8, `BqB (v) � �B and `SqS (�c) � �S , and these inequalities continue to
hold for all participating types because qB (resp. qS) is nondecreasing (resp. nonincreasing)
function. Lemma 5 then implies that the slopes of acceptance strategies are bounded from
above as follows:

~v0 (v) � r

�B + r
; ~c0 (c) � r

�S + r
; (34)

and therefore converge to 0 as r ! 0,

lim
r!0

~v0 (v) = lim
r!0

~c0 (c) = 0: (35)

Lemma 10 then implies that �v � c and v � �c converge to a common limit K (z).

Corollary 11 We have

lim
r!0

(�v � c) = lim
r!0

(v � �c) = K (z) :

Now it is useful to introduce yet another level of equilibria classi�cation. A non-full-
trade equilibrium may either have too much entry relative to the Walrasian benchmark,
v < �c (as shown in Figure 2), or too little entry, v > �c (as shown in Figure 5). Corollary 11
implies that a non-full-trade equilibrium with too much entry cannot exist when r is small.
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The proof that a non-full-trade equilibrium with too little entry cannot exist is based
on the following idea (the details are in the Appendix.) As r ! 0, it follows from (35)
that the support of dynamic types narrows down to a singleton. Consequently, a marginal
participating trader whose o¤er is in the interior of the support of the bargaining partner
gains relatively little vis-a-vis proposing at the boundary of the support (i.e. seller o¤ering
v and buyer o¤ering �c), but risks a substantially reduced probability of trading. We are
able to show that bidding the endpoint of the support is the dominant choice, so for small
r it must be that p

B
= �c and �pS = v. We therefore have proven the following uniqueness

result.

Proposition 12 (Existence and uniqueness of full-trade equilibrium) If K (z) <
1, then r > 0 exists such that for all r 2 [0; r] there is a unique equilibrium and it is
full-trade.11

De�ne Walrasian price p� as the price that clears the �ows of the arriving cohorts:

b[1� F (p�)] = sG (p�) ;

It is immediate from the characterizing equations (28) � (30) that full-trade equilib-
ria converge to perfect competition as the frictions of time discounting and participation
cost are removed.12 Speci�cally, the marginal participating types converge to p� and the
acceptance interval (and hence the price interval) converges to fp�g. Since full-trade equi-
libria are the only equilibria when r is small, it also follows that all equilibria of our model
converge to perfect competition. We state this as a corollary.

Corollary 13 (Convergence to perfect competition) As the frictions of participation
cost and discounting are removed, all equilibria of our model converge to perfect competition,
i.e.

lim
(�B ;�S)!0

lim
r!0

v = lim
(�B ;�S)!0

lim
r!0

�c = p�;

lim
(�B ;�S)!0

lim
r!0

[c; �v] = lim
(�B ;�S)!0

lim
r!0

[p
B
; �pS ] = fp�g :

When r > r�, then a full-trade equilibrium does not exist. Note that it is possible that
r� =1 so that a full-trade equilibrium exists for all r. This may happen (as our example
shows) when the search costs �B and �S are so large (but not larger than K (z)) that the
entry gap is v � �c is su¢ ciently large so that both �c � JB (v) < 0 and JS (�c) � v < 0
and therefore from (31), r� = 1. On the other hand, it can also happen that r� < 1
so that a full-trade equilibrium does not exist for large r. We can easily see that this will
happen if the search costs �B; �S are su¢ ciently small. Even stronger, we can show that
lim(�B ;�S)!0 r

� = 0.

11Recall that for expositional simplicity we have assumed that the types are distributed on [0; 1]. If the
support were [a1; a2], then the condition would read K (z) < a2 � a1.
12This interpretation of frictions is due to Mortensen and Wright (2002).

17



κ

*r

6/1 2/1

Figure 6: The values of r and � for which a full-trade equilibrium exists in example 14 are
shown by the shaded area

In a full-trade equilibrium, the entry gap v��c = K (z), so that lim(�B ;�S)!0 (v � �c) = 0.
Because both v and �c converge to the Walrasian price p�, it follows that JB (v) ! p� �
(1� F (p�)) =f (p�) and JS (�c)! p� +G (p�) =g (p�). Consequently,

�c� JB (v) ! (1� F (p�)) =f (p�) ;
JS (�c)� v ! G (p�) =g (p�) ;

and it follows from (31) that as (�B; �S)! 0,

r�

v � �c ! min

�
`B (z) f (p

�)

1� F (p�) ;
`S (z) g (p

�)

G (p�)

�
:

Consequently, lim(�B ;�S)!0 r
� = 0, so that given any r > 0, a full-trade equilibrium does

not exist when the search costs �B; �S are su¢ ciently small.
An example may help understand these points better.

Example 14 Buyers and sellers are born at the same rate, which is normalized to be
1, i.e. b = s = 1. The values and costs are uniform [0; 1] distributed, i.e. F (v) = v,
G(c) = c. The bargaining power is evenly distributed, i.e. � = 1=2; and the search costs
of buyers and sellers are also the same: �S = �B � �. The matching function is given
by M (B;S) = min fB;Sg (so that all traders who are searching at a given point in time
are matched at the arrival rate 1 in this symmetric setting). One can check that the entry
gap in a full-trade equilibrium is given by v � �c = 2� and the condition (31) takes the form
r � 2�=max f0:5� 3�; 0g. A non-trivial equilibrium only exists if the entry gap is less than
1, i.e. 2� < 1. The values of r and � for which a full-trade equilibrium exists are shown in
Figure 6.

We collect all these �ndings in a theorem below, the formal proof of which is in the
Appendix.
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Theorem 15 Assume that the virtual types JB (v) and JS (c) are increasing functions of
their arguments. Then a full-trade equilibrium exists if and only if K (z) < 1, in which
case there exists a unique solution to the characterizing equations (28) � (30), and r � r�
where r� is given by (31). Moreover, an r > 0 exists such that a full-trade equilibrium is
the unique equilibrium of the model for r 2 [0; r]. If, on the other hand, r > r�, then a
full-trade equilibrium does not exist. In particular, given any r > 0, a �� > 0 exists such
that a full-trade equilibrium does not exist whenever �B, �S < ��.

4 Necessary and su¢ cient condition for no market break-
down

It is not hard to see that the condition K (z) < 1, a necessary condition for the existence of
a full-trade equilibrium, is also necessary for existence of any nontrivial equilibrium of our
model. Indeed, it is trivial if r = 0, in which case any nontrivial equilibrium is full-trade.
On the other hand, if r > 0 and some nontrivial equilibrium exists, then Lemma 10 together
with �v � c � 1 implies the condition K (z) < 1.

Perhaps surprisingly, the condition K (z) < 1 is also su¢ cient for existence of a non-
trivial equilibrium of our model.

Theorem 16 (No market breakdown) A necessary and su¢ cient condition for exis-
tence of a nontrivial equilibrium is that K (z) < 1.

Taken together with the last statement of Theorem 15, Theorem 16 implies that a non-
full-trade equilibrium exists if r is su¢ ciently large and participation costs are su¢ ciently
small.

Corollary 17 (Existence of a non-full-trade equilibrium) �� > 0; �r > 0 exist such
that a non-full-trade equilibrium exists whenever r > �r and �B, �S < ��.

This section is devoted to the main elements of the proof of Theorem 16. Our goal is
to prove that there exists a tuple (pB; pS ; ~v; ~c; �B; �S ; B; S;�;�) of strategies, steady-state
distributions and steady-state masses of traders, that satis�es our mathematical de�nition
of nontrivial equilibrium of the take-it-or-leave-it o¤ering model. However, in order to
apply the �xed point theorem to do our job, it is much better to transform and reduce
our space of equilibrium objects. De�ne NB : [0; 1] ! R+ and NS : [0; 1] ! R+ as the
steady-state unnormalized distributions of buyers and sellers, i.e. NB(v) � B�(v) and
NS(c) � S�(c). Then we will take the tuple of payo¤s and unnormalized distributions
(WB;WS ; NB; NS) � E as the primary con�guration of equilibrium objects.

Indeed, our mathematical de�nition of a nontrivial equilibrium can be regarded as a
�xed point of some mapping T that brings an initial con�guration E = (WB;WS ; NB; NS)
(from some appropriate domain) to a new con�guration E� = (W �

B;W
�
S ; N

�
B; N

�
S). This

mapping is de�ned as follows. First, we let

B = NB(1); S = NS(1); �(v) =
NB(v)

B
; �(c) =

NS(c)

S
; � =

B

S
: (36)
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Then determine the dynamic types (~v; ~c) according to (1) and (2), and their distributions�
~�; ~�

�
according to (3) and (4). Next, we determine the best-response proposing strategies

(pB; pS) according to (5) and (6), but whenever there are multiple best-responses, we use
the maximal response for buyers and the minimal for sellers:

pB(v) = sup

�
arg max

�2[0;1]
~�(�)[~v(v)� �]

�
(37)

pS(c) = inf

�
arg max

�2[0;1]
[1� ~�(�)][�� ~c(c)]

�
: (38)

Having de�ned the proposing strategies, we can de�ne and the expected pro�ts (�B;�S)
in a given meeting according to (7) and (13), as well as the probabilities of trading (qB; qS)
according to (8) and (14). With those at hand, we can recover the resulting lifetime payo¤s
through their corresponding recursive equations, (11) and (16):

W �
B (v) = max fRB(�)[�B(v) + (1� qB (v))WB (v)]�KB(�); 0g (39)

W �
S(c) = max fRS(�)[�S(c) + (1� qS (c))WS (c)]�KS(�); 0g : (40)

After that, we determine the best-response entry strategies as in (12) and (17), and �nally
determine the resultant steady-state distributions of types according to:

N�
B(v) =

Z v

0

�B(x)b

`B(�)qB(x)
dF (x); N�

S(c) =

Z c

0

�S(x)s

`S(�)qS(x)
dG(x): (41)

In the Appendix, some additional details and quali�cations are provided to guarantee
that this mapping is well-de�ned.

Our existence proof will be based on the Schauder �xed point theorem, which asserts
that: if D is a nonempty compact convex subset of a Banach space and T is a continuous
function from D to D, then T has a �xed point.

In order to make this theorem applicable, certain details need to be taken care of. The
main di¢ culty is we need to make sure that as we apply the mapping T , we do not lose
positive entry. To deal with this potential complication, we �rst prove existence of what we
call an "-equilibrium, which is an actual equilibrium in a "-model in which positive entry
always occurs because of an outside subsidy.

We modify our original model in three ways. Firstly, we add a subsidy that ensures that
all buyers with type v � 1�" and all sellers with type c � " enter. In particular, every new-
born trader is quali�ed to received a �ow of subsidy for her market participation, provided
that (i) her type satis�es v � 1 � " or c � ", and (ii) she would choose not to participate
if no subsidization is available. Further, the �ow rate of the subsidy for a quali�ed trader
would be the least amount that is enough to make the trader voluntarily participate. That
is, for example, a new-born buyer with type v � 1 � " and `B(�)�B(v) < �B(�) will,
conditional on entry, receive a �ow amount �B(�) � `B(�)�B(v) per unit of time so that
she is indi¤erent between entering or not. (We assume traders enter whenever indi¤erent.)
Hence the entry conditions (12) and (17) are changed as:

�B(v) = I [`B(�)�B(v) � �B or v � 1� "] (42)

�S(c) = I [`S(�)�S(c) � �S or c � "] : (43)
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Because any subsidized traders are simply indi¤erent between entering or staying out, our
equations for payo¤s WB, WS , and bargaining strategies ~v, ~c, pB, pS do not need to be
changed.

Although we now have a positive lower bound for the in�ows of traders, we have not
had a positive lower bound for the mass of traders in the market because the out�ow rate
(i.e. `B(�)qB(v) or `S(�)qS(c)) could be potentially very large. Concerned with this, we
impose the second modi�cation, which ensures that the buyers�arrival rate `B(�) and the
sellers�arrival rate `S(�) are bounded by �̀B and �̀S . Speci�cally, given the original matching
function M(B;S), we replace it with a new one ~M(B;S) de�ned as:

~M(B;S) = min
�
M(B;S); B �̀B; S �̀S

	
: (44)

Notice that ~M has all the properties as a matching function as long as M has. But now
we make sure that

`B(�) � �̀
B; `S(�) � �̀

S : (45)

While the �rst two modi�cations are added to make the mass of traders bounded from
below, we also want it to be bounded from above, because our domain D need to be
compact. It su¢ ces to have a lower bound for the out�ow rate (`B(�)qB(v) or `S(�)qS(c)).
For a type who chooses to enter without subsidization, there is naturally an upper bound
for its mass because her expected trading surplus must be larger than her participation cost.
More precisely, for an unsubsidized participating v-buyer, `B(�)qB(v) � `B(�)�B(v) � �B.
However, a subsidized buyer could have `B(�)qB(v) < �B. Concerned with this, our third
modi�cation is, we disqualify subsidized traders in a way that ensures the out�ow rates of
subsidized types are at least �B or �S . In particular, the disquali�cation is a Poisson process,
where the Poisson rate (which is contingent on type) is the least one that makes the out�ow
rate not lower than the lower bound �B or �S . That is, for example, a currently quali�ed
v-buyer with `B(�)qB(v) < �B will be disquali�ed and exit immediately at a Poisson rate
�B � `B(�)qB(v); while a currently quali�ed v-buyer with `B(�)qB(v) � �B will not be
disquali�ed. Notice that for any type, either subsidized or unsubsidized, a v-buyer�s gross
out�ow rate must be max f`B(�)qB(v); �Bg. Therefore, the steady-state equations (41) are
simply changed as:

N�
B(v) =

Z v

0

�B(x)b

max f`B(�)qB(x); �Bg
dF (x) (46)

N�
S(c) =

Z c

0

�S(x)s

max f`S(�)qS(x); �Sg
dG(x): (47)

It completes the descriptions of our "-model.
In the Appendix, we show that our "-model has at least one equilibrium, which we shall

call an "-equilibrium. Next, we prove that if " > 0 is su¢ ciently small, then an "-equilibrium
is a true equilibrium of our model (this is Proposition 24 in the Appendix). The main idea
of the proof can be illustrated graphically, see Figure 7.

First, as in Lemma 10, we show that in "-equilibrium also, we must have v� �c � K (z).
Second, we show that the trading �ows are almost balanced, the discrepancy bounded
in absolute value by (a multiple of) ". Imposing these constraints on the set of values
(�c; v), we obtain the set of feasible values given by the shaded area in the graph. As the
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Figure 7: �c > " and v < 1� " for small "

graph makes clear, the shaded area collapses to the curvilinear segment AB. Consequently,
as " gets arbitrarily small, the minimal �c in the shaded area is arbitrarily close to the
horizontal coordinate of point A, and the maximal feasible v is arbitrarily close to the
vertical coordinate of A. It follows that for small enough " > 0, the constraints �c > " and
v < 1 � " become non-binding and the "-equilibrium becomes a true equilibrium of our
model.

5 Comparison to the full information model of Mortensen
and Wright (2002): private information may enhance wel-
fare

Mortensen and Wright (2002; MW) consider a model that di¤ers from ours only in one
respect: MW assume full information, i.e. bargainers know each other�s type. Consequently,
proposers hold their partners to their reservation values (i.e., to their dynamic types), and
the proposing strategies depend on both the trader�s and his partner�s type. In other words,
for the buyers, the proposing strategy is pB (v; c) = ~c (c), if ~c (c) � ~v (v), while it can be
de�ned as any price less than ~v (v) if ~c (c) < ~v (v) (such a price will be rejected by the
seller). Similarly, pS (v; c) = ~v (v) if ~c (c) � ~v (v).

Even though there is no private information, not every meeting may result in a trade
because it may be that ~v (v) < ~c (c), so that the pair does not trade. But the same way as
in our model, MW show existence of a full-trade equilibrium if r is su¢ ciently small (i.e.,
our Proposition 12 also holds assuming full information). Comparing their conditions for
existence of a full-trade equilibrium, they show that, similar to our model, there is an upper
bound such that a full-trade equilibrium exists if and only if the discount rate is below that
bound. Unlike in our model, however, the bound is always binding (i.e. less than in�nity).
MW also suggest (but do not prove) that a non-full-trade equilibrium may exist.

We note that our general existence proof (Theorem 16) adapts with minor changes;
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Figure 8: When types are publicly known, marginal participating types extract full rents
from their partners

in particular the necessary and su¢ cient condition for existence of equilibrium (the no
market breakdown condition) in a model with full information is the same as in our model:
K (z) < 1.13 The proof is even easier because we do not have to consider proposing
strategies in our construction of the best-response mapping T . The only change in the
de�nition of T is that the expected pro�ts and trading probabilities are now

�B(v) = (1� �)
Z
~v(v)�~c(c)

[v � ~c(c)]d�(c); qB(v) =

Z
~v(v)�~c(c)

d�(c)

�S(c) = �

Z
~v(v)�~c(c)

[~v(v)� c]d�(v); qS(c) =

Z
~v(v)�~c(c)

d�(v)

instead of (7), (8), (13) and (14).
The equilibrium in both models is unique for small r � 0.14 This makes it feasible to

compare the levels of social welfare under private and public information for such values of
r. The marginal participating types v and �c in the full-trade equilibria are equal in both
models only when r = 0. When r increases away from 0, our marginal types do not change,
while as MW show they move towards each other in their model. In other words, under
complete information there is entry by extramarginal types.

To understand why this is so, note that, unlike in our model, under full information
the marginal types extract full rents from the partners to whom they propose (see Figure

13The details of the proof are available on request.
14MW do not prove existence of a non-full-trade equilibrium in their model. We �ll this gap by showing

the changes that would be necessary to our existence proof to cover the case of public information.
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8). In contrast, our marginal types are only able to extract the rents of the most ine¢ cient
partner type. As r increases away from 0, the distributions of the dynamic types become,
ceteris paribus, more heterogeneous, and consequently there are more rents to be had by
the marginal types. This creates incentives for the extramarginal types to enter. There are
no such incentives in our model.

In the presence of matching externalities, more entry may or may not be socially desir-
able. Under private information, the slope of the welfare W p (r) as a function of r is

dW p (0)

dr
= � W 0

B

`B (z)
� W 0

S

`S (z)
(48)

where

W 0
B � b

Z 1

v
(v � v) dF (v) ; W 0

S � s
Z �c

0
(�c� c) dG (c) : (49)

This is simply the direct e¤ect of discounting. In particular, the e¤ect of discounting on
buyers�(resp. sellers�) welfare is proportional to their expected waiting time 1=`B (resp.
1=`S).

Under full information, on the contrary, the slope of the welfare W f (r) as a function
of r, as shown in the Appendix, is

dW f (0)

dr
= � W 0

B

`B (z)
� W 0

S

`S (z)
� sG (�c) [�B�B (z)� �S�S (z)] � 0 (0) (50)

where � 0 (0) is the derivative d�dr under full information evaluated at r = 0, and �B (�) (resp.
�S (�)) is the absolute value of the derivative of buyers� expected waiting time 1=`B(�)
(resp. 1=`S(�)) with respective to �, i.e.

�B(�) �
d

d�

�
1

`B (�)

�
> 0; �S(�) � �

d

d�

�
1

`S (�)

�
> 0:

Other than the direct e¤ect, the increase in r away from 0, by inducing additional entry,
could increase or decrease the buyer-seller ratio �, which in turn a¤ects the expected waiting
time 1=`B and 1=`S by (in �rst order) �B(z) and �S(z) respectively. Thus the indirect e¤ect
on the total accumulated participation costs incurred by a cohort is the last term in (50).

In the Appendix, we also show that the di¤erence of the two slope can be written as

dW p (0)

dr
� dW

f (0)

dr
= sG (�c) [�B�B (z)� �S�S (z)] � 0 (0)

= [�S (z)� �]
�

W 0
S

�`S (z)
� W 0

B

(1� �) `B (z)

�
(51)

where �S (�) � 1� �m0 (�) =m (�) is the elasticity of the matching function with respect to
the mass of sellers (i.e. �S (�) = SM2 (B;S) =M (B;S)). It is easy to see that this slope
may be either positive or negative, depending on the elasticity of the matching function as
well as original welfare shares of buyers and sellers. Recall that we have shown that there is
more entry for small r in the full-trade equilibrium of MW. The extramarginal sellers who
enter impose a negative externality on the inframarginal sellers and a positive externality
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on the inframarginal buyers. A symmetric statement applies to the extramarginal buyers
who enter. The positive and negative externalities completely cancel out only when the
Hosios (1990) condition, i.e. �S = � holds, in which case we have dW p(0)

dr = dW f (0)
dr . If,

for example, the elasticity �S is larger than sellers�bargaining weight �, and if the original
share of sellers�welfareW 0

S is large (relative toW
0
B) so that the last term in (51) is positive,

then the welfare under private information is larger than under full information.
We formulate these �ndings in a proposition.

Proposition 18 For all su¢ ciently small r > 0, the private information welfare W p (r)
is either greater or smaller than the full information welfare W f (r), depending on whether
the right-hand side of (51) is positive or negative.

6 Related literature and concluding remarks

Most related to our paper is the recent note by Lauermann (2006b), which we believe
was concurrently written. He also asks the question: can private information be welfare-
enhancing in dynamic matching and bargaining models, and arrives to the same conclusion
that it can, but for a very di¤erent reason and in a quite di¤erent model. There is no
cost of search, and all potential traders enter. There is no discounting either. The only
friction is exogenous exit rate �.15 The sellers have all the bargaining power, � = 1, and
all have the same cost normalized to 0. As in our model, the buyers are heterogeneous.
Lauermann (2006b) considers both private and full information. He shows that, as the
friction is removed (� ! 0), with private information all equilibria converge to perfect
competition. In particular, the price o¤ers converge to the sellers�cost, i.e. to 0.

In marked contrast, with full information the price o¤ers stay bounded away from 0
even as � ! 0. The reason why this happens is the following. When sellers know buyers�
valuations, they are able to extract all the surplus from the buyers, by o¤ering the price
equal to the buyer�s valuation, perhaps a penny below. When a seller meets a buyer,
she knows that she can guarantee at least the average buyer�s valuation E (v) in the next
meeting. Lauermann (2006b) shows that E (v) is bounded away from 0 as � ! 0. Since no
seller will o¤er a price less than (1� �)E (v), it follows that the buyers with valuations below
(1� �)E (v) will never trade. Since e¢ ciency here means that sellers should trade with all
buyers, this outcome is clearly less e¢ cient with full information. Lauermann (2006b) also
shows that having exogenous exit is necessary for this e¤ect to occur. Extreme bargaining
power is also necessary; it is an open question whether seller heterogeneity could be allowed.

While the entry-deterrent e¤ect of private information has not, to our knowledge, been
considered in the dynamic matching and bargaining literature, this literature is quite large
and there is a number of related papers. The great majority of papers have assumed full
information: Mortensen (1982), Rubinstein and Wolinsky (1985), Rubinstein and Wolinsky
(1990), Gale (1986), Gale (1987) and Mortensen and Wright (2002). The �rst paper to
look at convergence in a setting with private information is the un�nished manuscript of

15The model is therefore similar to Satterthwaite and Shneyerov (2005), the main di¤erence being that
Satterthwaite and Shneyerov (2005) consider multilateral meetings in which sellers run auctions among the
buyers they are matched with, whereas matching is strictly bilateral in Lauermann (2006b).
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Butters (1979). Other papers that have incorporated private information in some form are
Wolinsky (1988), De Fraja and Sakovics (2001) and Serrano (2002).

Recently, there has been a resurgence of interest in this topic: Lauermann (2006a), Sat-
terthwaite and Shneyerov (2007), Atakan (2007). The focus of these papers is convergence
to perfect competition.16 This is also the focus of large but less related literature on sta-
tic double auctions, beginning with Chatterjee and Samuelson (1983) and Wilson (1985),
followed by, among others, , Gresik and Satterthwaite (1989), Satterthwaite and Williams
(1989), Satterthwaite (1989), Williams (1991), Rustichini, Satterthwaite, and Williams
(1994), and more recently Satterthwaite and Williams (2002), Tatur (2005), Cripps and
Swinkels (2005), Reny and Perry (2006), Fudenberg, Mobius, and Szeidl (2007). Wu (2005)
studies a double auction with a small entry cost.

Given that search costs may lead to market breakdown, existence of a non-trivial equi-
librium is in general not guaranteed. The literature to date has only provided existence
results when search costs are small. Satterthwaite and Shneyerov (2007), for example, study
a bilateral matching and bargaining model with two-sided private information in which sell-
ers run auctions among the buyers whom they are matched with, and show existence for
small search costs. Atakan (2007) has provided an important extension of Satterthwaite
and Shneyerov (2007) to multiple units, and shows existence again only for small frictions.17

We, on the other hand, derive a necessary and su¢ cient condition for existence (i.e. for no
market breakdown) when frictions are arbitrary.

All these �ndings call for future research. Can our results be generalized to double
auctions? Even more interesting would be to identifying the set of bargaining mechanisms
for which private information may be welfare-enhancing. One di¢ culty would be to prove
uniqueness of a full-trade equilibrium. For this, it might be fruitful to combine our approach
with that of Lauermann (2006a) who develops techniques for studying general dynamic
matching and bargaining markets.

16 In addition, Hurkens and Vulkan (2006) study the role of privately observed deadlines in a matching
and bargaining market.
17Alternatively, he is able to show existence in general, but assuming that there is costless entry in the

�rst period.
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Appendix

Proof of Lemma 3: We prove the results for buyers only. Rewrite the recursive equation
for the buyers:

WB(v) = max
n
RB[�̂B(v; pB(v); ~v(v)) + (1� q̂B(pB(v); ~v(v)))WB(v)]�KB; 0

o
= max

�
RBmax

�;�
[�̂B(v; �; �) + (1� q̂B(�; �))WB(v)]�KB; 0

�
= max

�
RBmax

�;�
[�̂B(v �WB(v); �; �) +WB(v)]�KB; 0

�
:

where �̂B(v; �; �) and q̂B (�; �) are conditional on proposing � and adopting acceptance
level �:

�̂B(v; �; �) � (1� �)
Z
~c(c)��

[v � �] d�(c) + �
Z
pS(c)��

[v � pS (c)] d�(c) (52)

q̂B (�; �) � (1� �)
Z
~c(c)��

d�(c) + �

Z
pS(c)��

d�(c): (53)

If RB = 1 (or r = 0), the recursive equation indicate that whenever WB(v) 6= 0,
we have max�;� �̂B(v �WB(v); �; �) = KB > 0 so that v �WB(v) must be some positive
constant x. It is then easily seen that the recursive equation has a unique solutionWB(v) =
max fv � x; 0g, which is nondecreasing, continuous and convex.18

Now suppose RB < 1 (or r > 0). Then the right-hand side of the recursive equation
can be regarded as a contraction mapping that assigns each WB another function on the
same domain. Applying standard techniques of discounted dynamic programming, we can
see that the solution WB is unique, nondecreasing, continuous and convex.

From the continuity and monotonicity, WB(v) is absolutely continuous and hence dif-
ferentiable almost everywhere. Whenever di¤erentiable, we have

W 0
B(v) = �B(v)RB

�
qB(v)[1�W 0

B(v)] +W
0
B(v)

	
:

Solve for W 0
B(v),

W 0
B(v) =

�B(v)RBqB(v)

1� �B(v)RB[1� qB(v)]

=
�B(v)RBqB(v)

1�RB[1� qB(v)]
= �B(v)

`BqB(v)

r + `BqB(v)
:

For v 2 AB, the trading probability qB(v) must be strictly positive, otherwise the participa-
tion cost �B cannot be recovered. ThusWB(v) is strictly increasing on AB and AB = [v; 1].

18 If v � x < 0 then WB(v) cannot be v � x and hence WB(v) = 0. If v � x > 0 then WB(v) cannot be 0
because the �rst maximand at WB(v) = 0 is

max
�;�

�B(v; �; �)�KB > max
�;�

�B(x; �; �)�KB = 0:
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In order to prove 20, it now su¢ ces to show WB(v) = 0. Indeed, if WB(v) 6= 0, then
either v = 0 or v = 1. We preclude the possibility of v = 1 because we are looking at
nontrivial equilibrium. v = 0 is also impossible because in that case type 0 buyer cannot
expect their participation cost recovered. Q.E.D.

Proof of Lemma 5: From lemma 3, ~v(v) and ~c(c) are absolutely continuous. Their
derivatives, which exist almost everywhere on AB and AS , are given by

~v0(v) =
r

r + `BqB (v)
� 0 and ~c0(c) =

r

r + `SqS (v)
� 0:

Moreover, the above inequalities are strict if and only if r > 0. Q.E.D.
Proof of Lemma 7:
Step 1: p

S
� v and �pB � �c.

Suppose p
S
< v. Then there is some active seller with type c proposing pS(c) < v.

Then her o¤er will be accepted with probability one and she can raise her o¤er without
a¤ecting this probability. We get the desired contradiction and have p

S
� v. Similar logic

with a buyer considered would show �pB � �c.
Step 2: c < v and �c < �v.
Suppose v � c. Then buyer with type v cannot recover the participation cost. It is

because (i) when she is the proposer, she cannot get any surplus since her value v is not
higher than the lowest price c acceptable by any seller; and (ii) when she is the responder,
again she cannot get any surplus since, from step 1, her value v is not higher than the
lowest price p

S
proposed by any seller. We get the desired contradiction and have c < v.

Similar logic with a �c seller considered would show �c < �v.
Step 3: For all c 2 [0; �c] and all v 2 [v; 1], ~c(c) < pS(c) � �pS � �v and c � pB � pB(v) <

~v(v).

Fix any c 2 [0; �c]. From �c < �v in step 2, we have max�
nh
1� ~�(�)

i
[�� ~c(c)]

o
> 0.

(For example, the seller can propose (�c+ �v)=2.19) Therefore, we have 1� ~�(pS(c)) > 0 and
pS(c) � ~c(c) > 0. Notice that 1 � ~�(pS(c)) > 0 implies �pS � �v. It completes the proof of
the �rst part of this step. The second part is shown by symmetric logic.

Now we have already proved v � p
S
� �pS � �v and c � pB � �pB � �c. If r = 0, then by

lemma 5, we have v = �v and c = �c, and hence it proves our claims for r = 0 case. If r > 0,
then again by lemma 5, then ~v(�) and ~c(�) are strictly increasing. Then 1 � ~�(pS(c)) > 0
(resp. ~�(pB(v)) > 0) implies �pS < �v (resp. p

B
> c). It proves our claims for r > 0 case.

Q.E.D.
Proof of Lemma 6: If r = 0, then from Lemma 7, pB(v) and pS(c) are constant on

AB and AS respectively. The rest of this proof consider the case where r > 0.
Consider a buyer with type v � v. Recall (5) and by standard argument, we haveh

~�(pB(v2))� ~�(pB(v1))
i
� [~v(v2)� ~v(v1)] � 0:

From Lemma 5, if r > 0, then ~v(v) is strictly increasing, thus ~�(pB(v)) is nondecreasing in
v. Now suppose v1 < v2 but pB(v1) > pB(v2). Since ~�(pB(�)) is nondecreasing, we have
19� and � have positive densities on [v; 1] and [0; �c] because F and G have. Then ~� and ~� also have

positive densities on [v; �v] and [c; �c] because ~v and ~c are continuous.
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~�(pB(v1)) � ~�(pB(v2)). On the other hand, ~�(�) is nondecreasing, we have ~�(pB(v1)) �
~�(pB(v2)). Therefore ~�(pB(v1)) = ~�(pB(v2)). Then either ~�(pB(v1)) = ~�(pB(v2)) > 0 or
~�(pB(v1)) = ~�(pB(v2)) = 0.
Suppose �rst that ~�(pB(v1)) = ~�(pB(v2)) > 0. Then type v1 buyers could o¤er a lower

price, namely pB(v2), without a¤ecting the probability of being accepted, which is positive.
We get a contradiction.

Now suppose ~�(pB(v1)) = ~�(pB(v2)) = 0. Then max�
n
~�(�)[~v(v)� �]

o
= 0 for v =

v1; v2. But by Lamma 5 and Lamma 7, v � v imply ~v(v) � v > c. Then above objective
function can be guaranteed to be strictly positive by setting � = (v + c)=2. Again we get
a contradiction. Therefore, pB(v) are nondecreasing.

Using symmetric logic, we can prove corresponding results for the sellers�side, namely,
pS(c) are nondecreasing. Q.E.D.

Proof of Lemma 8: The claims in the �rst sentence are straight implications of
Lemma 6. For the rest, notice that by Lamma 7, v � p

S
and therefore the v buyer will

make positive pro�t only when he is the proposer. His o¤er p
B
will be accepted only if the

seller�s dynamic type ~c(c) � p
B
. The entry condition (12) then implies (24). Similar logic

leads to (25). Q.E.D.
Proof of Proposition 12: For concreteness, focus on the sellers (a symmetric argu-

ment applies for the buyers). Since equilibrium proposing strategy is nondecreasing, it is
su¢ cient to rule out a deviation to a higher bid � > v for the sellers with type �c. The
expected pro�t in a given meeting is

�S (�c; �) = (�� �c)
�
1� ~� (�)

�
;

and its slope is

@�S (�c; �)

@�
=

�
1� ~� (�)

�
� (�� �c) ~�0 (�) (54)

= �~�0 (�)
h
~JB (�)� �c

i
where ~JB (�) is the �virtual type�that corresponds to the distribution of dynamic types ~�,

~JB (�) � ��
1� ~� (�)
~�0 (�)

:

Given that the dynamic type ~v (v) in a full-trade equilibrium is a linear function which can
be calculated as

~v (v) =
rv + `Bv

r + `B
;

straightforward algebra shows that

~JB (�) =
r

r + `B

�
JB

�
r + `B
r

�� `B
r
v

�
+
`B
r
v

�
; (55)

where JB (v) is the virtual type function for the distribution F . Substituting (55) in the
slope formula (54), we obtain

@�S (�c; �)

@�
= �~�0 (�)

�
r

r + `B

�
JB

�
r + `B
r

�� `B
r
v

�
+
`B
r
v

�
� �c
�

(56)
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Clearly, a deviation to � < v is not pro�table, so we only need to consider � > v. A
necessary condition for such a deviation to be not pro�table is that @�S (�c; �) =@� � 0 at
� = v, i.e. the expression in the brackets on the right-hand side of equation (56) is non-
positive when � = v. This is also su¢ cient because of the monotonicity of JB. This gives
the inequality

rJB (v) + `B (z) v

r + `B (z)
� �c � 0:

Similarly, a necessary and su¢ cient condition to rule out a pro�table deviation by a buyer
with type v is

v � `S (z) �c+ rJS (�c)
r + `S (z)

� 0:

Equivalently, we can eliminate r from both inequalities to obtain (31), the upper bound on
r in text.

Proof that a non-full-trade equilibrium with too little entry cannot exist for
small r > 0: Since o¤ering strategies are increasing, it is su¢ cient to rule out the deviations
by marginal participating buyers and sellers. Consider a type �c seller who deviates by
o¤ering � > v in all meetings. His expected payo¤ in a given meeting

�S (�c; �) = (�� �c)
h
1� ~� (�)

i
;

with the slope
@�S (�c; �)

@�
= 1� ~� (�)� (�� �c) ~� (�) ; (57)

where ~� is the density of buyers�dynamic types. This density is equal to

~� (�) = ~�0 (�) =
� (v (�))

~v0 (v (�))

where � is the density of buyer types in the market and v (�) is the inverse of ~v (v), i.e.
~v (v (�)) = �. From (34) in text, for all v � v, ~v0 (v) � r= (r + �B), so we have

~� (�) �
�
1 +

�B
r

�
� (v (�)) : (58)

We now derive a lower bound on the endogenous density of buyers�types �. From the
steady-state condition, we can deduce

� (v) =
bf (v)

M (B;S) qB (v)
� bf (v)

M (B;S)
: (59)

and

B =

Z 1

v

bf (v) dv

`BqB (v)
� b

�B
[1� F (v)] ; (60)

where the last inequality follows from the fact that the v-type buyer must recover his
participation cost, `BqB (v) � �B. Corollary 11 and the steady-state condition b [1� F (v)]
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= sG (�c) therefore implies that an " > 0 exists such that v < 1� " for all su¢ ciently small
r > 0.

From now on in this proof we are assuming that r is chosen su¢ ciently small. It follows
from (60) and a symmetric argument for the sellers that

B � b" �f

�B
� �B; S � s"�g

�S
� �S:

Since the matching functionM (B;S) is nondecreasing in each of its arguments,M (B;S) �
M
�
�B; �S

�
. Substituting this bound into (59) we obtain the following bound on the endoge-

nous density of buyers�types,

� (v) �
bf

M
�
�B; �S

� � �: (61)

Then (58) implies that ~� (�) �
�
1 + �B

r

�
�, and it follows that the slope of the payo¤

function (57) eventually becomes negative as r ! 0, so that the type �c seller would not
prefer a deviation to � > v. Q.E.D.

Proof of Proposition 18.
MW show that, under full information, lifetime utilities in a full-trade equilibrium are

given by

W f
B (v) =

(1� �) `B (�)
(1� �) `B (�) + r

(v � v) ;

W f
S (c) =

�`S (�)

�`S (�) + r
(�c� c) ;

so the total welfare as a function of r is

W f (r) =
(1� �) `B (�)

(1� �) `B (�) + r
b

Z 1

v
(v � v) dF (v) + �`S (�)

�`S (�) + r
s

Z �c

0
(�c� c) dG (c) (62)

=
(1� �) `B (�)

(1� �) `B (�) + r
W 0
B +

�`S (�)

�`S (�) + r
W 0
S

where v and �c are the marginal participating types.
The indi¤erence conditions for the marginal participating types v and �c in their model

are

(1� �)
Z �c

0

�
v � rc+ �`S (�) �c

�`S (�) + r

�
dG (c)

G (�c)
=

�B
`B (�)

; (63)

�

Z 1

v

�
rv + (1� �) `B (�) v
(1� �) `B (�) + r

� �c
�

dF (v)

1� F (v) =
�S
`S (�)

: (64)

Note that their conditions are di¤erent from our conditions (26) and (27) because in the
MWmodel, marginal traders make ceteris paribus a bigger pro�t than our marginal traders,
by holding their partners to their dynamic types. In particular, while in the full-trade
equilibrium of our model v, �c do not depend on r, MW�s marginal types implicitly de�ned
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by (63) and (64) depend on r, as does the market tightness �. Denote these functions as
v� (r), �c� (r) and � (r).

Only if r = 0, the marginal participating types are equal to those in our model and in
fact, the total surpluses are also equal. Recall that our total welfare as a function of r is

W p (r) =
`B (�)

`B (�) + r
W 0
B +

`S (�)

`S (�) + r
W 0
S : (65)

Comparing (62) and (65), we see that W p (0) =W f (0).
The slope of W p (r) at r = 0 is much simple to compute since �c, v and � do not depend

on r under private information. A direct calculation shows that

dW p (0)

dr
= � W 0

B

`B (z)
� W 0

S

`S (z)
: (66)

Turn to the slope of W f (r) at r = 0, note that by direct calculation,

dW f (0)

dr
= � 1

1� �
W 0
B

`B (z)
� 1

�

W 0
S

`S (z)
+ sG (�c) [�c0� (0)� v0� (0)]: (67)

To calculate �c0� (0)�v0� (0) that appears in the slope dW f (0) =dr , we use the indi¤erence
conditions for the marginal types (63) and (64). Apply integration by parts to the left-hand
side of (63) and then di¤erentiate at r = 0:

d

dr

�
(1� �)

Z �c�

0

�
v� �

rc+ �`S (�) �c�
�`S (�) + r

�
dG (c)

G (�c�)

�
r=0

= (1� �) � d
dr

�
v� � �c� +

r

�`S (�) + r

Z �c�

0

G (c)

G (�c�)
dc

�
r=0

= (1� �) [v0�(0)� �c0�(0)] +
(1� �)W 0

S

sG (�c)
� d
dr

�
r

�`S (�) + r

�
r=0

= (1� �)
�
v0� (0)� �c0� (0)

�
+

(1� �)W 0
S

�`S (z) sG (�c)
:

Equate the derivatives of both sides of (63) and rearrange terms, we obtain

(1� �)
�
�c0� (0)� v0� (0)

�
=

(1� �)W 0
S

�`S (z) sG (�c)
� �B�B(z)� 0 (0) (68)

where

�B(z) �
d

d�

�
1

`B (�)

�
�=z

= � `
0
B (z)

`B (z)
2 > 0:

Similarly, by di¤erentiating (64) and rearranging terms, we obtain

�
�
�c0� (0)� v0� (0)

�
=

�W 0
B

(1� �) `B (z) b (1� F (v))
+ �S�S(z)�

0 (0) (69)

where

�S(z) � �
d

d�

�
1

`S (�)

�
�=z

=
`0S (z)

`S (z)
2 > 0:
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Sum (68) and (69), and insert the resulting �c0� (0) � v0� (0) into (67), and cancel terms, we
obtain:

dW f (0)

dr
= � W 0

B

`B (z)
� W 0

S

`S (z)
� sG (�c) [�B�B (z)� �S�S (z)] � 0 (0)

=
dW p (0)

dr
� sG (�c) [�B�B (z)� �S�S (z)] � 0 (0) : (70)

To compute � 0 (0), divide (68) by 1 � � and divide (69) by ��, sum them up and
rearrange terms:�

�B�B(z)

(1� �) +
�S�S(z)

�

�
sG (�c) � 0 (0) =

W 0
S

�`S (z)
� W 0

B

(1� �) `B (z)
:

Insert � 0 (0) into (70) and notice that

�B�B(z)

(1� �)

�
�B�B(z)

(1� �) +
�S�S(z)

�

��1
= 1� zm

0 (z)

m (z)
= �S(z)

and
�S�S(z)

�

�
�B�B(z)

(1� �) +
�S�S(z)

�

��1
=
zm0 (z)

m (z)
= �B(z);

we obtain

dW p (0)

dr
� dW

f (0)

dr
= [(1� �)�S(z)� ��B(z)]

�
W 0
S

�`S (z)
� W 0

B

(1� �) `B (z)

�
= [�S(z)� �]

�
W 0
S

�`S (z)
� W 0

B

(1� �) `B (z)

�
:

Q.E.D.
Proof of Theorem 16 (No market breakdown):
We have already seen necessity of K(z) < 1 in the text. To prove its su¢ ciency, we �rst

introduce some de�nitions and lemmas.

De�nition 19 Fix (r; �̀B; �̀S)� (0; �B; �S), and " 2 (0;�"] where

�" � min
�
1;
b

�B

�̀
B

�f
;
s

�S

�̀
S

�g

�
:

Let C[0; 1] be the Banach space of real continuous bounded functions de�ned on [0; 1], en-
dowed with the supremum norm. Then we de�ne D" � (C[0; 1])4 as the set of all tuples of
functions E � (WB;WS ; NB; NS) which satisfy the following conditions:

0 �WB � 1; 0 �WS � 1

NB(0) = NS(0) = 0

NB(1) � b[1� F (1� ")]=�̀B; NS(1) � sG(")=�̀S
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moreover WB;WS ; NB; NS are Lipschitz continuous (which implies absolutely continuous
and hence di¤erentiable almost everywhere) and wherever di¤erentiable,

0 � W 0
B(v) � �̀B=(r + �̀B) � �RB < 1;

0 � �W 0
S(c) � �̀S=(r + �̀S) � �RS < 1;

0 � N 0
B(v) �

bf(v)

�B
� b �f

�B
; 0 � N 0

S(c) �
sg(c)

�S
� s�g

�S
:

(Notice that 0 � NB(1) � b=�B and 0 � NS(1) � s=�S are implied.) It completes the
de�nition of the set D".

Lemma 20 D" is nonempty, convex and compact for any (r; �̀B; �̀S)� (0; �B; �S) and any
" 2 (0;�"].

Proof: Obviously, D" is nonempty (this is where we need " � �"), convex and closed.
Furthermore, D" is a uniformly bounded and equicontinuous family of functions on a com-
pact set [0; 1], therefore, by Ascoli-Arzela Theorem (see e.g. Royden (1988) p.169), D" is
compact. Q.E.D.

De�nition 21 Fix (r; �̀B; �̀S) � (0; �B; �S) and " 2 (0;�"]. De�ne a mapping T" : D" !
D" by T"(WB;WS ; NB; NS) � (W �

B;W
�
S ; N

�
B; N

�
S), where W

�
B;W

�
S ; N

�
B; N

�
S are constructed

through (36), (1), (2), (3), (4), (37), (38), (7), (13), (8), (14), (39), (40), (42), (43), (46)
and (47), with the matching function M underlying `B and `S replaced by ~M in (44).

Several remarks are needed to claim that our de�nition 21 of T" is legitimate, i.e. T" is
well-de�ned and its range, as stated in the de�nition, is contained in its domain D". The
restrictions we impose on the domainD" are important to claim that. Firstly, sinceNB(1) >
0 and NS(1) > 0, the distribution variables (B;S;�;�; �) are clearly well-de�ned. Second,
the normalized distributions (�;�) inherit continuity from the unnormalized distributions
(NB; NS). Third, since r > 0 and hence 0 �W 0

B < 1 and 0 � �W 0
S < 1, the dynamic types

~v and ~c are strictly increasing, which together with the continuity of (�;�) implies that the
distributions of dynamic types (~�; ~�) are continuous.

Fourth, since ~� and ~v are continuous, and argmax correspondence in the de�nition of pB
is nonempty-valued and compact-valued. Thus pB is well-de�ned; and pB, as the supremum
of the argmax correspondence, is itself a maxima. Furthermore, since the objective function
of the maximization problem satis�es increasing di¤erences in (v; �), any selection of the
argmax correspondence on the regions of types proposing serious o¤ers is nondecreasing,
and hence any other selection is essentially the same as pB. The same logic applies to the
sellers�counterpart pS .

Fifth, W �
B can be rewritten, by the de�nition of ~v(v), pB, qB and �B, as:

W �
B (v) = sup� �

n
RB(�)�̂B(v; �; �) +RB(�)[1� q̂B (�; �)]WB (v)�KB(�)

o
where the supremum is taken over (�; �) 2 [0; 1]2 and � 2 f0; 1g, and where �̂B(v; �; �)
and q̂B (�; �) are de�ned in (52) and (53). It is then clear that W �

B is continuous and
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nondecreasing because �̂B(�; �; �) and WB are. Furthermore, since �̂B(v; �; �) � q̂B(�; �),
we have

0 �W �
B (v) � RB(�)q̂B(�; �) +RB(�)[1� q̂B (�; �)] < 1

and since @�̂B(v; �; �)=@v = q̂B (�; �), we have,

0 �W �0
B (v) � RB(�)fqB(v) + [1� qB(v)]W 0

B(v)g � RB(�) � �RB:

wherever W �
B is di¤erentiable. Therefore W

�
B satis�es all the restrictions on it imposed by

the de�nition of D". The symmetric logic applies to the sellers�counterpart W �
S .

Sixth, by the de�nition of N�
B and �B, we have

N�
B(1) �

Z 1

1�"

b

max f`B(�); �Bg
dF (x) � b[1� F (1� ")]=�̀B

and wherever di¤erentiable,

0 � N�0
B (v) =

�B(v)bf(v)

max f`B(�)qB(v); �Bg
� bf(v)

�B
:

Clearly we also have N�
B(0) = 0, thus N

�
B satis�es all the restrictions on it imposed by the

de�nition of D". The same logic applies to the sellers�counterpart N�
S . We conclude that

our de�nition 21 of T" is legitimate.

Lemma 22 The mapping T" : D" ! D" is continuous for any (r; �̀B; �̀S)� (0; �B; �S) and
any " 2 (0;�"].

Proof: Fix any sequence fEng1n=1 in D" which is uniformly convergent to E. Let
us maintain our notations used in the construction of T" to denote the various elements
associated with the limit E, and add a subscript n to denote the various elements associated
with En. Then we have to show that the sequence fE�ng1n=1 is uniformly convergent to E�.

It is easy to see from our construction of T" that all the functions �n, �n, ~vn, ~cn, ~�n,
~�n, W �

Bn, W
�
Sn, N

�
Bn and N

�
Sn are absolutely continuous and their derivatives are uniformly

bounded. Therefore, they form an equicontinuous sequence of functions with a compact
domain [0; 1]. Hence for those functions, pointwise convergence is equivalent to uniform
convergence (see e.g. Royden (1988) p.168). That is to say, once we show the pointwise
convergence for one of those functions, uniform convergence for that function automatically
follows.

Now obviously Bn, Sn, �n, �n, �n, ~vn and ~cn are all convergent to their limits B, S, �,
�, �, ~v and ~c. Recall that ~vn is strictly increasing, absolutely continuous, and its derivative
~v0n is uniformly bounded away from zero (namely ~v0n � 1 � �RB > 0). These properties
maintain in the limit. Then it is not hard to see that, for all x 2 [0; 1] and almost every
v 2 [0; 1], we have I[~vn(v) � x] ! I[~v(v) � x]. By a version of Lebesgue convergence
theorem (see e.g. Royden (1988) p.270)20 and (3), we have ~�n ! ~�. The same logic shows
that ~�n ! ~�.
20Here we apply a generalized version of Lebesgue dominated convergence theorem which allows varying

measure. This theorem requires setwise convergence of the measure (which is the same as pointwise con-
vergence of c.d.f. here), pointwise convergence of the integrand, and that the integrand is dominated by an
integrable function.
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We next claim that pBn(v) ! pB(v) for almost all v 2 [0; 1]. In fact, pBn(v) might
not be convergent to pB(v). However, we will claim that the set of those v for which the
non-convergence exists has zero Lebesgue measure. First notice that the objective function
~�n(�)[~vn(v)��] in the de�nition of pBn(v) uniformly converges as n!1, and is continuous
in �, and the constraint set [0; 1] is compact, then by the Maximum Theorem, the argmax
correspondence must be upper-hemicontinuous with respect to n. That is to say, any
subsequential limit of pBn(v) (which exists because pBn(v) 2 [0; 1]) must be maximizing
the limiting objective function ~�(�)[~v(v) � �]. Therefore, if pBn(v) is not convergent to
pB(v), then argmax�2[0;1]

n
~�(�)[~v(v)� �]

o
is not a singleton. One possibility for the above

argmax being not a singleton is that ~v(v) < supfc : ~�(c) = 0g. It does not create problem
to our concern because in that case pBn(v)! supfc : ~�(c) = 0g = pB(v). Now suppose that
~v(v) � supfc : ~�(c) = 0g. Then by standard argument of increasing di¤erences, we see that
any selection of the above argmax correspondence must be nondecreasing in c. That is to
say, if there is a c such that ~v(v) � supfc : ~�(c) = 0g and pBn(v) is not convergent to pB(v),
then this v must be a discontinuous point of pB(�). Besides, since pB is nondecreasing on
an interval domain, it has at most countably many discontinuous points. As a result, the
set of those v for which pBn(v) is not convergent to pB(v) is with measure zero with respect
to Lebesgue measure. It follows that pBn(v) ! pB(v) almost everywhere with respect to
the measures generated by the c.d.f.�s F , � and f�ng1n=1, since F , � and f�ng1n=1 are
absolutely continuous (see e.g. Royden (1988) p.303, Problem 17). The same logic shows
that pSn(c) ! pS(c) almost everywhere with respect to Lebesgue measure, and hence the
measures generated by the c.d.f.�s G, � and f�ng1n=1.

Now we are ready to show W �
Bn !WBn. Rewrite W �

Bn as:

W �
Bn (v) = sup

(�;�)2[0;1]2
�2f0;1g

� �

8<:
RB(�n)(1� �)

R
I [~cn(c) � �] [~vn(v)� �] d�n(c)

+RB(�n)�
R
max f~vn(v)� pSn (c) ; 0g d�n(c)

+RB(�n)WBn (v)�KB(�n)

9=; :
Since we have �n ! �, �n ! �, ~vn ! ~v, ~cn ! ~c, WBn ! WB, and pSn (c) ! pSn (c) for
almost all c, we can see that W �

Bn !WBn. The same logic shows that W �
Sn !W �

S .
In order to prove N�

Bn ! N�
B, we need to prove that qBn, �Bn and �Bn converge almost

everywhere. By de�nition,

qBn(v) = (1� �)
Z
I [~cn(c) � pBn (v)] d�n(c) + �

Z
I [pSn(c) � ~vn (v)] d�n(c)

�Bn(v) = (1� �)
Z
I [~cn(c) � pBn (v)] [v � pBn (v)] d�n(c)

+�

Z
I [pSn(c) � ~vn (v)] [v � pSn (c)] d�n(c):

Pick any v such that pBn (v) ! pB (v), we have I [~cn(c) � pBn (v)] ! I [~c(c) � pB (v)]
for almost all c, because ~c0n is bounded away from 0. Similarly, pick any c such that
pSn (c)! pS (c), we have I [pSn(c) � ~vn (v)]! I [pS(c) � ~v (v)] for almost all v, because ~v0n
is bounded away from 0. Thus we can see that qBn(v) ! qB(v) and �Bn(v) ! �B(v) for
almost all v.
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To see that �Bn converge almost everywhere, it su¢ ces to show

I [`B(�n)�Bn(v) � �B]! I [`B(�)�B(v) � �B] :

We have already known that `B(�n)�Bn(v)! `B(�)�B(v) for almost all v. Hence it su¢ ces
to show that `B(�)�B(v) is strictly increasing around the v satisfying `B(�)�B(v) = �B.
Notice that

�Bn(v) = �̂Bn[v; pBn(v); ~vn(v)]

= �̂Bn[v �WBn(v); pBn(v); ~vn(v)] + qBn(v)WBn(v)

= sup
(�;�)2[0;1]2

�̂Bn[v �WBn(v); �; �] + qBn(v)WBn(v):

The second term of the last expression is nondecreasing since qBn(v) is. The �rst term
uniformly converges to sup(�;�)2[0;1]2 �̂B[v �WB(v); �; �], which is absolutely continuous,
nondecreasing, and its left-hand and right-hand derivatives evaluated at the v satisfying
`B(�)�B(v) = �B must be bounded away from 0 because

d

dv
sup

(�;�)2[0;1]2
�̂B[v �WB(v); �; �]

= qB(v)[1�W 0
B(v)] � �B(v) � (1� �RB) �

�B
`B(�)

(1� �RB) > 0:

We thus conclude that �Bn(v)! �B(v) for almost all v.
Consulting the de�nition of N�

Bn(v), we see that the convergence of qBn and �Bn almost
everywhere implies N�

Bn(v)! N�
B(v) for all v. As we have claimed, it implies N

�
Bn ! N�

B

uniformly. The same logic shows N�
Sn ! N�

S as well. In conclusion, the sequence fE�ng1n=1
is uniformly convergent to E�. Q.E.D.

Lemma 23 Fix any (r; �̀B; �̀S)� (0; �B; �S) and any " 2 (0;�"]. There exists a �xed point
E 2 D" such that T"(E) = E. That is, our "-model described in Section 4 has at least one
equilibrium ("-equilibrium).

Proof: As claimed before, D" is a nonempty, convex and compact set in a Banach
space (C[0; 1])4 and the mapping T" is continuous. Then we obtain our result by applying
the Schauder Fixed Point Theorem. Q.E.D.

Proposition 24 Fix r > 0. Suppose K(z) < 1. Then for all su¢ ciently small " > 0, any
"-equilibrium is in fact an equilibrium of our original model with take-it-or-leave-it o¤ering.

Proof: Consider an "-equilibrium. De�ne v as the lowest buyers�type of (either sub-
sidized or unsubsidized) entrants and �c as the highest sellers�type of (either subsidized or
unsubsidized) entrants, i.e.

v � inf fv 2 [0; 1] : �B(v) = 1g
�c � sup fc 2 [0; 1] : �S(c) = 1g :
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Notice that in order to claim the "-equilibrium is a true equilibrium in our original model,
it su¢ ces to claim that, in the "-equilibrium, �c > ", v < 1� " (i.e. no entrant is subsidized)
and `B(�) < �̀

B, `S(�) < �̀
S (i.e. our modi�cation on the matching function does not have

a bite).
First of all, as in Lemma 10, we want to claim that

v � �c � K(z): (71)

Since the assertion is trivial if v � �c, suppose that v > �c. In the "-equilibrium, the
payo¤ function WB is continuous in v, thus marginal participating buyers must have zero
payo¤, i.e. WB(v) = 0. Therefore those marginal buyers cannot have expected pro�t more
than their participation costs. Moreover, a marginal buyer can have pro�t only when she
proposes, because no seller would propose less than v, for the same reason as in the original
model. It follows that

�B � `B(�)(1� �)max ~�(�) (v � �)
� `B(�)(1� �)~�(�c) (v � �c) = `B(�)(1� �) (v � �c) :

Applying the same logic to the sellers, we have

�S � `S(�)� (v � �c) :

Therefore

v � �c � max
�2R++

min

�
�B

`B(�)(1� �)
;
�S

`S(�)�

�
= K(z):

Second, we want to claim that, in the "-equilibrium, the in�ows of traders are approx-
imately (although not exactly) balanced, i.e. b[1 � F (v)] � sG(�c), when " is small. By
the de�nition of � and N�

B (given in (36) and (46)) and that NB = N�
B, we have the

in�ow-out�ow form of buyers�steady-state equation:

b[1� F (v)] = B
Z 1

v
max f`B(�)qB(v); �Bg d�(v):

If no buyer is subsidized, the out�ow (i.e. the right-hand side) is simply the trading out�ow
B`B(�)

R 1
v qB(v)d�(v). Now consider the case in which some buyers are subsidized (which

implies v = 1 � "). Let v0 > v be the lowest type who participates without subsidization.
Then the out�ow is

B`B(�)

Z 1

v0
qB(v)d�(v) +B

Z v0

v
max f`B(�)qB(v); �Bg d�(v)

= B`B(�)

Z 1

v
qB(v)d�(v) +B

Z v0

v
max f0; �B � `B(�)qB(v)g d�(v):

The �rst term of the last expression is the trading out�ow and the second term is the
disquali�cation out�ow. The disquali�cation out�ow is O("):

B

Z v0

v
max f0; �B � `B(�)qB(v)g d�(v) � B

Z 1

1�"
�Bd�(v)

�
Z 1

1�"
�B
b �f

�B
dv = b �f":
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Thus, in both cases,

0 � b[1� F (v)]�B`B(�)
Z 1

v
qB(v)d�(v) � b �f":

The same logic applied to the sellers�side implies

0 � sG(�c)� S`S(�)
Z �c

0
qS(c)d�(c) � s�g":

Now since the trading out�ow must be balanced, i.e. B`B(�)
R 1
v qB(v)d�(v) = S`S(�)

R �c
0 qS(c)d�(c),

we have
jb[1� F (v)]� sG(�c)j � max

�
b �f; s�g

	
� ": (72)

If we let " ! 0, then we have b[1 � F (v)] � sG(�c) ! 0 from (71), while v � �c is
bounded away from 1 according to K(z) < 1 and (71). In the limit, we must have the strict
inequalities �c > 0 and v < 1. It follows that for all small enough " > 0, we have �c > " and
v < 1� ". The shaded area in Figure 7 illustrates the feasible region of (�c; v) for a small ".
In such an "-equilibrium with small ", no trader is subsidized. Hence the marginal entrants
must be able to recover their participation costs. In particular, the entry equations (24)
and (25) hold and they imply that � is bounded away from 0 and 1. Thus as long as �̀B
and �̀S are chosen to be large enough, our modi�cation on the matching function does not
have a bite. It follows that we obtain a true equilibrium in our original model. Q.E.D.
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