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Abstract

This paper develops a model in which competing governments of-
fer financial incentives to induce individual firms to locate within
their jurisdictions. Equilibrium is described under three specifi-
cations of the supplementary taxes. There is no misallocation of
capital under two of these specifications, and there might or might
not be capital misallocation under the third. This result contrasts
strongly with that of the standard tax competition model, which
does not allow governments to treat firms individually. That
model finds that competition among governments almost always
leads to capital misallocation.

1 Introduction

The tax competition literature assumes that the economy is divided into
autonomous regions, and that capital can move freely between the regions.
Its objective is to determine the rates at which the regions will tax profits,
and the impact of the profits tax on resource allocation. It finds that the
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gratefully acknowledges financial support from the Social Sciences and Humanities Re-
search Council of Canada.
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Government Annual
Company Location Investment Aid Output

Honda Lincoln, AL 825 248 270
Hyundai Montgomery, AL 1000 252 300
Nissan Canton, MS 1400 360 400
Toyota Princeton, IN 1900 117 400
Toyota San Antonio, TX 800 133 150
Toyota Woodstock, ON 625 100 100

Source: The Globe and Mail, Toronto, 1 July 2005. Investment and
aid are in millions of US dollars; output is in thousands of vehicles.

Table 1: Assembly Plants Built by Asian Auto Makers in North America
since 1998

tax rates generally vary across regions, and that the variation in tax rates
leads to an inefficient allocation of capital: the low tax regions use too much
capital and the high tax regions use too little (see Wilson 1999). A limita-
tion of this literature is that it assumes that a government can only attract
capital by reducing the rate at which it taxes profits. In reality governments
attach so much importance to new capital investment that they will often
make substantial financial concessions to get it. Table 1 shows the conces-
sions recently given to Asian auto makers building assembly plants in North
America. These concessions have been as high as 30% of the new investment.

If competition among governments is to be properly understood, the focus
must be on the overall financial package and the way in which that package
varies from firm to firm. A model of this sort is described here. A key element
of the model is that capital is embodied in heterogeneous firms. Each firm
is mobile, and each firm’s productivity varies from region to region. The
firms differ in the way that their productivity varies across regions. Each
firm receives an offer from the government of every region, and locates in the
region in which its after-tax profits would be highest. The government uses
its tax revenue to provide a public good to the region’s citizens.

Casual observation shows that governments are prepared to negotiate
with some firms but not with others, so this model is an abstraction. The
standard tax competition model, in which no-one gets a special deal, is also
an abstraction. Our view is that these two models constitute polar cases in
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the study of tax competition. Reality lies somewhere between them, but only
one of the two poles has been carefully studied. Our hope is that models like
this one will ultimately lead to a more balanced view of tax competition.

Our basic model assumes that each government can levy a tax on the
profits of firms located within its jurisdiction, and that the government can
also levy a lump-sum tax on the incomes of the citizenry. Under these
assumptions, the standard tax competition model predicts optimal public
goods provision but misallocation of capital. This finding was first presented
by Hamada (1966). Hamada’s model has been expanded in many different
ways, but its core result has remained largely unchanged. The bargaining
model, by contrast, predicts both optimal public goods provision and optimal
allocation of capital. The resource misallocation that has been the focus of
the tax competition literature is simply not there.

Since the existence of such a broadly based lump-sum tax might be viewed
with some scepticism, we consider two alternative assumptions. The first is
that the lump-sum tax strikes only wages. Capital is again correctly al-
located, but optimal provision of the public good is no longer guaranteed.
Public goods are optimally provided if the constraint on lump-sum taxation
is not binding, and they are underprovided if it is binding. The second is
Wilson’s (1999) assumption that the profits tax is the only tax.1 Wilson
shows that, under this assumption, the standard tax competition model pre-
dicts both underprovision of the public good and misallocation of capital.
The bargaining model is more agnostic. There is underprovision and capital
misallocation if the typical firm’s gross profits would not fall greatly if it
moved from its best location to its second best location, and there is optimal
provision and optimal capital allocation if this move would cause the typical
firm’s gross profits to fall dramatically.

An important feature of these results is that they are derived from a gen-
eral equilibrium model, and hence can be directly compared to those of the
standard fixed-rate model of tax competition. A number of earlier papers
have offered explanations of the tax breaks given to mobile firms, but these
papers have described the negotiations between a single firm and one or two
governments. Doyle and van Wijnbergen (1994) examine the intertemporal
structure of a firm’s tax payments. They note that a mobile firm has greater

1Our assumption is actually slightly different from Wilson’s, in that we assume that
a government that raises too much revenue through the profits tax can return the excess
revenue to the citizens through a negative lump-sum tax. Wilson requires an exact match
between revenue and public goods expenditure.
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bargaining power than a firm that has already incurred the sunk costs asso-
ciated with locating in a particular region. They argue that mobile firms will
use their extra bargaining power to extract concessions. Bond and Samuel-
son (1986) present an alternative explanation of the same phenomenon: a
region can offer a tax holiday to a mobile firm to signal that firms that lo-
cate there experience high productivity. The firm will willingly pay higher
tax rates in later periods because it is very productive, and these high tax
rates allow the government to recover the cost of the initial tax holiday. A
low-productivity region could not offer the same incentive: firms that located
there would relocate when they found that they had low productivity, so the
region would be unable to recover the cost of the tax holiday. King, McAfee
and Welling (1993) allow the firm to negotiate simultaneously with two gov-
ernments, and add a stochastic element to the regional productivities. Black
and Hoyt (1989) take an altogether different approach, arguing that subsidies
to mobile firms can undo the distortionary effects of average cost pricing of
publicly provided services.

Section 2 of this paper sets out an economy in which firms earn loca-
tional rents. Section 3 describes the Pareto optimal allocations. Section 4
describes the bargaining model, and derives the major result of the paper:
there is no misallocation of capital when governments bargain with firms.
Section 5 examines the role of the lump-sum tax, and section 6 contains brief
conclusions.

2 Preliminaries

The economy consists of I regions and a continuum of firms, each of which
operates one unit of capital. The regions are identified by the elements of
the set I≡{1, ..., I}. A firm is characterized by its ownership structure and
by its productivity in the various regions. A firm’s ownership structure is
represented by the vector γ ≡ (γ1, · · · , γI), where γi is the fraction of the firm
owned by residents of region i. The set of all possible ownership structures
is

Γ =
{
γ ∈ [0, 1]I :

∑I
i=1 γi = 1

}
A firm’s productivity in region i is governed by the parameter θi ∈ R+,
and the firm’s productivity in each of the regions is described by the vector
θ ≡ (θ1, · · · , θI). The set of all possible productivity vectors is Θ ⊂ RI

+. The
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distribution of firms is represented by a σ-finite measure space (Θ×Γ,B, P ).
Here, Θ × Γ is the sample space of firms, B is a σ-algebra over the sample
space, and P (X) denotes the measure of firms in any set X contained in B.
It is assumed that Θ is compact and that P is continuously differentiable.

Each firm locates and produces in one of the regions, or in none of them.
The firm’s output when it locates in region i, denoted yi, is determined by
θi and by ni, the quantity of labour employed by the firm:

yi = F (θi, ni)

The production function F is assumed to be concave, strictly increasing and
twice continuously differentiable. Furthermore, it displays constant returns
to scale and satisfies the Inada conditions. The assumption of constant re-
turns to scale implies that region i’s output can also be written as

yi = θif

(
ni
θi

)
where f is strictly increasing, strictly concave, twice continuously differen-
tiable, and satisfies the Inada conditions.

The total quantity of labour available in region i is fixed and equal to
Ni. Let Li ⊂ Θ × Γ be the set of firms that locate in region i, and let
the distribution of firms across the economy be L ≡ {L1, · · · , LI}. Let the
mapping n : Θ× Γ→ R+ describe the quantity of labour employed by firms
of each type.

The residents of each region consume two goods, a private good and
a public good. One unit of output can be transformed into one unit of
either good. Let ci ∈ R+ be the aggregate quantity of the private good in
region i, and let gi ∈ R+ be the aggregate quantity of the public good. The
social preferences of region i are represented by a social welfare function si,
which is assumed to be concave, strictly increasing, and twice continuously
differentiable in (ci, gi). It is also assumed to satisfy the Inada conditions.
Let the vectors c ≡ (c1, · · · , cI) and g ≡ (g1, · · · , gI) describe the aggregate
quantities of the private and public goods in the economy as a whole.

An allocation is a list (L, c, g, n). An allocation is feasible if

F1. The sets in L are disjoint, and ∪Ii=1Li ⊆ Θ× Γ

F2. The mapping n satisfies the condition∫
Li

ndP = Ni
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for each i.

F3. The vectors c and g satisfy the condition

I∑
i=1

ci +
I∑
i=1

gi =
I∑
i=1

∫
Li

F (θi, n)dP

Note that this definition of feasibility allows goods produced in one region to
be used to increase the aggregate consumption of another region.

Allocations can differ in ways that do not lead to differences in aggregates
or in social welfare. The following concepts will be used to identify allocations
that differ only in inconsequential ways.

Definition 1 Any two sets B and B′ in B are measurably identical if

P ((B ∪B′)− (B ∩B′)) = 0

Definition 2 Any two mappings φ : Θ× Γ→ R+ and ϕ : Θ× Γ→ R+ are
measurably identical if

P{(θ, γ) ∈ Θ× Γ : φ(θ, γ) 6= ϕ(θ, γ)} = 0

Two sets are measurably identical if one can be obtained from the other
by adding and/or subtracting a set of measure zero, and two mappings are
measurably identical if their differences are confined to a part of the domain
that is measure zero.

3 Pareto Optimal Allocations

A feasible allocation (L, c, g, n) is Pareto optimal if there does not exist an
alternative feasible allocation (L′, c′, g′, n′) such that si(c

′
i, g
′
i) is at least as

great as si(ci, gi) for all i and si(c
′
i, g
′
i) is greater than si(ci, gi) for some i.

The nature of the Pareto optimal allocations is determined in two steps.
Condition F3 and the monotonicity of the social welfare functions imply that
any Pareto optimal allocation maximizes the total output of the economy.
Since total output is entirely determined by L and n, the first step is to find
the conditions under which (L, n) maximizes total output. The second step
is to find the restrictions that Pareto optimality places on the allocation of
output (c, g).
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The relationship between a firm’s output and its productivity is given by
the increasing function

r

(
ni
θi

)
≡ ∂F (θi, ni)

∂θi
= f

(
ni
θi

)
− f ′

(
ni
θi

)
ni
θi

Multiplying both sides of the identity by θi and rearranging gives the identity

yi = θir

(
ni
θi

)
+ f ′

(
ni
θi

)
ni

This identity breaks the firm’s output into two components. The first com-
ponent is capital’s contribution to output (there is one unit of capital and
its contribution to output depends upon its productivity), and the second
is labour’s contribution to output (note that f ′ is the marginal product of
labour). The following lemma shows that total output is maximized when
each firm locates in the region in which capital’s contribution to output is
maximized. The proof of this result is contained in the appendix, as are the
proofs of all subsequent results.

Lemma 1 Let (L∗, n∗) satisfy the conditions:

a. ∪Ii=1L
∗
i = Θ× Γ

b. For all (θ, γ) ∈ L∗i and each i ∈ I,

n∗(θ, γ) = θiµ
∗
i

where

µ∗i ≡
Ni∫

L∗i
θidP

c. For each (θ, γ) contained in Θ× Γ, (θ, γ) ∈ L∗i only if

θir (µ∗i ) = max
j∈I

{
θjr
(
µ∗j
)}

An arbitrary tie-breaking rule determines the placement of (θ, γ) if the
product θjr(µ

∗
j) attains its maximum in more than one region j.

Then:
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1. Under any given tie-breaking rule, (L∗, n∗) exists and is unique. Each
L∗i is non-empty.

2. Total output is maximized if and only if (L, n) is measurably identical
to (L∗, n∗).

The first condition simply states that every firm must locate somewhere.
The second requires the ratio ni/θi to be the same for every firm that locates
in region i. Since each firm’s marginal product of labour is determined by this
ratio, this condition ensures that the marginal product of labour is equalized
across the firms that locate in region i. The third condition states that
each firm locates in the region in which capital’s contribution to output is
maximized. It is not surprising that output maximization requires the first
and second conditions, but why does it require the third condition? Suppose
that a small but positive measure of firms is moved from region h to region j.
The firms entering region j are provided with labour by shifting labour away
from the firms that were already in that region, so labour’s contribution to the
output of the new firms is exactly offset by the fall in labour’s contribution
to the output of the existing firms. Likewise, the departure of the firms
leaving region h means that more labour is available to the remaining firms,
so that the loss of labour’s contribution to the output of the departing firms
is offset by an increase in labour’s contribution to the output of the firms
that remain. The change in total output is therefore equal to the change in
capital’s contribution to the output of the firms that move.

Let Y ∗ be the maximal value of total output, and let R ≡ (R1, ..., RI)
represent the way in which total output is distributed across regions. The
definition of a feasible allocation assumed that goods produced in one region
could be allocated to any region, so the only restriction on R is that

I∑
i=1

Ri = Y ∗ (1)

A unit of the produced good can be converted into one unit of either good,
so

ci + gi = Ri for all i ∈ I (2)

Given Ri, the optimal choice of (ci, gi) maximizes si(ci, gi) subject to (2) and
non-negativity constraints on ci and gi. The restrictions on si imply that the
non-negativity constraints do not bind for any positive Ri.

Theorem 1 fully characterizes a Pareto optimal allocation.
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Theorem 1 A feasible allocation (L, n, c, g) is Pareto optimal if and only if

P1. (L, n) is measurably identical to (L∗, n∗).

P2. (ci, gi) satisfies the condition

∂si(ci, gi)

∂gi
=
∂si(ci, gi)

∂ci

for each i ∈ I.

The location of the firms and the allocation of labour across firms are
measurably identical in every Pareto optimal allocation, but the division of
resources between the regions varies substantially across the Pareto optimal
allocations. Indeed, every division of resources that satisfies (1) is part of
some Pareto optimal allocation.

4 Bargaining over Tax Rates

A government sets the rate at which it taxes the profits of all firms, but
it can also offer tax holidays, infrastructure investment, loan guarantees or
other financial incentives to particular firms. A firm evaluates an offer by
calculating the implied maximal after-tax profits, that is, the after-tax prof-
its earned when the profit-maximizing quantity of labour is employed. To
simplify the analysis in this section, it is assumed that (a) the financial con-
cessions, like the profits tax itself, do not distort the hiring decision, and (b)
the offer made by each government to a particular firm specifies the maximal
after-tax profits that the firm would earn in the region. The offers made
by the government of region i to firms of all types are represented by the
mapping πi : Θ× Γ → R, and the offers made by all governments are given
by π ≡ (π1, ..., πI).

An equilibrium consists of a collection (π, c, g, w, L, n). It unfolds in two
stages:

1. The government of each region i, taking the offers of the other govern-
ments as given, chooses πi such that region i’s social welfare cannot be
raised by changing the maximal after-tax profits offered to the firms in
any set of positive measure. Each government anticipates the impact
of its policies on wage rates and on the firms’ location and employment
decisions.
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2. Firms of each type (θ, γ) locate in some region j if no other region
offers maximal after-tax profits greater than πj(θ, γ). A firm that lo-
cates in regio i observes the market-clearing wage wi and employs the
profit maximizing quantity of labour. The government of each region
i chooses (ci, gi) and its own lump-sum tax to maximize the region’s
social welfare function.

In stage 2 each firm locates in the region in which its maximal after-tax
profits are highest. If it locates in region i, it employs the quantity of labour
that satisfies the condition

f ′
(
ni
θi

)
= wi

The ratio ni/θi is the same for every firm in the region, and since the wage
rate clears the regional labour market, this ratio must be equal to

µi ≡
Ni∫

Li
θidP

The gross profits of a firm in this region are equal to θir(µi).
2

The resources available to region i, denoted Ri, are equal to domestic
output, less the after-tax profits earned within the region, plus the citizens’
share of the after-tax profits of all firms.

Ri = f(µi)

∫
Li

θidP −
∫
Li

πidP +
I∑
j=1

(∫
Lj

γiπjdP

)

Each region will use the lump-sum tax to ensure the optimal division of its
resources between the private and public goods, so it chooses its offers to
maximize the region’s resources.

Lemma 2 Let π be given, and assume that each firm chooses its location to
maximize its after-tax profits. Region i cannot increase its resources Ri by
changing its offers to the firms in any set of positive measure if and only if
these conditions hold:

2Let m be a subset of the firms located in region i, and let zm be the be integral of
their productivities. Then zmf(µi) is their total output, zmµi is total employment at these
firms, and f ′(µi) is the wage rate.
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E1. Almost every firm that locates in region i has a matching offer from
some other region.

E2. Almost every firm that locates in region i satisfies

θir(µi) ≥ πi(θ, γ)

E3. Almost every firm that locates in any other region j satisfies

θir(µi) ≤ πj(θ, γ)

Consider a firm that locates in some region i. Condition 2 implies that
the firm’s gross profits in that region are at least as great as its after-tax
profits in the same region. Condition 3 implies that its after-tax profits in
region i are at least as great as its gross profits in any other region. It follows
that a firm locates in region i almost always attains its greatest gross profits
in that region, and that its after-tax profits almost always lie between its
second highest and highest gross profits.

The effective tax rate for a firm of type (θ, γ) in region i is

ti(θ, γ) ≡ θir(µi)− πi(θ, γ)

θir(µi)

The range of possible effective tax rates is very wide. A firm’s effective
tax rate is 0 if its second highest gross profits are equal to its highest gross
profits. It can be as high as 1 if the firm’s second highest gross profits are
equal to zero—that is, if the firm is effectively immobile. The effective tax
rate is never negative, implying that any concessions received by a firm are
subsequently taxed back.

In a fixed-rate model with homogeneous capital, the signs of the regions’
tax rates are determined by Hamada’s (1966) terms of trade effect. If there
are only two regions, for example, the region that is a net recipient of after-
tax profits will choose a negative tax rate. Its subsidization of capital will
drive up the economy-wide after-tax return to capital, which is beneficial
to a region that receives more profits than it pays out. The other region
will do the opposite, taxing profits to drive down the economy-wide after-tax
return to capital. Burbidge, Cuff and Leach (2006) show that the terms of
trade effect survives, albeit in a weaker form, when the production technology
described in section 2 is employed in a fixed-rate model of tax competition.
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This technology creates locational rents for the firms. Since governments can
capture locational rents that would otherwise accrue to foreigners by levying
positive profits taxes, the presence of locational rents puts upward pressure
on the profit tax. In this model the terms of trade effect determines the
relative sizes of the tax rates rather than their signs. By contrast, nothing
resembling the terms of trade effect arises in the bargaining model.

The terms of trade effect causes the distribution of ownership to play a
critical role in determining the tax rates in fixed rate models. There is no
terms of trade effect in the bargaining model, so the distribution of ownership
has no impact on the effective tax rates.

Since almost every firm locates in the region in which its gross profits are
greatest, it is not surprising that an equilibrium allocation is Pareto optimal.

Theorem 2 If the governments can tax the incomes of domestic residents
in a lump-sum fashion, an equilibrium exists. The equilibrium allocations are
measurably identical and Pareto optimal, and the market-clearing wages are
identical across equilibria.

The bargaining model shows that tax competition does not necessarily
lead to a misallocation of resources. The lump-sum tax plays a significant
role in generating this result, but the next section shows that an efficient
allocation of resources can arise without one.

5 The Lump-Sum Tax

It has been assumed that the government is able to levy lump-sum taxes
on wages and on the domestic residents’ share of the after-tax profits of all
firms. The role played by the lump-sum tax is explored here by eliminating
the lump-sum tax in a stepwise fashion. The first step limits the scope of
the lump-sum tax to wages, and the second eliminates the lump-sum tax
entirely.3 These changes have quite different (and perhaps surprising) effects
on the equilibrium.

There is no change in the equilibrium concept, but there is an additional
restriction on each government’s behaviour. If the lump-sum tax has limited
scope, some of the region’s resources cannot be appropriated by the govern-
ment and therefore cannot be allocated to the provision of the public good.

3The assumption that a government can transfer excess revenue back to the citizens in
a lump-sum fashion is retained throughout.
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Let Rg
i be the part of region i’s resources that can be allocated to the pub-

lic good, and let Rc
i be the part that cannot be allocated to it. Region i’s

government solves the optimization problem

max
ci,gi

Si = si(ci, gi)

s.t. ci + gi = Rc
i +Rg

i

gi ≤ Rg
i

Let the solution to this problem be the functions ci(R
c
i , R

g
i ) and gi(R

c
i , R

g
i ),

and let the associated maximum value function be Si(R
c
i , R

g
i ).

5.1 Only Wages are Subject to Lump-Sum Taxation

Under this assumption, the government can finance the public good from
either the wage tax or the profits tax, implying

Rg
i = f(µi)

∫
Li

θidp−
∫
Li

πi(θ, γ)dP

Rc
i =

I∑
j=1

(∫
Lj

γiπj(θ, γ)dP

)
Restricting the governments’ choices in this fashion does not alter the offers
that the governments make and does not alter the equilibrium (L, n).

Lemma 3 Assume that governments can tax only the wages of domestic
residents in a lump-sum fashion, and that region i will choose this tax to
maximize social welfare si. Let π be given, and assume that each firm chooses
its location to maximize its after-tax profits. Region i cannot increase si by
changing its offers to the firms in any set of positive measure if and only if
conditions E1–E3 hold.

As before, these conditions imply that a firm almost always locates in
the region in which its gross profits are highest, and that its after-tax profits
almost always lie between its second highest and highest gross profits.

The government of region i is willing to offer the same after-tax profits
when the inequality constraint is binding—when government revenue has a
high social value—as when it is not binding. A binding constraint implies
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that Rg
i is low relative to Rc

i . Since Rg
i is derived entirely from firms that

locate within the region, and since any reduction in the after-tax profits
offered to a firm will induce the firm to locate elsewhere, the government is
unwilling to moderate its offer to any firm.

Theorem 3 Assume that only the wages of domestic residents can be taxed
in a lump-sum fashion. Then an equilibrium exists, and the market-clearing
wages are the same in every equilibrium. Also,

1. (L, n) is measurably identical to (L∗, n∗).

2. An equilibrium that gives rise to a Pareto optimal allocation exists un-
der some specifications of the model.

Since the offers that are made to each firm do not change when the
scope of the lump-sum tax is restricted, neither does the actual location of
the firm. Total output is maximized even under the more restrictive tax
assumption. However, there is no assurance that each government will raise
enough revenue to provide the efficient quantity of public goods.

These results are the reverse of a common representation of Hamada’s
(1966) tax competition model. In that model, the existence of a lump-sum
wage tax is commonly assumed to ensure the optimal provision of public
goods, while the terms of trade effect causes capital to be misallocated across
regions. Our findings are that firms (which embody the available capital) are
correctly allocated across regions, but that the optimal provision of public
goods is not assured.

5.2 No Lump-Sum Tax

Wilson (1999) studies a fixed-rate tax competition model in which the profits
tax is the only available tax. He finds that, if the regions are not identical,
the equilibrium tax rates distort both the division of capital between regions
and the division of a region’s resources between the private and public goods.
If the regions are identical, each region will underprovide the public good.
An analogous equilibrium is described here.

The resources of government i are

Rc
i = (f(µi)− r(µi))

∫
Li

θidp+
I∑
j=1

(∫
Lj

γiπj(θ, γ)dP

)

14



Rg
i = r(µi)

∫
Li

θidp−
∫
Li

πi(θ, γ)dP

Equilibrium after-tax profits are now influenced by the relative scarcities of
the two types of resources. Their relative scarcity is summarized by the
marginal rate of substitution

MRSi ≡
∂Si
∂Rg

i

÷ ∂Si
∂Rc

i

which measures the value of a unit of Rg
i in terms of Rc

i , or equivalently, a unit
of public goods in terms of private goods. The marginal rate of substitution
is 1 if the inequality constraint in the government’s maximization problem
is not binding, and it is greater than 1 if it is binding. After-tax profits are
also influenced by the elasticity

ε(µi) ≡
µir
′(µi)

r(µi)

The following lemma describes the location of the firms and their after-tax
profits in any equilibrium.

Lemma 4 Assume that the profits tax is the only available tax. Consider a
firm of a type contained in Li. Define the variables

ρ(µj,MRSj) ≡ r(µj)

[
ε(µj)

MRSj
+ (1− ε(µj))

]
for all j ∈ I

Then, in any equilibrium,

θiρ(µi,MRSi) = max
j∈I

{
θjρ(µj,MRSj)

}
Furthermore, the firm’s after-tax profits satisfy the inequality

max
j 6=i

{
θjρ(µj,MRSj)

}
≤ πi(θ, γ) ≤ θiρ(µi,MRSi)

An additional firm brings θir(µi) additional units of resources to region i.
A fraction ε(µi) accrues to the region in the form of wages and the remainder
accrues as pre-tax profits. Each unit of untaxable wages is worth one unit
of private goods or 1/MRSi units of public goods, and each unit of taxable
gross profits is worth one unit of public goods, so θiρ(µi,MRSi) represents
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the value of these additional resources measured in units of public goods. The
cost of attracting a firm is πi(θ, γ) units of after-tax profits, each unit of which
has an opportunity cost of one unit of public goods. Thus, θiρ(µi,MRSi) and
πi(θ, γ) represent the benefit and cost of an additional firm, both measured
in units of public goods.

If the provision of public goods in some region i is not constrained by a
lack of tax revenue—if MRSi is equal to one—the lowest effective tax rate
that a firm might pay is zero. However, a region that is constrained by its tax
revenue will require every firm to pay taxes. Specifically, the lowest effective
tax rate is

t = ε(µi)

(
1− 1

MRSi

)
This rate rises from zero as MRSi rises from one. Likewise, the firm’s max-
imum effective tax rate rises with the marginal rate of substitution in the
region that places the next highest value on the firm.

The existence and uniqueness of equilibrium has not been proved for this
economy. The remainder of this section explores the properties of equilibrium
by describing a symmetric economy in which the production function is

yi = θαi n
1−α
i (3)

so that ε is constant. The following lemma shows that, for these economies,
there is a link between the two elements of Pareto optimality, namely output
maximization and efficient allocation.

Lemma 5 Assume that the profits tax in the only tax and that the production
function is (3). In any equilibrium, output is maximized if and only if every
region has the same marginal rate of substitution.

Lemma 5 suggests that almost all equilibria fall into one of two categories:
either the allocation is Pareto optimal, or total output is not maximized
and public goods are underprovided. The only exceptions are ”knife-edge”
equilibria in which every region underprovides the public good but has the
same marginal rate of substitution, so that total output is maximized. The
symmetric equilibrium will sometimes be of this unusual type.

Imagine an economy with two regions, each of which has the production
function (3). There is one unit of labour in each region. The productivity
profile of a firm takes one of two forms: it is either

(θ1, θ2) = (θ̂, λθ̂)
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or
(θ1, θ2) = (λθ̂, θ̂)

Here, λ is a positive fraction and θ̂ is an element of some bounded interval
of positive real numbers, denoted J . For any subset X of J , the fraction of
all firms for which θ̂ is contained in X is given by the measure P (X). Half
of these firms are more productive in region 1 and half are more productive
in region 2. It is also assumed that∫

J

θ̂dP = 1

which implies that the measure of all firms is 2. The fraction of a firm of type
(θ̂, λθ̂) owned by the residents of region 1 is equal to the fraction of a firm

of type (λθ̂, θ̂) owned by the residents of region 2, and is denoted γ(θ̂). This
assumption implies that half of all after-tax profits accrue to each region. It
is assumed that each firm pays the largest tax consistent with equilibrium.

One candidate for the equilibrium allocation is the output-maximizing
allocation. Under this allocation, each firm goes to the region in which
its productivity factor is greatest. The available labour in each region i is
distributed across the firms so that the ratio ni/θ̂ is the same for all firms.
Then, in each region i,

Zi = µi = Yi = 1

Rc
i = 1− (1− λ)α

Rg
i = (1− λ)α

The offer made to each firm is equal to its gross profits in the low-productivity
region. That is, firms of type (θ̂, λθ̂) or type (λθ̂, θ̂) are offered after-tax prof-

its of αλθ̂. This allocation is an equilibrium allocation if neither government
can increase social welfare in its region by changing its offers to a measurable
set of firms. This condition is satisfied; see the appendix for details.

Although the symmetric equilibrium always maximizes output, it might
or might not efficiently allocate output. Under any increasing and strictly
concave social welfare function, public goods will be optimally provided if
Rg
i is a sufficiently large part of total output, or equivalently, if (1 − λ)α is

sufficiently large. A high value of α implies that profits—the only part of
output that is taxable—constitute a large fraction of output. A small value
of λ implies that every firm’s second-best location is much worse than its
best location, so that it is willing to accept high taxes in the best location.
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The fixed-rate tax competition model does not generate a Pareto optimal
allocation, but the bargaining model will sometimes to do so. This difference
arises in part because the firms in the bargaining model are less mobile
than the firms in the fixed-rate model. Capital in the fixed-rate model is
truly mobile, in the sense that it can move to any region and is equally
productive in every region. Each firm in the bargaining model is mobile
in the sense that it can locate in any region, but it might be immobile in
the sense that it cannot move between regions without a significant loss of
productivity. The extent of these productivity losses largely explains the
difference in results. If each firm’s second best option is almost as good
as its best option, the government’s revenue is likely to be so small that
public goods will be underprovided, and underprovision almost always leads
to capital misallocation. However, if each firm’s second best option is much
worse than its best option, each government will be able to collect significant
tax revenue. If each region’s preferences for the public good are not very
strong, these revenues might be large enough to allow each region to provide
the optimal quantity of public goods. There is no capital misallocation if
public goods are optimally provided in every region. Thus, relatively high
mobility (in the sense of movement without significant loss) gives rise to
allocations that are not Pareto optimal, as in Wilson (1999), while relatively
low mobility gives rise to Pareto optimal allocations.

6 Conclusions

The standard model of tax competition assumes that each government taxes
every firm’s profits at the same rate. Regional differences in productivity or
in endowments lead to an equilibrium in which there is a range of tax rates.
Resources are misallocated, with the low tax regions using too much capital
and the high tax regions using too little. By contrast, the model set out
above assumes that the governments negotiate separately with every firm.
The predictions of the model depend upon the nature of the supplementary
taxes in the economy. If all of income is subject to a lump-sum tax, a Pareto
optimal allocation is reached; if only wages are subject to a lump-sum tax,
there can be underprovision of the public good but capital is again optimally
allocated. A Pareto optimal allocation might even occur if governments
cannot use a lump-sum tax to raise revenue.
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7 Appendix

Let k ≡ (k1, · · · , kI) be a vector of non-negative real numbers. For each k,
let L(k) ≡ {L1(k), · · · , LI(k)} be the unique collection of disjoint sets that
satisfies these conditions:

C1. ∪Ii=1Li(k) = Θ× Γ.

C2. For each i ∈ I, (θ, γ) ∈ Li(k) implies that kiθi = max[k1θ1, · · · , kIθI ].
An arbitrary “tie-breaking” rule determines the placement of firms for
which the product kiθi reaches its maximum in more than one region.

Define the functions

Zi(k) ≡
∫
Li(k)

θidP for all i ∈ I

and let k◦ be the solution to the equation system

ki = ηi × r
(

Ni

Zi(k)

)
for all i ∈ I (4)

Here, each ηi is a positive constant. Then k◦ has these properties.

FP1. The vector k◦ exists and is unique, and k◦i and Zi(k
◦) are strictly pos-

itive for each i ∈ I.

FP2. An increase in ηj causes k◦j and each ratio k◦j/k
◦
i (i ∈ I, i 6= j) to rise.

Proof of FP1: Let k◦ be a fixed point of (4), and let s◦ be the vector
such that

s◦i =
k◦i∑I
l=1 k

◦
l

for all i ∈ I

Since Zi(k) is linearly homogeneous, s◦ is the fixed point of the equation
system

si =
ηir
(

Ni
Zi(s)

)
∑I

l=1 ηlr
(

Nl
Zl(s)

) for all i ∈ I (5)
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By definition, every fixed point of (4) gives rise to a unique fixed point of
(5). Also, by the linear homogeneity of Zi,

k◦i =ηir

(
Ni

Zi(k◦)

)
= ηir

(
Ni

Zi(s◦)

)
for all i ∈ I

so that each fixed point of (5) gives rise to a fixed point of (4). Thus, k◦

exists and is unique if s◦ exists and is unique. The existence and uniqueness
of s◦ are proved in turn:

1. The difficulty of proving the existence of the fixed point of (5) is that
the right-hand side of (5) is not bounded or not defined if some ki is zero.
This problem is circumvented by considering the mapping

qεi (s) =
ηir
(

Ni
Zi(s)+ε

)
∑I

l=1 ηlr
(

Nl
Zl(s)+ε

) for all i ∈ I

Define the set

S ≡

{
s ∈ RI

+ :
I∑
l=1

sl = 1

}
This set is non-empty, compact and convex. For each ε > 0, the mapping
qε : S→ S is well-defined even when some elements of s are zero. The
assumptions on P ensure that qε is a continuous mapping from S into S.
Taken together, these conditions ensure the existence of a fixed point sε =
(sε1, · · · , sεI). Furthermore, the construction of the mapping ensures that sεi
is strictly positive for all i and all ε > 0. Since sε is a fixed-point of qε, we
have

sεi =
ηir
(

Ni
Zi(sε)+ε

)
∑I

l=1 ηlr
(

Nl
Zl(sε)+ε

) for all i ∈ I

Since 0 < sεi < 1 for all i at each ε, the positive sequence {sε} is bounded.
Therefore, there exists a subsequence of {sε} that must converge as ε → 0.
For simplicity, assume that we choose this convergent subsequence right from
the start so that {sε} itself converges to s◦ as ε→ 0.

Now we will show that 0 < s◦i < 1 for all i ∈ I. Suppose not. Then
there exists a non-empty subset D ⊂ I such that s◦i = 0 for all i ∈ D. Then
we have Zi(s

◦) = 0 for all i ∈ D because every firm will be located in some
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region i′ such that s◦i′ > 0. Furthermore, Zi(s
ε) → Zi(s

◦) = 0 as ε → 0.∑
l∈D s

ε
l is expressed by

∑
l∈D

sεl =

∑
l∈D ηlr

(
Nl

Zl(sε)+ε

)
∑

l∈D ηlr
(

Nl
Zl(sε)+ε

)
+
∑

l /∈D ηlr
(

Nl
Zl(sε)+ε

)
Note that sε is a fixed point of qε, so Zl(s

ε) + ε is bounded and positive for

all l /∈ D at any ε. This implies that
{∑

l /∈D ηlr
(

Nl
Zl(sε)+ε

)}
is a bounded and

positive sequence. Furthermore, because r is positive and strictly increasing,

there exists a positive constant z > 0 such that
{∑

l∈D ηlr
(

Nl
Zl(sε)+ε

)}
is

bounded above z. Therefore, we have
∑

l∈D s
ε
l 9 0 as ε→ 0. This contradicts∑

l∈D s
◦
l = 0. It follows that 0 < s◦i < 1 for all i. Since s◦ is a fixed point of

(5) and 0 < s◦i < 1 for all i, we have Zi(s
◦) > 0 for all i. Therefore, a fixed

point k◦ (with k◦i > 0 for all i) of (4) exists and Zi(k
◦) = Zi(s

◦) > 0 for all i
2. Assume that s◦ is not a unique fixed point, and let s0 and s1 be two

of the fixed points. Let region a be the region in which the ratio s0
i /s

1
i is

lowest. This ratio must be smaller than 1. (If it were not, every element of
s0 would be greater than the corresponding element of s1. Since every fixed
point has the property that

∑
i si = 1, at least one of the two vectors could

not be a fixed point.) Then, for all θ ∈ Θ and all j 6= a,

θj
s1
j

s1
a

≤ θj
s0
j

s0
a

, (6)

Furthermore, the inequality must be strict for some j. Since a firm locates
in region a if and only if θa > θj(sj/sa) for all j 6= a, (6) implies that
Za(s

0) < Za(s
1). Then, using (5),

s0
a

s1
a

=
r
(

Na
Za(s0)

)
r
(

Na
Za(s1)

) > 1

which contradicts the initial assumption that s0
a/s

1
a is smaller than 1. Thus,

the fixed point s◦ must be unique. �
Proof of FP2: This property is proved by demonstrating that any other

outcome leads to a contradiction. If Zj(k
◦) does not rise when ηj rises, k◦j

must rise to satisfy the jth equation in the system. However, if Zj(k
◦) does not
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rise, there must be at least one element k◦i that rises by a greater proportion
than k◦j . Let k◦h be the element that experiences the greatest proportionate
increase. Since k◦h and Zh(k

◦) both rise, the hth equation in the system
is not satisfied. Thus, Zj(k

◦) must rise in response to the increase in ηj.
If k◦j does not rise while Zj(k

◦) rises, there must be at least one element
k◦i that falls by a greater proportion than k◦j . Let k◦h be the element that
experiences the greatest proportionate decline. Since both k◦h and Zh(k

◦)
fall, the hth equation in the system is not satisfied. Thus, the rise in Zj(k

◦)
must be accompanied by an increase in k◦j . Let k◦h be the element of k◦ that
experiences the greatest proportionate increase. If its proportionate increase
is at least as great as that of k◦j , Zh(k

◦) also rises, so that the hth equation
in the system cannot be satisfied. It follows that the proportionate increase
in k◦j must be greater than the proportionate increase in any other element
of k◦. �

Proof of Lemma 1: The restrictions that Lemma 1 places upon L imply
that L∗ is equal to L(k∗) where

k∗i = r

(
Ni∫

L∗i
θidP

)
for all i ∈ I

Consequently, k∗ is the fixed point of

k∗i = r

(
Ni

Zi(k∗)

)
for all i ∈ I (7)

Since this system is simply (4) with ηi set equal to one, the existence and
uniqueness of k∗ and L∗ follows immediately from FP1, as does the finding
that each L∗i is non-empty. The labour allocation n∗ is entirely determined
by L∗. To prove the second part of Lemma 1, suppose that the location
decision L is not measurably identical to L(k∗). Then, under the location
rule L, there exists a compact set Mi of firms in region i such that P (Mi) > 0
and kjθj > kiθi for all firms in Mi. It will be shown that moving a subset
of these firms from region i to region j raises total output. Let Mi be the
set of all subsets of Mi, and identify some (θ, γ) ∈ Mi. Define a mapping
m : R+ →Mi such that (i) m(0) = (θ, γ) , (ii) m(x′) ⊂ m(x) for all x′ and
x such that x′ < x, and (iii) C = P ◦m is continuous and differentiable at
all x ∈ R+. The firms in the set m(x) will be moved from region i to region
j; C(x) is their measure. For each m(x), let v(x) be the decline in region
i’s aggregate productivity when the firms are moved out of region i, and let
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h(x) be the increase in region j’s aggregate productivity gain when the firms
are moved into that region. Since C is continuous and differentiable, v and
h are continuous and differentiable. Assuming that labour is reallocated to
equalize the marginal product of labour across the firms in each region, the
movement of the firms causes total output to rise by

D(x, k∗) = F (Zj(k
∗) + h(x), Nj)− F (Zi(k

∗)− v(x), Ni)

Taking the first-order derivative of D with respect to x and evaluating it at
x = 0 gives

∂D(0, k∗)

∂x
=

∂F (Zj(k
∗), Nj)

∂θj

dh(0)

dx
− ∂F (Zi(k

∗), Ni)

∂θi

dv(0)

dx

=
dh(0)

dx
k∗j −

dv(0)

dx
k∗i

Since
θjk
∗
j > θik

∗
i

for every firm that is moved between regions, this derivative is positive. That
is, moving a small but positive measure of firms between the regions raises
total output. Then L does not maximize total output if L is not measurably
identical to L(k∗), where where k∗ is some fixed point of (7). Therefore, it is
necessary condition for the output-maximizing location rule L that L must
be measurably identical to L(k∗), where k∗is some fixed point of (7). Since
there exists a unique fixed point k∗ of (7), the necessary condition becomes
the sufficient one for the output-maximizing location rule. �

Proof of Theorem 1: P1 follows from Lemma 1. Given Ri, region i’s
problem is to find (ci, gi) to maximize si subject to ci + gi ≤ Ri. Since si is
increasing, the constraint must hold with equality at a solution. Given the
assumptions on si, P2 is both necessary and sufficient for (ci, gi) to maximize
si subject to the constraint (2) Let (c∗i (Ri), g

∗
i (Ri)) be the solution to this

maximization problem. Since si is concave, increasing, and twice differen-
tiable, si(c

∗
i (Ri), g

∗
i (Ri)) is increasing in Ri. Consequently, shifting resources

from one region to another raises one region’s welfare at the expense of the
other region. Then any allocation of output that satisfies (1) can be part of
a Pareto optimal allocation. �

Definition: An offer is a winning offer if it is accepted by the firm. It
is a matching offer if it would give the firm the same after-tax profits as the
winning offer but is not accepted by the firm.
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Proof of Lemma 2: If region i contains a set of firms that have no
matching offers, and if this set has positive measure, region i can increase
its resources by slightly reducing its offers to these firms. Thus, condition
1 is a necessary condition for the absence of a revenue-increasing deviation.
The remainder of the proof assumes that this condition holds, and proceeds
in three parts. The first part describes the deviations open to region i. The
second part shows that the second and third conditions hold if region i has
no resource-increasing deviation; and the third part shows that region i has
no resource-increasing deviation if all three conditions hold.

1. Region i’s options are limited to one or both of the following: (a)
reduce the offers to the firms in a set of positive measure, causing them to
locate elsewhere; (b) raise the offers to the firms in a set of positive measure,
causing them to choose region i. To describe (a), let Mi be the set of all
subsets of Li, and identify some

(
θ0, γ0

)
contained in Li. Define a mapping

m0 : R+ →Mi such that (i) m0(0) = (θ0, γ0) , (ii) m0(x
′) ⊂ m0(x) for all x′

and x such that x′ < x, and (iii) C0 ≡ P ◦m0 is continuous and differentiable
at all x ∈ R+. The firms in the set m0(x) will be induced to leave region i.
Their measure is C0(x). Define the functions:

A0(x) ≡
∫
m0(x)

θidP

B0(x) ≡
∫
m0(x)

πi(θ, γ)dP

zi ≡
∫
Li

θidP

To describe (b), let L−i be the set of firms that choose to locate in a region
other than i, and let M−i be the set of all subsets of L−i. Choose some
(θ1, γ1) contained in L−i. Define a mapping m1 : R+ → M−i such that (i)
m1(0) = (θ1, γ1) , (ii) m1(x

′) ⊂ m1(x) for all x′ and x such that x′ < x, and
(iii) C1 ≡ P ◦m1 is continuous and differentiable at all x ∈ R+. The firms
in the set m1(x) will be induced to locate in region i, and their measure is
C1(x). Define the functions:

A1(x) ≡
∫
m1(x)

θidP

B1(x) ≡
∑
j 6=i

(∫
m1(x)∩Lj

πjdP

)
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Any deviation can be represented by choosing the functions m0 and m1 ap-
propriately and by evaluating them at appropriate points, denoted x0 and
x1 respectively. Since region i can induce a firm to move to that region by
matching the firm’s best offer, its resources under a given deviation are

Ri(x0, x1) = (zi + A1(x1)− A0(x0)) r

(
Ni

zi + A1(x1)− A0(x0)

)
−B1(x1) +B0(x0)−

∫
Li

πidP +
I∑
j=1

(∫
Lj

γiπj(θ, γ)dP

)

2. If ∂Ri(0, 0)/∂x0 is positive, there exists some arbitrarily small but
positive δ such that region i could increase Ri be reducing its offers to the
firms in the set m0(δ). Thus, region i has no resource-increasing deviations
only if

∂Ri(0, 0)

∂x0

= −A′0(0)r (µi) +B′0(0) ≤ 0

for almost all (θ0, γ0), or equivalently, only if

θir(µi) ≥ πi(θ, γ) (8)

for almost all (θ, γ) contained in Li. Likewise, if ∂Ri(0, 0)/∂x1 is positive,
there exists some arbitrarily small but positive δ such that region i could
increase Ri be raising its offers to the firms in the set m1(δ). It follows that
region i has no resource-increasing deviations only if

∂Ri(0, 0)

∂x1

= A′1(0)r (µi)−B′1(0) ≤ 0

for almost all (θ1, γ1), or equivalently, only if

θir(µi) ≥ πj(θ, γ) (9)

for almost all (θ, γ) contained in Lj (j 6= i). Thus, (8) and (9) are necessary
conditions for the absence of a resource-increasing deviation in region i.

3. Since A0 and A1 are strictly increasing functions, the implicit function

A1(x1) = A0(x0)

can be written as either of the following strictly increasing functions:

x1 = φ(x0)
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x0 = ψ(x1)

The function r is increasing, so information on the relative sizes of A0(x0)
and A1(x1) helps to determine the signs of the partial derivatives of Ri.
Specifically, by (8),

∂Ri

∂x0

≤ −A′0(x0)r (µi) +B′0(x0) ≤ 0 if A0(x0) ≥ A1(x1) (10)

and by (9),

∂Ri

∂x1

≤ A′1(x1)r (µi)−B′1(x1) ≤ 0 if A1(x1) ≥ A0(x0) (11)

To show that the stated conditions are sufficient for the absence of a resource-
increasing deviation, two cases must be considered.

Case 1. Assume that region i wants to drive away the firms in the set
m0(x

∗
0) and attract the firms in the set m1(x

∗
1), and that A1(x

∗
1) is at least

as large as A0(x
∗
0). Equivalently,

x∗1 ≥ φ(x∗0)

Then

Ri(x
∗
0, x
∗
1)−Ri(0, 0)

= [Ri(x
∗
0, x
∗
1)−Ri(x

∗
0, φ(x∗0)] + [Ri(x

∗
0, φ(x∗0)−Ri(0, 0)]

=

∫ x∗1

φ(x∗0)

∂Ri(x
∗
0, q)

∂x1

dq +

∫ x∗0

0

[
∂Ri(q, φ(q))

∂x0

+
∂Ri(q, φ(q))

∂x1

φ′(q)

]
dq

The partial derivative in the first integrand is evaluated at pairs (x∗0, x1) for
which x1 ≥ φ(x∗0), so (11) implies that the first integral (if it is present) is
non-positive. The partial derivatives in the second integrand are evaluated
at pairs (x0, φ(x0)), so (10) and (11) imply that the second integral is also
non-positive. Thus, a deviation of this type does not increase Ri.

Case 2. Assume again that region i wants to drive away the firms in
the set m0(x

∗
0) and attract the firms in the set m1(x

∗
1), but now assume that

A1(x
∗
1) is smaller A0(x

∗
0). Equivalently,

x∗0 > ψ(x∗1)
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Then

Ri(x
∗
0, x
∗
1)−Ri(0, 0)

= [Ri(x
∗
0, x
∗
1)−Ri(ψ(x∗1), x

∗
1)] + [Ri(ψ(x∗1), x

∗
1)−Ri(0, 0)]

=

∫ x∗0

ψ(x∗1)

∂Ri(q, x
∗
1)

∂x0

dq +

∫ x∗1

0

[
∂Ri(ψ(q), q)

∂x0

+
∂Ri(ψ(q), q)

∂x1

ψ′(q)

]
dq

Since (10) implies that the first integral is non-positive, and (10) and (11)
imply that the second integral is non-positive, this kind of deviation does not
increase Ri. �

Proof of Theorem 2: The first step is to show that a vector of market-
clearing wages exists, and that this vector is unique. A firm maximizes its
profits by choosing the quantity of labour that satisfies the condition

f ′
(
ni
θi

)
= wi (12)

Let ñi(θi, wi) be the solution that solves the first-order condition above. In-
verting this condition shows that

ni
θi

= xi(wi) (13)

for every firm in region i. Define the vector k̃(w) ≡ (k̃1(w), ..., k̃I(w)) such
that

k̃i(w) = r (xi(wi)) for all i ∈ I (14)

Lemma 2 shows that, under any wage vector w, a firm locates in the region
in which its gross profits are highest, so the firms’ locations are given by
L(k̃(w)). By (13), a firm’s demand for labour is

ñi(θi, wi) = θixi(w)

The aggregate demand for labour in region i is found by integrating over the
demands of the individual firms in that region:

ND
i =

(∫
Li(k̃(w))

θidP

)
xi(wi) = Zi(k̃(w))xi(wi)

The regional labour market clearing condition equates this demand to the
supply of labour:

xi(wi) =
Ni

Zi(k̃(w))
(15)
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Using (14),

k̃i(w) = r

(
Ni

Zi(k̃(w))

)
A vector of market-clearing wages exists if and only if there exists a vector
k̃(w) such that this condition is satisfied for all I markets, but the required

vector k̃(w) is simply a fixed point of (7). Lemma 1 shows that this fixed
point exists and is unique, so a vector of market-clearing wages exists and is
unique. Furthermore, Lemma 2 implies that the locations of the firms and the
distribution of labor across firms are measurably identical across equilibria
because the market-clearing wage vector is identical across equilibria. Now
consider the issue of Pareto optimality. All of the firms in a region equate
their marginal products of labour to the market wage rate, so the marginal
products of labour are equalized across firms. The uniqueness of the fixed
point implies that k̃(w) is the same as k∗, so that any L(k̃(w)) is measurably
identical to L(k∗) and hence P1 is satisfied. Since the governments use their
lump-sum taxes to attain an optimal division of their resources between the
public and private good, P2 is also satisfied. Therefore, the equilibrium
allocation induced by any equilibrium is Pareto optimal. �

Proof of Lemma 3: If the firms in Li that do not have matching offers
constitute a set of positive measure, region i could reduce its offers to these
firms without losing them. This adjustment would cause Rg

i to rise, and
Rc
i to fall by a smaller amount. Since a unit of Rc

i is never more valuable
than a unit of Rg

i , social welfare would rise. It follows that E! is a necessary
condition for the absence of a welfare-improving deviation. Assume that this
condition holds, and define mh(x), Ah(x) and Bh(x) (h = 0, 1) as in Lemma
2. Region i’s resources when it abandons the firms in m0(x0) and attracts
the firms in m1(x1) are given by the functions

Rg
i (x0, x1) = (zi + A1(x1)− A0(x0))f

(
Ni

zi + A1(x1)− A0(x0)

)
−
∫
Li

πi(θ, γ)dP −B1(x1) +B0(x0)

Rc
i (x0, x1) =

I∑
b=1

(∫
Li

γiπb(θ, γ)dP

)
Since Rc

i is not affected by a deviation, social welfare is maximized by maxi-
mizing Rg

i . Proceeding as in Lemma 2 shows that E2 and E3 hold if region i
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does not have a welfare-improving deviation, and that region i does not have
a welfare-improving deviation if E1–E3 hold. �

Proof of Theorem 3: The existence of an equilibrium can be proved
by showing the existence of the market clearing wage vector. Since every
firm locates into a region where it can attain its highest gross profits, the
market-clearing wage vector is unique and the same as the one proved in
the corresponding part of the proof of Theorem 2. It immediately follows
that the allocation of firms and the allocation of labour across firms are
measurably identical across equilibria when the government can only impose
the lump-sum tax on wages as when it can tax all of domestic income, so
(L, n) again maximizes total output. Item 2 follows from the non-negativity
of each region’s revenues: these revenues can be sufficient to provide the
optimal quantity of public goods. �

Proof of Lemma 4: The argument of Lemma 3 shows that E1 is a
necessary condition for the absence of a welfare-improving deviation in region
i. Assume that this condition holds, and define mh(x), Ah(x) and Bh(x)
(h = 1, 2) as in Lemma 2. Social welfare in region i under any given deviation
is

σ̂i(x0, x1) ≡ Si(R̂
c
i (x0, x1), R̂

g
i (x0, x1))

where

R̂c
i (x0, x1) = (zi + A1(x1)− A0(x0))

×
{
f

(
Ni

zi + A1(x1)− A0(x0)

)
− r

(
Ni

zi + A1(x1)− A0(x0)

)}
+

I∑
b=1

(∫
Lb

γiπb(θ, γ)dP

)

R̂g
i (x0, x1) = (zi + A1(x1)− A0(x0))r

(
Ni

zi + A1(x1)− A0(x0)

)
−
∫
Li

πi(θ, γ)dP +B0(x0)−B1(x1)

If ∂σ̂i(0, 0)/∂x0 is positive, there exists an arbitrarily small but positive δ
such that region i can increase si by reducing the offers to the firms in the
set m0(δ). Thus, region i has no welfare-improving deviation only if this
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derivative is non-positive. This condition is satisfied if and only if

A′0(0)r(µj)

[
ε(µj)

MRSj
+ (1− ε(µj))

]
≤ B′0(0)

for any (θ0, γ0), or equivalently, if almost every element of Li satisfies

θjr(µj)

[
ε(µj)

MRSj
+ (1− ε(µj))

]
≤ πi(θ, γ) (16)

Likewise, if ∂σ̂i(0, 0)/∂x1 is positive, there exists an arbitrarily small but
positive δ such that region i can increase si by raising the offers to the firms
in the set m1(δ). Thus, region i has no welfare-improving deviation only if
this derivative is non-positive. This condition is satisfied if and only if

A′1(0)r(µi)

[
ε(µi)

MRSi
+ (1− ε(µi))

]
≥ B′1(0)

for any (θ1, γ1), or equivalently, if almost every element of Lh (h 6= i) satisfies

θir(µi)

[
ε(µi)

MRSi
+ (1− ε(µi))

]
≥ πh(θ, γ) (17)

Combining (16), (17) and the matching requirement gives the lemma. �
Proof of Lemma 5: Define the variables

βi ≡ α +
1− α
MRSi

for all i ∈ I (18)

and let β be the vector (β1, ...βI). In any equilibrium a firm goes to region i
only if

θiki ≥ θjkj for all j ∈ I
However, Lemma 4 implies that, in equilibrium, a firm goes to region i only
if

θi

(
Ni

Zi(k)

)1−α

βi ≥ θj

(
Nj

Zj(k)

)1−α

βj for all j ∈ I

Then an equilibrium distribution of firms across regions is described by
L(k̂(β)), where k̂(β) is the solution to the equation system

ki =

(
Ni

Zi(k)

)1−α

βi for all i ∈ I (19)
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By FP1, k̂(β) exists and is unique for every strictly positive β. The functions

k̂(β) are continuous. As well, Zi(k̂(β)) is continuous in β, and by FP1, it
is positive for every strictly positive vector β. It follows that the functions
Rc
i (β) and Rg

i (β) are also continuous. Since Li(k̂(β) is non-empty for every
strictly positive vector β, Rc

i (β) is positive and Rg
i (β) is non-negative for

every strictly positive vector β. Now note that MRSi is a continuous function
of the region’s resources and hence a continuous function of β. Write this
relationship as

MRSi = ψi(β)

and consider the mapping

φi(β) = α +
1− α
ψi(β)

i ∈ I

Define the set
D ≡ [α, 1]I

The mapping φ : D→ D is continuous and well-defined, so the mapping
has a fixed point β∗. All of the elements of an equilibrium can be inferred
from β

◦
. The equilibrium L is L(k̂(β

◦
)) or is measurably identical to it. The

equilibrium allocation of labour is measurably identical to

n(θ, γ) = θi

[
Ni

Zi(k̂(β
◦
))

]
i ∈ I

Each region’s wage is equal to its equilibrium marginal product of labour.
Government i’s revenues are Rc

i (β
◦
) and Rg

i (β
◦
), and region i’s consumption

of private and public goods is ci(R
c
i (β

◦
), Rg

i (β
◦
)) and gi(R

c
i (β

◦
), Rg

i (β
◦
)).

Total output is maximized in an equilibrium if and only if there is some
positive λ such that, for all i ∈ I, k̂i(β

◦
) = λk∗i where k∗ is the solution

to (7). Assume that every marginal rate of substitution is the same. By
(18), every element of β

◦
is equal to some λ, where α < λ ≤ 1. Since Zi(k)

is linearly homogeneous, and since k̂(β) = k∗ when every element of β is

equal to 1, k̂i(β
◦
) = λk∗ so that total output is maximized. Now suppose

that total output is maximized, implying k̂(β
◦
) = λk∗. Evaluating (19) at

λk∗ determines a unique vector β
◦
. Since it has already been shown that

k̂(β
◦
) = λk∗ when every element of β

◦
is equal to λ, this is the unique

solution for β
◦
. Thus, total output maximization implies that every element

of β
◦

is the same and hence every element of MRS is the same. �
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Proof that the symmetric allocation is an equilibrium allocation:
For concreteness, it will be shown that region 1 has no welfare-improving
deviations; the demonstration for region 2 is identical. Define the functions
m0(x0) and m1(x1) as in Lemma 2. Then

A0(x0) =

∫
m0(x0)

θ̂dP

A1(x1) = λ

∫
m1(x1)

θ̂dP

B0(x0) = αλ

∫
m0(x0)

θ̂dP = αλA0(x0)

B1(x1) = αλ

∫
m1(x1)

θ̂dP = αA1(x1)

Using these expressions and the equilibrium profits to evaluate the region’s
resources gives

R̂c
1(x0, x1) = (1− α) [1 + A1(x1)− A0(x0)]

α + αλ

R̂g
1(x0, x1) = α [1 + A1(x1)− A0(x0)]

α+αλ

∫
L1

γ(θ̂)θ̂dP+αλA0(x0)−αA1(x1)

Since the region’s resources under any deviation depend only upon the values
taken by the functions A0 and A1, they can be expressed directly in terms of
these values:

R̃c
1(A0, A1) = (1− α) (1 + A1 − A0)

α + αλ

R̃g
1(A0, A1) = α [1 + A1 − A0]

α + αλ

∫
L1

γ(θ̂)θ̂dP + αλA0 − αA1

A deviation (A′0, A
′
1) in which A′1 ≥ A′0 > 0 is dominated by the deviation

(0, A′1−A′0), because the latter deviation gives the same Rc
1 but a higher Rg

1.
A deviation (A′0, A

′
1) in which A′0 ≥ A′1 > 0 is dominated by the deviation

(A′0−A′1, 0) for the same reason. It is therefore sufficient to show that there
are no welfare-improving deviations (A0, A1) in which exactly one of A0 and
A1 is positive. Consider first deviations in which the region attracts firms.
Differentiation gives

∂R̃c
1(0, A1)

∂A1

= α(1− α)

(
1

1 + A1

)1−α

> 0

32



∂R̃g
1(0, A1)

∂A1

= α2

(
1

1 + A1

)1−α

− α < 0

Both derivatives decline as A1 rises, so the region gives up the smallest
amount of Rg

1 for another unit of Rc
1 when A1 is equal to 0, and at this

point, one unit of Rg
1 is given up to obtain one more unit of Rc

1. Since MRS1

is never less than 1, this trade-off does not raise welfare. Now consider devi-
ations in which the region abandons firms. Differentiation gives

∂R̃c
1(A0, 0)

∂A0

= −α(1− α)

(
1

1− A0

)1−α

< 0

∂R̃g
1(A0, 0)

∂A0

= −α2

(
1

1− A0

)1−α

+ λα

Abandoning firms is clearly not welfare-improving if the second derivative is
also negative, so imagine that it is positive. Both derivatives decline as A0

rises, so the region gets the largest amount of Rg
1 in exchange for a unit of

Rc
1 when A0 is equal to zero, and at that point, less than a unit of Rg

1 is
obtained in exchange for one unit of Rc

1. Since MRS1 is never less than 1,
this trade-off does not raise welfare. �
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