
Technical Appendix to
“Screening When Not All Agents Are Strategic:

Does a Monopoly Need to Exclude?”
Proof of Theorem 2.

Existence. We wish to show that there exists a 4-tuple of measurable bounded functions
{q(θ), ts(θ), g(θ), tτ (θ)} solving the maximization problem (1)-(5).

Note that since the monopolist will never select to sell a quantity larger than Q =
max{q|u(q, 1) − c(q) ≥ 0}, consumers will never pay more than M = u(Q, 1). Also, without
loss of generality, ts(θ) ≥ 0 and tτ (θ) ≥ 0. Thus we may without loss of generality restrict the
domain of maximization to functions whose range is contained in [0,K] where K = max{Q,M}.

The set of measurable functions with range [0,K] coincides with L2(µ), where µ is the
measure associated with the distribution function F (.). Let us endow this space of functions with
weak∗ topology. To be more precise, a sequence xn(θ) converges to x(θ) in the weak∗ topology
iff

∫ 1
0 xn(θ)y(θ)f(θ)dθ → ∫ 1

0 x(θ)y(θ)f(θ)dθ ∀y ∈ L2(µ). Setting y(θ) ≡ 1 then shows that
xn(θ)− x(θ) → 0, a.e.-θ.

Since c(·) is continuous, and since the components of {q(θ), ts(θ), g(θ), tτ (θ)} are bounded
by K, it follows from the Lebesgue dominated convergence Theorem that the objective function
is a continuous functional under the weak∗ topology.

By Alaoglu’s Theorem (see Theorem 6.17 in Royden “Real Analysis,” (1987)) a K-ball is
compact in the weak∗ topology. Furthermore, by Tychonoff’s Theorem the product of 4 K-balls
is compact in the product topology generated by the weak∗ topology. Since the set S of all
4-tuples {q(θ), ts(θ), g(θ), tτ (θ)} whose components lie in [0,K] and satisfy the constraints (2)-(5)
is a closed subset of the K-ball, we conclude that S is compact in the product topology generated
by the weak∗ topology. It follows from the Weierstrass Theorem that there exists a 4-tuple of
L2 functions {q(θ), ts(θ), g(θ), tτ (θ)} in S that attains the maximum in (1).

Uniqueness. Since Problem (1)-(5) is equivalent to Problem (6)-(7), we will prove the
uniqueness of a solution to the latter problem.

Suppose to the contrary that there exist two distinct pairs (qi(θ), gi(θ)) i = 1, 2 solving
(6)-(7). Fix some ρ ∈ (0, 1), and let g3(θ) = ρg1(θ) + (1− ρ)g2(θ), q3(θ) = ρq1(θ) + (1− ρ)q2(θ).

Now define Uτ (θ) = maxθ′∈[0,1] u(g3(θ′), θ)−u(g3(θ′), θ′), and let θ∗(θ) be the largest corre-
sponding maximizer. Since uθq(q, θ) > 0 and g3(θ) is increasing, the maximand is supermodular in
the choice variable, and so θ∗(θ) is an increasing function. Furthermore, at any point θ where θ∗ is
continuous (which excludes at most a countable number of points), the function Uτ is differentiable
with derivative U ′

τ (θ) = uθ(g3(θ∗(θ)), θ). At any discontinuity point of θ∗ we nevertheless have
lim supθ′↓θ

Uτ (θ′)−Uτ (θ)
θ′−θ ≤ uθ(g3(θ∗(θ)), θ) and lim infθ′↓θ

Uτ (θ′)−Uτ (θ)
θ′−θ ≥ uθ(g3(θ∗−(θ)), θ), where θ∗−

is the left limit of θ∗.
We will show that the following modification of the quantity schedules (q̂(θ), ĝ(θ)) improves

the firm’s expected profits. Let q̂(θ) satisfy (in a recursive fashion):

q̂(θ) =

{
q3(θ) if

∫ θ
0 uθ(q̂(s), s)ds > Uτ (θ)

max{q3(θ), g3(θ∗(θ))} if
∫ θ
0 uθ(q̂(s), s)ds = Uτ (θ)

Let us show that the tuple (q̂(θ), g3(θ)) is feasible, i.e. satisfies the constraints (8) and (7).
(7) holds because q̂(θ) is constructed so that whenever U(θ) =

∫ θ
0 uθ(q̂(s), s)ds = Uτ (θ) we

have U ′(θ) = uθ(q̂(θ), θ) ≥ uθ(g3(θ∗(θ)), θ) = lim supθ′↓θ
Uτ (θ′)−Uτ (θ)

θ′−θ , where the inequality holds
because uθq(q, θ) > 0 and q̂(θ) ≥ g3(θ∗(θ)). Thus, whenever U(θ) equals Uτ (θ), it cannot decrease
below it.
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To see that (8) holds note that both q3(θ) and max{q3(θ), g3(θ∗(θ))} are increasing func-
tions. Note that q̂(θ) can fail to be increasing only if for some θd U(θd) = Uτ (θd), U(θ) > Uτ (θ)
in a right neighborhood of θd, and g3(θ∗(θd)) > q3(θd). The latter inequality, the monotonicity
of g3(θ∗(.)), and the continuity of q3(.) would then imply that there exists a right neighbor-
hood of θd over which g3(θ∗(θ)) > q3(θ), and hence U ′(θ) = uθ(q3(θ), θ) < uθ(g3(θ∗−(θ)), θ) ≤
lim infθ′↓θ

Uτ (θ′)−Uτ (θ)
θ′−θ . This contradicts that U(θ) > Uτ (θ) in a right neighborhood of θd.

Let us now show that the objective (6) attains a strictly higher value under (q̂(θ), g3(θ))
than under either (q1(θ), g2(θ)) or (q2(θ), g2(θ)). First, note that strict concavity of u(q, θ)− c(q)
implies that u(g3(θ), θ)− c(g3(θ)) > ρ(u(g1(θ), θ)− c(g1(θ))) + (1− ρ)(u(g2(θ), θ)− c(g2(θ))), and
the corresponding inequality applies to the second term in (6).

Second, the first term in (6) can be rewritten as
∫ 1
0

(
u(q(θ), θ)− c(q(θ))− ∫ θ

0 uθ(q(s), s)ds
)

dF (θ).
Lemmas 6 and 8 imply that ρq1(θ) + (1 − ρ)q2(θ) ≤ q̂(θ) ≤ q∗(θ). Since u(q, θ) − c(q) is strictly
concave in q, we have u(q̂(θ), θ)−c(q̂(θ)) > ρ(u(q1(θ), θ)−c(q1(θ)))+(1−ρ)(u(q2(θ), θ)−c(q2(θ))),
and the corresponding inequality applies to

∫ 1
0 u(q(θ), θ)− c(q(θ)dθ.

To complete the proof, we only need to show that for all θ ∈ [0, 1],

∫ θ

0
uθ(q̂(s), s)ds ≤ ρ

∫ θ

0
uθ(q1(s), s)ds + (1− ρ)

∫ θ

0
uθ(q2(s), s)ds (43)

First, suppose θ is such that
∫ θ
0 uθ(q̂(s), s)ds = Uτ (θ) ≡

∫ θ
θ∗(θ)) uθ(g3(θ∗(θ)), s)ds. Now (3) implies

that for both i = 1, 2 we have
∫ θ
θ∗(θ)) uθ(gi(θ∗(θ)), s)ds ≤ ∫ θ

0 uθ(qi(s), s)ds. Since uθqq(q, θ) ≥ 0,
we also have uθ(g3(θ), θ) ≤ ρuθ(g1(θ), θ) + (1 − ρ)uθ(g2(θ), θ), and the desired inequality holds.
Second, if θ is such that U(θ) > Uτ (θ), then

d

dθ

∫ θ

0
uθ(q̂(s), s)ds = uθ(q3(θ), θ) ≤ ρuθ(q1(θ), θ) + (1− ρ)uθ(q2(θ), θ)

= ρ
d

dθ

∫ θ

0
uθ(q1(s), s)ds + (1− ρ)

d

dθ

∫ θ

0
uθ(q2(s), s)ds

where the inequality follows because q3(θ) = ρq1(θ) + (1 − ρ)q2(θ) and uθqq(q, θ) ≥ 0. So, (43)
holds. Q.E.D.

Proof of Lemma 1. First, (i) is immediate, as incentive constraints in (2) imply that
q(.) must be nondecreasing. Next we will prove (v), (iii), (ii) and (iv) in that order. Note that our
proof establishes that (iii) and (v) must hold almost everywhere on [0, 1]. It also implies that for
every solution in which (iii) and (v) fail on a set of measure zero there is an equivalent solution
which: (a) differs on a set of measure zero, (b) generates the same value of (1), (c) in which (iii)
and (v) hold everywhere. Focussing on equivalence classes, there is no loss of generality then to
require that (iii) and (v) hold everywhere.

To establish (v), suppose that tτ (θ) < u(g(θ), θ) for some θ ∈ [0, 1]. Then the value of
the second integrand in (1) can be increased pointwise by setting tτ (θ) = u(g(θ), θ) at all such θ.
This modification does not violate any constraints in (2)-(4), and raises the value of (1).

Similarly, if g(θ) > q∗(θ) for some θ ∈ [0, 1], then the value of the second integrand in
(1) can be increased pointwise by setting g(θ) = q∗(θ) and resetting the corresponding transfer
tτ (θ) so that tτ (θ) = u(g(θ), θ) at all such θ. This modification does not violate any constraints
in (2)-(4) either.
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Next, suppose that g(θ′) > g(θ′′) for some θ′, θ′′ ∈ [0, 1], θ′ < θ′′. By part (ii) and the
previous argument, tτ (θ) = u(g(θ), θ) and g(θ) ≤ q∗(θ) for all θ ∈ [0, 1]. So, u(g(θ′), θ)− tτ (θ′) >
u(g(θ′′), θ) − tτ (θ′′) for all θ ≥ θ′. Also, by (4), u(q(θ), θ) − ts(θ) ≥ 0 > u(g(θ′′), θ) − tτ (θ′′) for
all θ < θ′. Then let us modify g(θ′′) raising it to g(θ′) and also raise tτ (θ′′) so that (5) remain
binding. This modification does not violate any incentive constraints, and raises the value of the
second integrand in (1) pointwise.

Next, we establish (ii). We start by showing that limθ→1 q(θ) = q∗(1), which would
imply that q(1) = q∗(1). So, first, suppose that q(θ) > q∗(1) for some θ ∈ [0, 1). Let θ̂ =
inf{θ|q(θ) > q∗(1)}. Since q(.) is non-decreasing, q(θ) > q∗(1) ∀θ ∈ (θ̂, 1]. Consider a modified
quantity/transfer schedule (q̃(θ), t̃s(θ)) s.t. q̃(θ) = q(θ), t̃s(θ) = ts(θ) if θ ∈ [0, θ̂), and q̃(θ) = q∗(1),
t̃s(θ) = ts(θ̂) + u(q∗(1), θ̂)− u(q(θ̂), θ̂) if θ ∈ [θ̂, 1]. It is easy to check that (q̃(θ), t̃s(θ)) satisfies all
incentive constraints. In particular, all constraints in (3) hold because g(θ) ≤ q∗(1) ∀θ ∈ [0, 1].
Also, (2) imply that t̃s(θ) > ts(θ) for all θ ∈ [θ̂, 1]. Since we also have c(q̃(θ)) ≤ c(q(θ)), the firm’s
expected profits strictly increase as a result of this modification.

Now suppose that limθ→1 q(θ) = µ < q∗(1). Since q(θ) is nondecreasing, q(θ) ≤ µ ∀θ ∈
[0, 1). Let θm be well-defined by the following equality: u(q∗(θm), θm)−c(q∗(θm)) = u(µ, 1)−c(µ).
Since µ < q∗(1), θm < 1 and q∗(θm) > µ. So, θm > θµ where θµ satisfies q∗(θµ) = µ. Therefore,
u(q∗(θm), θm)− c(q∗(θm)) > u(µ, θ)− c(µ) > u(q(θ), θ)− c(q(θ)) ∀θ > θm.

Consider a modified profile (q̃(θ), t̃s(θ)) which coincides with (q(θ), ts(θ)) on [0, θm), while
for θ ∈ [θm, 1] q̃(θ) = q∗(θm), t̃s(θ) = ts(θm)+u(q∗(θm), θm)−u(q(θm), θm). The profile (q̃(θ), t̃s(θ))
satisfies all incentive and individual rationality constraints. Moreover, the firm’s expected profits
strictly increase. It earns the same profits from strategic consumers with valuations in [0, θm),
while its profits from selling to a consumer with valuation θ > θm changes by:

u(q∗(θm), θm)− c(q∗(θm))− u(q(θ), θ)− c(q(θ))−
∫ θ

θm

uθ(q(s), s)ds > 0

The proof that it is optimal to set q(0) = 0 proceeds along similar lines.
To establish (iv) note that, since q(θ) is non-decreasing and bounded, it is Riemann

integrable (Theorem 6.9, p.126 in Rudin, “Principles of Mathematical Analysis,” (1976)) and
a.e. differentiable (Theorem 3 in Royden, p. 100 in “Real Analysis,” Third Edition, Prentice
Hall.). Hence, u(q(θ), θ) is also bounded, Riemann integrable and a.e. differentiable. Let U(θ) ≡
u(q(θ), θ)−ts(θ). Incentive constraints (2) imply that U(θ) is increasing and satisfies the following
inequalities ∀θ, θ′ ∈ [0, 1]:

u(q(θ′), θ)− u(q(θ′), θ′) ≤ U(θ)− U(θ′) ≤ u(q(θ), θ)− u(q(θ), θ′)

By the intermediate value theorem, ∃λ1, λ2 ∈ [0, 1] s.t. uθ(q(θ′), λ1θ + (1 − λ1)θ′)(θ − θ′) ≤
U(θ)−U(θ′) ≤ uθ(q(θ), λ2θ+(1−λ2)θ′)(θ− θ′). Since, uθ(q(θ′), θ) ≤ maxθ∈[0,1] uθ(q∗(1), θ) < ∞,
U(θ) is absolutely continuous. Therefore by Theorem 14, p.110 in Royden (1987) we have U ′(θ) =
uθ(q(θ), θ) and U(.) is equal to the integral of its derivative, i.e. U(θ)− U(θ′) =

∫ θ
θ′ uθ(q(s), s)ds.

This equation implies that, as in the standard case, only downwards incentive constraints between
‘adjacent’ types are binding among the ‘strategic’ consumers whenever q(.) is strictly increasing,
and so ts(θ) = u(q(θ), θ)− ∫ θ

0 uθ(q(s), s)ds− U(0). Q.E.D.

Proof of Lemma 2. Since the schedule q(.) is non-decreasing, by Theorems 4.29 and 4.30, p.96
in Rudin, “Principles of Mathematical Analysis,” (1976), it has at most countably many points of
discontinuity on [0, 1], and both the left-hand and the right-hand limits exist at all discontinuity
points of q(.).
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Suppose that the optimal quantity schedule q(.) is discontinuous at x ∈ (0, 1). Let q(x−)
and q+(x) be, respectively, the left-hand and the right-hand limits of q(.) at x. Consequently, we
have q−(x) = q+(x)− 2δ for some δ > 0.

Let G(q, θ) = u(q, θ)− c(q)− uθ(q, θ)
1−F (θ)

f(θ) and ∆(x) = q+(x)− q−(x). We will consider
two different cases.

Case 1: G(q−(x), x) < G(q+(x), x). By continuity of G(q, θ) and f(θ), ∃ε > 0 s.t. ∀θ ∈
(x − ε, x), G(q(θ) + ∆(x), θ) > G(q(θ), θ). Then let us replace the schedule q(θ) with modified
quantity schedule q̃(θ) s.t. q̃(θ) = q(θ) ∀θ ∈ [0, x− ε) ∪ (x, 1], q̃(θ) = q(θ) + ∆(x) ∀θ ∈ (x− ε, x)
and q̃(x) = q+(x). Note that q̃(θ) is increasing in θ, and all incentive constrains in (7) still hold
because Ũ(θ) ≥ U(θ) ∀θ ∈ [0, 1]. At the same time, the value of the objective (6) increases.

Case 2: G(q−(x), x) ≥ G(q+(x), x). By concavity of G(q, θ) in q, G((q−(x)+q+(x))/2, x) >
G(q−(x), x)/2 + G(q+(x), x)/2. Furthermore, by continuity of G(q, θ) and f(θ), ∃ε > 0 s.t.
∀θ ∈ (x−ε, x), G((q−(x)+q+(x))/2, θ)f(θ)+G((q−(x)+q+(x))/2, θ+ε)f(θ+ε) > G(q(θ), θ)f(θ)+
G(q(θ + ε), θ + ε)f(θ + ε).

So, let q̃(θ) = q(θ) ∀θ ∈ [0, x−ε]∪ [x+ε, 1] and q̃(θ) = (q−(x)+q+(x))/2 ∀θ ∈ (x−ε, x+ε).
Note that q̃(θ) is increasing in θ. If uθ((q−(x) + q+(x))/2, x)) > uθ(q−(x), x)/2 + uθ(q+(x), x)/2,
then ε can be chosen small enough that ∀θ ∈ (x− ε, x), uθ(q−(x) + q+(x))/2, θ)f(θ) + uθ(q−(x) +
q+(x))/2, θ + ε)f(θ + ε) > uθ(q(θ), θ)f(θ) + uθ(q(θ + ε), θ + ε)f(θ + ε). So under the quantity
schedule q̃(θ), Ũ(θ) ≡ ∫ θ

0 uθ(q̃(s), s)ds ≥ U(θ) ≡ ∫ θ
0 uθ(q(s), s)ds ∀θ ∈ [0, 1]. The value of (6)

changes by: ∫ x+ε

x−ε
(G((q−(x) + q+(x))/2, θ)−G(q(θ), θ)) f(θ)dθ > 0

If uθ((q−(x)+q+(x))/2, x)) ≤ uθ(q−(x), x)/2+uθ(q+(x), x)/2, then it is possible that ∆U(x+ ε) =∫ x+ε
x−ε uθ(q̃(s), s)−uθ(q(θ), s)ds < 0. In this case, ∀θ ∈ (x−ε, x+ε) set q̃(θ) = q̃ s.t.

∫ x+ε
x−ε uθ(q̃, s)−

uθ(q(θ), s)ds = 0. Note that q̃ > (q−(x)+ q+(x))/2. If ε is sufficiently small, then the value of the
Problem (6) changes approximately by:

∫ x+ε

x−ε
(u(g̃, θ)− c(g̃)− u(q(θ), θ) + c(q(θ))) f(θ)dθ > 0

The inequality holds by concavity of u(θ, q)− c(q) and the fact that q̃ > (q−(x) + q+(x))/2.

Proof of Lemma 3. Suppose that sequence {θn}n=∞
n=1 is s.t. limn→∞ u(g(θn), θ2)−u(g(θn), θn) =

Uτ (θ2) and limn→∞ g(θn) = ḡ2. (Such a sequence exists because g(θ) ∈ [0, q∗(1)] ∀θ ∈ [0, 1], and
any sequence in a compact set has a converging subsequence.) Then ḡ2 > g. For suppose not, i.e.
ḡ2 ≤ g. Then

Uτ (θ2)− Uτ (θ1) ≤ lim
n→∞u(g(θn), θ2)− u(g(θn), θ1) = u(ḡ2, θ2)− u(ḡ2, θ1) < u(g, θ2)− u(g, θ1)

Contradiction.
Next, consider a sequence {θm}m=∞

m=1 s.t. limm→∞ u(g(θm), θ3) − u(g(θm), θm) = Uτ (θ3)
and limm→∞ g(θm) = ḡ3. Then ḡ3 > g. Again, suppose otherwise i.e. ḡ3 ≤ g. We have:

Uτ (θ3) = lim
m→∞u(g(θm), θ3)− u(g(θm), θm) ≥ lim

n→∞u(g(θn), θ3)− u(g(θn), θn)

Since ḡ3 < ḡ2 by assumption, it follows that ∃N,M s.t. ∀n ≥ N and m ≥ M , g(θm) < g(θn), and
so u(g(θm), θ2)− u(g(θn), θ2) > u(g(θm), θ3)− u(g(θn), θ2).
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But then limm→∞ u(g(θm), θ2) − u(g(θm), θm) > limn→∞ u(g(θn), θ2) − u(g(θn), θn) =
supθ′∈[0,1] u(g(θ2), θ′)− u(g(θ′), θ′). Contradiction. Finally, we have:

Uτ (θ4)− Uτ (θ3) ≥ lim
m→∞u(g(θm), θ4)− u(g(θm), θ3) = u(ḡ3, θ4)− u(ḡ3, θ1) > u(g, θ4)− u(g, θ3)

Q.E.D.

Proof of Lemma 4. Suppose that in the optimal mechanism U(0) = u > 0. Consider set Z ⊂ Θ
s.t. θ ∈ Z iff

u +
∫ θ

0
uθ(q(x), x)dx = sup

θ′∈[0,1]
u(g(θ′), θ)− u(g(θ′), θ′) (44)

The set Z is non-empty, because otherwise the firm could reduce U(0) and hence increase its
expected profits without violating any of the incentive constraints in (7). Let θ̂ be the minimal el-
ement of Z. θ̂ exists because both the left-hand side and the right-hand side of (44) are continuous
in θ.

Define Uτ (θ) ≡ supθ′∈[0,1] u(g(θ′), θ) − u(g(θ′), θ′). Note that Uτ (θ) is continuous and
strictly increasing in θ. Since g(θ) ≤ q∗(1) ∀θ, |Uτ (θ1)− Uτ (θ2)| ≤ |θ1 − θ2|maxθ∈[0,1] u(θ, q∗(1)),
Uτ (θ) is absolutely continuous. Hence, it is almost everywhere differentiable and has finite left-
hand and right-hand derivatives for all θ ∈ [0, 1].

Now, let us demonstrate that the firm can strictly increase its expected profits by offering
a modified quantity schedule q̃(θ) and setting U(0) = 0. To define q̃(θ), let g−(θ) denote the
left-hand limit of g(.) at θ (such limit exists ∀θ ∈ [0, 1] since g(.) is increasing and bounded), and
let θm = min{θ̂, sup{θ|g−(θ) ≤ q(θ̂)}}. Then for θ ∈ [0, θm] define:

V (θ) =
∫ θ

0
uθ(max{g(s), q(s)}, s)ds +

∫ θ̂

θ
uθ(max{g−(θ), q(s)}, s)ds

We will show that there exists θ0 ∈ [0, θm] s.t. V (θ0) = u +
∫ θ̂
0 uθ(q(s), s)ds. Note that V (θ) is

continuous in θ0 and V (0) =
∫ θ̂
0 uθ(q(s), s)ds < u +

∫ θ̂
0 uθ(q(s), s)ds.

Next, let us establish that V (θm) ≥ Uτ (θ̂). Note that V (θm) =
∫ θm

0 uθ(max{g(s), q(s)}, s)ds+
u(q(θ̂), θ̂) − u(q(θ̂), θm). Since g(.) is nondecreasing,

∫ θ
0 uθ(max{g(s), q(s)}, s)ds ≥ Uτ (θ) ∀θ ∈

[0, θm].
Since U ′(θ̂) = uθ(q(θ̂), θ̂) and θ̂ satisfies (44), there exists δ̂ > 0 s.t. Uτ (θ̂ + δ) − Uτ (θ̂) ≤

u(q(θ̂), θ̂ + δ) − u(q(θ̂), θ̂) for all δ ≤ δ̂. Otherwise, ∃δ small enough that Uτ (θ̂ + δ) > U(θ). By
Lemma 3, this implies that Uτ (θ̂) − Uτ (θm) ≤ u(q(θ̂), θ̂) − u(q(θ̂), θm), and so V (θm) ≥ Uτ (θ̂).
Hence, by continuity of V (θ), ∃θ0 ∈ [0, θm] s.t. V (θ0) = Uτ (θ̂).

Set q̃(θ) = max{g(θ), q(θ)} ∀θ ∈ [0, θ0), q̃(θ) = max{g−(θ0), q(θ)} ∀θ ∈ [θ0, θ̂], and q̃(θ) =
q(θ) ∀θ ∈ [θ̂, 1]. Let Ũ(θ) =

∫ θ
0 u(q(s), s)ds. Then, clearly, Ũ(θ) ≥ Uτ (θ) ∀θ ∈ [0, θ0]. Also,

Ũ(θ) = U(θ) ≥ Uτ (θ) ∀θ ∈ [θe, 1] where θe = sup{θ|q(θ) < g−(θ0)}. Note that θe ≤ θ̂.
Suppose that ∃θl ∈ (θ0, θe) s.t. Ũ(θl) < Uτ (θl). Then we have Ũ(θl) − Ũ(θ0) < Uτ (θl) −

Uτ (θ0). Note that q(θ) = g−(θ0) and so Ũ ′(θ) = uθ(g−(θ0), θ) ∀θ ∈ [θ0, θe]. So, by Lemma 3
Ũ(θe)− Ũ(θl) < Uτ (θe)− Uτ (θl), i.e. Uτ (θe) > Ũ(θe). Contradiction.

When the firm implements quantity schedule q̃(θ) rather than q(θ), sets U(0) = 0, and
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does not modify g(.), the change in the firm’s expected profits is equal to:

u +
∫ 1

0
(u(q̃(θ), θ)− u(q(θ), θ))f(θ)dθ −

∫ 1

0
(uθ(q̃(θ), θ)− uθ(q(θ, θ))(1− F (θ))dθ =

∫ 1

0
(u(q̃(θ), θ)− u(q(θ), θ))f(θ)dθ +

∫ 1

0
(uθ(q̃(θ), θ)− uθ(q(θ, θ))F (θ)dθ > 0

The equality follows from the fact that Ũ(1) = U(1). The inequality follows because both terms
in the expression on the second line are positive. The second term is positive because q̃(θ) ≥ q(θ)
∀θ ∈ [0, 1]. The first term is positive, because it is also true that q̃(θ) ≤ g(θ) ≤ q∗(1) whenever
q̃(θ) > q(θ). So, since u(q, θ) is quasiconcave in q, u(q̃(θ), θ)− u(q(θ), θ) > 0. Q.E.D.

Proof of Lemma 6. (i) Suppose that ∃θa ∈ (0, 1] s.t. q(θa) < qsb(θa). Let θb = sup{θ|q(θ) <
qsb(θ)}. By continuity of q(.), θb > θa. Then the firm can strictly increase its profits by offering
a modified quantity schedule qn(.) s.t. qn(θ) = q(θ) ∀θ ∈ [0, θa) ∪ (θb, 1] and qn(θ) = qsb(θ)
∀θ ∈ [θa, θb] and adjusting the transfers to preserve the incentive compatibility. Inspecting (6)
and (7), one can see that this modification does not violate any incentive constraints and leads
to an increase in the value of the objective function (6).

(ii) If ∃θm s.t. q(θ) > q∗(θ), ∀θ ∈ (θm, 1), and either q(θm) ≤ q∗(θ) or θm = 0, then
the firm can increase its expected profits by replacing the quantity schedule q(.) with qa(.) s.t.
qa(θ) = q(θ) ∀θ ∈ [0, θm) and qa(θ) = q∗(θ) ∀θ ∈ [θm, 1].

Since g(θ) ≤ q∗(θ), inspection of (7) reveals that after this modification all incentive
constraints in (7) continue to hold. Inspecting (6) one can also see that as a result of this
modification the value of the first integral goes up, while the second remains unchanged.

It remains to consider the following case: there exist θ1, θ2 s.t. q(θ) ≤ q∗(θ) ∀θ ∈ [θ2, 1],
q(θ) > q∗(θ) ∀θ ∈ (θ1, θ2), and at least one is true: q(θ1) = q∗(θ1) or θ1 = 0. Note that by
continuity q(θ2) = q∗(θ2).

Let us construct a modified quantity schedule qa(.) in the following way: qa(θ) = q(θ)
∀θ ∈ [0, θ1], qa(θ) = q∗(θ) ∀θ ∈ (θ1, θ2]. Further, if ∃θ̂ ∈ (θ2, 1) s.t.

∫ θ̂

θ1

uθ(q∗(s), s)ds +
∫ 1

θ̂
uθ(max{q∗(θ̂), q(s)}, s)ds =

∫ 1

θ1

uθ(q(s), s)ds (45)

then set qa(θ) = q∗(θ) ∀θ ∈ (θ2, θ̂] and qa(θ) = max{q∗(θ̂), q(θ)} ∀θ ∈ (θ̂, 1]. Otherwise, if the
left-hand side of (45) is strictly smaller than its right-hand side ∀θ ∈ [θ2, 1], then set qa(θ) = q∗(θ)
∀θ ∈ (θ2, 1].

Leaving the quantity schedule g(.) unmodified, we need to establish two claims. Claim
1: all incentive constraints (7) still hold after this modification. Claim 2: this modification leads
to an increase in the firm’s expected profits given by (6).

To establish Claim 1, consider θ3 = sup{θ|θ ≥ θ̂, q(θ) < q∗(θ̂)}. Then ∀θ ∈ [0, θ1)∪ [θ3, 1],
Ua(θ) ≡

∫ θ
0 uθ(qa(s), s)ds = U(θ) ≡ ∫ θ

0 uθ(q(s), s)ds. So, (7) holds ∀θ ∈ [0, θ1) ∪ [θ3, 1] under qa(.)
because it holds under q(.).

Next suppose that θ ∈ [θ1, θ̂]. Then qa(θ) = min{q∗(θ), q∗(θ̂)}. Then, since g(θ′) ≤ q∗(θ′)
and qa(θ) ≥ q∗(θ1), the inequality U(θ1) ≥ u(g(θ′), θ1) − u(g(θ′), θ′) ∀θ′ ∈ [0, θ̂] implies that
U(θ) ≥ u(g(θ′), θ)− u(g(θ′), θ′) ∀θ ∈ [θ1, θ̂] and θ′ ∈ [0, θ1].

Similarly, ∀θ′ ∈ [θ1, θ3], we have U(θ) ≥ ∫ θ
θ′ uθ(q∗(s), s)ds ≥ u(g(θ′), θ) − u(g(θ′), θ′). It

also follows immediately that U(θ) ≥ u(g(θ′), θ) − u(g(θ′), θ′) ∀θ′ ∈ (θ̂, θ3) if θ′ ∈ (θ̂, θ3) and
g(θ′) ≤ q∗(θ̂).
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Finally, if θ ∈ (θ̂, θ3) and θ′ ∈ (θ̂, θ3) and g(θ′) > q∗(θ̂), we can use U(θ3) ≥ u(g(θ′), θ3)−
u(g(θ′), θ′) and qa(θ) = q∗(θ̂) ∀θ ∈ [θ̂, θ3] to show that U(θ) ≥ u(g(θ′), θ)− u(g(θ′), θ′). So, all the
incentive constraints (7) hold when we replace q(.) with qa(.).

To prove Claim 2, focus on the first integral in (6). Note that
∫ 1
0 (u(q(θ), θ)−c(q(θ))f(θ)dθ <∫ 1

0 (u(qa(θ), θ) − c(qa(θ))f(θ)dθ, because u(q(θ), θ) − c(q(θ)) ≤ u(qa(θ), θ) − c(qa(θ)), ∀θ ∈ [0, 1]
and the inequality is strict ∀θ ∈ (θ1, θ2). If there exists θ̂ satisfying (45), then we have:

∫ 1

0
(uθ(qa(θ), θ)− uθ(q(θ), θ)) (1− F (θ))dθ =

∫ θ3

θ1

(uθ(min{q∗(θ), q∗(θ̂)}, θ)− uθ(q(θ), θ))(1− F (θ))dθ

≤ (1− F (θ2))
∫ θ3

θ1

(uθ(min{q∗(θ), q∗(θ̂)}, θ)− uθ(q(θ), θ))dθ = 0

where the first equality holds by definition of qa(.), the inequality holds because min{q∗(θ), q∗(θ̂)} =
q∗(θ̂) > q(θ) ∀θ ∈ (θ1, θ2) and min{q∗(θ), q∗(θ̂)} = q∗(θ̂) < q(θ) ∀θ ∈ (θ2, θ3), and the last equality
holds by (45). The same result obtains if there is no θ̂ satisfying (45). To see this simply replace θ̂
by 1. After this modification the value of the first integral in (6) increases, i.e. the firm’s expected
profits go up. Q.E.D.

Proof of Lemma 9. Suppose that q(θ) is a solution to Problem (17) on the domain C1
p([0, 1]),

but there exists an admissible schedule q̂(θ) ∈ C([0, 1]) \ C1
p([0, 1]) s.t. the objective function in

(17) takes a strictly higher value under q̂(θ) than under q(θ).
By the Stone-Weierstrass theorem, the space of continuously differentiable functions C1([0, 1]),

which is a subspace of C1
p([0, 1]) is dense in C([0, 1]). Therefore, C1

p([0, 1]) is dense in C([0, 1]).
So, there exists a sequence q̃n(θ) ∈ C1

p([0, 1]) converging to q̂(θ) in the sup−norm. The objective
function (17) is continuous in the sup-norm. Therefore, ∃N > 0 s.t. ∀n ≥ N (17) takes a strictly
higher value under q̃n(θ) than under q(θ). This contradicts the hypothesis that q(θ) is a solution
on C1

p([0, 1]). Q.E.D.

Proof of Lemma 10. The Lemma will be established in a sequence of steps.
Step 1. ∃θ1, θ2 ∈ [0, 1], θ1 < θ2, s.t. Case 1 applies i.e. q(θ) < q∗(r(θ)) on (θ1, θ2).

For suppose not. Then by continuity, q(θ) ≥ q∗(r(θ)) ∀θ ∈ [0, 1]. This implies that for
any θ s.t. q′(θ) > 0, q(θ) is given by the solution to (36) with some constant of integration k2.

Since q(1) = q∗(1), (36) implies that k2 = 0. Then, however, (36) cannot hold as an
equality near θ = 0 if q(θ) > 0 ∀θ > 0. To see this, recall that uq(q, 0) = 0 ∀q ≥ 0, and so uq(q, θ) =∫ θ
0 uqθ(q, s)ds. Therefore, uq(0, θ) < uθq(0, θ)1−F (θ)

f(θ) when θ is sufficiently small. Consequently, θ0

solving uq(0, θ0) = uθq(0, θ0)
1−F (θ0)

f(θ0) is strictly positive, and we must have q(θ) = 0 ∀θ ≤ θ0.
Step 2. ∃θl ∈ (0, 1) s.t. q(θ) < q∗(r(θ)), i.e. Case 1 applies, on (0, θl).

Suppose not. Then ∃θa, θb ∈ (0, 1], s.t. Case 2 applies on (0, θa) and Case 1 applies on
(θa, θb). So, q(θa) = q∗(r(θa)). Since r(θa) < θa, we have uq(q(θa), θa) > uq(q(θa), r(θa)) =
c′(q(θa)). Hence, since (36) holds on (0, θa), the constant of integration k2 on this interval
needs to satisfy k2 > −1. Therefore, by the same argument as in Step 2, θ̃ solving uq(0, θ̃) =

uθq(0, θ̃)
1+k2−F (θ̃)

f(θ̃)
is strictly positive, and we must have q(θ) = 0 ∀θ ≤ θ̃. Contradiction.

Step 3. ∃θn ∈ (θl, 1) s.t. q(θ) > q∗(r(θ)), i.e. Case 2 applies, on (θn, 1).
Since r(θ) < θ ∀θ ∈ (0, 1], we have q∗(r(θ)) ≤ q∗(r(1)) < q∗(1) = q(1). Then by continuity

of q(.) it follows that q∗(r(θ)) < q(θ) for all θ sufficiently close to 1. This establishes the result.
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Step 4. ∃θh ∈ [θn, 1) s.t. q(.) is strictly increasing on [θh, 1).
Suppose otherwise. Since by Lemma (1) q(1) = q∗(1), ∃θf ∈ (0, 1] s.t. q(θ) = q∗(1)

∀θ ∈ [θf , 1]. Also, since q(.) is continuous and q(0) = 0, ∃θl s.t. q(θl) = q∗(θl) and q(θ) > q∗(θ)
∀θ ∈ (θl, 1).

Let us show that the value of the objective can be strictly increased by replacing the
quantity schedule q(.) with modified quantity schedule qm(.) s.t. qm(θ) = q(θ) ∀θ ∈ [0, θl], and
qm(θ) = q∗(θ) ∀θ ∈ [θl, 1].

First, from the definition of r(θ) it follows that r(θ) ≤ θ ∀θ ∈ [0, 1].35 Therefore, ∀θ ∈
(θl, 1), q(θ) > qm(θ) ≥ q∗(r(θ)), i.e. the solution is in Case 2 and g(θ) = q∗(θ) ∀θ ∈ [r(θ), 1].
Thus, under both the original and the modified quantity schedule g(θ) is the same ∀θ ∈ [0, 1].

Inspecting the objective in (6) it is easy to see that its value increases as a result of this
modification, because the value of the first integral goes up, while the second integral remains
unchanged.
Step 5 q(θ) = qsb(θ) on [θh, 1].

Since q(.) is strictly increasing and is in Case 2 on [θh, 1), it is given by the solution to
(36). From q(1) = q∗(1), it follows that k2 = 0 on this interval, and hence q(θ) = qsb(θ). Q.E.D.

Proof of Lemma 11. Define z(θ) = q(θ)−q∗(r(θ)) and let θ1 = min{θ > 0 : z(θ) ≥ 0}. It follows
from Lemma 10 that θ1 is well defined. Let θ2 ≡ max{θ > θ1 : z(θ̂) ≥ 0, ∀θ̂ ∈ [θ1, θ]}. Suppose
that, contrary to the statement of Lemma 11, θ2 < 1. By definition of θ1 and θ2, z′(θ1) ≥ 0 and
z′(θ2) ≤ 0. At the same time, the definition of q∗(·), equation (12), and the fact that (36) holds
for all θ ∈ [θ1, θ2] yields z′(θ) = q′(θ)(1− µ(θ)), where

µ(θ) =
1

c′′(q(θ))− uqq(q(θ), r(θ))
uqθ(q(θ), r(θ))
uθ(q(θ), r(θ))

[1 + k2 − F (θ)]uqθ(q(θ), θ)
f(θ)

Let ω(θ), ν(θ), and η(θ) respectively denote the first, second and third term in the above expression
for µ(θ). We may then compute:

ν ′

ν
=

uqqθuθ − u2
qθ

uqθuθ
q′ +

uqθθuθ − uqθuθθ

uqθuθ
r′

ω′

ω
=

c′′′ − uqqq

c′′ − uqq
q′ − uqqθ

c′′ − uqq
r′

η′

η
=

uqqθ

uqθ
q′ +

(
1+k2−F (θ)

f(θ)

)′
(

1+k2−F (θ)
f(θ)

) +
uqθθ

uqθ

Thus

µ′

µ
=

(
uqqθ

uqθ
(q, r) +

uqqθ

uqθ
(q, θ)− uqθ

uθ
(q, r)− c′′′ − uqqq

c′′ − uqq
(q, r)

)
q′+

(
uqθθ

uqθ
(q, r)− uθθ

uθ
(q, r) +

uqqθ

c′′ − uqq
(q, r)

)
r′ +

(
1+k2−F (θ)

f(θ)

)′
(

1+k2−F (θ)
f(θ)

) +
uqθθ

uqθ
(q, θ)

35This also follows from the differential equation (18) and the initial condition r(0) = 0, because by (18) r′(θ) < 0
if r(θ) > θ.
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The hypothesis that maxθ∈[0,1],q∈[0,q∗(1)]
uqqθ(q,θ)
uqθ(q,θ) ≤ min{M,N} implies that the terms mul-

tiplying q′ and r′ in the above expression are nonpositive. Furthermore, the hypothesis that
f(θ)uq(q,θ)−c′(q)

uθq(θ,q) is strictly increasing, and the fact that (36) holds for all θ ∈ [θ1, θ2], imply that
the sum of the last two terms in the above expression is strictly negative. We therefore have
µ′(θ) < 0 ∀θ ∈ [θ1, θ2], and hence µ(θ2) < µ(θ1). The fact that z′(θ1) = q′(θ1)(1−µ(θ1)) ≥ 0 then
produces the contradiction that z′(θ2) = q′(θ2)(1− µ(θ2)) > 0. Q.E.D.
Proof of Lemma 12. The existence of at least one solution to (11) and (12) with the boundary
conditions q(0) = r(0) = 0 and q(1) = 1 follows because the optimal solution, which does exists,
must possess these properties. Now, suppose that there are two pairs of functions (q1(θ), r1(θ))
and (q2(θ), r2(θ)) with these properties.

Lemma 10 implies that for i = 1, 2 ∃θf
i > 0 s.t. qi(θ

f
i ) = q∗(ri(θ

f
i )), and ∀θ ∈ (θf

i , 1] qi(θ) ≥
q∗(ri(θ)), so qi(θ) satisfies (36) with k2 = 0. Suppose without loss of generality that θf

1 > θf
2 .

(We can rule out θf
1 = θf

2 , because in this case (q1(θ), r1(θ)) would be identical to (q2(θ), r2(θ)).)

It follows that, q1(θ
f
1 ) = q2(θ

f
1 ) and U1(θ

f
1 ) ≡ ∫ θf

1
0 uθ(q1(s), s)ds < U2(θ

f
1 ) ≡ ∫ θf

1
0 uθ(q2(s), s)ds.

Then there must exist θ̃ ∈ (0, θf
1 ] and ε1 > 0 s.t. q1(θ) ≥ q2(θ) ∀θ ∈ [θ̃, θf

1 ] and q1(θ) < q2(θ)
∀θ ∈ (θ̃ − ε1, θ̃].

Therefore, q′1(θ̃) ≥ q′2(θ̃) and there exists ε2 > 0 s.t. q′1(θ) > q′2(θ) ∀θ ∈ (θ̃ − ε2, θ̃).
By inspection of (11), this implies that ∀θ ∈ (θ̃ − ε2, θ̃) q∗(r2(θ)) > q1(θ), and so by continuity
q∗(r2(θ̃)) ≥ q1(θ̃).

Since q1(θ) ≥ q2(θ) ∀θ ∈ [θ̃, θf
1 ] and U1(θ

f
1 ) < U2(θ

f
1 ), it follows that U1(θ̃) < U2(θ̃), and

so r1(θ̃) > r2(θ̃). But since q∗(r2(θ)) ≥ q2(θ̃), q1(θ̃) = q2(θ̃) and f(r)(uq(q,r)−c′(q))
uθ(q,r) is increasing in

r, it follows from (11) that q′1(θ̃) < q′2(θ̃). A contradiction. Q.E.D.

Proof of Corollary 1. Given that u(q, θ) = θq − q2

2 , c(q) = 0, and F (θ) = θ, the first-best and
second-best allocation are given by q∗(θ) = θ and qsb(θ) = max{2θ − 1, 0}, respectively. Also, we
can explicitly solve the defining equation for r which yields r(θ) = θ − U(θ)

q(θ) .
This example satisfies the conditions of Theorem 4 and Lemmas 11 and 12. Hence, there

exists a unique switchpoint θ such that on [θ, 1] the solution is in Case 2 and satisfies q(θ) =
qsb(θ) = 2θ − 1. On the interval [0, θ) the solution is in Case 1, and is characterized by a pair of
differential equations (11) and (12) which in this case simplify to:

r′ =
q′(θ − r)

q
(46)

q′(αr + (1− α)q) = 2q (47)

By Lemma 12 there is a unique solution to the system (46) and (47)36 satisfying the correct
boundary conditions q(θ) = qsb(θ) = q∗(r(θ)). So, our goal is identify this solution and determine
the boundary point θ.37

36(47) provides another way to ascertain the no-exclusion result in the linear-quadratic case. If θ ≡ inf{θ|q(θ >
0} > 0, then by definition r(θ) = θ. So, ∃θk ∈ (θ, 1) s.t. the solution is in Case 1 on (θ, θk) and has to satisfy (47).

Since q(.) and r(.) are nonnegative and nondecreasing in θ, on this interval q′(θ) = 2q(θ)
αr(θ)+(1−α)q(θ)

≤ 2q(θ)
αθ

.

Pick θ ∈ (θ, min{θk, θ+ αθ
2
}). Integrating, we get q(θ) ≤ 2

αθ

R θ

θ
q(s)ds. Since 2(θ−θ)

αθ
< 1 and q(.) is non-decreasing,

this inequality can only hold if q(θ) = 0, which contradicts the definition of θ = inf{θ|q(θ) > 0}.
37It is possible to show directly that the solution switches between Cases 1 and 2 only once. Let θ be the smallest

switching point i.e. q(θ) < r(θ) ∀θ ∈ (0, θ) and q(θ) ≥ r(θ) ∀θ ∈ (θ, θ̃) for some θ̃ ∈ (θ, 1). By continuity of the
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Our strategy is to guess the structure of the solution. Inspection of the system (46) and
(47) leads to the conjecture that r(θ) = aθ + bq(θ) on the interval [0, θ], for some constants a and
b. Applying this conjecture to (46) and (47) and rearranging we obtain:

θ(αa2 + 2a− 2) = −q(θ)(4b + a(1− α + αb)) (48)

Suppose that (48) holds as an identity,38 i.e. αa2 + 2a − 2 = 0 and (1 − α)a + 4b + abα = 0.
Solving for the coefficients a and b yields: a = −1±√1+2α

α , b = − 1−α
4+αaa.

Choose the positive root for a, so that b = −1−α
α

√
1+2α−1

3+
√

1+2α
. By computation we can show

that a < 1 and a + b < 1 ∀α > 0, so r(θ) < θ. Let y(θ) = ln q(θ)
θ , so that dy = dq

q − dθ
θ . It follows

from (47) that dq
q = 2

αa+(1−α+αb)ey
dθ
θ . Hence we obtain:

dθ

θ
= dy

c0 + c1e
y

c2 − c1ey
. (49)

where c0 = αa =
√

1 + 2α−1, c1 = 1−α+αb = 4(1−α)

3+
√

1+2α
, and c2 = 2−αa = 3−√1 + 2α. When

α 6= 4 so that c2 6= 0, we can integrate both sides of this equation to obtain:

ln θ = k +
c0

c2
y − c0 + c2

c2
ln(|c2 − c1e

y|),

where k is a constant of integration. Exponentiating both sides, substituting y(θ) = ln q(θ)
θ , and

simplifying finally produces an implicit equation for q(θ):

[(2− α/2)θ − (1− α)q]2 = h(α)q
√

1+2α−1 (50)

where h(α) = (3+
√

1+2α)2

16 ek(3−√1+2α). When α = 4, (49) can be rewritten as dθ
θ = dy

y
1−ey

ey , which
can be solved directly to yield:

θ = h(4)q − q ln(q) (51)

Note that h(α) defines a family of solutions to the system (47)-(46) reflecting the singularity of
this system at the origin. To determine h(α), we will exploit the fact that only one member of
this family satisfies the boundary condition q(θ) = q∗(r(θ)) = qsb(θ). Since r(θ) = aθ + bq(θ), the
condition q(θ) = q∗(r(θ)) implies q(θ) = a

1−bθ. Combining this with the condition q(θ) = qsb(θ) =
2θ − 1 yields θ = 1−b

2−2b−a = 2
3 + 1

3(
√

1+2α+1)
, so that q(θ) = r(θ) = 1

3 + 2
3(
√

1+2α+1)
. 39

For α = 4, we substitute θ(4) = 3/4 and q(θ(4)) = 2θ(4)−1 = 1/2 into θ = h(4)q− q ln(q)
to obtain h(4) = 3/2 + ln(1/2). For α 6= 4, substituting θ and q(θ) into (50) yields:

h(α) =

(
1 + α

2(
√

1+2α+1)

)2

(
1
3 + 2

3(
√

1+2α+1)

)√1+2α−1

optimal quantity schedule q(.), q(θ) = r(θ), and q′(θ) ≥ r′(θ) = q′(θ) θ−r(θ)

q(θ)
. Thus, θ ≤ r(θ) + q(θ). But q′(θ) = 2

∀θ ∈ (θ, θ̃). Hence, θ < r(θ) + q(θ) and q′(θ) > r′(θ) ∀θ ∈ (θ, θ̃). So, q(θ̃) > r(θ̃), i.e. the solution cannot switch to
Case 2 at θ̃. This implies that θ̃ = 1.

38Otherwise, q(θ) must be a linear function of θ, in which case (46) and (47) can be solved to yield q(θ) = θ 3+α
2α

and r(θ) = θ/2. But q(θ) > r(θ), and so we can rule out this possibility.
39Note that θ is decreasing in α. It converges to 2/3 as α increases to infinity (almost all consumers are ‘honest’),

and converges to 5/6 as α decreases to 0 (almost all consumers are strategic).
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Note that only the positive root of equation (50) holds as an equality at θ. So, if ∃θ1 ∈ (0, θ) s.t.
(2−α/2)θ1−(1−α)q(θ1) < 0, then by continuity ∃θ2 ∈ (θ1, θ) satisfying (2−α/2)θ2−(1−α)q(θ2) =
0. But since q(θ2) > 0, (50) cannot hold at θ2. Thus, q(θ) is a solution to:

θ =
(1− α)
2− α/2

q +
h(α)1/2

(2− α/2)
q
√

1+2α−1
2 (52)

Both (51) and (52) characterize q(.) as an implicit function of θ for given α. Since these
equations may have multiple roots, we need to establish that q(θ) is well-defined. Start with
α 6= 4. Consider θ(q) as a function of q defined by (52) on [0, q(θ)]. Substitution yields

r(θ(q))−q = aθ(q)+bq−q =
√

1 + 2α− 1
α

(
(1− α)
2− α/2

q +
h(α)1/2

2− α/2
q
√

1+2α−1

)
−

(
1 +

1− α

α

√
1 + 2α− 1

3 +
√

1 + 2α

)
q

Observe that r(θ(q)) − q is strictly concave in q, and r(θ(0)) = 0, while our choice of h(α)
guarantees that r(θ(q(θ))) − q(θ) = 0. Then, by strict concavity, r(θ(q)) − q > 0 ∀q ∈ (0, q(θ)).
Since θ(q) must also satisfy (47), r(θ(q))−q > 0 implies that θ is strictly increasing in q on [0, q(θ)].
Therefore, on [0, θ] (52) admits a unique increasing continuous solution q(θ) s.t. q(θ) = 2θ − 1
and r(θ) > q(θ, ) ∀θ ∈ (0, θ). Since θ(q) is strictly concave in q, q(θ) is convex. The case α = 4
can be handled in a similar way.

We have thus found the unique solution to (47) and (46) that satisfies the condition
q(θ) = qsb(θ) = q∗(r(θ)) for some θ, and hence the solution to Problem (19).

It remains to determine the optimal schedule for the ‘honest’ types. On the interval [θ, 1]
the solution is in Case 2, so g(θ) = q∗(θ) = θ for θ ∈ [r(θ), 1], where r(θ) = 1

3 + 2
3(
√

1+2α+1)
.

Meanwhile, on the interval [0, θ] the solution is in Case 1, so g(θ) = q(r−1(θ)) on [0, r(θ)]. To
determine g(.) on this interval, note that r(.) is strictly increasing on [0, θ], so its inverse r−1(θ)
is well-defined ∀θ ∈ [0, r(θ)]. For α 6= 4, we can use (52) to obtain:

r−1(θ) =
(1− α)
2− α/2

g(θ) +
h(α)1/2

(2− α/2)
g(θ)

√
1+2α−1

2 (53)

From r(θ) = aθ+ bq(θ) it follows that θ = ar−1(θ)+ bg(θ). Substituting this into (53) and solving
for θ produces (14). To show that g(α) is well-defined by (14) and is continuous and increasing
on [0, 1

3 + 2
3(
√

1+2α1+1)
], use an argument similar to the one establishing these properties for q(θ).

In a similar way, we can compute g(θ) for α = 4. Q.E.D.

Proof of Corollary 2: Fix some α1 and α2 s.t. α1 > α2 > 0.
Part (i). Instead of q(θ, α), it is more convenient to operate with its inverse - the function θ(q, α)
given by (52). Since θ(1

3 + 2
3(
√

1+2α1+1)
, α1) = 2

3 + 1
3(
√

1+2α1+1)
> θ(1

3 + 2
3(
√

1+2α1+1)
, α2), we need

to show that θ(q, α1) < θ(q, α2) when θ is sufficiently small, and that there exists a unique point
of intersection qc(α1, α2) ∈ (0, 1

3 + 2
3(
√

1+2α1+1)
) s.t. θ(qc(α1, α2), α1) = θ(qc(α1, α2), α2).

Step 1. ∃ql ∈ (0, 1
3 + 2

3(
√

1+2α+1)
) s.t. θ(q, α1) < θ(q, α2) ∀q ∈ (0, ql).

When both α1 6= 4 and α2 6= 4, then by (52) θ(q, α1) < θ(q, α2) iff

(1− α1)
2− α1/2

q +
k(α1)1/2

2− α1/2
q

√
1+2α1−1

2 <
(1− α2)
2− α2/2

q +
k(α2)1/2

2− α2/2
q

√
1+2α2−1

2
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Dividing both sides of this inequality by q

√
1+2α2−1

2 and rearranging we obtain an equivalent
inequality:

k(α1)1/2

2− α1/2
q

√
1+2α1−

√
1+2α2

2 <

(
(1− α2)
2− α2/2

− (1− α1)
2− α1/2

)
q

3−√1+2α2
2 +

k(α2)1/2

2− α2/2

Let q go to zero. Then the left-hand of the above inequality converges to zero. If α2 > 2, then
the first term on the right-hand side converges to plus infinity because (1−α2)

2−α2/2 > (1−α1)
2−α1/2 , while the

second term is bounded. If α2 < 2, then the first term on the right-hand side converges to zero,
while the second remains is a positive and constant. So, the inequality holds when q is sufficiently
small.

If α2 = 4, then we need to show that

(1− α1)
2− α1/2

q +
k(α1)1/2

2− α1/2
q

√
1+2α1−1

2 ≤ q (3/2 + log(1/2)− log(q))

It is easy to see that this inequality holds for small q after we divide both sides of it by q, and
then let q go to zero.

If α1 = 4, then we need to show that

q (3/2 + log(1/2)− log(q)) <
(1− α2)
2− α2/2

q +
k(α2)1/2

2− α2/2
q

√
1+2α2−1

2

To see that this inequality holds for small q, we divide both sides of it by q

√
1+2α2−1

2 , and let q go
to zero.

Step 2. Existence of an intersection point. ∃qi ∈ [0, 1
3 + 2

3(
√

1+2α1+1)
], ε1 > 0 and ε2 > 0 s.t.

θ(qi, α1) = θ(qi, α2), θ(q, α1) > θ(q, α2) ∀q ∈ (qi, qi + ε1), and θ(q, α1) < θ(q, α2) ∀q ∈ (qi, qi − ε2).
The existence of an intersection point qi follows from Step 1 and from the fact that

θ(1
3 + 2

3(
√

1+2α1+1)
, α1) = 2

3 + 1
3(
√

1+2α1+1)
> θ(1

3 + 2
3(
√

1+2α1+1)
, α2).

Step 3. If θqq(q1, α1) ≤ θqq(q1, α2), then θqq(q2, α1) < θqq(q2, α2) ∀q2 > q1, where θqq(q, α) is the
second derivative of θ(q, α) with respect to q. This step follows by simple computation.
Step 4. Uniqueness of an intersection point on [0, 1

3 + 2
3(
√

1+2α1+1)
].

Let qi be the smallest q s.t. θ(qi, α1) = θ(qi, α2). Then by Step 1 θ(q, α1) < θ(q, α2)
∀q ∈ (0, qi), and so θq(qi, α1) ≥ θq(qi, α2). To finalize the proof, consider two cases.

Case 2. ∃ε1 > 0 s.t. θ(q, α1) > θ(q, α2) ∀q ∈ (qi, qi + ε1). Then θq(qi, α1) > θq(qi, α2).
If ∃qr ∈ (qi,

1
3 + 2

3(
√

1+2α1+1)
) s.t. θ(qr, α1) = θ(qr, α2), let us choose the smallest such qr. So,

θ(q, α1) > θ(q, α2) for q ∈ (qi, qr). Therefore, θq(qr, α1) ≤ θq(qr, α2). But since θq(qi, α1) >
θq(qi, α2), we conclude that ∃qm ∈ [qi, qr] s.t. θqq(qm, α1) ≤ θqq(qm, α2). But then by Step 3
θqq(q, α1) < θqq(q, α2) ∀q > qm.

Consequently, θq(q, α1) < θq(q, α2) ∀q > qr, and so θ(q, α1) < θ(q, α2) ∀q > qr. But this
contradicts the fact that θ(1

3 + 2
3(
√

1+2α1+1)
, α1) > θ(1

3 + 2
3(
√

1+2α1+1)
, α2).

Case 1. ∃ε1 > 0 s.t. θ(q, α1) ≤ θ(q, α2) ∀q ∈ (qi, qi + ε1).
Then θq(qi, α1) = θq(qi, α2) and θqq(qi, α1) ≤ θqq(qi, α2), and so by Step 3, θqq(q, α1) <

θqq(q, α2) ∀q > qi. Hence, θq(q, α1) < θq(q, α2) and, consequently, θ(q, α1) < θ(q, α2) ∀q > qi.
This also contradicts the fact that θ(1

3 + 2
3(
√

1+2α1+1)
, α1) > θ(1

3 + 2
3(
√

1+2α1+1)
, α2).

Part (ii). Recall that U(θ, α) ≡ θq(θ, α) − ts(θ, α) is the total surplus of a ‘strategic’ consumer
with valuation θ. We have established that U(θ, α) =

∫ θ
0 q(s, α)ds.
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Since q(θ, α1) > q(θ, α2) ∀θ ∈ (0, θc(α1, α2), we also have U(θ, α1) > U(θ, α2) ∀θ ∈
(0, θc(α1, α2).

Let us show that U(θ(α2), α1) > U(θ(α2), α2). Note that θ(α2) > θ(α1), and r(θ(α2), α2) >
r(θ(α1), α1). Combining these inequalities and invoking Lemma 8, we conclude that g(θ(α2), α1) =
g(θ(α2), α2) = θ(α2).

By definition, U(θ(α2), α2) =
(
θ(α2)− r(θ(α2))

)
r(θ(α2)). At the same time, by Lemma 7,

U(θ(α2), α1) >
(
θ(α2)− r(θ(α2))

)
g(r(θ(α2)), α1) =

(
θ(α2)− r(θ(α2))

)
r(θ(α2)). So, U(θ(α2), α1) >

U(θ(α2), α2).
Further, U(θ, α1) > U(θ, α2) ∀θ ∈ [θc(α1, α2), θ(α2)], because Uθ(θ, α1) = q(θ, α1) <

q(θ, α2) = Uθ(θ, α2) on this interval. Finally, U(θ, α1) > U(θ, α2) ∀θ ∈ [θ(α2), 1] because
Uθ(θ, α1) = q(θ, α1) = 2θ − 1 = q(θ, α2) = Uθ(θ, α2) on this interval.

Part (iii).
Step 1. ∃θm > 0 s.t. ∀θ ∈ (0, θm) g(θ, α1) > g(θ, α2).

Using an argument identical to the one in Step 1 of Part (i) in this proof, we can prove
an equivalent result - if g is small enough, then θ(g, α1) < θ(g, α2).
Step 2. g(θ, α1) > g(θ, α2) ∀θ ∈ [r(θ(α1), α1), r(θ(α2), α2)).

Note that r(θ(α1), α1) = 1
3 + 2

3(
√

1+2α1+1)
< r(θ(α2), α2)) = 1

3 + 2
3(
√

1+2α2+1)
, g(θ, α1) = θ

∀θ ≥ r(θ(α1), α1) and g(θ, α2) < θ ∀θ ∈ (0, r(θ(α2), α2)).
Step 3. If ∃θ ∈ [θm, r(θ(α1), α1)] s.t. g(θ, α1) ≤ g(θ, α2), then ∃θ1, θ2 ∈ [θm, r(θ(α1), α1)],
θ1 ≤ θ2 and δ > 0, s.t. (i) g(θ1, α1) = g(θ1, α2) and g(θ, α1) > g(θ, α2) ∀θ ∈ (θ1 − δ, θ1); (ii)
g(θ2, α1) = g(θ2, α2) and g(θ, α1) > g(θ, α2) ∀θ ∈ (θ2, θ2+δ). Consequently, gθ(θ1, α1) ≤ gθ(θ1, α2)
and gθ(θ2, α1) ≥ gθ(θ2, α2). The proof of this step is obvious.
Step 4. gθ(θ, α) = q(r−1(θ,α),α)

r−1(θ,α)−θ
= g(θ,α)

r−1(θ,α)−θ
∀θ ∈ (0, r(θ(α1), α1)) .

To see this, differentiate g(θ, α) ≡ q(r−1(θ, α), α) and use (46) to make a substitution.
Step 5. r−1(θ1, α1) > r−1(θ1, α2).

Since g(θ1, α1) = g(θ1, α2) and gθ(θ1, α1) ≤ gθ(θ1, α2), Step 4 implies that r−1(θ1, α1) ≥
r−1(θ1, α2).

This inequality must be strict, i.e. r−1(θ1, α1) 6= r−1(θ1, α2). To see this, rewrite
r(θ, α) = θ − U(θ,α)

q(θ,α) as θ = r−1(θ, α) − U(r−1(θ,α),α)
q(r−1(θ,α),α)

. Therefore, if r−1(θ1, α1) = r−1(θ1, α2),

then we have: U(r−1(θ1,α1),α1)
q(r−1(θ1,α1),α1)

= U(r−1(θ1,α2),α2)
q(r−1(θ1,α2),α2)

. But q(r−1(θ1, α1), α1) = g(θ1, α1) = g(θ1, α2) =
q(r−1(θ1, α2), α2), yet U(r−1(θ1, α1), α1) > U(r−1(θ1, α2), α2) as established above. Contradic-
tion.

Step 6. r−1(θ1, α2) > θc(α1, α2).
Note that q(r−1(θ1, α1), α1) = g(θ1, α1) = g(θ1, α2) = q(r−1(θ1, α2), α2). But by Step

5, r−1(θ1, α1) > r−1(θ1, α2). So, since q(θ, α) is strictly increasing in θ, q(r−1(θ1, α2), α1) <
q(r−1(θ1, α2), α2), and hence r−1(θ1, α2) > θc(α1, α2).
Step 7. r−1(θ2, α2) ≥ r−1(θ2, α1).

To see this, combine gθ(θ2, α1) ≡ q(r−1(θ2,α1),α1)
r−1(θ2,α1)−θ2

≥ gθ(θ1, α2) ≡ q(r−1(θ1,α2),α2)
r−1(θ2,α2)−θ2

with the
fact that q(r−1(θ2, α1), α1) ≡ g(θ2, α1) = g(θ2, α2) ≡ q(r−1(θ2, α2), α2).
Step 8. Since r−1(θ2, α2) ≥ r−1(θ2, α1) > θc(θ1, θ2), it follows that g(θ2, α2) ≡ q(r−1(θ2, α2), α2) >
g(θ2, α1) ≡ q(r−1(θ2, α1), α1). However, by assumption g(θ2, α2) = g(θ2, α1). This contradiction
implies that g(θ, α1) > g(θ, α2) ∀θ ∈ (0, 1

3 + 2
3(
√

1+2α2+1)
). Q.E.D.

13


