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1. Introduction

Since the seminal work on network competition by Katz and Shapiro (1985) (see also

Farrell and Saloner, 1986; Fujita, 1988), there has been a growing economic literature on

competing marketplaces. This literature reflects the importance of network externalities in

industries ranging from telecommunications to software platforms and to credit cards. In

these industries, a competing marketplace is a network (platform) on which participants

interact, and agents’ network choices have external effect on each other’s welfare. In most

of the earlier works of the literature, the driving force is the thick market effect that a

larger network provides a greater chance of finding a trading partner. This positive size

effect favors the dominance of a single marketplace, and a central question is whether

and when multiple marketplaces can coexist in equilibrium.1 Although the size effects

are important in network competition, in many industries network participants also care

about the identities of other participants in the same network. For example, in markets

such as job search, real estate and dating, where networks are intermediaries, participants

are heterogeneous and networks differ not only in relative size but also in quality. In these

markets participants’ network choices can have external effect on each other’s welfare by

changing the composition and hence the quality of the network pool. This type of “sorting

externality” and its implications to price competition have been neglected in the literature

on competing marketplaces, which focuses on the size effects and assumes either that agents

are homogeneous or that agents’ choice of network is independent of their type.2

This paper introduces a model of price competition among marketplaces in an envi-

ronment where agents have heterogeneous qualities, and where the expected quality of the

1 More recently, research in this literature has increasingly focused on two-sided marketplaces, where
participants are interested in matching with those on the other side. Ellison and Fudenberg (2003) and
Ellison, Fudenberg and Mobius (2004) reexamine the coexistence of multiple networks by allowing a neg-
ative size effect that the agents to prefer networks with fewer competitors, Caillaud and Jullien (2001,
2003) and Rochet and Tirole (2003) analyze the “divide-and-conquer” strategy of subsidizing one side of
the market while recovering the loss from the other side, and Armstrong (2004) studies the implications
on price competition of “multi-homing” where participants on the two sides can choose multiple networks.

2 Ambrus and Argenziano (2004) modify the framework of Caillaud and Jullien (2001; 2003) and allow
for heterogeneous preferences. Agents have the same quality but differ in terms of willingness to pay for
participating in a larger network. In their model, the equilibrium distribution of participant types can be
different across networks, however the size effect remains the only externality.
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pool of participants affects agents’ decision of which marketplace to join. In our model,

a marketplace is a random matching market, or more specifically, a meeting place where

participants randomly match with each other. We have in mind a job market or a dating

market, where agents have private information about their one-dimensional quality char-

acteristics (type), and where the match value function exhibits complementarity between

types. Since type information is private, agents self-select into matching markets based

on the prices and their expectations of the quality of the pool in the matching market.

Under the assumption of complementarity, how agents sort into the matching markets by

type has implications to efficiency in terms of total match value. The random matching

technology we adopt implies the absence of any size effect. This allows us to isolate the

implications of the sorting externality introduced in this paper from the consequences of

the much studied size effects. We stress that our analytical framework applies equally

well to one-sided intermediary markets, such as private schools that compete with tuition

charges and country clubs that compete with membership fees. In these applications, in-

stead of random pairwise match formation in each matching market (such as a school or a

club), we can allow any form of interaction among the participants so long as the reduced

form payoff function exhibits complementarity between the individual type and the aver-

age type. Thus the present paper, by introducing price competition in an oligopoly model,

also contributes to the literature on locational choices where the peer effect plays a critical

role (De Bartolome, 1990; Epple and Romano, 1998).3

In section 2 we lay out the framework of duopoly price competition in a matching

environment. In our model, matchmakers use prices (subscription fees) to induce agents

to sort into different matching markets. We introduce the concept of matching market

structure, which describes how agents sort into two matching markets given the two prices.

We then provide a criterion to select a unique market structure for any price profile. Price

competition in a matching environment with friction differs from the standard Bertrand

models because prices also play the role of sorting heterogeneous agent types into different

3 As a model of one-sided intermediated market, our paper is also related to the literature on demand
externalities and pricing (Karni and Levin, 1994; Rayo, forthcoming), and to the literature on clubs (Cole
and Prescott, 1997).
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matching markets. Aside from the usual strategy of lowering price to steal rivals’ market

share, our selection criterion formalizes a pricing strategy called “overtaking” that is unique

to the sorting role of prices. Overtaking a rival is achieved by charging a price just higher

than the rival does, and thus providing a market with a higher quality (average agent

type). When the price difference is small enough, the rival’s matching market loses all its

customers because quality difference dominates.

Section 3 contains the main results of the paper. No pure-strategy equilibrium exists

in the simultaneous-move pricing game, because for any price profile at least one of the

matchmaker has an incentive to drive its rival out of the market by using the overtaking

strategy. We provide a sufficient condition for the two matchmakers to coexist in the

equilibrium of the sequential-move version of the pricing game. This condition requires

the type distribution to be sufficiently diffused so that the first mover can create a niche

market for the low types to survive the overtaking strategy of the second mover, which in

equilibrium serves the higher types. With the assumption of uniform type distribution,

we show that at the equilibrium outcome of the duopoly competition the total market

coverage is greater than the optimal total coverage under a monopolist that maximizes

revenue from two matching markets, because the first mover must lower its price to prevent

overtaking. However, the equilibrium outcome involves inefficient sorting compared to the

monopoly outcome, because competition results in an insufficiently exclusive high quality

matching market. When the type distribution is tight, the matching market structure is

less efficient overall under competition than under monopoly, as the loss from inefficient

sorting outweighs the gain from a greater coverage. We conclude our analysis with a

brief discussion of the robustness of our main results when the type distribution is non

uniform, and when more than two matching markets are created. Section 4 provides further

remarks on the existing literature and the implications of our results to regulatory policies

in intermediated markets. Proofs of all lemmas can be found in the appendix.

2. A Duopoly Model of Competing Matchmakers

Consider a two-sided matching environment. Agents of the two sides have heterogeneous

one-dimensional characteristics, called “types.” For simplicity, we assume that the two
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sides have the same size and the same type distribution function F , with a support [a, b] ⊆
IR+, and a differentiable density function f . We assume that a > 0 and b is finite; the

following analysis carries through with appropriate modifications if a = 0 or b = ∞, and

all our results hold without change.

Two matchmakers, unable to observe types of agents, use prices (entrance fees) to

create two matching markets.4 For each i = 1, 2, let pi be the price charged by matchmaker

i. Given p1 and p2, agents simultaneously choose one from three options: participate in

matchmaker 1’s matching market, participate in 2’s market, and not participate. In each

matching market, agents are randomly pairwise matched. Random matching means that

the probability that a type x agent meets an agent from the other side whose type is in

some set equals the proportion of matching market participants whose type belongs to the

set. We assume that matching markets are costless to organize, and each matchmaker’s

objective is to maximize the sum of entrance fees collected from participants.5

A match between a type x agent and a type y agent from the other side produces

a value of xy to both of them. This match value function satisfies the standard comple-

mentarity condition (positive cross partial derivatives); this implies that in a frictionless

matching environment, the total match value is maximized by matching equal types of

agents. Let mi, i = 1, 2, be the expected type (average quality) in the matching market

created by matchmaker i; the qualities m1 and m2 are endogenously determined in equi-

librium by p1 and p2, and the participation choices of the agents. The utility of a type x

agent from participating in matching market i is then xmi − pi. Unmatched agents get a

payoff of 0 regardless of type.

2.1. Matching market structures

First we examine the Nash equilibria of the simultaneous move game played by the agents

for given prices p1 and p2. For concreteness, we refer to each equilibrium as a “matching

4 Due to the assumptions of symmetry and random pairwise meeting, in our model each participant
in a matching market is matched with probability 1. If the meeting technology is such that the probability
of forming a match is less than 1, then the prices should be understood as usage fees that are paid only if
a successful match is made, and all analysis remains unchanged.

5 The same framework can be used to analyze the optimal pricing of a single matchmaker that competes
with a free-access matching market. See our earlier paper, Damiano and Li (forthcoming).
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market structure.” Since our model is symmetric with respect to the two sides, we restrict

our attention to symmetric Nash equilibria, with each matching market hosting an equal

number of participants with identical support from the two sides. For any c, c′ ∈ [a, b] with

c < c′, let µ(c, c′) be the mean type on the interval [c, c′], and denote µ(c, c) = c.

One “singular matching market structure,” denoted as S1, is that agents participate

in matching market 1 only. The participation threshold c1 for matching market 1 is

determined by {
c1µ(c1, b) = p1 if p1 ∈ [aµ(a, b), b2];

c1 = a if p1 ∈ [0, aµ(a, b)).
(2.1)

The average quality m1 of matching market 1 is µ(c1, b), and the threshold participation

type is either a type c1, which is indifferent between participating in matching market 1

and not participating (when p1 ≥ aµ(a, b)), or the lowest type a, which strictly prefers

participation (when p1 < aµ(a, b)). In both cases, all types higher than the threshold type

strictly prefer to participate in matching market 1. The other singular matching market

structure, denoted as S2, is that agents participate in matching market 2 only; the average

quality m2 and the participation threshold c2 are similarly determined.

When p1 < p2 ≤ b2, the prices may also support a “dual matching market structure,”

denoted as D12. Either there exist participation thresholds c1 and c2, with a ≤ c1 < c2,

such that
c1µ(c1, c2) = p1;

c2(µ(c2, b)− µ(c1, c2)) = p2 − p1,
(2.2)

or there is c2 such that
aµ(a, c2) > p1;

c2(µ(c2, b)− µ(a, c2)) = p2 − p1.
(2.3)

In both cases above, the average quality of matching market 2 is m2 = µ(c2, b), and the

threshold type c2 is indifferent between the two markets. In the first case, the threshold

type c1 is indifferent between participating in matching market 1 with the average quality

m1 = µ(c1, c2) and not participating at all, while in the second case, type c1 is the lowest

type a and it strictly prefers participating in matching market 1 with m1 = µ(a, c2).

Whether a pair of prices p1 and p2 with p2 < p1 supports a symmetric dual matching

market structure, denoted as D21, is determined similarly.
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The assumption of complementarity in the match value function implies that partici-

pation decisions can be described by thresholds, and in any dual matching market structure

higher types join the more expensive market. As a result, the two singular matching mar-

ket structures and the dual structure, together with the “null matching market structure”

where agents participate in neither matching market, cover all possible equilibrium match-

ing market structures.6

We now make an assumption which for each p1 ∈ [0, b2] allows to determine a price

range [θ(p1), λ(p1)] for prices p2 > p1, such that the dual matching market structure D12

cannot be supported for any p2 < θ(p1) or p2 > λ(p1) and there is a unique D12 for any

p2 ∈ [θ(p1), λ(p1)]. The lower bound θ(p1) is given by

θ(p1) =

{
p1 +

√
p1(µ(

√
p1, b)−√p1) if p1 ≥ a2;

p1 + a(µ(a, b)− a) if p1 < a2
(2.4)

and the upper bound λ(p1) is given by

λ(p1) =

{
p1 + b(b− µ(c1, b)) if p1 ≥ aµ(a, b);

p1 + b(b− µ(a, b)) if p1 < aµ(a, b),
(2.5)

where c1 is uniquely determined by c1µ(c1, b) = p1 in the first case of (2.5). The assumption

we will make (Assumption 2.1 below) implies that µ(t, x′) − µ(x, t) is a non-decreasing

function in t for any t ∈ (x, x′) ⊂ [a, b]. To see the sufficiency of this monotonicity condition

on the difference of conditional means, take for example the case of p1 ≥ aµ(a, b). At

p2 = θ(p1), equation (2.2) is satisfied by c1 = c2 =
√

p1; under the monotonicity condition,

as p2 decreases c2 decreases while c1 increases, and thus there is no solution in c1 and

c2 with c1 < c2 if p2 < θ(p1). Similarly, at p2 = λ(p1), equation (2.2) is satisfied by

c2 = b and c1 such that c1µ(c1, b) = p1; under the monotonicity condition, there is no

solution in c1 and c2 to equations (2.2) if p2 > λ(p1). Lastly, for p2 ∈ [θ(p1), λ(p1)], the

monotonicity condition implies that there is a unique pair of participation thresholds c1

and c2 that satisfies equation (2.2). The cases of p1 < a2 and p1 ∈ [a2, aµ(a, b)) can be

similarly established. A symmetric argument holds for D21.

6 When p1 = p2, for the participation threshold c that satisfies (2.1), any strategy profile such that
types above c join one of the two markets and m1 = m2 forms a Nash equilibrium. We assume that the
two matchmakers evenly split the types above c; the analysis is unaffected by this assumption.
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To derive a restriction on F that ensures that µ(t, x′)− µ(x, t) is non-decreasing in t,

let µl be the partial derivative of µ(x, x′) with respect to x, and µr be the derivative with

respect to x′. We have

µl(t, x′) =
f(t)(µ(t, x′)− t)

F (x′)− F (t)
; µr(x, t) =

f(t)(t− µ(x, t))
F (t)− F (x)

. (2.6)

Note that µl(t, x′) converges to 1
2 as x′ approaches t.7 Further, the derivative of µl(t, x′)

with respect to x′ has the same sign as 1
2 (t+x′)−µ(t, x′), which is non-negative if f ′(·) ≤ 0.

Thus, µl(t, x′) ≥ 1
2 if f ′(·) ≤ 0. Similarly, µr(x, t) converges to 1

2 as x approaches t, and is

non-decreasing in x if f ′(·) ≤ 0, implying that µr(x, t) ≤ 1
2 . Non-increasing density is thus

sufficient to imply that µ(t, x′) − µ(x, t) is non-decreasing in t as µl(t, x′) ≥ 1
2 ≥ µr(x, t).

We make the following assumption.

Assumption 2.1. The density function f is non-increasing.

For the analysis that we will carry out, we also need the standard assumption of

monotone hazard rate. Let ρ(·) = (1− F (·))/f(·) be the inverse hazard rate function. We

assume that ρ′(·) ≤ 0. This is equivalent to the assumption that the right tail distribution

function 1 − F (·) is log-concave, which implies that the conditional mean function µ(t, b)

satisfies µl(t, b) ≤ 1 (An, 1998).

Assumption 2.2. The hazard rate function of F is non-decreasing.

The uniform distribution and the exponential distribution are the two polar cases that

satisfy Assumptions 2.1 and 2.2. The uniform distribution on [a, b] has a constant density,

while the hazard rate is strictly increasing. The exponential distribution on [a,∞) has a

strictly decreasing density, while the hazard rate is constant.

2.2. Selection of matching market structures

Unlike in standard Bertrand price competition, in a matching environment participation

decisions of agents are not completely determined by prices. What an entrance fee buys

7 The derivative ∂µ(t, x′)/∂t at x′ = t can be calculated using L’Hospital rule and solving for it from

the resulting equation. It is equal to 1
2

because a continuous density is locally uniform.
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for agents on one side of the matching market depends on participation decisions by the

agents on the other side of the market. Nash equilibrium alone does not pin down the

matching market structure. It is possible to have multiple matching market structures for

a given pair of prices. Indeed, from equations (2.1), for any p1, p2 ∈ [0, b2], both the two

singular matching market structures S1 and S2 can be supported as equilibrium.

We adopt as our selection criterion the notion of “stable set of equilibria” of Kohlberg

and Mertens (1986). Their notion is a strengthening of trembling hand perfection in

strategic-form games (Selten, 1975), and is derived from robustness considerations in per-

turbed games where agents are constrained to non-optimal participation decisions (trem-

bles) with increasingly small probabilities. Loosely speaking, in our model a collection of

matching market structures constitutes a stable set in the sense of Kohlberg and Mertens

if it is a minimal collection with the property that every perturbed game has a Nash equi-

librium close to some matching market structure in the collection. In the appendix, we

give a formal definition of the notion of a stable collection of matching market structures

and prove the following result.8

Lemma 2.3. Assume p1 < p2. The unique stable collection of matching market structures

is a singleton, and contains (i) S2 if p2 < θ(p1), (ii) D12 if θ(p1) < p2 < λ(p1), and (iii) S1

if p2 > λ(p1).

Stability in the sense of Kohlberg and Mertens makes a unique selection of matching

market structure, even though the concept is a set-based refinement as in general different

equilibria are needed to provide robustness against different perturbed games. To under-

stand this strong result, let us consider case (i) where p2 ∈ (p1, θ(p1)). In this case, the

price difference is too small to support the dual matching market structure D12, and the

unique selection is the high-price singular market structure S2. The low-price singular

structure S1 is not robust. This is because any perturbation in which high types are over-

represented in the high-price market would create a high quality there, and since the price

difference is small, would further attract high types. As high types leave the low-price

8 At the boundary between S2 and D12 (when p2 = θ(p1)), the two matching market structures are
both stable, but since they are outcome-equivalent, which one is selected is immaterial to our analysis. A
similar observation applies to the boundary between D12 and S1 (when p2 = λ(p1)).
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Figure 1

market, its quality decreases. This induces further deviations that unravel the low-price

singular market structure.9 In contrast, the high-price structure S2 is robust. In any

perturbation, the first types to deviate to the low-price market are the low types, which

drives up the quality difference between the two markets and limits further deviations.

By a symmetric argument a unique matching market structure is selected when p1 >

p2. Figure 1 depicts the selected matching market structure for the case in which types

are uniformly distributed on [a, b]. The dashed line represents the border between the

region with high prices and full participation, with c1 = a, and low prices and partial

participation, with c1 > a. We refer to case (i) in Lemma 2.3 as matchmaker 2 “overtaking”

matchmaker 1, and case (iii) as matchmaker 1 “undercutting” matchmaker 2. The strategy

of overtaking is unique to the sorting role of prices. Overtaking a rival is achieved by

charging an appropriately higher price than the rival does. This provides a higher quality

market, inducing deviation from the rival’s market by the highest types, which triggers

further deviations by lower type agents and eventually drives out the rival. The overtaking

strategy plays on the differences in willingness to pay for quality (average match type)

between the highest and the lowest type agents participating in a market.

9 A similar argument can be made if we adapt the concept of most likely deviating type from Banks
and Sobel’s (1987) theory of refinement in extensive games. In the low-price singular structure S1, the
type that is the most likely to deviate to the high-price market is the highest type b. If p2 < θ(p1), type b
agents would indeed want to deviate if they expect a sufficiently high quality in the high-price market.
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3. Duopolistic Sorting

In this section we analyze the equilibrium outcome under duopolistic competition. First

we have that no pure-strategy equilibrium exists in the simultaneous-move pricing game,

because each matchmaker can drive the rival out of the market by overtaking.

Lemma 3.1. There is no pure-strategy equilibrium in a simultaneous-move game.

The non-existence of pure-strategy equilibria in the simultaneous-move game points

to a difference between competing matchmaking and the standard Bertrand price compe-

tition. As in Bertrand competition, payoff discontinuities exist in competing matchmaking

because the matching market structure switches from one singular matching market struc-

ture to the other singular market structure when prices move from p1 just below p2 to p1

just above p2. Payoff discontinuities tend to homogenize prices in the absence of any asym-

metry between the competitors. While in Bertrand competition this leads to marginal cost

pricing, the same is not true in competing matchmaking because prices also play the role of

sorting. If one matchmaker charges zero price, the other matchmaker can charge a price in

the region of dual market structure and earn a strictly positive revenue by sorting out the

types willing to pay more for a higher match quality. Rather than studying mixed-strategy

equilibria in a simultaneous-move game, we look at pure-strategy (subgame perfect) equi-

libria in a sequential-move game.10 We consider below a game where matchmaker 1 first

picks a price p1, and matchmaker 2 then chooses p2 after observing p1.

3.1. Surviving overtaking

Because of the overtaking strategy, matchmaker 2 has an advantage in the sequential-move

game. We want to know whether this advantage is so overwhelming that matchmaker 1

cannot survive as a first mover. A possible strategy for matchmaker 1 to survive overtaking

10 Existence of a mixed-strategy equilibrium can be established using the concept of payoff-security
of Reny (1999). By charging a slightly higher price each matchmaker can secure a payoff at worst only
marginally lower against small perturbations of its rival’s price. It follows that the mixed extension of our
simultaneous-move game is payoff-secure, and therefore a mixed strategy equilibrium in prices exists (see
Corollary 5.2 in Reny, 1999).
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is to choose a price so low that matchmaker 2 finds more profitable creating a more

exclusive matching market rather than overtaking matchmaker 1 and driving it out of

the competition. We say that the type distribution is “sufficiently diffused” if µ(a, b) >

3
2a. Intuitively, when the type distribution is sufficiently diffused, there is room for two

matchmakers to coexist, because the lowest type’s willingness to pay for a higher quality

match is low relative to higher type agents. When matchmaker 1 posts a sufficiently low

price, overtaking effectively entails serving the entire market. The opportunity cost of

overtaking is high since by focusing on a more exclusive matching market, matchmaker 2

could charge a much higher participation fee.

Proposition 3.2. If the type distribution is sufficiently diffused, there exists a pure-

strategy equilibrium with a dual matching market structure in a sequential-move game.

Proof. Fix any p1 < a2. First, note that undercutting is dominated by overtaking

for matchmaker 2. This is because in both cases, matchmaker 2 will serve all types, and

overtaking generates a greater revenue with a higher price. It remains to show that for

p1 sufficiently small, it is not optimal for matchmaker 2 to drive matchmaker 1 out of

the market by overtaking. By equation (2.1), the singular matching market structure S2

obtains for any p2 ∈ (p1, θ(p1)]. The threshold type of participation is c2 = a because

p1 < a2 implies θ(p1) < aµ(a, b). Matchmaker 2’s revenue from overtaking is simply p2

for any p2 ∈ (p1, θ(p1)], so the best overtaking price is θ(p1). For any p2 ∈ (θ(p1), λ(p1)),

the dual matching market structure D12 obtains. By equation (2.3), c1 = a, and c2

satisfies c2(µ(c2, b) − µ(a, c2)) = p2 − p1. Consider how matchmaker 2’s revenue in the

dual matching market structure D12, given by p2(1−F (c2)), changes at p2 = θ(p1). Since

c2 = a at p2 = θ(p1), the derivative of matchmaker 2’s revenue with respect to p2 at θ(p1)

is positive if and only if

µ(a, b)− a + a

(
f(a)(µ(a, b)− a)− 1

2

)
> f(a)θ(p1). (3.1)

As p1 approaches 0, θ(p1) approaches a(µ(a, b) − a). Thus, the derivative is positive at

p2 = θ(p1) for p1 approaching 0, if and only if µ(a, b) > 3
2a. Q.E.D.

A sufficiently diffused distribution allows the first mover to survive the overtaking

strategy of the second mover by focusing on a lower quality “niche” market. Note that
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the survival strategy of charging p1 < a2 for the first mover implies that all low types are

served and some rents are left to the lowest type a with a relaxed participation constraint.

Further, the sufficient condition of Proposition 3.2 depends on the type distribution only

through the unconditional mean µ(a, b). This is because at the boundary between S2 and

D12 the behavior of matchmaker 2’s revenue is independent of the type distribution, and

is locally identical to that under the uniform type distribution.

3.2. Niche market

Proposition 3.2 provides a sufficient condition for the two matchmakers to coexist in an

equilibrium, by considering the second mover’s incentives to overtake the first mover when

the latter charges a sufficiently low price. The analysis leaves open the possibility that, in

equilibrium, both matchmakers have positive market shares and the first mover charges a

higher price. We investigate this possibility in this subsection.

We will need a result about the revenue function of a one-price monopolist, (1−F (c))p,

where c is determined by p through equation (2.1). In the appendix we prove that the

revenue function is quasi-concave in price p (Lemma A.1). Let p̂ be the solution to the

one-price monopolist’s revenue maximization problem. We have the following result.

Lemma 3.3. Under the uniform type distribution, for any p1 such that θ(p1) > p̂, any

best response p2 of matchmaker 2 leaves zero revenue to matchmaker 1.

Clearly the optimal response of matchmaker 2 is p̂ if it is a feasible undercutting or

overtaking price, which happens when p1 ∈ (λ(p̂), b2] and p1 ∈ (θ−1(p̂), p̂) respectively.

This leaves zero revenue to matchmaker 1. When p1 ∈ [p̂, λ(p̂)], the maximum one-price

monopolist revenue is not feasible. However, since p1 > p̂ > θ−1(p̂), overtaking match-

maker 1 dominates serving the higher quality market in a dual structure D12. To see this,

note that any price p2 ∈ (θ(p1), λ(p1)) that supports D12 leads to a duopolist’s revenue,

which is lower than the one-price monopolist’s revenue at the same price p2 because the

latter has a greater market share. Since θ(p1) > p̂, the quasi-concavity of the revenue

function of the one-price monopolist implies that this is in turn lower than the overtak-

ing revenue reached by charging θ(p1). The proof of Lemma 3.3 uses the assumption of
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uniform type distribution to rule out serving the lower quality market in a dual structure

D21 by showing that it is dominated by either overtaking or undercutting. In either case,

matchmaker 1 gets zero revenue. The next result follows from Lemma 3.3 immediately.

Proposition 3.4. Under the uniform type distribution, in any equilibrium with a dual

matching market structure, the first mover serves the lower quality matching market.

Proof. By Lemma 3.3, under the uniform type distribution, in any equilibrium with a

dual matching market structure, we must have p1 ≤ θ−1(p̂). We claim that matchmaker 2’s

best response p2 belongs to the interval [θ(p1), λ(p1)). The proposition then immediately

follows this claim, because either there is no equilibrium with a dual market structure if

p2 = θ(p1), or else D12 is the equilibrium market structure. To establish the claim, note

that charging p2 ∈ [λ(p1), b2] cannot be optimal because matchmaker 2 would have zero

revenue. If instead matchmaker 2 chooses p2 ∈ [0, θ(p1)), there are most three possible

scenarios. When the price pair (p1, p2) falls in the S1 region, matchmaker 2 has no revenue.

When the (p1, p2) falls in the S2 region, matchmaker 2 is a monopolist. However at price

p2 = θ(p1), matchmaker 2 is also a monopolist but has a higher revenue because θ(p1) ≤ p̂

and because the revenue function of the monopolist is quasi-concave. Finally, when (p1, p2)

falls in the D21 region, matchmaker 2’s revenue is lower than the revenue of a one-price

monopolist at the same price p2, which is lower than the revenue generated by charging

p2 = θ(p1) due to the quasi-concavity. Q.E.D.

Proposition 3.4 shows that when matchmaker 1 chooses a low price p1 such that

θ(p1) ≤ p̂, matchmaker 2’s best response is either charging the maximum overtaking price

θ(p1) or serving the higher quality market in a dual structure D12. Note that this result

holds regardless of the type distribution. While Lemma 3.3, and hence the conclusion

of Proposition 3.4, does depend on the assumption of the uniform type distribution, the

intuition behind it is more general. By charging a very low price, or a very high price,

the first mover targets a niche market of few types and makes the overtaking strategy

unappealing to the second mover. However, while a high price might invite undercutting,

a low price is less vulnerable. Indeed, under the uniform type distribution, if the first mover

charges a price high enough to deter overtaking, the second mover will find it optimal to
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undercut. Thus, to deter undercutting as well as overtaking, matchmaker 1 has to find its

niche market with low prices.

3.3. Market coverage

To study the effects on competition, we compare our duopoly model with a two-price

monopoly matchmaker. This is a natural comparison because the number of potential

matching markers is two in both cases. The monopolist’s problem can be stated as choosing

two participation thresholds, c1 and c2, with c1 ≤ c2, to maximize the total revenue:11

(1− F (c1))c1µ(c1, c2) + (1− F (c2))c2(µ(c2, b)− µ(c1, c2)). (3.2)

In this subsection we consider how competition affects the total matching market coverage,

i.e. the lower participation threshold.

Proposition 3.5. In any equilibrium with the dual structure D12 the market coverage is

at least as large as in the optimal structure of a monopolist if matchmaker 2’s revenue is

quasi-concave in c2 for any p1.

Proof. Rewrite the revenue of the monopolist (equation 3.2) as

((1− F (c1))c1 − (1− F (c2))c2)µ(c1, c2) + (1− F (c2))c2µ(c2, b). (3.3)

Since the first term in the above expression can be made arbitrarily small with c1 just

below c2, the optimal thresholds ĉ1 and ĉ2 satisfy

(1− F (ĉ1))ĉ1 ≥ (1− F (ĉ2))ĉ2. (3.4)

Differentiating (3.3) with respect to c1, and assuming an interior ĉ1, we find:

1− F (ĉ2)
F (ĉ2)− F (ĉ1)

(ĉ2 − ĉ1) =
ρ(ĉ1)µ(ĉ1, ĉ2)− ĉ2

1

µ(ĉ1, ĉ2)− ĉ1
.

11 The proof of Lemma 3.10 in the appendix shows that the monopolist will always choose prices
such that a dual matching market structure obtains. Thus, applying the selection criterion introduced in
section 2 we can use participation thresholds (as opposed to prices) as choice variables for the monopolist’s
revenue-maximization problem.
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If ρ(ĉ1) > ĉ1, then the right-hand-side of the above condition is greater than ĉ1, resulting

in an inequality that contradicts (3.4). Thus, ρ(ĉ1) ≤ ĉ1.

For duopolistic coverage, matchmaker 2 chooses c2 to maximize its revenue

(1− F (c2))(p1 + c2(µ(c2, b)− µ(c1, c2))) (3.5)

subject to {
c1µ(c1, c2) = p1 if c1 > a;

aµ(a, c2) ≥ p1 if c1 = a.
(3.6)

It suffices to consider the case where c1 is greater than a and determined by (3.6) at some

equilibrium price p1 = p̃1. Taking derivatives of (3.6) we have

dc1

dc2
= − c1µr(c1, c2)

µ(c1, c2) + c1µl(c1, c2)
. (3.7)

Since matchmaker 2’s revenue function is quasi-concave in c2, a necessary condition for

equilibrium is that matchmaker 2’s revenue increases with c2 at the boundary between S2

and D12 where c2 = c1 and p2 = θ(p̃1). At this point, equation (3.7) becomes dc1/dc2 = − 1
3

as µl = µr = 1
2 at the boundary, and by taking derivatives of (3.5) we find that this

necessary condition is satisfied if and only if at some equilibrium lower threshold c̃1 > a,

ρ(c̃1)
(

µ(c̃1, b)− 4
3
c̃1

)
> c̃2

1. (3.8)

Since µl(c, b) ≤ 1 by Assumption 2.2, (2.6) implies that for any c we have

µ(c, b)− c ≤ ρ(c). (3.9)

Thus, condition (3.8) can be satisfied only if ρ(c̃1) > c̃1. The proposition then follows

immediately from Assumption 2.2. Q.E.D.

Without the assumption of quasi-concavity, condition (3.8) is generally not necessary

for an equilibrium dual market structure, because matchmaker 2’s revenue may decrease

with c2 at the boundary between S2 and D12 and yet there is a price p2 in the D12 region

that dominates any overtaking price. In the appendix we show that, under uniform type

distribution, matchmaker 2’s revenue is globally concave in c2 for any p1 in the D12 region
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(Lemma A.2). Moreover, by Proposition 3.4, under the same assumption any equilibrium

dual market structure is D12 . Thus we have the following result.

Corollary 3.6. If the type distribution is uniform, then in any equilibrium with a

dual matching market structure the market coverage is at least as large as in the optimal

structure of a monopolist.

The intuition behind the above result is more general than implied by the uniform

type distribution. Competition expands the total market coverage because of the need for

the first mover to survive price competition. Only by lowering its price sufficiently and

catering to a low quality matching market can the first mover prevent overtaking.

3.4. Market differentiation

In this subsection, we ask how the equilibrium market differentiation, in terms of how

exclusive the high quality matching market is, compares with the optimal market differ-

entiation that maximizes the total revenue for the two-price monopolist.

Definition 1. A dual matching market structure with c1 < c2 has a greater conditional

market differentiation than another one with c′1 < c′2 if c1 = c′1 and c2 > c′2.

Definition 1 limits our comparison of matching market structures to those with the

same market coverage. We drop the qualifier “conditional” when there is no risk of confu-

sion. Market differentiation here does not refer to the comparison in terms of the quality

difference m2 −m1 between the two markets. Instead, it describes how exclusive the high

quality matching market is: a dual matching market structure has a greater differentiation

if c2(m2 − m1) is greater, or in words if the higher threshold c2 is willing to pay more

for the quality difference between the two matching market. Under Assumption 2.1, the

quality difference m2 − m1 is non-decreasing in c2 for fixed c1, so this interpretation of

exclusivity coincides with Definition 1 above. Note that market differentiation in terms of

exclusivity, is what matters to revenue maximization for the two-price monopolist and the

duopolist that serves the high quality matching market. We have the following comparison

result:
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Proposition 3.7. In any equilibrium with the dual structure D12 the equilibrium outcome

has less market differentiation than the optimal structure of a monopolist.

Proof. The monopolist’s differentiation problem is to choose c2 to maximize (3.2) taking

as given c1, subject to the constraint (3.6). The first order condition can be written as

µ(ĉ2, b)− µ(c1, ĉ2)
ĉ2 − µ(c1, ĉ2)

=
1− F (c1)

ρ(ĉ2)
ĉ2 − c1

F (ĉ2)− F (c1)
. (3.10)

The right-hand-side of (3.10) approaches 1 while the left-hand-side becomes arbitrarily

large when ĉ2 takes on the value of c1, and the opposite happens when ĉ2 approaches b.

Thus, for any c1, there exists at least one ĉ2 that satisfies (3.10). Further, the right-hand-

side is increasing ĉ2, because Assumption 2.1 implies (ĉ2 − c1)/(F (ĉ2) − F (c1)) increases

with ĉ2 while ρ(ĉ2) decreases with ĉ2 by Assumption 2.2. The left-hand-side decreases in

ĉ2, because µl(ĉ2, b) ≤ 1 by Assumption 2.2. Thus, a unique ĉ2 satisfies (3.10).

For duopolistic differentiation, matchmaker 2 chooses c2 to maximize (3.5) taking as

given p1, subject to (3.6). The first order necessary condition can be written as

ρ(c̃2)(µ(c̃2, b)− µ(c1, c̃2))
c̃2 − µ(c1, c̃2)

=
1− F (c1)

F (c̃2)− F (c1)

(
1 +

µ(c1, c̃2)− c1

c̃2 − µ(c1, c̃2)
dc1

dc2

)
c̃2 +

c1µ(c1, c̃2)
c̃2 − µ(c1, c̃2)

,

where dc1/dc2 is given by (3.7). By Assumption 2.1, we have µ(c1, c̃2)−c1 ≤ c̃2−µ(c1, c̃2).

Moreover, µr(c1, c2) ≤ 1
2 ≤ µl(c1, c2). Thus, the first order condition implies

ρ(c̃2)(µ(c̃2, b)− µ(c1, c̃2))
c̃2 − µ(c1, c̃2)

>
1− F (c1)

F (c̃2)− F (c1)
c̃2 − 1− F (c2)

F (c̃2)− F (c1)
c̃2c1

2µ(c1, c̃2) + c1
. (3.11)

Comparing (3.11) and (3.10), we find that c̃2 < ĉ2 for any c1 if

(2µ(c1, c̃2) + c1)(1− F (c1))− (1− F (c̃2))c̃2 ≥ 0.

Note that the above inequality holds at c̃2 = c1. Further, the derivative of the left-hand-

side with respect to c̃2 has the same sign as

2(1− F (c1))
c̃2 − µ(c1, c̃2)
F (c̃2)− F (c1)

+ c̃2 − ρ(c̃2).

The above is strictly positive as c̃2 approaches c1 from above, and is strictly increasing in

c̃2 because (c̃2 − µ(c1, c̃2)/(F (c̃2) − F (c1)) is weakly increasing in c̃2 by Assumption 2.1,

while ρ(c̃2) is weakly decreasing by Assumption 2.2. Q.E.D.
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Definition 1 requires us to compare monopolistic and duopolistic differentiation for

fixed market coverage. The above proof establishes that for any equilibrium coverage,

at the optimal choice of differentiation c̃2 of matchmaker 2, the monopolist’s revenue is

strictly increasing in c2. Since it uses only the first order necessary condition, the proof

does not require the assumption that matchmaker 2’s revenue is quasi-concave. Under

uniform type distribution we can strengthen the proposition.

Corollary 3.8. If the type distribution is uniform, in any equilibrium with the dual

matching market structure the equilibrium outcome has less market differentiation than

the optimal structure of a monopolist.

Intuitively, when choosing its own price, matchmaker 2 does not internalize the can-

nibalization of the lower market. Rewrite the monopolist’s revenue function (3.2) as

(F (c2)− F (c1))p1 + (1− F (c2))(p1 + c2(µ(c2, b)− µ(c1, c2))), (3.12)

and compare it with matchmaker 2’s objective function (3.5). Since c1 either stays constant

at a or increases as c2 decreases according to (3.6), the first term that appears in (3.12) but

is absent from (3.5) means that duopolist matchmaker 2 has a greater incentive to lower c2

relative to the monopolist.12 Such incentive exists regardless of the type distribution. The

uniform distribution assumption is used to ensure that the equilibrium matching market

structure is D12 by way of Proposition 3.4.

3.5. Welfare comparison

To complete the comparison between duopolistic matchmaking and monopolistic match-

making, we now examine the welfare in terms of the total match value, given by

(F (c2)− F (c1))µ2(c1, c2) + (1− F (c2))µ2(c2, b), (3.13)

for any pair of participation thresholds c1 and c2 with c1 ≤ c2. A useful benchmark for the

comparison is the two-market planner’s problem, which is to choose the efficient thresholds

12 The proof of Proposition 3.7 is complicated by the fact that the constraint (3.6) has different
implications to the monopolist and the duopolist matchmaker 2: the former chooses c2 for fixed c1 with
p1 determined by (3.6), while the latter chooses c2 for fixed p1 with c1 determined by the same constraint.
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c∗1 and c∗2, with c∗1 ≤ c∗2, to maximize the total match value (3.13).13 First, we compare

optimal coverage ĉ1 and efficient coverage c∗1.

Lemma 3.9. Monopolistic market coverage is at most the efficient coverage.

The above result that the monopolist’s matching markets are smaller and more selec-

tive than the planner’s does not require the assumption of uniform type distribution. In

particular, following the standard price discrimination literature, we can define “virtual

type” of x as x−ρ(x). As shown in Proposition 3.5, the monopolist will never serve agents

of negative virtual types, establishing that the optimal coverage ĉ1 satisfies ĉ1 ≥ ρ(ĉ1).

In contrast, the planner will service additional low types so long as the benefit from the

expansion of the market coverage is not outweighed by the loss due to the reduction in

the average quality of the lower matching market. The proof of Lemma 3.9 shows instead

c∗1 < ρ(c∗1) whenever c∗1 > a, implying that ĉ1 ≤ c∗1 by Assumption 2.2. Next, we com-

pare the optimal market differentiation ĉ2 for the two-price monopolist with the efficient

differentiation c∗1 for the two-market planner under any total coverage c1.

Lemma 3.10. Monopolistic differentiation is efficient if the type distribution is uniform.

For both the planner and the monopolist, increasing c2 raises the quality in both

matching markets at the expense of reducing the relative size of the higher quality mar-

ket. The effect on the objective functions is generally different because the monopolist is

concerned with the change in the marginal type’s willingness to pay, whereas the planner

cares about the change in the average expected type. Lemma 3.10 shows that the effect is

the same for type distributions with a linear conditional mean function µ(·, b), including

uniform and exponential distributions.

Since by Lemma 3.10 the monopolist and the planner have identical incentives for mar-

ket differentiation under the uniform type distribution, Corollary 3.8 implies that compe-

tition between the two matchmakers induces a smaller, and less efficient, degree of market

differentiation. On the other hand, Lemma 3.9 establishes that the monopolist has an

13 We implicitly assume that the planner is restricted to threshold participation strategies. This may
be motivated by the assumption that the planner faces the same informational constraints.
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inefficiently small market coverage, and therefore by Corollary 3.6 duopolistic matchmak-

ing may correct this distortion. The trade-off between differentiation and coverage then

implies that the welfare comparison between duopolistic matchmaking and monopolistic

matchmaking in terms of the total match value can go either way. The comparison gener-

ally depends on how diffused the type distribution is. For the uniform type distribution,

the degree of diffusion is determined by the value of a/b, with a lower value of the ratio

corresponding to a more diffused distribution. We have the following result.

Proposition 3.11. If the type distribution is uniform, duopolistic matchmaking generates

a smaller total match value than monopolistic matchmaking if and only if the diffusion of

the type distribution falls below a critical value.

Proof. Under the uniform type distribution, the total match value (3.13) is given by

R(c1, c2) =
1

4(b− a)
(
(c2 − c1)(c1 + c2)2 + (b− c2)(c2 + b)2

)
.

Note that the comparison between the total match value R̃ under duopolistic matchmaking

and R̂ under monopolistic matchmaking depends on a only through its effects on the

equilibrium thresholds c̃1 and c̃2 versus the monopolist’s optimal thresholds ĉ1 and ĉ2.

Under the two-price monopolist, the optimal thresholds ĉ1 and ĉ2 can be solved from

the first order conditions with respect to c1 and c2, derived from (3.2). This yields ĉ1 =

max{a, h} and ĉ2 = 1
2 (ĉ1 + b), with h = b(2

√
6 + 3)/15. Since h > 1

2b, we have that ĉ1 and

ĉ2 are constant in a for any a/b < 1
2 . The total match value R̂ is then R(ĉ1, ĉ2).

For duopolistic matchmaking, we distinguish three cases. In the first case, a/b lies

between
√

19− 4 and 1
2 . By Propositions 3.2 and 3.4, an equilibrium with a dual market

structure D12 exists. Since a necessary condition for an equilibrium with a lower threshold

c̃1 > a is condition (3.8), which under the uniform distribution becomes c̃1 < (
√

19− 4)b,

the equilibrium satisfies c̃1 = a. In this case, the equilibrium higher threshold c̃2 can be

computed explicitly by backward induction: the best response of matchmaker 2 to any p1

is c2 = b/2− p1/(b− a), the equilibrium price for matchmaker 1 is p̃1 = 1
4 (b− 2a)(b− a),

and finally c̃2 = 1
4 (b+2a). The total match value R̃ for a/b between

√
19−4 and 1

2 is then

R(a, 1
4 (b+2a)). Comparing R̃ with R̂, we find that there is a critical value of a/b between

√
19− 4 and 1

2 , such that R̃ < R̂ if and only if a/b is greater than the critical value.
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In the second case, a/b is smaller than
√

19 − 4. Explicit formulae for c̃1 and c̃2

are not easily obtained because we may have c̃1 > a, but we make the following two

observations. First, if c̃1 > a, then c̃1 and c̃2 are both independent of a. This is because

under the uniform type distribution, equations (3.5) and (3.6) imply that matchmaker 2’s

best response does not depend on a, which in turn implies that matchmaker 1’s problem

of maxp1(F (c2) − F (c1))c1µ(c1, c2) does not depend on a either. Second, the equilibrium

thresholds c̃1 and c̃2 are continuous in the parameter a/b. Hence for some a/b ≤ √
19−4, we

have R̃ = R(c̃1, c̃2) = R(a, 1
4 (b+2a)), which is strictly greater than R̂ by direct calculation.

Since c̃1 and c̃2 do not depend on a, we have R̃ > R̂ for all a/b such that c̃1 > a.

In the third case, we have a/b ≥ 1
2 . In the appendix, we prove that there is no

equilibrium with a dual market structure (Lemma A.3). Then, there is a continuum of

equilibria indexed by the price charged by the first mover. In any such equilibrium, the

total match value does not exceed the value achieved by a one-market planner that solves

maxc(1 − F (c))µ2(c, b). Under the uniform type distribution, the planner’s solution is

c∗ = a. Thus, the maximum total match value R̃ under duopolistic matchmaking is

R(a, a). It is easily verified that R̂ > R(a, a) for all a/b ≥ 1
2 . Q.E.D.

The reason that the equilibrium outcome is less efficient in sorting than the monopoly

outcome when the type distribution is not too diffused is best understood for the inter-

mediate values of a/b. In this range (more precisely, when a/b lies between
√

19 − 4 and
1
2 ), it is efficient to serve all types (i.e. c∗1 = a). The monopolistic coverage is inefficiently

small with ĉ1 > a, while its differentiation is efficient. In contrast, the equilibrium outcome

has the efficient market coverage with c̃1 = a, but suffers from inefficiently small market

differentiation. When a/b is large in this range, the loss from insufficient coverage under

monopoly is small relative to the gain in efficient differentiation, because the optimal cov-

erage becomes close to the efficient coverage. As a result, sorting is more efficient overall

under monopoly than under competition. The intuition is similar for extreme values of

diffusion of the type distribution. Indeed, the trade-off between coverage and differen-

tiation disappears when a/b is sufficiently high (more precisely, if a/b is greater than h,

defined in the above proof), as the monopolistic coverage is efficient while the duopolistic

differentiation is none because the first mover cannot survive overtaking.
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3.6. Discussions

Our results comparing duopolistic sorting and monopolistic sorting in terms of market

differentiation and market coverage are obtained under the assumption of uniform type

distribution, although both the non existence of pure-strategy equilibrium in the simulta-

neous pricing game (Lemma 3.1) and the sufficient condition for existence of dual market

structure in the sequential pricing game (Proposition 3.2) hold more generally. Among

non uniform distributions of particular interest is the exponential distribution, which has

a density function exp(−(x− a)/β)/β with a, β > 0, and which satisfies Assumptions 2.1

and 2.2. Since the support of the type distribution is unbounded, the upper bound function

λ is undefined and undercutting is not feasible. As a result, matchmaker 1 can always sur-

vive overtaking by charging a price p1 sufficiently high so that it becomes more profitable

for matchmaker 2 to serve low types in the dual market structure D21. Indeed, we can

show that when a/β > 2, the equilibrium matching market structure is D21.14 Intuitively,

serving low types is lucrative when a is great and the type distribution is tightly concen-

trated on these types (i.e. β is small). In this case, the first mover would be overtaken

by the second mover if it tries to compete for low types. This forces the first mover to

serve a niche market of high types. In this kind of equilibrium, we expect differentiation

to be greater under competition than under monopoly, as the second mover does not in-

ternalize the negative impact on the size of the first mover’s market in increasing the lower

participation threshold. As the exponential distribution has a linear conditional mean

function, our result about the efficiency of monopolistic market differentiation continues

to hold (Lemma 3.10). Thus, duopolistic differentiation remains less efficient compared to

monopoly matchmaking.

A restriction in the present model of competing matchmaking is that each match-

maker is allowed to use only one price and create one matching market. We have made

14 This inequality is exactly the opposite of the condition in Proposition 3.2 for the exponential case.
When a/β > 2, for any price p1 below a2, the maximum revenue for matchmaker 2 as a duopolist in D12

is reached at the boundary between D12 and S2, leaving zero revenue for matchmaker 1. Moreover, in this
parameter range, the one-price monopolist’s optimal price is p̂ = a(a + β), and so matchmaker 2’s best
response to p1 ∈ (a2, p̂) is to overtake with price p2 = p̂, leaving zero revenue for matchmaker 1. Finally,
for prices p1 above p̂, the best response of matchmaker 2 is either to be a duopolist in D21 with a price
p2 < θ−1(p1), or to overtake with a price p2 just above p1.
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the assumption to simplify the analysis.15 The results comparing the monopolist and the

planner in terms of matching market coverage and differentiation turn out to be robust to

the restriction to two matching markets. In an earlier paper (Damiano and Li, forthcom-

ing), we consider the problem of a monopoly matchmaker that uses a schedule of entrance

fees to sort different types of agents on the two sides of a matching market into exclu-

sive matching markets, where agents randomly form pairwise matches. That paper has

a more general setup than the model of monopolistic sorting in the present paper, with

asymmetric type distributions and an unrestricted number of matching markets.16 By the

results of Damiano and Li (forthcoming), in the present paper Assumption 2.2 is sufficient

to imply that the monopolist unconstrained in the number of matching markets has the

same incentive as the planner to perfectly sort all participating types (i.e. one market for

each participating type), while the market coverage for the monopolist is at most as large

as the efficient full coverage for the planner. Further, it is straightforward to establish that

under the uniform type distribution for any finite number of matching markets that can be

offered, total market coverage is at least as large for the planner as for the monopolist, and

monopolistic market differentiation is efficient given the total market coverage. For price

competition, it turns out that the result of inefficient sorting under competition (Corollary

3.8) is robust, but the extent of sorting inefficiency depends on the number of matching

markets. In the extreme case when matchmakers can create an arbitrarily large number

of matching markets, and hence perfect sorting of all agents is possible, price competition

would not lead to inefficient sorting, because the type distribution in each matching market

is degenerate and the overtaking strategy completely loses its power. However, as long as

types are not perfectly sorted, overtaking is possible and price competition interferes with

sorting. When choosing their pricing structure, each matchmaker fails to internalize its

effect on the market share of the competitors, thus leading to sorting inefficiency.

15 McAfee (2002) shows most of the efficiency gains in sorting can be made with a total of just two
matching markets. He does not consider the incentives of market participants.

16 Rayo (2002) studies how a monopolist can use price discrimination to sell status goods. His problem
can be interpreted as a special case of the matching model of Damiano and Li (forthcoming) by assuming
that the two sides have identical type distributions.
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4. Concluding Remarks

Sorting of heterogeneous types is an essential ingredient in the literature on uninterme-

diated matching markets in that match formation decisions of participants in a matching

market depend on the distribution of types in the market (Burdett and Coles, 1997; Shimer

and Smith, 2000; Damiano, Li and Suen, 2005). However, as already discussed in the in-

troduction, the existing literature on competing intermediaries in matching markets has so

far ignored the issue of sorting, with the exclusive focus on the size effects. More broadly,

some recent papers on directed search and competitive search markets allow for type het-

erogeneity, but since there is no complementarity in a buyer-seller or worker-firm matching

market, prices do not play any sorting role (see Montgomery, 1991; Mortensen and Wright,

2002; Inderst, 2005). By introducing type heterogeneity into a model of competing match-

makers, we highlight a role of prices in coordinating participants’ market decisions and

determining match qualities, and derive important implications of price competition to

sorting efficiency. Our results on the potential inefficiencies of price competition do not

suggest that competition is necessarily harmful or that monopoly is always desirable, but

they do mean that regulatory policies in a matching environment should not be exclusively

focused on enhancing price competition so as to expand market coverage. Attention must

also be paid to how price competition interacts with the sorting of heterogeneous agents.

Gains from expanding market coverage to additional low types may need to be weighed

against loss resulting from less efficient sorting.

When perfect sorting is not feasible, price competition interferes with the sorting role

of prices. How compelling is the assumption of imperfect sorting ultimately depends on

how heterogeneous we think agents are. If only a few types of agents can be profitably

distinguished, perfect sorting is likely to be feasible and the benefits of competition in

terms of greater market coverage will tend to outweigh any sorting inefficiency. In contrast,

when the type space is very rich, it is unlikely that sufficiently many matching markets

can be created to perfectly sort all agents, either because the cost of market creation is

too high or because the presence of some size effect makes thin markets unattractive. In

this environment the benefits from sorting are large, and we may expect a monopolist to

induce a more efficient matching market structure than competing matchmakers.
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Appendix

A.1. Kohlberg and Mertens Stability and Proof of Lemma 2.3

In this subsection we define the notion of a stable collection of matching market structures

in the sense of Kohlberg and Mertens (1986) and prove Lemma 2.3. Fix any p1 and p2

with p1 < p2, and consider the simultaneous-move game of agents choosing whether to

participate in matching market 1 or 2, or not to participate. Let γε be a perturbed game

where for each type x and each of the three participation choices some fraction strictly

between 0 and ε of type x agents is constrained to that choice.

Definition 2. A collection T of matching market structures is stable if: i) for any η > 0,

there exists an ε̂ > 0 such that for all ε < ε̂, any game γε has a Nash equilibrium in which

at most a fraction η of all agents makes a participation choice different from the one made

in some matching market structure in T ; ii) no strict subset of T satisfies property i).

To prove Lemma 2.3, we consider only the case of p2 > λ(p1) where we show that

the unique stable collection is a singleton that contains S1; the other two cases can be

similarly proved. First, we show that as ε becomes small, each perturbed game γε has a

Nash equilibrium that is arbitrarily close to S1 in terms of participation decisions. Let mε
1

and mε
2 the mean quality of the agents constrained to participating in matching market 1

and 2 respectively in γε. For each i = 1, 2, denote as µε
i(t, t

′) the conditional mean in the

interval (t, t′) after excluding the agents constrained to not participating or to participating

in market j 6= i. Let cε
1 solve (2.1), with µε

1 in place of the conditional mean in market 1.

Consider the strategy profile in which unconstrained agents of types lower than cε
1 do not

participate while all other unconstrained agents participate in matching market 1. Take

any sequence of games {γε}ε→0. For any such sequence and any pair of threshold t < t′,

we have µε
1(t, t

′) converges to µ(t, t′). For ε small, cε
1 is close to the solution to (2.1). Since

mε
2 ≤ b and p2 > λ(p1), from the definition of λ(p1) we have b(mε

2 − µε
1(c

ε
1, b)) + p1 < p2

for ε sufficiently small. Then, the proposed strategy profile is a Nash equilibrium of γε,

and it converges to S1 as ε converges to 0.

Next, we show that for any ε sufficiently small, there exists some game γε that does not

have a Nash equilibrium close to any other matching market structure. Consider a sequence
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of games {γε}ε→0 where both mε
1 and mε

2 are close to b for all ε. (This is possible because

we can make the probability of tremble for the highest type converge to 0 infinitely slower

than all other types.) To rule out D12, suppose that for each γε, there is a Nash equilibrium

in which both matchmakers have a strictly positive market share, and let cε
1 < cε

2 < b be

the thresholds in such equilibrium. Then cε
1 and cε

2 must solve equations (2.2) or (2.3),

with µε
1 and µε

2 in place of the conditional means in the two markets. However, since

p2 > λ(p1), as ε becomes small, neither of the above systems of equations has a solution,

a contradiction. To rule out S2, suppose that there is a sequence of equilibria for ε going

to zero, such that in the limit only matchmaker 2 has a positive market share. In such

sequence, the marginal participating type cε
2 in market 2 must converge to the solution

to c2µ(c2, b) = p2. As ε becomes small, the quality of matching market 1 can be either

mε
1 or µε

1(c
ε
1, c

ε
2) with cε

1 converging to cε
2, or somewhere in between. Since p2 > θ(p1),

for ε sufficiently small cε
2 will strictly prefer joining market 1, a contradiction. Finally,

to rule out the null market structure, suppose that there is a sequence of equilibria such

that in the limit neither matchmaker has a positive market share. In any such sequence,

market 1’s quality is mε
1. Since mε

1 is arbitrarily close to b and p1 < b2, for ε sufficiently

small, the highest type agents will strictly prefer joining market 1 to not participating, a

contradiction.

A.2. Proof of Lemma 3.1

First, note that only a dual matching market structure with strictly positive revenues

for both matchmakers is a candidate for equilibrium outcome. This is because for any

competitor’s price, say p1, the other matchmaker can earn a strictly positive revenue by

either overtaking or undercutting.

Second, in any dual matching market structure, by using the overtaking strategy each

matchmaker can earn a revenue strictly greater than the competitor, which is impossible.

To see this point, without loss of generality suppose that 0 < p1 ≤ p2 < b2 and consider the

dual matching market structure D12. The participation threshold c1 and c2 are determined

by equation (2.2), or in the case of c1 = a, by equation (2.3). If matchmaker 2 charges

a price just above p1, say p1 + ε′, then in the case of c1 > a, matchmaker 2 becomes a

monopolist and the participation threshold c′ is determined as in (2.1). Comparing the
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two equations c′µ(c′, b) = p1 + ε′ and c1µ(c1, c2) = p1, we conclude that c′ < c1 for some

ε′ slightly greater than zero. In the case of c1 = a, matchmaker 2 becomes a monopolist

by charging a price just above p1, and the participation threshold c′ = a. In either case,

matchmaker 2 earns a strictly greater revenue in deviation than matchmaker 1 does in the

dual matching market structure through a higher price and a larger matching market.

Similarly, given p2, if matchmaker 1 overtakes with a price just above p2, say p2 + ε′′,

then matchmaker 1 becomes a monopolist and the participation threshold c′′ is determined

as in (2.1). Since c2µ(c2, b) = p2 + c2µ(c1, c2)−p1 > p2 + c1µ(c1, c2)−p1 ≥ p2, for some ε′′

slightly greater than zero, we have c′′ < c2. Thus, matchmaker 1 earns a strictly greater

revenue in deviation than matchmaker 2 in the dual market structure.

A.3. Lemma A.1 and Proof

Lemma A.1. The revenue function of a one-price monopolist is quasi-concave in price p.

Proof. Consider the equivalent problem of choosing a threshold c ≥ a to maximize (1−
F (c))cµ(c, b). If the optimal threshold ĉ is interior then it satisfies the first order condition

ρ(ĉ)µ(ĉ, b) − ĉ2 = 0. Since µl(c, b) ≤ 1 and ρ′(c) ≤ 0, the derivative of ρ(c)µ(c, b) − c2 is

less than ρ(c)− 2c, which is less than 0 at any ĉ that satisfies the first order condition. It

follows that the monopolist’s revenue function is quasi-concave in c. Since the revenue is

simply p for p < aµ(a, b) and there is a one-to-one relation between c and p for p ≥ aµ(a, b)

(given by 2.1), the revenue function is also quasi-concave in p.

A.4. Proof of Lemma 3.3

We only need to show that for any p1 ∈ [p̂, λ(p̂)], any best response of matchmaker 2 leaves

zero revenue to matchmaker 1. For any such price p1, matchmaker 2 has at most four

viable options. (i) Matchmaker 2 can overtake by charging p2 ∈ (p1, θ(p1)]. By quasi-

concavity, matchmaker 2’s maximum overtaking revenue is (1− F (c2))p1, with a price p2

arbitrarily close to p1, and c2 satisfying c2µ(c2, b) = p1 by (2.1). (ii) Matchmaker 2 can

undercut by charging p2 ∈ [0, λ−1(p1)] (when λ−1(p1) is defined). Since p1 ≤ λ(p̂), by

the quasi-concavity the maximum undercutting revenue is (1−F (c2))λ−1(p1) obtained by

charging p2 = λ−1(p1), where c2 satisfies c2µ(c2, b) = λ−1(p1) by (2.1). (iii) Matchmaker

2 can allow the dual structure D12 by charging p2 ∈ [θ(p1), λ(p1)]. However, this option
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is dominated by the option of overtaking by the quasi-concavity. (iv) Matchmaker 2 can

allow the dual structure D21 by charging p2 ∈ (λ−1(p1), θ−1(p1)). We want to use the

assumption of uniform type distribution to show that option (iv) is never optimal because

it is dominated by either overtaking or undercutting. Note that the maximum overtaking

revenue decreases with p1, while the maximum undercutting revenue increases in p1. In

addition, because for fixed p2 < p1 as p1 increases c2 either decreases or does not change

and c1 increases (see equations (2.2) and (2.3), with the roles of the two matchmakers

reversed), matchmaker 2’s maximum revenue in D21 is increasing in p1.

The argument for ruling out p2 ∈ (λ−1(p1), θ−1(p1)) relies on two claims. The first is

that there is a critical price p such that for any p1 ≥ p matchmaker 2’s maximum revenue

as a duopolist is achieved at the boundary between S2 and D21. Then, the maximum

revenue as a duopolist coincides with the maximum undercutting revenue for any p1 ≥ p,

with zero revenue for matchmaker 1. The second claim is that at p1 = p the maximum

undercutting revenue is smaller than the maximum overtaking revenue. For any p1 < p,

the maximum revenue as a duopolist is achieved in the interior of the D21 region. However,

for fixed p2, the revenue to matchmaker 2 in D21 is increasing in p1, and so its maximum

revenue is also increasing in p1. Since the maximum overtaking revenue is decreasing in p1,

it follows from the second claim that the maximum revenue as a duopolist for any p1 < p

is smaller than the maximum overtaking revenue at the same p1.

The derivation of p and the proof of the two claims depend on whether the price pair

(p, λ−1(p)) is located at the boundary between D21 and S2 where c2 > a or c2 = a. We

will assume c2 > a; the other case is similar. Consider the problem of choosing c2 to

maximize the revenue for matchmaker 2 in D21, given by (F (c1)−F (c2))c2µ(c2, c1), where

c1 satisfies p1 = c1(µ(c1, b)− µ(c2, c1)) + c2µ(c2, c1). Under the uniform type distribution,

the above relation becomes p1 = 1
2 (c1b+c2

2), and so dc1/dc2 = −2c2/b. One can verify that

matchmaker 2’s revenue is concave in c2, and thus the optimal c2 satisfies the following

first order condition:
1
2
c2
1 −

(
2c1

b
+

3
2

)
c2
2 = 0. (A.1)

Since c1 = b at the boundary between S2 and D21, there is a unique p1 = 4
7b2 such that

(A.1) holds with equality at p2 = λ−1(p1). Further, straightforward calculations reveal
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that at p1 = 4
7b2, matchmaker 2’s maximum undercutting revenue is smaller than its

maximum overtaking revenue. Thus, we have established both claims mentioned above.

A.5. Lemma A.2 and Proof

Lemma A.2. Under the uniform type distribution, matchmaker 2’s revenue function is

concave in c2 for any p1 in the D12 region.

Proof. There are three cases, depending on p1. In the first case, we have p1 ≤ a2, which

implies c1 = a. Under uniform type distribution, the derivative of (3.5) with respect to c2 is

proportional to −p1 +(b−a)(b−2c2)/2. Thus, matchmaker 2’s revenue is concave in c2. In

the second case, we have p1 ≥ aµ(a, b), which implies c1 > a and given by c1µ(c1, c2) = p1.

Under uniform type distribution, using constraint (3.6) and differentiating (3.5) twice with

respect to c2, we find that the revenue function is concave in c2, if

−
(

b− c1 +
c1c2

2c1 + c2

)
+

(b− c2)c1

2c1 + c2
< 0.

This is equivalent to −b(c1 + c2) + 2c2
1 − c1c2 < 0, which is true because c1 ≤ c2 ≤ b.

In the third case, we have p1 ∈ (a2, aµ(a, b)), and there is a critical value c2 satisfying

aµ(a, c2) = p1 such that c1 > a for c2 < c2 and c1 = a for c2 ≥ c2. By constraint (3.6),

c1 decreases in c2 to the left of c2 and is constant to the right. It then follows from the

revenue function (3.5) that the derivative with respect to c2 jumps down at c2. Since the

revenue function is concave to either side of the kink, it is globally concave in c2.

A.6. Proof of Lemma 3.9

We only need to consider the case where the efficient c∗1 for the planner is interior. By

differentiating the objective function (3.13) with respect to c1, we find that the efficient

thresholds c∗1 and c∗2 satisfy the first order condition f(c∗1)(µ(c∗1, c
∗
2) − 2c∗1) = 0. It then

follows from (3.9) that ρ(c∗1) > c∗1. Since ρ(ĉ1) ≤ ĉ1 by Proposition 3.5, the lemma follows

from Assumption 2.2.

A.7. Proof of Lemma 3.10

Using the identity

(F (c2)− F (c1))µ(c1, c2) + (1− F (c2))µ(c2, b) = (1− F (c1))µ(c1, b), (A.2)
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we can rewrite the objective function of the planner (3.13) as

(1− F (c1))(µ2(c1, b) + (µ(c1, b)− µ(c1, c2))(µ(c2, b)− µ(c1, b))),

and the objective function of the monopolist (3.2) as

(1− F (c1))(c1µ(c1, b) + (µ(c1, b)− µ(c1, c2))(c2 − c1)).

Note that for the monopolist for any c1 adding a second market always increases its revenue.

The first order condition with respect to c2 is

µr(c1, c
∗
2)

µ(c1, b)− µ(c1, c∗2)
=

µl(c∗2, b)
µ(c∗2, b)− µ(c1, b)

(A.3)

for the planner’s problem, and

µr(c1, ĉ2)
µ(c1, b)− µ(c1, ĉ2)

=
1

ĉ2 − c1
(A.4)

for the monopolist’s problem. It follows from comparing (A.3) to (A.4) that c∗2 = ĉ2 if

µl(c2, b) =
µ(c2, b)− µ(c1, b)

c2 − c1

for any c2. This holds if µ(·, b) is linear, including the uniform type distribution.

In the proof of Proposition 3.8 we have already established that for any c1 there is a

unique ĉ2 that satisfies the first order condition (A.4). It remains to argue that there is

a unique interior solution in c∗2 to the planner’s problem. Using equation (A.2), we can

rewrite the first order condition (A.3) as

f(c∗2)(µ(c∗2, b)− µ(c1, c
∗
2))(µ(c1, c

∗
2) + µ(c∗2, b)− 2c∗2) = 0.

For any c1, there exists at least one c∗2 that satisfies the above first order condition, as

µ(c1, c1) + µ(c1, b) ≥ 2c1 and µ(c1, b) + µ(b, b) ≤ 2b. Such c∗2 is unique too, because under

Assumption 2.2 we have µr(c1, c2) + µl(c2, b) ≤ 1
2 + 1 < 2 for any c2.

A.8. Lemma A.3 and Proof

Lemma A.3. Under the uniform type distribution, there is no equilibrium with a dual

market structure when a/b ≥ 1
2 .
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Proof. Condition (3.8) is necessary for an equilibrium with D12 and a matchmaker 1’s

price p̃1 > a2. This is because for any such p̃1, matchmaker 2 has the option of charging

p2 = θ(p̃1) to overtake matchmaker 1, which leads to c1 > a. Under uniform distribution

(3.8) becomes c1 < (
√

19 − 4)b, and since it cannot be satisfied when a/b ≥ 1
2 , there is

no equilibrium with a dual market structure in which p̃1 > a2. Further, condition (3.1) is

necessary for an equilibrium with p̃1 ≤ a2; this is because for any such p̃1, matchmaker 2

can overtake matchmaker 1 by charging p2 = θ(p̃1), which leads to c1 = a. This condition

is violated for any p̃1 if µ(a, b) ≤ 3
2a, or a/b ≥ 1

2 for the uniform distribution.
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