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Abstract: Though individuals prefer to join groups with high quality peers, there

are advantages to being high up in the pecking order within a group if higher ranked

members of a group have greater access to the group’s resources. When two organizations

try to attract members from a fixed population of heterogeneous agents, how resources

are distributed among the members according to their rank affects how agents choose

between the organizations. Competition between the two organizations has implications

for both the equilibrium sorting of agents and the way resources are distributed within each

organization. To compete more intensely for the more talented agents, both organizations

are selective and give no resources to their low ranks. In both organizations, higher ranks

are rewarded with more resources, with a greater rate of increase in the organization that

has a lower average quality in equilibrium.
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1. Introduction

Distributions of talents across organizations exhibit patterns of both mixing and segrega-

tion. At the risk of being accused of self-indulgence, let us look at the example of distri-

bution of economists by productivities across departments. Highly productive researchers

can be found in many second-tier departments as well as in top-ranked institutions. How-

ever, there is an unmistakable hierarchy of departments in terms of average productivity

of their faculty members.

A plausible explanation for the coexistence of mixing and segregation is sorting by

talents who care both about the quality of the institution they join and about their rel-

ative ranking within the institution. In Damiano, Li and Suen (2005), we call these two

concerns “peer effect” and “pecking order effect.” The peer effect is widely acknowledged

in the education literature (e.g., Coleman et al., 1966; Summers and Wolfe, 1977; Lazear,

2001; Sacerdote 2001), and modeled extensively in the literature on locational choice (De

Bartolome, 1990; Epple and Romano, 1998). The pecking order effect can be motivated by

concerns for self-esteem (Frank, 1985), competition for mates in the same location (Cole,

Mailath and Postlewaite, 1992), or competition for resources among members of an orga-

nization (Postlewaite, 1998). These two effects highlight competition and cooperation as

two important features of the interaction among talents within an organization.

This paper studies organizational strategies to attract talents in the presence of these

concerns, and analyzes the resulting equilibrium pattern of sorting. Consider an academic

department trying to improve its standing by hiring a new faculty member. Several eco-

nomic forces influence such a decision. First, if the potential appointee is of high quality,

the presence of such a colleague in the department will make the department more attrac-

tive to other faculty members and may therefore help the department’s other recruiting

efforts. Second, the new recruit can upset the department’s existing hierarchical struc-

ture and bring about implications for the internal distribution of departmental resources.

“Salary inversion” is often seen as a potential problem in academia (Lamb and Moates,

1999; Siegfried and Stock, 2004). More generally, conventional wisdom in personnel man-

agement emphasizes the importance of “internal relativity” in the reward structure of any
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organization. In other words, the decision to make a job offer cannot be viewed in isolation;

instead the entire reward structure of the organization has to be taken into account. Third,

in a thin labor market with relatively few employers, the recruitment efforts of one depart-

ment will affect the availability of the labor pool for another department. Hiring decisions

therefore have general equilibrium repercussions that needs to be taken into account.

Our paper develops a model of the competition for talents which incorporates all these

economic forces.1 In our model, talents care about their relative ranking within the orga-

nization they join because higher ranks receive more resources, and they care about the

overall quality of the organization. Organizations compete for talents by designing how

resources are allocated according to rank. We characterize a unique equilibrium of orga-

nizational competition which determines the entire reward structure of each organization,

as well as the equilibrium pattern of sorting. In equilibrium the targets of competition are

the top talents; only these agents receive positive shares of resources from either organi-

zation. Furthermore, equilibrium reward structures are systematically different between

the high quality organization and the low quality organization. The organization that in

equilibrium attracts a higher average quality of talents has a more egalitarian distribution

of resources than the low quality organization, because the low quality organization is

disadvantaged by the peer effect and must concentrate its resources on a smaller set of top

talents. The equilibrium sorting of talents exhibits mixing of top talents, with a greater

share of them going to the high quality organization, while segregation occurs for all types

that receive no resources in equilibrium, with the better types going to the high quality

organization.

In section 2, we formally introduce our model of organizational competition. The

model is broadly based on Damiano, Li and Suen (2005). Talents have one-dimensional

types distributed uniformly, and a utility function linear in the average type of the organi-

zation they join and the resource they receive in the organization. Each organization faces

a fixed capacity constraint that allows it to accept half of an exogenously given talent pool,

1 The existing economic literature on the competition for talents typically focuses on either the infor-
mational spillovers resulting from offers and counter-offers (Bernhardt and Scoones, 1993; Lazear, 1996),
or the implications of raiding for firms’ incentive to offer training (Moen and Rosen, 2004). Tranaes (2001)
studies the impact of raiding opportunities on unemployment in a search environment.
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and a fixed total budget of resources that can be allocated among its ranks. We use the no-

tion of sorting equilibrium defined in Damiano, Li and Suen (2005) to describe how talents

sort after the organizations have chosen their resource distribution schedules. The issue of

multiple equilibria is resolved by labeling the organization with a greater resource budget

(or either of the two organizations when they have the same budget) as the “dominant”

one, and selecting the sorting equilibrium with the largest difference in average types in

its favor. This quality difference then defines the payoffs of the two organizations in the

game in which they simultaneously choose their resource distribution schedules.

The game of organizational competition is strictly competitive. In section 3, we show

that the game has a minmax value corresponding to the largest quality difference that

the dominant organization can obtain in a Nash equilibrium of the game. The technical

difficulty in this step lies in the fact that we do not have a characterization of the selected

sorting equilibrium in terms of an arbitrary pair of resource distribution schedules, so we

cannot use the standard approach of constructing best response correspondences. Instead,

under the assumption that the type distribution is uniform, we transform the minmax

problem into one in which the weaker organization maximizes the minimum resource bud-

get required to achieve a given target of quality difference. We then use the result to

characterize the minmax value and identify a unique resource distribution schedule for the

weaker organization to achieve the value. There is a critical rank that receives strictly

positive resource, with all ranks below receiving no resources and the resources received

by the ranks above increasing linearly in rank. Intuitively, the weaker organization has

to pay a peer effect premium in order to compete with the dominant organization, which

leads to the jump in the resource distribution schedule at the critical rank. Further, a

linear resource allocation schedule is necessary in order to avoid having its high ranks

cherry-picked by the rival organization.

In section 4 we characterize a unique Nash equilibrium of the organizational com-

petition. The existence of the equilibrium is established by construction. In equilibrium

the dominant organization chooses a resource distribution schedule similar to the minmax

schedule of the weaker organization. There is a critical rank below which ranks receive

no resources in the dominant organization, because they attract no competition from the
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weaker organization. Ranks above the critical rank in the dominant organization receive

resources that increase linearly in rank, with no discontinuity at the critical rank and a

smaller rate of increase than that in weaker organization. Sorting of talents in this equi-

librium involves mixing of top talents between the two organizations, and segregation for

low types. We also show that the equilibrium is a unique one, by establishing that for any

other resource distribution schedule of the dominant organization, the weaker organization

can improve upon the minmax schedule.

Section 5 provides some comparative statics results regarding the unique Nash equilib-

rium of the game of competing for talents. When the organizations have a greater budget

for resource distribution, or when the peer effect becomes less important in the talents’

utility function, the equilibrium exhibits a smaller disparity between the dominant and the

weaker organizations. We then conclude the paper in section 6 with brief discussions of

some of the main assumptions of the model.

2. The Model

Two organizations, A and B, compete for a measure 2 of agents. Agents differ with

respect to a one-dimensional continuously distributed characteristic, called “type” and

denoted by θ. We assume that the distribution of θ is uniform on the interval [0, 1]. Each

organization i = A,B has a measure 1 of positions and a fixed resource budget Yi to be

allocated among its members. Without loss of generality, we assume that YA ≥ YB . An

organization determines the distribution of its resource budget Yi by choosing a “resource

distribution schedule.” A resource distribution schedule for organization i is a function

Si : [0, 1] → IR+, which stipulates how Yi is allocated among i’s members according to

their rank. For each r ∈ [0, 1], let Si(r) denote the amount of resources received by an

agent of type θ when a fraction r of the organization’s members are of type smaller than

θ. We make the assumption that organizations can only adopt “meritocratic” resource

distribution schedules in which members of higher ranks receive at least as much resources

as lower ranks. We also make the technical assumption that only resource distribution

schedules which are almost everywhere continuously differentiable are admissible. Each
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organization must fill all its positions and each wants to maximize its own quality, measured

by the average type of its members.

Preferences of agents over the two organizations depend on the comparison of the

qualities of the two organizations and of the amount of resources they receive when joining.

For each i = A,B, let mi be the average type of agents in organization i. Let ri(θ) be

the quantile rank of an agent of type θ in organization i. If Si is the resource distribution

schedule in organization i, then the utility to an agent θ from joining organization i is

given by

Vi(θ) = αSi(ri(θ)) + mi (2.1)

where α is a positive constant that represents the weight on the concern for the pecking

order effect relative to the concern for the peer effect.2 The payoff is zero if an agent does

not join either organization.

2.1. Sorting equilibrium

Since each agent’s outside option is zero and each organization must fill all positions, a

feasible allocation of the agents among the two organizations can be described by a pair

of the type distribution functions in the two organizations, as follows.

Definition 2.1. A feasible allocation is a pair of cumulative distribution functions

(HA,HB) such that HA(θ) + HB(θ) = 2θ for all θ ∈ [0, 1].

Given a pair of resource distribution schedules (SA, SB), the agents sort themselves

between the two organizations. We call this the sorting stage. We adapt the notion of

“priority equilibrium” in Damiano, Li and Suen (2005) to the present environment.

Definition 2.2. Given a pair of resource distribution schedules (SA, SB), a sorting equi-

librium is a feasible allocation (HA,HB) such that if Hi is strictly increasing on (θ, θ′) and

Hj(θ) > 0, then Vi(θ) ≥ Vj(θ).

2 In our model agents do not directly care about their relative ranking in the organization. The
concern for the pecking order effect is generated endogenously because the organizations choose how to
distribute resources according to ranks.
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The notion of sorting equilibrium above suggests that an agent will join organization i

whenever he prefers organization i and his type is higher than the lowest type of the other

organization.3

Existence of a sorting equilibrium can be established by a fixed point argument. Before

doing so, it is convenient to introduce an alternative representation of feasible allocations

through allocation functions.4

Definition 2.3. Given a feasible allocation (HA,HB), the associated allocation function

is t : [0, 1] → [0, 1], defined by

t(r) ≡ 1−HA (inf{θ : HB(θ) = r}) . (2.2)

In the definition above, the variable t(r) is the fraction of agents in organization A of

type higher than rank r’s type in organization B. For example, if the distribution of talents

is perfectly segregated with the higher types exclusively in organization A, then t(r) = 1

for all r; and if there is perfect mixing so that the distribution of types is identical across

the two organizations, then t(r) = 1− r. Using the definition of allocation function above,

we associate to each feasible allocation an (essentially) unique non-increasing function on

the unit intervals. See Figure 1 for a graphical illustration of the allocation function. The

infemum operator in the definition (2.2) is applied to handle the case where HB is flat over

some interval (i.e. when there is local segregation with all types in the interval going to

organization A).

Conversely, each non-increasing function t : [0, 1] → [0, 1] identifies an (essentially)

unique feasible allocation (HA,HB), where HB is given by

HB(θ) =





0 if 2θ ≤ 1− t(0),

1 if 2θ ≥ 2− t(1),

sup{r : 2θ ≥ r + 1− t(r)} otherwise;

3 See our earlier paper for a more detailed discussion of priority equilibrium.

4 The definition below does not rely on the assumption that θ is distributed uniformly on [0, 1]. We can
represent a feasible allocation by an allocation function under any continuous type distribution. However,
such representation is not directly useful because the quality difference cannot be written as an integral of
the allocation function.

– 6 –



1− t(r)

r

0 1

1

HB

HA

Figure 1

and where HA(θ) = 2θ − HB(θ). Thus, there is a one-to-one mapping from feasible

allocations to non-increasing function on the unit interval. The convenience of working

with allocation functions is made explicit by the following lemma, where we show that, for

any feasible allocation, the quality difference between the two organizations only depends

on the integral of the associated allocation function.5

Lemma 2.4. Let (HA,HB) be a feasible allocation and t the associated allocation function.

Then

mA −mB = −1
2

+
∫ 1

0

t(r) dr.

Proof. Using the definition of t(r) and a change of variable θ = inf{θ′ : HB(θ′) = r},
we can write

−1
2

+
∫ 1

0

t(r) dr =
1
2
−

∫ θB

θB

HA(θ) dHB(θ),

where θB = sup{θ : HB(θ) = 0} and θB = inf{θ : HB(θ) = 1}. From the feasibility

condition that HA(θ) = 2θ −HB(θ), the right-hand-side of the above equation is equal to

1
2
− 2mB +

∫ θB

θB

HB(θ) dHB(θ).

5 Without the assumption of uniform type distribution, we can still use equation (2.2) to relate the
quality difference to the exogenous distribution function of types and the endogenous allocation function.
However, the result will not be a weighted average of t(r).
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Figure 2

The claim then follows immediately from the fact that mA + mB = 1. Q.E.D.

Since for any allocation, the quality difference between the two organizations is the

integral of the allocation function minus 1/2, we will refer to the integral

T =
∫ 1

0

t(r) dr

as the difference in quality. The constant (T − 1/2)/α represents the quality premium of

A over B, in that any agent would be just indifferent between the two if the agent receives

from B a resource greater than what he receives from A by that premium. We denote the

premium as a function of quality difference T by

P (T ) =
T − 1/2

α
.

For any difference in quality T ∈ [0, 1], let tT and t
T be the allocation functions defined

as

tT (r) =

{
1 if SA(0) + P (T ) > SB(r),

1− sup{r̃ ∈ [0, 1] : SA(r̃) + P (T ) ≤ SB(r)} otherwise;

and

t
T (r) =

{
0 if SA(1) + P (T ) < SB(r),

1− inf{r̃ ∈ [0, 1] : SA(r̃) + P (T ) ≥ SB(r)} otherwise.

In words, the agent who has rank r in B must have rank at most 1 − tT (r) in A or he

would prefer to switch; he must also have rank at least 1 − t
T (r) in A or otherwise some

agent from A would want to switch. See Figure 2.
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The following proposition identifies necessary and sufficient conditions for an alloca-

tion function to constitute a sorting equilibrium.

Proposition 2.5. A feasible allocation (HA,HB) is a sorting equilibrium if and only if

the associated allocation function t satisfy tT (r) ≤ tT (r) ≤ t
T (r) for all r ∈ [0, 1], for

T =
∫ 1

0
t(r) dr.

Proof. Follows immediately from the definition of sorting equilibrium. Q.E.D.

Define the following correspondence

D(T ) =
[∫ 1

0

tT (r) dr,

∫ 1

0

t
T (r) dr

]
. (2.3)

The above proposition implies that any sorting equilibrium is a fixed point T ∈ [0, 1] of D.

Existence of a sorting equilibrium then follows from an application of Tarski’s fixed point

theorem.

Multiple sorting equilibria exist in general. To study the game in which the two

organizations compete by choosing resource distribution schedules we must introduce an

equilibrium selection in the sorting stage. We assume that organization A is dominant in

that the sorting equilibrium with the largest difference in quality T is played in the sorting

stage. This “A-dominant equilibrium” is unique. The equilibrium quality difference, T =

TA(SA, SB), corresponds to the largest fixed point of the mapping

DA(T ) =
∫ 1

0

t
T (r) dr, (2.4)

and the equilibrium allocation function is given by tT . We note that fixed points of D

which are non-extremal may be unstable in the sense that small perturbations in the

quality difference T can cause agents to switch organizations in such a way that moves T

further away from the initial fixed point. On the other hand, the A-dominant equilibrium

is always stable (Damiano, Li and Suen, 2005).

Now we can define a “resource distribution game” in which the two organizations

simultaneously choose their resource distribution schedules to maximize their own quality.

For any (SA, SB), the payoff to organization i is defined as the average type of i’s members
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in the A-dominant sorting equilibrium. Since the sum of the payoffs to the two organiza-

tion is constant, the resource distribution game is strictly competitive, with A trying to

maximize the difference in quality, TA(SA, SB), and B trying to minimize it. Therefore,

a strategy profile (S∗A, S∗B) is a Nash equilibrium of the resource distribution game if and

only if6

S∗A ∈ arg max
SA∈SA

min
SB∈SB

TA(SA, SB), S∗B ∈ arg min
SB∈SB

max
SA∈SA

TA(SA, SB),

and

max
SA∈SA

min
SB∈SB

TA(SA, SB) = min
SB∈SB

max
SA∈SA

TA(SA, SB)

where the strategy space Si (i = A, B) is the set of all non-negative, non-decreasing

and almost everywhere continuously differentiable functions which respect the resource

constraint
∫ 1

0
Si(r) dr ≤ Yi.

3. The Minmax Value

In this section we characterize the minmax value minSB
maxSA

TA(SA, SB). This corre-

sponds to the maximum quality difference that organization A can hope to achieve in

any Nash equilibrium of the resource distribution game. We also characterize the unique

resource distribution schedule S∗B that achieves the minmax value.

Before we proceed with the analysis it is useful to sketch a road map. For any resource

distribution schedule SB and any difference in quality T , we characterize the lowest resource

expenditure C(T ; SB) needed for A to attain a sorting equilibrium with quality difference

T . Note that we are not requiring T to be the A-dominant equilibrium quality difference at

this point. Next, we characterize the maximum value of this minimum resource expenditure

C(T ;SB) that B can impose on A by choosing resource distribution schedule SB subject

to the resource budget constraint YB . This gives us the maximum resource budget E(T ) =

maxSB C(T ;SB). The largest T ∗ such that E(T ∗) is equal to YA is then a lower bound for

6 Since the resource distribution game is not finite, we cannot assume that maxminimizers and min-
maximizers exist. These are shown to exist by construction.
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the minmax value. We show that C(T ; S∗B) is larger than YA for all T > T ∗, implying that

T ∗ is also an upper bound on the minmax value and therefore the minmax value. Finally,

our argument also establishes a unique resource distribution schedule S∗B that achieves the

minmax value.

For YA ≥ YB , the A-dominant selection implies that the minmax value is at least

1/2.7 This is because, for any resource distribution schedule SB , when SA = SB , there

is a sorting equilibrium where the distributions of types in the two organizations are the

same. Thus we restrict our analysis below to T ≥ 1/2.

3.1. The expenditure minimization problem

In this subsection, we describe the potential strategies that organization A can adopt

to attract talent from the weaker organization. Note that such strategies need not be

observed in equilibrium, because organization B will adopt counter-measures that render

A’s potential strategies ineffective. Nevertheless, understanding these potential strategies

of A is essential to solving the minmax problem for B. For given SB and some T ≥ 1/2,

we want to find the cheapest SA such that T is a sorting equilibrium for (SA, SB). If SA is

such resource distribution schedule we denote with C(T ; SB) the integral of SA. Instead

of characterizing C(T ;SB) through resource distribution schedules SA, we will work with

allocation functions t.

First, note that by definition of tT , we have tT (r) = 1 for all r such that SB(r) <

P (T ). Thus, if SB(r̃) < P (T ) for some r̃ > T , then there is no equilibrium with quality

difference T regardless of the resource distribution schedule SA. Moreover, even if A gives

no resources to all of its ranks (i.e., SA(r) = 0 for all r), there is a sorting equilibrium with

quality difference strictly larger than T . In this case, we write C(T ; SB) = 0.

Next, suppose SB(T ) ≥ P (T ). Then, for any allocation function t, with
∫ 1

0
t(r) dr = T

and t(r) = 1 for any r such that SB(r) < P (T ), let St
A be the pointwise smallest resource

distribution schedule that satisfies

St
A(1− t(r)) ≥ max {SB(r)− P (T ), 0} for all r ∈ [0, 1].

7 If YA < YB , it is more natural to focus on the B-dominant equilibrium, which corresponds to the
smallest fixed point of the mapping D.
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Figure 3

See Figure 3. By construction, given the schedules (St
A, SB), t

T is pointwise larger than t

while tT is pointwise smaller than t. It follows that T is a fixed point of the mapping (2.3)

and hence there exists a sorting equilibrium with quality difference T for (St
A, SB).

The schedule St
A is the resource distribution schedule with the lowest expenditure for

A for which t is a sorting equilibrium given SB . It follows that

C(T ; SB) = min
t

∫ 1

0

St
A(r) dr

s.t.
∫ 1

0

t(r) dr = T ;

t(r) = 1 if SB(r)− P (T ) < 0.

(3.1)

By definition, we have
∫ 1

0

St
A(r) dr =

∫ 1

0

max
{
SB(t−1(1− r))− P (T ), 0

}
dr,

where we define

t−1(1− r) = sup{r̃ ∈ [0, 1] : 1− t(r̃) ≤ r}.

After a change of variable r̃ = t−1(1− r) and integration by parts, we have

∫ 1

0

St
A(r) dr = −

∫ t−1(0)

t−1(1)

∆(r̃)t′(r̃) dr̃ =
∫ t−1(0)

t−1(1)

t(r̃)∆′(r̃) dr̃ −∆(t−1(1)),

where for notational convenience we have defined

∆(r̃) = max {SB(r̃)− P (T ), 0}
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as the effective resource distribution schedule of the weaker organization B. We can then

rewrite the minimization problem (3.1) as

min
t

∫ t−1(0)

t−1(1)

t(r)∆′(r) dr −∆(t−1(1))

s.t.
∫ 1

0

t(r)dr = T,

(3.2)

where we have dropped the second constraint of (3.1) since it will be satisfied by any

solution to (3.2). Note that both the objective function and the constraint are linear in

the control variable t. This feature is used below to characterize the solution, and it is

why we have chosen to deal with the allocation function instead of with type distribution

functions directly.

Problem (3.2) is the continuous analog of a linear programming problem. The next

lemma establishes that there exists a solution to (3.2) which assumes at most one value

strictly between 0 and 1. This result is then used to provide an explicit characterization

of the solution and a value for C(T ;SB).

Lemma 3.1. For any allocation function t with
∫ 1

0
t(r) dr = T , there exists an allocation

function t̃ with
∫ 1

0
t̃(r) dr = T which assumes at most one value strictly between 0 and 1

and satisfies

∫ t̃−1(0)

t̃−1(1)

t̃(r)∆′(r) dr −∆(t̃−1(1)) ≤
∫ t−1(0)

t−1(1)

t(r)∆′(r) dr −∆(t−1(1)).

Proof. See the Appendix. Q.E.D.

The above results imply that we can restrict the search for a solution to (3.2) to

allocation functions that assume at most one value strictly between 0 and 1. First, an

allocation function t that has just one positive value is entirely characterized by its only

discontinuity point, say r̂. To see this, note that since all solutions to (3.2) satisfy the

constraint
∫ 1

0
t(r) dr = T , if t is zero for r > r̂ and constant for r < r̂, then we have

t(r) = T/r̂ for all r ≤ r̂ to satisfy the constraint. Also note that r̂ ≥ T must hold in

this case. Second, an allocation function t that has one value strictly between 0 and 1

is entirely characterized by its two discontinuity points. Letting r1 = sup{r : t(r) = 1}
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and r0 = sup{r : t(r) > 0}, and using the constraint
∫ 1

0
t(r) dr = T , we have t(r) =

(T − r1)/(r0 − r1) for r ∈ (r1, r0). Note that r1 ≤ T and r0 ≥ T in this case.

Thus, a solution to problem (3.2) exists, and the value C(T ; SB) is given by

min
{

min
r≥T

T

r
∆(r), min

T≥r1≥0; 1≥r0≥T
∆(r1) +

T − r1

r0 − r1

(
∆(r0)−∆(r1)

)}
. (3.3)

Using the above characterization for C(T ; SB) it is possible to obtain a characteriza-

tion of a solution to problem (3.2) as a function of ∆. To do so, given a function ∆, we

let ∆̂ denote the largest convex function which is pointwise smaller than ∆ and such that

∆̂(0) = 0. Formally, ∆̂ is obtained as the lower contour of the convex hull of the function

∆ and the origin. That is,

∆̂(r) = min{y : (r, y) ∈ co({(r̃, ỹ) : 0 ≤ r̃ ≤ 1; ỹ ≥ ∆(x̃)} ∪ (0, 0))}.

The next lemma provides a simple characterization of the discontinuity points of a solution

to (3.2) which depends only on the functions ∆ and ∆̂. In particular, it states that if

∆(T ) = ∆̂(T ), then there is a solution to (3.2) with only one discontinuity point at exactly

T . The optimal allocation function t is step function equal to 1 for r ≤ T and equal to 0 for

r > T . When ∆(T ) > ∆̂(T ) instead, there is an optimal allocation with two discontinuity

points r1 < T and r0 > T . The two discontinuity points are determined by the largest

r < T and the smallest r > T at which the function ∆ coincides with its convex hull. The

optimal allocation function t equals 1 up to r1 and becomes 0 at r0.

Lemma 3.2. Let Q = {r : ∆(r) = ∆̂(r)} ∪ {0, 1}. (i) If T belongs to the closure Q of Q,

then the function

t(r) =
{ 1 if r ≤ T ;

0 otherwise.

solves (3.2). (ii) Otherwise, for r1 = sup{r ∈ Q : r < T} and r0 = inf{r ∈ Q : r > T}, a

solution to (3.2) is given by the function

t(r) =





1 if r < r1;

(T − r1)/(r0 − r1) if r1 ≤ r ≤ r0;

0 if r > r0.

In both cases, the value of the objective function is C(T ;SB) = ∆(T ).
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Proof. First rewrite equation (3.3) as

C(T ;SB) = min
{

min
r≥T

r − T

r
0 +

T

r
∆(r), min

T≥r1≥0; 1≥r0≥T

r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0)

}
.

At the claimed solution, if T ∈ Q, then the value of the objective function is ∆(T ) = ∆̂(T ).

If T 6∈ Q, then the value of the objective function is given by

r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0) =

r0 − T

r0 − r1
∆̂(r1) +

T − r1

r0 − r1
∆̂(r0) = ∆̂(T ),

where the second equality holds because ∆̂ is linear between r1 and r0. Moreover, for all

r1 ≤ T and r0 ≥ T , we have

∆̂(T ) ≤ r0 − T

r0 − r1
∆̂(r1) +

T − r1

r0 − r1
∆̂(r0)

≤ r0 − T

r0 − r1
∆(r1) +

T − r1

r0 − r1
∆(r0),

where the first inequality follows from the fact that ∆̂ is convex and the second from

∆(r) ≥ ∆̂(r) for all r. Finally, for all r ≥ T ,

∆̂(T ) ≤ r − T

r
∆̂(0) +

T

r
∆̂(r) ≤ r − T

r
0 +

T

r
∆(r).

Thus t is a solution to (3.2). Q.E.D.
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Figure 4 illustrates the second case of the above lemma. The total quality difference

to be achieved for organization A is T . The optimal discontinuity points r0 and r1 are

identified in the diagram. For any other pair of discontinuity points r̂0 and r̂1, the resulting

resource expenditure for A is greater. The two cases in Lemma 3.2 depend on whether T

can be achieved by targeting a single rank r̂ of B and giving to sufficiently many ranks

in A the minimum resource to be competitive with r̂, or by targeting two ranks r1 and

r0 and giving all ranks in A enough resources to compete with r1 and giving sufficiently

many ranks in A additional resources to compete with r0.8 Minimizing the expenditure

for A is then equivalent to choosing the cheapest ranks in B to raid.

3.2. The budget function

For each T ≥ 1/2, we next try to characterize the resource distribution schedule SB that

makes the budget of generating an allocation with difference in quality T as large as

possible for A. More precisely, for each T we study the maximization problem

E(T ) ≡ max
SB∈SB

C(T ;SB)

s.t.
∫ 1

0

SB(r) dr ≤ YB .
(3.4)

Our characterization of the strategy for expenditure minimization for A in Lemma

3.2 suggests that organization B would be wasting its resources if it chooses a schedule

SB such that ∆(r) > ∆̂(r) for some r. Thus a solution to (3.4) must satisfy the condition

that ∆(r) = ∆̂(r). Furthermore, if organization A decides to raid some rank, say r̂, by

choosing t(r) = 1 for r < r̂, there is no point for B to give any resources to ranks below

r̂. On the other hand, B must pay at least P (T ) to ranks above r̂ if it is to compete

with organization A. This means that for T > 1/2, the solution to (3.4) will involve a

point of discontinuity. Our next result establishes that there is a solution SB to (3.4)

with the property that it is 0 up to some critical rank r(T ), equal to P (T ) at r(T ), and

8 In the first case, the corresponding resource distribution schedule St
A is flat and is such that the

lowest type in A is just indifferent between staying in A at rank 0 and switching to B for rank r̂. In the
second case, St

A is a step function with two levels, such that the lowest type in A is just indifferent between

staying and switching to B for rank r1, and the lowest type receiving the higher level of resources in A is
just indifferent between staying and switching for rank r0.
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has a constant slope between r(T ) and 1. Since this solution is entirely characterized by

r(T ) and the resource constraint that
∫ 1

0
SB(r) dr = YB , this characterization result will

then be used to solve explicitly for the critical threshold r(T ), and to obtain an analytical

expression for the “budget function” E(T ).

Lemma 3.3. For any SB ∈ SB , there is S̃B ∈ SB such that, for some r̃ ∈ [0, 1],

S̃B(r) =

{
0 if r < r̃,

P (T ) + β(r − r̃) if r ≥ r̃;
(3.5)

where β is determined by
∫ 1

0
S̃B(r) dr = YB , with the property that C(T ; S̃B) ≥ C(T ; SB).

Proof. Let ∆SB
(r) denote max{SB(r) − P (T ), 0}. First, since C(T ; SB) only depends

on ∆SB
, it cannot be decreased if we replace SB with some S̃B such that S̃B(r) = 0

whenever S̃B(r) < P (T ). Second, by Lemma 3.2, C(T ;SB) = ∆̂SB
(T ) for any resource

distribution schedule SB . This implies that C(T ; SB) = C(T ; S̃B) if S̃B is such that

∆S̃B
= ∆̂SB

. Thus for any SB , there is a resource distribution schedule S̃B which is

convex whenever positive and ∆S̃B
(0) = 0 such that C(T ; S̃B) ≥ C(T ; SB). Finally, for

any SB that is convex whenever positive and ∆SB
(0) = 0, there is an S̃B which is linear

when positive such that C(T ; S̃B) ≥ C(T ;SB). The lemma then immediately follows from

the resource constraint because binding the constraint increases the budget requirement

for the dominant organization A. Q.E.D.

By Lemma 3.3, we can restrict to resource distribution schedules of the form (3.5)

when characterizing a solution to (3.4). In other words, solving (3.4) boils down to finding

the point of discontinuity r(T ) of the SB schedule. When SB has a discontinuity at r, the

resource constraint for B requires that β = 2(YB − P (T )(1− r))/(1− r)2. Using the form

of SB described in equation (3.5), we have C(T ;SB) = ∆SB
(T ) = β(T − r). Thus, the

value of any solution to (3.4), E(T ), is given by

E(T ) = max
r∈[0,1]

2(T − r)
(1− r)2

(YB − P (T )(1− r)) . (3.6)

The maximization problem (3.6) can be solved analytically. In particular, it is straight-

forward to show that the optimal point of discontinuity r(T ) is given by

r(T ) =

{
T if YB ≤ P (T )(1− T );

1− 2YB(1−T )
YB+P (T )(1−T ) otherwise.

(3.7)
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We note that r(T ) is increasing in T , with r(1/2) = 0 and limT→1 r(T ) = 1. In other

words, the optimal way to deter the dominant organization from getting a higher average

quality is for the weaker organization to concentrate more of its resources to reward its

higher-rank members.

Substituting r(T ) from equation (3.7) into the cost function in (3.6), we obtain an

explicit form for the budget function:

E(T ) =

{
0 if YB ≤ P (T )(1− T );
(YB−P (T )(1−T ))2

2(1−T )YB
otherwise.

(3.8)

The following lemma describes the properties of this budget function.

Lemma 3.4. The budget function E(T ) satisfies E(1/2) = YB , and limT→1 E(T ) = ∞.

Moreover, (i) If αYB > 1/2, then E′(T ) > 0 for all T ≥ 1/2; (ii) if αYB ∈ [1/16, 1/2],

then there exists a T̂ such that E′(T ) < 0 for T ∈ (1/2, T̂ ) and E′(T ) > 0 for T ∈ (T̂ , 1);

(iii) if αYB < 1/16, then there exist T− and T+ such that E′(T ) < 0 for T ∈ (1/2, T−);

E′(T ) > 0 for T ∈ (T+, 1) and E(T ) = 0 for T ∈ [T−, T+].

Proof. The first two properties in the statement of the lemma follows directly from

substituting T = 1/2 and T = 1 into the budget function (3.8). Next, when E(T ) > 0, its

derivative has is positive if and only if

αYB + (1− T ) (3T − 5/2) > 0.

The above holds for all T ≥ 1/2 if αYB > 1/2, thus establishing (i). When αYB ≤ 1/2,

there exists a unique T̂ ∈ [1/2, 1] such that the above inequality holds for T > T̂ while the

opposite inequality holds for T < T̂ . From the characterization of the budget function (3.8)

we have that E(T ) = 0 when YB ≤ P (T )(1−T ). The quadratic equation YB = P (T )(1−T )

has two real roots T− and T+ in [1/2, 1] when αY ≤ 1/16, and no real root otherwise.

Claims (ii) and (iii) follow. Q.E.D.

See Figure 5 for the three difference cases of E(T ). An increase in the target quality

difference T has two opposite effects on the budget E(T ) required for A. On one hand,

to achieve a greater T organization A must be competitive with more ranks in B and this

– 18 –



YB

E(T )

T

1/2 < αYB 1/16 ≤ αYB ≤ 1/2

αYB < 1/16

Figure 5

requires a larger budget. On the other hand, a greater T also increases the quality premium

that A enjoys over B and this reduces the budget requirement. The first effect dominates

when the peer effect is relatively small, which happens when either α or YB is large.

This explains why E(T ) is monotonically increasing in T when αY is large. In contrast,

the peer effect is strong and E(T ) may decrease when αYB is small. Indeed, the budget

requirement for some intermediate values of T can be zero. Note that for sufficiently large

T , the budget function must be increasing. This is because by concentrating its resources

on a few top ranks organization B can make it increasingly costly for A to achieve large

quality differences.

3.3. The minmax value and the minmax strategy

From the budget function E(T ) we can derive a lower bound on the minmax value. In

particular, define

T ∗ = max{T ∈ [1/2, 1] : E(T ) = YA}. (3.9)

Note that for YA ≥ YB , the existence of T ∗ follows from the characterization of the budget

function in Lemma 3.4. Moreover, T ∗ = 1/2 if and only if YA = YB ≥ 1/2. For all other

values of YA and YB such that YA ≥ YB , we have T ∗ > 1/2.

It is easy to see that T ∗ provides a lower bound of the minmax value:

min
SB∈SB

max
SA∈SA

TA(SA, SB) ≥ T ∗.
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This is because C(T ∗; SB) ≤ E(T ∗) = YA for any SB , and hence there is a resource distribu-

tion schedule SA that satisfies A’s resource constraint and the property that TA(SA, SB) ≥
T ∗.9

Next, define

r∗ = r(T ∗),

and denote as S∗B the resource distribution schedule in (3.5) with r̃ = r∗, given by

S∗B(r) =

{
0 if r < r∗;

P (T ∗) + 2(YB−P (T∗)(1−r∗))
(1−r∗)2 (r − r∗) if r ≥ r∗.

(3.10)

The next proposition establishes that the minmax value coincides with the lower bound

T ∗ by verifying that C(T ;S∗B) > YA for all T > T ∗, so that T ∗ is also an upper bound of

the minmax problem.

Proposition 3.5. The resource distribution schedule S∗B given by (3.10) is the unique

solution to the minmax problem minSB∈SB
maxSA∈SA

TA(SA, SB).

Proof. See the Appendix. Q.E.D.

When organization B chooses resource distribution schedule S∗B , in order to achieve

the quality difference T ∗ organization A must expend all its available resources. However,

this may fail to guarantee that a larger quality difference is infeasible for A, because

a larger T increases the quality premium and frees some resources for A. The above

proposition establishes that given S∗B , this peer effect is small relative to the additional

resource requirement for obtaining a greater quality difference than T ∗.

4. The Nash Equilibrium

The analysis of the previous section has identified T ∗ as the minmax value of the resource

distribution game and the resource distribution schedule S∗B defined in equation (3.10) as

9 This is the first time in deriving the minmax value that we use the selection criterion of focusing on
the A-dominant equilibrium. The proposition below also uses the selection criterion by establishing that
there is no sorting equilibrium with quality difference greater than T ∗ against S∗B defined below.
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the only candidate Nash equilibrium strategy for B. Thus, whether a Nash equilibrium

exists only depends on whether maxSA
minSB

TA(SA, SB) = T ∗. Moreover, if the set of

Nash equilibria is non-empty, there is a distinct Nash equilibrium for each distinct solution

to the maxmin problem. A direct characterization of the set of solutions to the maxmin

problem and the maxmin value is difficult. Instead we proceed by first proving that

equilibrium strategies must satisfy some additional properties. By using these properties

and the fact that the equilibrium strategy of B is given by S∗B , we identify a candidate

equilibrium strategy S∗A for A. We then establish that a Nash equilibrium exists by directly

verifying that (S∗A, S∗B) is indeed a Nash equilibrium strategy profile. Finally, we show that

(SA, S∗B) is not a Nash equilibrium for any resource distribution schedule SA 6= S∗A, which

leaves (S∗A, S∗B) as the unique Nash equilibrium of the resource distribution game.

Using the best response properties of any pair of Nash equilibrium strategies (SA, SB),

the next lemma establishes that the range of SA and SB differ by a constant equal to the

equilibrium quality premium P (T ).

Lemma 4.1. Let (SA, SB) be a Nash equilibrium of the resource distribution game and

let T ∈ [1/2, 1) be the equilibrium quality difference. Then, the range of SA is the same

as the range of the function max{SB − P (T ), 0}.

Proof. Suppose that some interval (s, s) is in the range of SA but not in the range of

max{SB − P (T ), 0}. Consider the resource distribution schedule S̃A defined as

S̃A(r) =

{
s if SA(r) ∈ (s, s);

SA(r) otherwise.

For any r, r̃ ∈ [0, 1], and any T̃ ≥ T , we have S̃A(r) ≥ SB(r̃) − P (T̃ ) whenever S̃A(r) ≥
SB(r̃)− P (T̃ ). This implies that TA(S̃A, SB) = T . Since by construction

∫ 1

0

S̃A(r) dr <

∫ 1

0

SA(r) dr = YA,

there exists some other resource distribution schedule ŜA such that TA(ŜA, SB) > T and

hence SA is not a best response to SB . If some interval (s, s) is in the range of max{SB −
P (T ), 0} but not in the range of SA, a similar argument shows that SB is not a best

response to SA. Q.E.D.
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The above result, together with the characterization of the unique candidate equi-

librium quality difference T ∗ and the unique candidate equilibrium resource distribution

schedule S∗B of organization B, implies that in any Nash equilibrium, the equilibrium re-

source distribution schedule S∗A must be a continuous function that satisfies S∗A(0) = 0

and S∗A(1) = S∗B(1)− P (T ∗).

4.1. Existence

From the characterization of the minmax strategy of organization B, we know that S∗B

is zero up to r∗. Thus even the lowest type agent in organization A in equilibrium will

have a higher type than the agent of rank r∗ in organization B, regardless of the resource

distribution schedule chosen by A. In terms of allocation functions, this means that the

equilibrium allocation function t∗ will have t∗(r) = 1 for all r ≤ r∗. For r > r∗, the

equilibrium allocation function will depend on SA. If A wants to achieve an allocation

where its rank r′ agents are of type higher than agents of rank r in organization B then it

must offer SA(r′) ≥ SB(r) − P (T ∗). Since S∗B is linear for r ≥ r∗, the cost minimization

problem (3.1) for A, with T = T ∗ and SB = S∗B , admits multiple solutions. For example,

for each r∗ ≤ r1 ≤ T ∗ ≤ r0, the allocation

t(r) =





1 if r ≤ r1;

(T ∗ − r1)/(r0 − r1) if r1 < T ∗ < r0;

0 if r ≥ r0;

(4.1)

solves (3.1). Moreover, for any such allocation function t given by (4.1), St
A(r) is equal

to S∗B(r1) − P (T ∗) for r < 1 − (T ∗ − r1)/(r0 − r1), and equal to S∗B(r0) − P (T ∗) for

r ≥ 1− (T ∗ − r1)/(r0 − r1). One can verify that
∫ 1

0

St
A(r) dr = C(T ∗; S∗B) = YA.

This implies that T ∗ is a sorting equilibrium for (St
A, S∗B), and St

A is a best response to

S∗B , because by the definition of S∗B we have TA(SA, S∗B) ≤ T ∗ for all resource distribution

schedules SA that satisfy the resource constraint.

The above strategy profile (St
A, S∗B), however, is not a Nash equilibrium. By construc-

tion, St
A only assumes two values in the interval [0, S∗B(1)−P (T ∗)]; hence, by Lemma 4.1,
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S∗B is not a best response to St
A. It turns out that the space of A’s best responses to S∗B

is not limited to resource distribution schedules of the type described above. In fact, as

shown in the next lemma, any SA that exhausts the resource constraint and such that

SA(1) ≤ S∗B(1)− P (T ∗) is a best response to S∗B .

Lemma 4.2. Let SA be a resource distribution schedule such that SA(1) ≤ S∗B(1)−P (T ∗)

and
∫ 1

0
SA(r) dr = YA. Then SA is a best response to S∗B .

Proof. To prove the claim it is sufficient to show that T ∗ is a sorting equilibrium given

(SA, S∗B). By the definition of t
T∗ , for a sequence of discontinuity points (r0, r1, . . . , rk)

such that S−1
A is defined on each interval (rj , rj+1), j = 0, . . . , k − 1, we can write

∫ 1

0

t
T∗ dr = rk −

k−1∑

j=0

∫ rj+1

rj

S−1
A (S∗B(r)− P (T ∗)) dr,

where r0 is the smallest rank in A that receives strictly positive resources and rk is the

largest rank that receive an amount of resources greater than S∗B(1) − P (T ∗). After a

change of variable r̃ = S−1
A ((S∗B(r)− P (T ∗)) and integration by parts, we can rewrite the

right-hand-side as

rk − 1
S
′∗
B

(
SA(1)−

∫ 1

r0
SA(r) dr

)
.

Using the assumption that SA exhausts the resource constraint and noting that

(1− rk)S
′∗
B + SA(1) = S∗B(1)− P (T ∗),

we can rewrite the integral of t
T∗ as

1− 1
S
′∗
B

(S∗B(1)− P (T ∗)− YA).

Using the equation C(T ∗;S∗B) = YA, we can verify that the above expression is equal to

T ∗. This establishes that T ∗ is a fixed point of the mapping (2.3) and hence T ∗ is a sorting

equilibrium for (SA, S∗B). Q.E.D.

The proof of Lemma 4.2 relies crucially on the fact that S
′∗
B is constant. Recall that

organization A attempts to attract talents by choosing the cheapest ranks in B to raid.
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The weaker organization B can prevent A from exploiting its vulnerable ranks by making

all ranks equally expensive to raid, hence the linear (beyond r∗) resource distribution

schedule S∗B . Since all ranks are equally expensive to raid, organization A is indifferent

between strategies that raid different ranks above r∗ when B adopts its minmax strategy.

The requirement that SA(1) ≤ S∗B(1) − P (T ∗) just ensures that organization A is not

devoting unnecessary resources on the top ranks.

Now we are ready to establish that a Nash equilibrium exists in the resource distribu-

tion game. We have already anticipated that the proof of the next result is by construction.

In particular, with an argument similar to that in the proof of Lemma 4.2, we can show

that S∗B is a best response to a resource distribution schedule S∗A which is 0 up to some

rank r̂ ∈ [0, 1] and has a constant slope equal to S∗B(1) above r̂, such that S∗A(r̂) = 0 and

S∗A(1) + P (T ∗) = S∗B(1). The proof that (S∗A, S∗B) is a Nash equilibrium is then completed

by verifying that S∗A exhausts the resource budget YA. See Figure 6 for a graphical illus-

tration of the equilibrium schedules. Note that the origins of S∗A and S∗B are different in

the diagram; the difference is precisely the quality premium P (T ∗).

Proposition 4.3. Let r̂ = P (T ∗)/S∗B(1) and S∗A be defined by

S∗A(r) =

{
0 if r < r̂;

(r − r̂)S∗B(1) if r ≥ r̂.

The strategy profile (S∗A, S∗B) is a Nash equilibrium of the resource distribution game.
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Proof. We first verify that
∫ 1

0
S∗A(r) dr = YA. By definition we have

∫ 1

0

S∗A(r) dr =
(S∗B(1)− P (T ∗))2

2S∗B(1)
.

From equation (3.10) for the schedule S∗B and eliminating (1 − r∗) using equation (3.7),

we have

S∗B(1) =
2YB

1− r∗
− P (T ∗) =

YB

1− T ∗
.

Substituting this expression for S∗B(1), we can verify that

∫ 1

0

S∗A(r) dr =
(YB − P (T ∗)(1− T ∗))2

2(1− T ∗)YB
= E(T ∗) = YA.

Having established that S∗A respects the resource constraint, we note that Lemma 4.2

and the fact that S∗B is the minmax strategy imply TA(S∗A, S∗B) = T ∗. Thus, to prove that

S∗B is a best response to S∗A, it is sufficient to verify that, given S∗A, for any SB ∈ SB there

is a sorting equilibrium with T ≥ T ∗. Given S∗A and SB , from the definition of t
T∗ , we

have ∫ 1

0

t
T∗(r) dr = 1−

∫ 1

r0
S∗ −1

A (SB(r)− P (T ∗)) dr,

where r0 is the lowest rank in B that receives more resources than P (T ∗). By definition,

S∗ −1
A (SB(r)− P (T ∗)) =

SB(r)
S∗B(1)

.

Using the above expression, the resource constraint
∫ 1

0
SB(r) dr ≤ YB and the definition

of S∗B(1), we have ∫ 1

0

t
T∗(r) dr ≥ 1− YB

S∗B(1)
= T ∗.

Thus, DA(T ∗) ≥ T ∗ and DA has at least one fixed point greater than T ∗. Q.E.D.

As in Lemma 3.2, By using a linear resource distribution schedule for ranks that receive

positive resources, organization A makes every rank equally costly for B to raid. No change

to S∗B can improve the equilibrium quality difference for B. Unlike the equilibrium resource

distribution schedule S∗B , there is no discontinuity for S∗A because A does not need to pay
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a quality premium to be competitive. This also means that S∗A is flatter than S∗B in the

positive part.

4.2. Uniqueness

To establish (S∗A, S∗B) as the unique Nash equilibrium of the resource distribution game

we will argue that S∗B is not a best response to any other resource distribution schedule

SA which is a best response to S∗B . In proving this claim, by Lemma 4.1, we need only

consider resource distribution schedules SA’s that are continuous and for which SA(0) = 0

and SA(1) = S∗B(1)−P (T ∗). Unfortunately, we cannot restrict further the set of candidate

Nash equilibrium strategies for A, since by Lemma 4.2 all feasible resource distribution

schedules that respect these three properties are indeed best responses to S∗B . It is difficult

to characterize B’s best responses to an arbitrary strategy SA. Instead, in the proof of the

next proposition we establish that S∗B is not a best response to SA 6= S∗A by showing that

an appropriately constructed “small” modification of S∗B improves B’s payoff. The proof

considers only SA’s that are strictly increasing when positive, as it is straightforward to

show that this is necessary for S∗B to be a best response.

Proposition 4.4. The strategy profile (S∗A, S∗B) is the only Nash equilibrium of the re-

source distribution game.

Proof. Let SA be a resource distribution schedule which is strictly increasing when

positive, and which satisfies SA(0) = 0, SA(1) = S∗B(1) − P (T ∗), and
∫ 1

0
SA(r) dr = YA.

We claim that if SA(r)+P (T ∗) < rS∗B(1) for some r ∈ (0, 1), then S∗B is not a best response

to SA. Note that this claim is sufficient for the statement of the proposition because,

by construction, S∗A is the pointwise smallest positive function for which the opposite

inequality holds for all r, and because S∗A exhausts the resource budget, a property that

all best responses to S∗B satisfy.

Given SA, let SA be the pointwise largest linear function with the property that

SA(r) ≤ SA(r) + P (T ∗) for all r, and let r̃ = sup{r ∈ [0, 1] : SA(r) = SA(r) + P (T ∗)}.
We distinguish between two cases. In the first case, we have SA(r̃) > P (T ∗). Let r0 =
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S∗−1
B (SA(r̃)). Note that r0 > r∗. For each ε > 0 we construct the following resource

distribution schedule Sε
B :

Sε
B(r) =

{
S∗B(r) if r 6∈ (r0 − ε, r0 + ε);

S∗B(r0) if r ∈ (r0 − ε, r0 + ε).

For all ε ≤ r0−r∗, Sε
B respects the resource constraint. Note that for each T , the allocation

function t
T (r; SA, Sε

B) is given by

t
T (r; SA, Sε

B) =

{
t
T (r; SA, S∗B) if r 6∈ (r0 − ε, r0 + ε);

1− S−1
A (S∗B(r0)− P (T )) otherwise.

It follows that

DA(T ;SA, S∗B)−DA(T ; SA, Sε
B) =

∫ r0+ε

r0−ε

S−1
A (S∗B(r0)− P (T )) dr −

∫ r0+ε

r0−ε

S−1
A (S∗B(r)− P (T )) dr.

At T = T ∗, the first term on the right-hand-side of the above equation equals 2εr̃. To

evaluate the second term, note that by definition of SA, for all r ∈ [0, 1], we have

S−1
A (S∗B(r)− P (T ∗)) ≤ S

−1

A (S∗B(r)),

with strict inequality for all r > r0. Hence,

DA(T ;SA, S∗B)−DA(T ; SA, Sε
B) > 2εr̃ −

∫ r0+ε

r0−ε

S
−1

A (S∗B(r)) dr

= 2εr̃ −
∫ r0+ε

r0−ε

S∗B(r)
K

dr

= 2εr̃ −
∫ r0+ε

r0−ε

1
K

(S∗B(r0) + β(r − r0)) dr

= 0,

where the second line follows from SA being linear with some positive slope K, and the

third from the fact that S∗B has constant slope β for r ≥ r∗. The last line then obtains

because SA(r̃) = S∗B(r0).

The following properties of DA(·; SA, Sε
B) can also be established: (i) DA(·;SA, Sε

B)

converges uniformly to DA(·; SA, S∗B) as ε becomes small; and (ii) D′
A(·; SA, Sε

B) con-

verges uniformly to D′
A(·; SA, S∗B) as ε becomes small. Using property (ii), the fact that
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D′
A(T ∗; SA, S∗B) < 1 and the continuity of D′

A(·;SA, S∗B), we can establish that for suffi-

ciently small positive γ, we have D′
A(T ; SA, Sε

B) ≤ 1 for T ∈ (T ∗, T ∗ + γ) and for all suffi-

ciently small ε. Hence DA(T ;SA; Sε
B) < T for all T ∈ [T ∗, T ∗ + γ) and ε sufficiently small.

Property (i) and DA(T ;SA, S∗B) < T for all T ∈ [T ∗ + γ, 1] also imply DA(T ; SA, Sε
B) < T

for T in the same range. Hence TA(SA, Sε
B) < T ∗ for ε sufficiently small and S∗B is not a

best response to SA.

In the second case, we have SA(r̃) = P (T ∗). Then, there exist r0 and r1, with

r0 < r1, such that SA(r0) = S∗A(r0), SA(r1) = S∗A(r1) and SA(r) > S∗A(r) for all r ∈
(r0, r1). An argument similar to the one for the first case can be used to show that

a resource distribution schedule Sε
B which reduces the amount distributed to ranks just

above S∗−1
B (SA(r0) + P (T ∗)) and increases the amount of resources to ranks just below

S∗−1
B (SA(r0) + P (T ∗)) does better than S∗B against SA. Q.E.D.

The main difficulty in the above result is that, to show that organization B can

improve the quality difference T ∗ in its favor we must check two conditions. First, there

is a modification of S∗B for which T ∗ is no longer a sorting equilibrium. Second, the

modified resource distribution schedule does not generate a sorting equilibrium with a

quality difference strictly larger than T ∗. This is why it is not enough to identify the

target ranks in A to for B to raid; a careful construction of the local modification of S∗B is

necessary.

5. Comparative Statics

Comparative statics analysis for the unique Nash equilibrium in the resource distribution

game is straightforward. Consider, for example, a fall in the concern for the peer effect,

as represented by an increase in α. Examining the budget function (3.8) shows that a rise

in α reduces the quality premium P (T ) and hence shifts up E(T ). Since equilibrium T ∗

is defined by E(T ∗) = YA, this means that equilibrium quality difference between the two

organizations falls as people put less weight on the peer effect.

The degree of disparity in resources within an organization can be summarized by

slope of the resource distribution schedule and by the critical rank below which members
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receive no resources. We note from Figure 6 that S∗A is generally flatter than S∗B , and

the critical rank r̂ for A is lower than the critical rank r∗ for B. In other words, our

model suggests that the organization resources are less concentrated at the top ranks in

the dominant organization than in the weaker organization. Furthermore, since r(T ) is

increasing in T and decreasing in α, a rise in α lowers r∗. For organization A, we have

r̂ = P (T ∗)/S∗B(1) = P (T ∗)(1 − T ∗)/YB . Using the budget function (3.8) to express the

condition E(T ∗) = YA, we get

(1− r̂)2 = 2(1− T ∗)YA/YB . (5.1)

Hence a fall in T ∗ also implies a fall in r̂. In other words, a fall in the concern for the peer

effect causes both the dominant organization and the weaker organization to reduce the

disparity in resources between the higher and lower ranks.

The equilibrium schedules (S∗A, S∗B) implies the following pattern for the mixing of

types across the two organizations: (i) a measure r∗ of the types θ < r∗/2 are exclusively

in the weaker organization B; (ii) a measure r̂ of types θ ∈ [r∗/2, (r∗+ r̂)/2) are exclusively

in the dominant organization A; and (iii) the remaining types θ ≥ (r∗+ r̂)/2 are present in

both organizations, with the dominant organization A getting a fraction (1− r̂)/(2−r∗− r̂)

of these top talents. When the peer effect becomes less important, both r∗ and r̂ falls.

Since the advantage of the dominant organization derives from the higher quality of its

agents, a reduction in the importance of the peer effect increases the number of high types

who are present in both organizations. Moreover, using equation (5.1), one can show that

1− r̂

1− r∗
=

√
2YA

YB(1− T ∗)
− YA

YB
.

Hence, (1− r̂)/(1− r∗) falls as T ∗ falls. This means that when the peer effect becomes less

important, the dominant organization gets a smaller share of these top talents.

We can also derive comparative statics for an increase in the resource budget of the

dominant organization. Briefly, an increase in YA raises T ∗ because the budget function is

upward sloping at T ∗. Organization B economizes on the larger quality premium P (T ∗)

by raising the critical rank r∗ below which it devotes no resources. Since r̂ = P (T ∗)(1 −
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T ∗)/YB , the effect of YA on r̂ is positive if and only if T ∗ < 3/4. On one hand, the increase

in T ∗ and r∗ induces A to devote more resources to the top ranks to stay competitive with

B. On the other hand, the increase in resource budget allows A to devote more resources

to the lower ranks as well. Thus the overall effect on r̂ is ambiguous. Note, however, that

the slope of the schedule S∗A when positive is S∗B(1) = YB/(1 − T ∗). An increase in YA

therefore always makes the schedule S∗A steeper for ranks above r̂.

An increase in YB has an opposite effect on the equilibrium quality difference T ∗ as an

increase in YA. However, these two effects do not completely offset one another. Suppose

the resource budgets of both organizations are raised by one unit. Holding T fixed, the

maximum cost that the weaker organization B can imposed on the dominant organization

A is increased by more than one unit, because

∂E(T )
∂YB

∣∣∣
T=T∗

=
Y 2

B − (P (T ∗)(1− T ∗))2

2(1− T ∗)Y 2
B

=
YA(1 + r̂)
YB(1− r̂)

> 1.

Hence, organization A cannot afford the maintain the same quality difference even if its own

resources are raised by an equal amount. The result is that equilibrium quality difference

T ∗ falls.10 The availability of greater resources to the two organizations induces these

organizations to compete for talents by appealing to their concern for the pecking order

effect. As a result, the relative importance of the peer effect diminishes. The effect of an

equal increase in budgets is therefore similar to that of an increase in α.

So far, we have assumed that organizations A and B are identical except for the fact

that YA ≥ YB and we focus on the A-dominant sorting equilibrium. Other differences

between the two organizations can be introduced into the model by assuming that the

utility from joining organization A is

VA(θ) = αSA(rA(θ)) + mA + u.

One can think of the parameter u as the natural advantages (such as locational attraction)

of A relative to B, assumed to be common to all types of agents. In this setting, the quality

premium is P (T ) = (T + u− 1/2)/α. An increase in u has the effect of shifting down the

10 The same conclusion holds if YA and YB are increased by the same proportion.
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budget function E(T ), thereby raising the equilibrium quality difference T ∗. Organization

B responds to this by raising the critical rank r∗ below which its members receive no

resources. Organization A also raises its critical rank r̂ in equilibrium, because its natural

advantages already offer a large rent to intermediate talents at its lower ranks. The result

of this is that there is more intense competition for top talents, with a greater disparity in

resource distribution within each organization.

6. Discussion

The equilibrium pattern of mixing and segregation differs from what we derived in a

benchmark two-organization model of Damiano, Li and Suen (2005). In the earlier paper,

we have the “overlapping interval” structure, where the very talented are captives in the

high quality organization and the least talented are left to the low quality organization,

while the intermediate talents are present in both. The focus of the earlier paper is on

comparative statics analysis with respect to factors that affect the tradeoff between the

peer effect and the pecking order effect, and on competitive equilibrium implementation

and welfare implications. To the extent that the tradeoff is affected by resource distribution

policies of organizations, these policies are exogenously fixed in that paper, rather than

chosen in a strategic game. In the present paper, we model the pecking order effect as

concern for allocation of organizational resources, and derive equilibrium sorting pattern by

solving the resource distribution game between the organizations. Thus, intermediate types

mix across organizations when the tradeoff between the peer effect and the pecking order

effect does not respond to organizational choices, while top talents attract organizational

competition when the tradeoff can be directly affected by organizational strategies.

In our model of organizational competition for talents, we have assumed that there is a

fixed budget of resources for each organization. We view this as a reasonable approximation

of competition in the short term before production by the members generates any impact

on available resources. Another interpretation is that organizations we model are not-for-

profit, so that the objective of the organization is not to maximize the profit in terms

of the difference between total output and the resources expended to attract productive

members, but is instead to use the fixed resources to attract the best average quality.
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Organizations in our model have a fixed capacity of half of the talent pool and must

fill all positions. In particular, an organization cannot try to improve its average talent by

rejecting low types even though the capacity is not filled. We have made this assumption in

order to circumvent the issue of size effect, and focus on implications of sorting of talents.

Alternatively, we can justify the assumption of fixed capacity if the peer effect enters the

preferences of talents in the form of total output (measured by the sum of individual types)

as opposed to the average type, and the objective of the organization is to maximize the

total output. Since all agents contribute positively to the total output, in this alternative

model all positions will be filled.

We have restricted organization strategies to meritocratic resource distribution sched-

ules. This is a natural assumption given how we model the sorting of talents after orga-

nizations choose their schedules. Non-meritocratic resource distribution schedules would

create incentives for talented agents to “dispose of” their talent. Another assumption we

have made about organization strategies is that resource distributions do not depend on

type directly. This is a reasonable assumption in the presence of the resource constraint;

a resource distribution schedule that depends directly on type might exceed the resources

available or leave some resources unused depending on the distribution of types that join

the organization. Moreover, at the equilibrium quality difference and against the equi-

librium resource distribution schedule of the rival organization, each organization cannot

improve its quality by deviating to a resource distribution schedule that depends on type

as well as on rank. This is because any sorting equilibrium after such a deviation can

be replicated by a deviating schedule that depends on type only. Our equilibrium is thus

robust to deviations allowed by a richer strategy space.

Our main results of linear resource distribution schedules rely on the assumption

of uniform type distribution. This assumption implies that the impact on the quality

difference of an exchange of one interval of types for another interval between the two

organizations depends only on the difference in the average types of the two intervals. This

property allows us to transform the minmax problem in resource distribution functions to

a linear programming problem in allocation functions. We leave the question of whether

the method we develop in this paper is applicable to more general type distributions to

future research.
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Appendix

A.1. Proof of Lemma 3.1

We first prove that t̃ assumes a countable number of values, and then show that it assumes

at most one value strictly between 0 and 1.

To establish the first claim, let I denote the collection of all open intervals I ⊂ [0, 1]

such that: (i) t is continuous and strictly decreasing on I; (ii) ∆′ is monotone on I; and

(iii) there is no open interval I ′ ⊃ I that satisfies properties (i) and (ii). Since both t and

∆′ have a countable number of discontinuities, the set I is countable. Moreover, t assumes

a countable number of different values on [0, 1] \ I. If t assumes uncountably many values,

then I is non-empty. For each I ∈ I, let r− = infr I and r+ = supr I. Let r0 ∈ (r−, r+)

solve

(r+ − r−)t(r0) =
∫ r+

r−
t(r) dr,

and let r̂ ∈ (r−, r+) solve

(r̂ − r−)t(r−) + (r+ − r̂)t(r+) =
∫ r+

r−
t(r) dr.

We construct a new allocation function t̃ such that, for each I ∈ I, if ∆′ is decreasing

on I, then t̃(r) = t(r0) for all r ∈ I. Otherwise, if ∆′ is increasing on I, then t̃(r) = t(r−)

for all r ∈ (r−, r̂] and t̃(r) = t(r+) for all r ∈ (r̂, r+). On [0, 1] \ I, t̃ is identical to t.

By construction t̃ is a decreasing function and
∫ 1

0

t̃(r) dr =
∫ 1

0

t(r) dr.

Moreover,
∫ 1

0

S t̃
A(r) dr −

∫ 1

0

St
A(r) dr =

∑

I∈I

∫ r+

r−

(
t̃(r)− t(r)

)
∆′(r) dr.

For each I ∈ I such that ∆′ is decreasing,
∫ r+

r−

(
t̃(r)− t(r)

)
∆′(r) dr =

∫ r0

r−

(
t(r0)− t(r)

)
∆′(r) dr +

∫ r+

r0

(
t(r0)− t(r)

)
∆′(r) dr

≤ ∆′(r0)
∫ r0

r−

(
t̃(r0)− t(r)

)
dr + ∆′(r0)

∫ r+

r0

(
t̃(r0)− t(r)

)
dr

= 0.
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For each I ∈ I such that ∆′ is increasing,

∫ r+

r−

(
t̃(r)− t(r)

)
∆′(r) dr =

∫ r̂

r−
(t(r−)− t(r))∆′(r) dr +

∫ r+

r̂

(t(r+)− t(r))∆′(r) dr

≤ ∆′(r̂)
∫ r̂

r−
(t(r+)− t(r)) dr + ∆′(r̂)

∫ r+

r̂

(t(r−)− t(r)) dr

= 0.

Therefore the first claim follows.

We can now restrict attention to allocation functions t which assume a countable

number of values. Suppose there are two consecutive intervals Ij and Ij+1, such that t

assumes value tj on Ij and value tj+1 on Ij+1, for some 1 > tj > tj+1 > 0. Consider a

new allocation function t̃ε defined as follows:

t̃ε(r) =





tj + ε/(rj
+ − rj

−) if r ∈ Ij ;

tj+1 − ε/(rj+1
+ − rj+1

− ) if r ∈ Ij+1;

t(r) otherwise.

For ε small, t̃ε is a decreasing function. Moreover, by construction,
∫ 1

0
t̃ε(r) dr =

∫ 1

0
t(r) dr

and

∫ 1

0

S t̃ε

A (r) dr −
∫ 1

0

St
A(r) dr =

ε

rj
+ − rj

−

∫ rj
+

rj
−

∆′(r) dr − ε

rj+1
+ − rj+1

−

∫ rj+1
+

rj+1
−

∆′(r) dr.

Since
∫ 1

0
S t̃ε

A (r) dr − ∫ 1

0
St

A(r) dr is linear in ε, we can always choose some ε for which t̃

assumes one less value than t and does at least as well as t for the objective function of

(3.2). Q.E.D.

A.2. Proof of Proposition 3.5

To establish the upper bound, note that from Lemma 3.2, we have C(T ;S∗B) = S∗B(T ) −
P (T ). Using the formula (3.10) for the schedule S∗B , we then have

C(T ;S∗B) =
2(T − r∗)
(1− r∗)2

(Y − P (T ∗)(1− r∗)) + P (T ∗)− P (T ).
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Since C(T ; S∗B) is linear in T and C(T ∗; S∗B) = YA by the definition of T ∗, it is the case

that C(T, S∗B) > YA for all T > T ∗ if and only if

2 (YB − P (T ∗)(1− r∗))
(1− r∗)2

− 1
α

> 0.

Using the condition that C(T ∗, S∗B) = YA, the above inequality is equivalent to

αYA − (T ∗ − r∗) > 0. (A.1)

To prove that condition (A.1) is true, we proceed in two steps. We first establish that

αYA − (T ∗ − r∗) > 0 when YA = YB . Then we show that αYA − (T ∗ − r∗) is increasing in

YA, and hence condition (A.1) is true for all YA > YB .

For the first step, let T ′ = max{T ∈ [1/2, 1] : E(T ) = YB} and let r′ = r(T ′).

Condition (A.1) for the case YA = YB is equivalent to αYB − (T ′ − r′) > 0. For T ′ > 1/2,

use the explicit formula of E(T ) in equation (3.8) to obtain

αYB = (1− T ′)
1 +

√
2(1− T ′)
2

.

Use this expression and the explicit formula for r(T ) in equation (3.7) to obtain

T ′ − r′ = (1− T ′)
2(1− T ′) +

√
2(1− T ′)

2T ′ +
√

2(1− T ′)
.

It is straightforward to verify that αYB > T ′ − r′. For T ′ = 1/2, it must be the case that

αYB > 1/2 and r′ = 0. Hence the condition αYB > T ′ − r′ also holds.

Next, we show that αYA − (T ∗ − r∗) > 0 whenever αYB − (T ′ − r′) > 0. To this end,

use equation (3.7) for r(T ) to write

T ∗ − r∗ = (1− T ∗)R(T ∗),

where R(T ) = (YB − P (T )(1 − T ))/(YB + P (T )(1 − T )). Also Use equation (3.8) for

E(T ∗) = YA to get

αYA − (T ∗ − r∗) = (1− T ∗)R(T ∗)
(

2αYBR(T ∗)
(1− r∗)2

− 1
)

.
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There are two cases to consider. (i) Suppose R(T ) is decreasing. In this case, (1 −
T ∗)R(T ∗) < (1−T ′)R(T ′) since T ∗ > T ′. Therefore, αYA−(T ∗−r∗) > αYB−(T ′−r′) > 0.

(ii) Suppose R(T ) is increasing. In this case, R(T ∗)/(1 − r∗)2 > R(T ′)/(1 − r′)2 since

T ∗ > T ′ and r∗ > r′. So αYB − (T ′ − r′) > 0 implies αYA − (T ∗ − r∗) > 0. Q.E.D.
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