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1 Introduction

In this paper we study the differentiability of the value function for a class of concave

infinite–horizon continuous–time problems of wide application in economics. We extend

the envelope theorem of Benveniste and Scheinkman [5] to optimization problems with

constraints. We dispense with an interiority condition for the state and control variables

that is usually quite restrictive in economic applications. This interiority condition may

rule out periods of zero consumption, irreversibility of investment, bounded capacity,

binding monetary constraints, and various financial market restrictions such as short-

sale constraints and collateral requirements. Indeed, in his well-known introduction of

control theory to economic growth, Arrow [2] formulated an economic problem with

inequality constraints to account for feasibility, irreversibility, market clearing, and non-

negative restrictions. There are usually no primitive assumptions that may prevent these

constraints from being saturated, and hence one cannot generally invoke the envelope

theorem of Benveniste and Scheinkman [5].

In continuous-time models, the differentiability of the value function allows for a sim-

ple formulation of Bellman’s equation and the maximum principle. Hence, from the

differentiability of the value function we obtain that the feedback control or policy is a

continuous function. For finite-horizon problems, it is known [cf. Goebel [10]] that if

the value function is differentiable then the path of dual variables or supporting prices is

unique. We shall extend this uniqueness result for the infinite–dimensional case. Several

papers deal with existence of dual variables that belong to the superdifferential of the

value function [e.g., Araujo and Scheinkman [1], and Aubin and Clarke [4], and Ben-

veniste and Scheinkman [6]]. Our focus here is on the uniqueness of these dual variables.

As discussed later, the problem can be quite complex for infinite–horizon economies with

constraints: Uniqueness may be lost in the presence of asset pricing bubbles. Even

though we lack a systematic analysis of pricing bubbles, from the study of certain mar-

ket economies [e.g. see Santos and Woodford [16]] it is known that some free–disposal

conditions may preclude the existence of bubbles. We impose a monotonicity restriction

so that any path of dual variables must satisfy a standard transversality condition. As

shown later, in the absence of this restriction there could be a continuum of initial dual

variables that support a given optimal solution.

The starting point of our analysis is our earlier paper [11] on the differentiability

of the value function in discrete–time optimization. The continuous–time formulation,

however, is technically more involved and requires to make use of infinite–dimensional

optimization. But this formulation offers more structure because the dynamical system
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that generates optimal trajectories is a now a flow: An optimal orbit is conformed by a

continuous arc rather than by a countable number of points. This technical difference

will be manifested in various stronger results and examples. Theorem 3.2 below shows

that differentiability of the value function at the initial point x0 implies differentiability

of the function along the whole optimal trajectory, whereas this result is not guaranteed

in the discrete–time formulation. Also, in the scalar case the value function is always

differentiable at non–stationary points in the continuous–time case, but this is not so in

discrete–time.

In Section 2 we lay out the continuous-time optimization problem. Section 3 contains

our main results on the differentiability of the value function. In Section 4 we apply

these results to derive Bellman’s equation and the uniqueness of the dual variables. Some

examples follow in Section 5. A more technical review of our findings will be offered in

Section 6. Various mathematical definitions can be found in the Appendix, as well as

additional proofs.

2 The dynamic optimization problem

We consider an infinite–horizon optimization problem which is approximated by a se-

quence of finite–horizon objectives. For finite horizons – rather than for the original

optimization problem – we shall make use of a Banach space framework which will be

analytically convenient for differentiability. The proof of differentiability of the value

function will follow from a limit argument over finite horizons.

2.1 Mathematical setting

Let t ≥ 0 be the initial date of the optimization problem. Let It = [t, T ], with T =∞ or

T <∞. Let β(s, t) = exp
(
−
∫ s
t
δ(r) dr

)
be a discount factor over the time interval [t, s],

0 ≤ t ≤ s. Function δ ≥ 0 is bounded with
∫∞
t
δ(r) dr = ∞. Hence, β(∞, t) = 0 for all

t, and β(t, t) = 1. Assume that for each r ∈ It, there exists a constant ρ > 0 such that∫∞
r
β(s, t) ds ≤ ρβ(r, t) for all r > t. If δ is a constant discount rate, then ρ = (1/δ) as∫∞

r
e−δ(s−t) ds = (1/δ)e−δ(r−t).

Let µt be the measure on It with density dµt(s) = β(s, t) ds. Then, µt(It) < ∞ for

all t. Let L1
n(It;µt) be the set of equivalence classes of (Lebesgue)–measurable functions

xt in Rn which are µt integrable. That is,
∫
It
|xt(s)| dµt(s) <∞, where |xt(s)| is a given

norm for xt(s). It follows that L1
n(It;µt) is a Banach space with norm

‖xt‖1,µt =

∫
It

|xt(s)|β(s, t) ds.
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Let µ>t be the measure on It with density dµ>t (s) = β(s, t)−1 ds = ds/β(s, t). The

space L∞n (It;µ
>
t ) consists of measurable functions pt on It such that |pt(s)|β(s, t)−1 is

bounded, except possibly on a set of measure zero. It is also a Banach space with the

norm

‖pt‖∞,µ>t = ess sup
s∈It

|pt(s)|β(s, t)−1 = inf
y(s)=pt(s)

Lebesgue–a.e.

sup
s∈It
|y(s)|β(s, t)−1.

These two spaces conform a dual pair under the bilinear form

〈xt, pt〉 =

∫
It

xt(s)pt(s) ds, xt ∈ L1
n(It;µt), pt ∈ L∞n (It;µ

>
t ).

In what follows, ẋt(s) is the time derivative of function xt at time s.

2.2 Continuous–time optimization

The continuous–time optimization problem can now be posed as follows. Given an initial

state x0 and the initial date t ≥ 0, find a path {(x∗t , ẋ∗t )} that solves the maximization

program

V (t, x0) = max

∫ T

t

`(xt(s), ẋt(s))β(s, t) ds

subject to (xt(s), ẋt(s)) ∈ Ω for all s ∈ [t,∞] and xt(t) = x0.

(1)

(A1) X ⊆ Rn and Ω ⊆ R2n are convex sets with nonempty interior. For each x ∈ X
the set Ωx = {u : (x, u) ∈ Ω} is non-empty.

(A2) Function ` : Ω −→ R is concave, continuous, and differentiable of class C1 at

every point (x, u) ∈ Ω.

(A3) An optimal solution {(x∗t , ẋ∗t )} does exist, and (x∗t , ẋ
∗
t ) ∈ L1

n(It;µt) × L1
n(It;µt)

for all It = [t, T̂ ] with T̂ <∞.

Existence of an optimal solution is guaranteed under various standard assumptions

[cf. Dmitruk and Kuź kina [7]]. We then have that the value function V (t, ·) in (1) is

well defined on X. Note that we only require (x∗t , ẋ
∗
t ) ∈ L1

n(It;µt) × L1
n(It;µt) for all

It = [t, T̂ ], with finite T̂ <∞. This latter condition usually follows from mild convexity

assumptions [cf., Fleming and Rishel [9]].
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2.3 Some regularity conditions for differentiability of the value

function

The following conditions will allow us to dispense with the interiority assumption of

Benveniste and Scheinkman [5]. First, if xt reaches the boundary of X then the value

function V may not be differentiable. By backward induction, this lack of differentiability

may extend to other points in the optimal path. We therefore assume

(IS) An optimal path x∗t (s) ∈ intX for every s ∈ It.

Rincón–Zapatero and Santos [11] provide some examples of non–differentiability when

the assumption of interiority of the state variables (IS) is not satisfied, but as shown

below for continuous–time one–dimensional optimization this interiority requirement is

generally not needed.

(LI) Ω can be defined by a finite set of inequalities

gi(x, u) ≥ 0 for i = 1, . . . ,m,

where the functions gi are C1 in a neighborhood of Ω. Let gσ = {gi : gi(x, u) = 0}. Then,

matrix D2gσ(t)(x
∗
t (s), ẋ

∗
t (s)) has full rank over the optimal path {x∗t (s), ẋ∗t (s)} for almost

all s ∈ [t, T ].

The notation is as follows: D1g and D2g are the Jacobian matrices of (g1, . . . , gm) with

respect to x and u = ẋ, respectively. As is well-known, linear independence (LI) implies

that matrix D2g
>
σ(s) has a generalized right-inverse D2g

+
σ(s), and guarantees uniqueness

of the Kuhn–Tucker multipliers in static differentiable programs. It is important to

note that (LI) requires that at least one control variable appears in every saturated

constraint; for if not, one of the rows in matrix D2gσ is made up of zeros, violating the

rank condition. Therefore (LI) rules out pure state constraints. As in (IS), general results

on the differentiability of the value function cannot be expected in the presence of pure

state constraints.

We also postulate a free disposal assumption to insure non-existence of asset pric-

ing bubbles (NB) for decentralized economies. Let the n × n–matrix G(σ;x, u) =

−(D1g
>
σD2g

+
σ )(x, u), where gσ comes from (LI) and indicates the constraints that are ac-

tive at (x, u). Assumption (LI) guarantees that function gσ is measurable. To shorten the

notation we will write G∗t (s) = Gt(σ(s);x∗t (s), ẋ
∗
t (s)) = −(D1g

>
σ(s)D2g

+
σ(s))(x

∗
t (s), ẋ

∗
t (s)).

Note that if no constraint is saturated at time s, then G(0; ·, ·) is the null matrix.
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(NB) (i) X = Rn
+. (ii) For all (x, u) function `(x, u) is increasing in x and de-

creasing in u. (iii) Over the optimal solution {(x∗t (s), ẋ∗t (s))}, for each s ≥ t we have

D1`(x
∗
t (s), ẋ

∗
t (s)) + G∗t (s)D2`(x

∗
t (s), ẋ

∗
t (s)) ≥ 0 and G∗t (s) ≥ 0. Moreover, there is a

constant α > 0 such that x∗tj(s) ≥ α for each coordinate j = 1, . . . , n. And (iv) for

every time T̂ > 0 there are T ≥ T̂ and a vector ẋ with all negative coordinates such that

g(x∗t (s), ẋ
∗
t (T ) + ẋ) ≥ 0 and a constant 0 < λ < 1 with g(λx∗t (s), λẋ

∗
t (s)) ≥ 0 for all

s ≥ T .

The existence of asset pricing bubbles in economies with constraints is a rather com-

plex topic that has not been systematically explored. Conditions (NB)(i)–(NB)(iii) are

taken from Santos and Woodford [16]. We impose (NB)(iv) because we are using more

general constraints. In the absence of this latter condition, it is not feasible to burst out

an asset pricing bubble by optimization behavior. Condition (NB)(iv) will also emerge

in our discussion of dual variables in Section 4.

For the sake of comparison, we include the interiority assumption postulated by Ben-

veniste and Scheinkman [5].

(IN) There exist an open and convex set U ⊂ X and an open neighborhood B ⊂ R2n
+

and a time h > 0, such that (x∗t (s), ẋ
∗
t(s)) + B ⊂ Ω for all x0 ∈ U and almost all

s ∈ [t, t+ h].

That is, there exists an ε-neighborhood of the optimal path {(x∗t (s), ẋ∗t(s))} that

belongs to Ω at some initial phase.

3 Results

3.1 Mathematical preliminaries

We start with the following property for concave optimization problems [cf. Aubin [3],

Proposition 4.3]. Here, E and F are Banach spaces, and ∂v(x) is the superdifferential of

a concave function v.

Proposition 3.1 Let f be a proper concave function from E×F to R∪{−∞}. Consider

the function v : E −→ R ∪ {−∞} defined by

v(x) = sup
u∈F

f(x, u).

If u ∈ F satisfies v(x) = f(x, u), then the following conditions are equivalent

q ∈ ∂v(x)

(q, 0) ∈ ∂f(x, u).
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Remark 3.1 It follows that (q, 0) ∈ ∂f(x, u) if and only if u ∈ arg max f(x, u) since

function f is concave. Indeed, the condition q ∈ ∂v(x) is independent of the maximizer

chosen.

We now transform a problem with constraints into one of unrestricted maximization

by incorporating the indicator function of the feasible set Ω into the integrand of problem

(1). Let

L (x, u) = `(x, u)− IΩ(x, u),

where IΩ(x, u) = 0 if (x, u) ∈ Ω and +∞ otherwise.

Assumptions (A1)–(A3) imply that L is a proper, upper semicontinuous and concave

function. Then, problem (1) can now be stated as

V (t, x0) = max

∫ T

t

L (xt(s), ẋt(s))β(s, t) ds

subject to x(t) = x0.

(2)

Our first step is to compute the superdifferential of the integrand in (2) for T < ∞,

and then provide a characterization of the superdifferential of the value function. Let

Jt : It × [L1
n(It;µt)]

2 −→ R ∪ {−∞} be given by

Jt,T (xt, ut) =


∫ T

t

L (xt(s), ut(s))β(s, t) ds if L (xt(s), ut(s)) ∈ L1
n(It;µt),

−∞ otherwise.

(3)

Lemma 3.1 Function Jt,T is proper, upper semicontinuous, and concave. Moreover,

∂Jt,T (xt, ut) =
{

(pt, qt) ∈
[
L∞n (It;µ

>
t )
]2

: −(pt(s), qt(s)) ∈ β(s, t)∂L (xt(s), ut(s)) a.e.
}
.

Proof. By (A1)-(A3) it is clear that function Jt,T is proper, upper semicontinuous, and

concave. The superdifferential of function Jt,T follows from the characterization of the

subdifferential of functionals defined by means of integrals provided in [12, 15] and the

established duality pairing; see the Appendix for further details. �

Lemma 3.2 Let x0 ∈ int(X). Then, q0 ∈ ∂V (t, x0) if and only if there exists (pt, qt) ∈
L∞n (It;µ

>
t )× L∞n (It;µ

>
t ) and ξt,T ∈ ∂V (T, x∗t (T )) such that

q0 = −
∫ T

t

pt(s) ds+ β(T, t)ξt,T

qt(s) = −
∫ T

s

pt(r) dr + β(T, t)ξt,T

−(pt(s), qt(s)) ∈ β(s, t)∂L (x∗t (s), ẋ
∗
t (s)) a.e. t ≤ s ≤ T .
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An immediate consequence of this lemma is the envelope theorem of Benveniste and

Scheinkman [5], where the above indicator function IΩ(x, u) = 0 in an ε-tube of the

optimal path.

Theorem 3.1 [Benveniste and Scheinkman [5]] Suppose that (A1)–(A3) and (IN) are

satisfied. Then, the value function is differentiable at x0 and the derivative

DV (t, x0) = −D2`(x0, ẋ
∗
t (t)).

Proof.

By condition (IN) we get L ((x∗t (s), ẋ
∗
t (s)) = `(x∗t (s), ẋ

∗
t (s)) for s ∈ [t, t + h]. Then,

by Lemma 3.2 the path qt(s) is absolutely continuous with qt(s) = −D2`(x
∗
t (s), ẋ

∗
t (s))

a.e. s ∈ [t, t+ h]. Hence,

q0 = qt(t) = lim
s→t+

1

s− t

∫ s

t

−D2`(x
∗
t (r), ẋ

∗
t (r)) dr,

is unique. It follows that ∂V (t, x0) is singled–valued. Consequently, V (t, ·) is differen-

tiable at x0. Moreover, by (A2) we obtain qt(t) = −D2`(x
∗
t (t), ẋ

∗
t (t)). �

3.2 Differentiability of the value function in constrained opti-

mization

As before, G∗t (s) = Gt(σ(s);x∗t (s), ẋ
∗
t (s)) = −(D1g

>
σ(s)D2g

+
σ(s))(x

∗
t (s), ẋ

∗
t (s)). It should be

understood that assumptions (A1)-(A3), (IS), (LI) and (NB) will be in force for all our

main results in this section.

Proposition 3.2 Let x0 ∈ int(X). Let T < ∞. Then, q0 ∈ ∂V (t, x0) if and only

if there exists qt ∈ L∞n (It;µ
>
t ), −(pt(s), qt(s)) ∈ β(s, t)∂`(x∗t (s), ẋ

∗
t (s)) a.e., and ξt,T ∈

∂V (T, x∗t (T )) such that qt is the unique absolutely continuous solution in L∞n (It;µ
>
t ) of

the linear differential system

q̇t(s) = pt(s) +G∗t (s)(qt(s)− qt(s)), (4)

with initial condition

q0 = qt(t) = −
∫
It

pt(s) +G∗t (s)(qt(s)− qt(s)) ds+ β(T, t)ξt,T .

Proof. By well–known properties of convex analysis

∂L (x, u) = ∂`(x, u)− ∂IΩ(x, u) = ∂`(x, u)−NΩ(x, u), (5)
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where IΩ is the indicator function and NΩ is the normal cone of the convex set Ω [Rock-

afellar [13]]. Now, by concavity the normal cone to Ω at (x, u) is given by

−NΩ(x, u) =

 ∑
i∈σ(x,u)

λi(D1g
i(x, u), D2g

i(x, u)) + (z, 0) : λi ≥ 0, z ∈ NX(x)

 ,

where i = 1, 2, . . . , σ refers to those constraints which are saturated at (x, u), and NX(x)

the normal cone to X at x ∈ X. Note that NX(x∗t (s)) = {0} because x∗t (s) is an interior

point of X as asserted in (IS).

By Lemma 3.2, we have that q0 ∈ ∂V (t, x0) if and only if there exists (pt, qt) ∈
[L∞n (It;µ

>
t )]2 such that

q0 = −
∫
It

pt(s) ds+ β(T, t)ξt,T (6)

qt(s) = −
∫
Is

pt(r) dr + β(T, t)ξt,T (7)

−(pt(s), qt(s)) ∈ β(s, t)∂L (x∗t (s), ẋ
∗
t (s)) a.e. (8)

By (5) and (8), pt = pt + p̂t and qt = qt + q̂t, where −(pt, qt) ∈ β(s, t)∂`(x∗t , ẋ
∗
t ) a.e., and

−(p̂t, q̂t) ∈ β(s, t)NΩ(x∗t , ẋ
∗
t ) a.e. Thus, combining these equalities with the characteriza-

tion of the normal cone NΩ(x∗t , ẋ
∗
t ), we obtain

p̂t(s) = β(s, t)
∑
i∈σ(s)

λit(s)D1g
i(x∗t (s), ẋ

∗
t (s)),

q̂t(s) = β(s, t)
∑
i∈σ(s)

λit(s)D2g
i(x∗t (s)), ẋ

∗
t (s))

a.e., for some λit(s) ≥ 0, i = 1, . . . ,m. By (IS), we can then substitute out

λt(s) = β(s, t)−1D2g
+
σ(s)(x

∗
t (s), ẋ

∗
t (s)) q̂t(s),

so that

p̂t(s) = −G∗t (s)q̂t(s) = G∗t (s)(qt(s)− qt(s)).
Plugging p̂t(s) into (7) we obtain

qt(s) = −
∫
Is

(
pt(r) +G∗t (r)(qt(r)− qt(r))

)
dr + β(T, t)ξt,T . (9)

It follows that qt is absolutely continuous since q̇t(s) exists a.e. and

q̇t(s) = pt(s) +G∗t (s)(qt(r)− qt(r))

at points of differentiability. �
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Remark 3.2 From Proposition 3.2 we observe that there is a diffeomorphism between

the superdifferentials ∂V (t, x0) and ∂V (T, x∗t (T )). That is, there exists only one function,

qt, joining q0 with β(T, t)ξt,T . This is because ` is smooth and the saturated constraints

satisfy (LI). Hence, there are unique points (p̂t, q̂t) in the normal cone to the feasible

set at the optimal solution. The flow mapping linking points q0 ∈ ∂V (t, x0) with points

ξt,T ∈ ∂V (T, x∗t (T )) is illustrated in Figure 1.

[INSERT FIGURE 1 HERE]

Consider the linear homogeneous system ż(s) = z(s)G∗t (s) and the associated funda-

mental matrix Φt(s) with Φt(t) = In, where In is the identity matrix. Note that this

is the unique matrix satisfying Φ̇t(s) = Φt(s)G
∗
t (s) for every s ≥ t a.e. Moreover, the

inverse Φ−1
t (s) exists and satisfies Φ̇−1

t (s) = −G∗t (s)Φ−1
t (s) a.e.

Theorem 3.2 Suppose x0 ∈ int (X). Let

lim
T→∞

β(t, T )Φt(T )qt(T ) = 0. (10)

Then, V (t, ·) is differentiable at x0 and V (s, ·) is also differentiable along the optimal

trajectory x∗t (s), for every s ≥ t. Moreover, the derivative

DV (t, x0) =

∫ ∞
t

Φt(s)
(
D1`(x

∗
t (s), ẋ

∗
t (s)) +G∗t (s)D2`(x

∗
t (s), ẋ

∗
t (s))

)
β(s, t) ds. (11)

Proof. Let q0, q
′
0 in ∂V (t, x0). Let qt(s; q0) be a solution of (4) with initial condition

qt(t) = q0. Then, qt(s; q0) is unique by Proposition 3.2 and Remark 3.2. It is known from

the theory of linear ODEs that

qt(s; q0) = Φ−1
t (s)q0 + Φ−1

t (s)

∫ s

t

Φt(r)(pt(r) +G∗(r)qt(r)) dr. (12)

Hence, for some ξt,T , ξ
′
t,T ∈ ∂V (T, x∗t (T )) for which qt,T = β(t, T )ξt,T , q′t,T = β(t, T )ξ′t,T

|q0 − q′0| ≤ |β(T, t)Φt(T )ξt,T − β(T, t)Φt(T )ξ′t,T | → 0, as T →∞.

Convergence of this last term is due to the above condition (10). Thus, q0 = q′0, and

∂V (t, x0) is a singleton. Therefore, V (t, ·) is differentiable at x0.

To show that V (s, ·) is differentiable at x∗t (s), s > t, note that every element in

∂V (s, x∗t (s)) is the image of qt(s; q0)β−1(s, t), that is⋃
q0∈∂V (t,x0)

{qt(s; q0)} = β(s, t)∂V (s, x∗t (s))
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for every s ≥ t. By uniqueness of solutions to linear ODEs, qt(s; q0) is unique in view of

the uniqueness of q0. Since ∂V (t, x0) is singled valued, ∂V (s, x∗t (s)) is also single-valued.

Consequently, V (s, ·) is differentiable at x∗t (s).

The expression for the derivative (11) obtains from (12) for s = T , qt(T ) = β(T, t)ξt,T

and using (10). More precisely, solving for q0 and taking limits as T →∞ we get

q0 = DV (t, x0) = −
∫ ∞
t

Φt(s)
(
pt(s) +G∗(s)qt(s)

)
ds.

Then, recall that pt(s) = −β(s, t)D1`(x
∗
t (s), ẋ

∗
t (s)) and qt(s) = −β(s, t)D2`(x

∗
t (s), ẋ

∗
t (s)).

�

It remains to establish the non-bubble condition

Proposition 3.3 Suppose x0 ∈ int (X). Then

lim
T→∞

β(t, T )Φt(T )qt(T ) = 0. (13)

See the Appendix.

3.3 The scalar case

In the one dimensional case with a constant discount factor we have that differentiability

is attained without assumption (IS). In higher dimensions the argument does not work,

since an absolute continuous curve has zero Lebesgue measure.

Corollary 3.1 Let n = 1 and suppose that the discount rate δ is constant. Consider

that x0 ∈ int (X) is such that the optimal path x(s) from x0 satisfies ẋ∗t (s) 6= 0 on some

interval t ≤ s ≤ T . Then, V is differentiable at x0.

Proof. We argue by contradiction. If V is not differentiable at x0, then by Proposition

3.2 we get that V is not differentiable at x(s) for any s ≥ t either. Hence, V is not

differentiable in a set of positive Lebesgue measure, by assumption. This leads to a

contradiction with the concavity of V , since a real concave function has at most countably

many points of non–differentiability. �

Actually, since the optimal trajectory x∗t is absolutely continuous, it must be that the

set {x(s) : t ≤ s ≤ T} is a singleton if and only if ẋ∗t is zero over the interval [t, T ].

Therefore, in the one dimensional case with a constant discount rate, the value function

is differentiable at all interior points of the state space, with the possible exception of

stationary points. We study now the differentiability of the value function at stationary

points for a general state space X ⊂ Rn.
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3.4 Differentiability at stationary points

Here we dispense with Assumption (NB)(iv). By an optimal stationary point we mean

a constant optimal solution x∗ = x∗t (s) for almost all s, so that ẋ∗t (s) = 0 for all s.

Corollary 3.2 Assume that the discount rate δ is constant. Let x∗ ∈ int (X) be an opti-

mal stationary point. Suppose that all coordinates of vector D1`(x
∗, 0)+G(x∗, 0)D2`(x

∗, 0)

are positive. Then, V is differentiable at x∗.

Proof. Since the discount rate δ is constant, the value function is time–independent.

Using equation (12) in Theorem 3.2 and the identity q(T ) = β(T, 0)ξt,T we know that

q0 ∈ ∂V (x0) if and only if for any T there exists ξT ∈ ∂V (x∗(T )) such that

q0 =

∫ T

0

β(s, 0)Φ(s)(D1`(x
∗(s), ẋ∗(s)) +G∗(s)D2`(x

∗(s), ẋ∗(s))) ds+ β(T, 0)Φ(T )ξT .

As x∗ is a stationary point this equality reads

q0 =

∫ T

0

e(G(x∗,0)−δIn)s(D1`(x
∗, 0) +G(x∗, 0)D2`(x

∗, 0)) ds+ e(G(x∗,0)−δIn)T ξT . (14)

Note that now the fundamental matrix is Φ(s) = eG(x∗,0)s; moreover, both q0, ξT be-

long to ∂V (x∗) for any T , and by assumption, each component of vector D1`(x
∗, 0) +

G(x∗, 0)D2`(x
∗, 0) is strictly positive. Hence, e(G(x∗,0)−δIn)T tends to the null matrix as

T →∞. Therefore, V is differentiable at x∗ because q0 is univocally defined as

q0 =

(∫ ∞
0

e(G(x∗,0)−δIn)s ds

)
(D1`(x

∗, 0) +G(x∗, 0)D2`(x
∗, 0)).

�

3.5 Some counterexamples

3.5.1 Necessity of assumption (IS)

We will show the necessity of (IS) in a simple specification of the optimal growth model

that will be studied in detail in Section 5.1. We assume a constant discount δ > 0,

X = [0,∞), a linear utility U(c) = c, and a linear production function f(k) = αk for

some α > 0 and k in [0, 1]. For k ≥ 1, we assume that f is smooth, concave and

limk→∞ f
′(k) = 0. According to Dmitruk and Kuź kina ([7], Th. 1), the problem admits

a solution for any discount factor δ > 0, and every trajectory is bounded.
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For 0 < k0 < 1, the admissible trajectory is given by k̇(s) = αk(s) if α ≥ δ, and

k̇(s) = 0, otherwise. Let T such that k(T ) = k0e
αT = 1. By Lemma 7.1 in the Appendix

V (k0) = sup
0≤k̇t≤f(kt)

{∫ T

0

e−δs(f(k(s))− k̇(s)) ds+ e−δTV (k(T ))
}

≥ e−δTV (k(T )) = e−δTV (1) = V (1)k
δ/α
0 .

The value function is continuous on X, with V (k) > 0 for any k > 0 and V (0) = 0.

Hence, the above inequality determines that ∂V (0) = ∅ if α > δ.

3.5.2 Necessity of assumption (LI)

Even in the scalar case, condition (LI) cannot be weakened. Consider the following

problem

V (x0) = −max

∫ ∞
0

−e−δtx(t) dt, δ > 0,

subject to the constraints: ẋ ≥ −2x and ẋ ≥ −1
2
x. This set of feasible choices Ω is

depicted in Figure 2. At point x0 = 0 both constraints are saturated, thus (LI) does

not hold since the problem is one–dimensional. It is clear that in this simple problem

optimality requires x(t) to be as small as possible. In the region where x > 0 the smallest

admissible derivative, ẋ = −1
2
x. Hence, for x0 > 0 the optimal path is x(t) = x0e

−t/2. It

follows that x(t) > 0 for every t, since the stationary point x0 = 0 is never reached in

finite time. In the region where x < 0 any derivative is positive, thus x increases. The

smallest derivative is ẋ = −2x. Hence, for x0 < 0 the optimal path is x(t) = x0e
−2t < 0

for every t. Obviously, x0 = 0 is an optimal stationary point.

Therefore, the value function

V (x0) =


x0

2 + δ
, if x0 < 0;

x0

1
2

+ δ
, if x0 ≥ 0.

This function is not differentiable at x0 = 0.

[INSERT FIGURE 2 HERE]

3.5.3 Necessity of assumption (NB)

The existence of bubbles complicates our method of proof. Indeed, our strategy of proof

is to show that the vector of dual variables q0 is unique; bubbles may generate multiple

13



explosive paths for different initial conditions q0. These explosive paths may occur in the

absence of assumption (NB).

Let x ∈ R, and

V (t, x0) = max

∫ ∞
t

U(ct(s))e
−δt ds

s.t. ct(s) = δxt(s)− ẋt(s) ≥ 0, xt(s) + ẋt(s) ≥ 1, s ∈ [t,∞], xt(t) = x0.

(15)

This can be viewed as a Lucas–tree model of asset pricing where δxt(s) is the dividend

payment, and consumption ct(s) = δxt(s) − ẋt(s) ≥ 0. There is also the borrowing

restriction xt(s) + ẋt(s) ≥ 1. Let `(xt(s), ẋt(s) = U(δxt(s)− ẋt(s)).
For xt(t) ≥ 1, the optimal solution is xt(s) = xt(t) and ẋt(s) = 0 for all s ≥ t. And

for xt(t) ≤ 1, the optimal solution must follow the law of motion ẋt(s) = 1 − xt(s).

Assume that xt(t) < 1 is sufficiently close to 1 so that consumption is positive: ct(s) =

δxt(s)− ẋt(s) > 0. In this case the value function is differentiable. We can compute the

derivative using the equation:

q0 =

∫ T

0

e(−1−δ)s(D1`(xt(s), ẋt(s))−D2`(xt(s), ẋt(s))) ds+ e(−1−δ)T qT . (16)

Although the value function is differentiable our method of proof fails. The problem is

that this equation has multiple solutions (q0, qT ), which cannot be ruled out by our proof

of the main theorem since a feasible path requires ẋt(s) = 1− xt(s) > 0. Hence, even if

qT is above the fundamental value, it is not optimal or feasible to reduce asset holdings

xT . Therefore, the optimal solution is associated with a continuum of dual variables that

cannot be ruled out by optimization behavior.

4 Duality theory and Bellman’s equation

We first show uniqueness of dual arcs satisfying a transversality condition. This unique-

ness result easily follows from the differentiability of the value function and some prop-

erties of partial superdifferentials of saddle functions discussed in the Appendix. We also

derive Bellman’s equation and show the continuity of the optimal feedback control or

policy function. Of course, if the policy function is continuous then the optimal solution

x∗t (s) is a C1 function of s.

We begin with the Hamiltonian of the optimization problem, which is defined as

H(x, q) = sup
u
{L (x, u) + qu}. (17)
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Combining Lemma 3.2 with Proposition 7.2 in the Appendix, an optimal solution u = x∗t
must satisfy the Hamiltonian inclusions

−q̇t(s) ∈ β(s, t)∂xH(x∗t (s), qt(s)),

ẋ∗t (s) ∈ β(s, t)∂qH(x∗t (s), qt(s)),
(18)

for almost all s ∈ [t, T ]. Here, ∂xH denotes the superdifferential of the concave function

x 7→ H(x, q) for a fixed q, and ∂qH denotes the subdifferential of the convex function

q 7→ H(x, q) for a fixed x. For any pair (x∗t , qt) satisfying the Hamiltonian inclusions

with x∗t (t) = x0, we say that qt is the dual variable. It has the interpretation of a shadow

price.

Theorem 4.1 Let the pair (x∗t , qt) satisfy the Hamiltonian inclusions (18) with x∗t (t) =

x0. Assume that the following transversality condition holds1

lim
T→∞

qt(T )x∗t (T ) = 0. (19)

Then, the path of dual variables qt(s) is unique.

Bellman’s equation is a fundamental tool in solving dynamic programming problems.

As is well known, Bellman’s equation holds if the value function is smooth; moreover, the

optimal policy correspondence is obtained as the arg max of this equation. Therefore, the

differentiability of the value function is helpful for the existence and numerical solution

of Bellman’s equation. Let us rewrite (17) as

H(x, q) = sup
u∈Ωx

{`(x, u) + qu}.

Assuming a constant discount rate: δ(s) = δ for every s, we get Bellman’s equation as

−δV (x) +H(x,DV (x)) = 0 for all x ∈ intX.

That is,

−δV (x) +H(x,DV (x)) = −δV (x) + sup
u∈Ωx

{`(x, u) +DV (x) · u} = 0 for all x ∈ intX.

Let us define the optimal policy correspondence u ∈ h(x) = ∂qH(x,DV (x)) that is, the

set of admissible values of u ∈ Ωx that solves maxu∈Ωx{`(x, u) + qu}.
1It is well known [cf., [5]] that assumption (NB) implies (19).
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Proposition 4.1 Assume that the multivalued mapping x ⇒ Ωx is continuous and that

Ωx is a compact set for every x ∈ X. Assume also that ` is strictly concave with respect

to u. Then, the optimal ẋ∗t is given by a continuous function ẋ∗t = h(xt) in int (X), where

h(x) = ∂qH(x,DV (x)).

Proof. Since V is differentiable on int (X), function (x, u) 7→ `(x, u) + DV (x)u is

continuous. Hence, by Berge’s Theorem, h is upper hemicontinuous. Moreover, by the

strict concavity of ` in u, the maximizer h(x) is unique, and thus h is a continuous

function. Finally, the expression h(x) = ∂qH(x,DV (x)) follows from the first-order

conditions. �

5 Examples

5.1 The one–sector growth model with irreversible investment

Consider the following version of the neoclassical growth model:

max
ct(s),it(s)

∫ ∞
t

β(s, t)U(ct(s)) ds subject to

k̇t(s) = it(s)− γkt(s),
ct(s) + it(s) = f(kt(s)),

kt(s) ≥ 0, ct(s) ≥ 0, it(s) ≥ 0, kt(t) = k0.

The notation is as follows: kt(s) is capital at time s, ct(s) is consumption, and it(s) is

investment. The utility function, U : R+ −→ R, is increasing, concave, differentiable

over [0,∞) with U ′(0+) <∞ or U ′(0+) =∞. The production function, f : R+ −→ R+,

is bounded, increasing, concave, and differentiable in R+, with f ′(0+) =∞.

As is well understood, he problem can be mapped into the variables (kt, k̇t) corre-

sponding to our original framework:

max
kt(s),k̇t(s)

∫ ∞
t

β(s, t)U(f(kt(s))− γkt(s)− k̇t(s)) ds subject to

− γkt(s) ≤ k̇t(s) ≤ f(kt(s))− γkt(s), kt(s) ≥ 0.

Then, the instantaneous utility function is `(k, u) = U(f(k)− γk − u) with derivatives

D1`(x, u) = U ′(c)(f ′(k)− γ), D2`(k, u) = −U ′(c).

The constraints are g1(k, u) = u + γk, g2(k, u) = f(x) − γk − u. The feasible set is

depicted in Figure 3.
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[INSERT FIGURE 3 HERE]

It follows that

G({1}; k, u) = −D1g
1(k, u)D2g

1(k, u) = −γ,
G({2}; k, u) = −D1g

2(k, u)D2g
2(k, u) = f ′(k)− γ,

G({1, 2}, k, u) = 0.

Therefore,

G∗t (s) =

{
−γ, if σt(s) = 1;

f ′(k∗t (s))− γ, if σt(s) = 2,

and Φt(s) = e
∫ s

t G
∗
t (r) dr.

We are now ready to check that all our regularity conditions are satisfied. First,

assumption (IS) holds since f ′(0+) = ∞. From our above computations, it is readily

seen that assumption (LI) holds because both constraints g1(k, u) and g2(k, u) cannot

be saturated at the same time. Regarding (NB), one can also check that this condition

holds. Indeed, (NB) is trivially satisfied when there are periods in which all constraints

stop binding. Condition f ′(0+) = ∞ precludes g1(k, u) = 0 for all T , and optimality

precludes g2(k, u) = 0 for all T since consumption c must be positive for some time

periods. Therefore, for every T̂ there is a time interval [T ′, T ] in which none of the

constraints is saturated and T > T ′ > T̂ . In this case, G∗t (T ) would be the null matrix.

We have then proved the following

Proposition 5.1 In the one–sector growth model with irreversible investment the value

function is differentiable at interior points. Moreover, the derivative

DV (t, k0) =

∫ ∞
t

e
∫ s

t G
∗
t (r)−δ(r) drU ′(c∗t (s))(f

′(k∗t (s))− γ −G∗t (s)) ds.

Note that the envelope theorem of Benveniste and Scheinkman [5] cannot be invoked

for cases in which some constraint could be binding. The irreversibility assumption may

bind if capital is high enough, and zero consumption may be obtained if capital is low

enough. We could also discuss the more general case in which the irreversibility constraint

may bind all the time. Note that if the discount rate is constant then differentiability of

the value function follows from our above results for the scalar case.
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5.2 A monetary economy

Consider the following cash-in-advance model

max
(ct(s),mt(s),kt(s),k̇t(s))

∫ ∞
t

β(s, t)U(ct(s)) ds subject to

k̇t(s) + ṁt(s) = f(kt(s))− γkt(s)− ct(s) + xt(s)− πt(s)mt(s),

mt(s) ≥ ct(s) + k̇t(s) + γkt(s),

kt(s) ≥ 0, ct(s) ≥ 0.

Here, ct is consumption, mt is a stock of real monetary holdings, kt is capital, xt is the

value of government transfers rebated to the consumer as a consequence of the inflation

tax, and πt is the rate of inflation. Both U and f satisfy the same properties as in the

previous example. For simplicity, the cash–in–advance constraint mt ≥ ct+ k̇t(s)+γkt(s)

applies to the purchase of consumption goods and gross investment.

Let us rewrite this problem in terms of the state variables (k,m) so that the instan-

taneous objective:

`((k,m), (k̇, ṁ)) = U(f(k)− γk + x− πm− k̇ − ṁ),

and the constraints:

g1((k,m), (k̇, ṁ)) = f(k)− γk + x− πm− k̇ − ṁ ≥ 0, (non-negative consumption);

g2((k,m), (k̇, ṁ)) = γk + k̇ ≥ 0, (irreversible investment);

g3((k,m), (k̇, ṁ)) = m+ ṁ− f(k)− x+ πm ≥ 0, (cash–in–advance).

We are therefore confronted with a two–dimensional problem. As in the growth

model, the pure state constraint k ≥ 0 is not binding, as f ′(0+) = ∞. Thus, optimal

trajectories (k∗t ,m
∗
t ) lie in the interior of the state space X = R2

+, and (IS) is satisfied. In

order to check (LI) we consider the Jacobian matrices D2(g1, g2), D2(g1, g3), D2(g2, g3)

and D2(g1, g2, g3) and verify the full–rank assumption. Of course, if only one constraint

is saturated, then (IS) follows trivially. Matrices

D2(g1, g2) =

(
−1 −1

1 0

)
, D2(g1, g3) =

(
−1 −1

0 1

)
, D2(g2, g3) =

(
1 0

0 1

)
,

have all maximal rank. The three constraints (g1, g2, g3) can only be binding for zero

money holdings, m = 0. This case has been ruled out. Therefore, (LI) is always satisfied.

In order to check the asymptotic condition (13), from our arguments in the previous

example we know that there are periods in which constraints g1 (zero consumption) and

18



g2 (irreversible investment) will not be saturated. Hence, let us focus on the simple case

in which only g3 (cash-in-advance) is binding for all s ≥ t. Then, Gt({3}; ((m), (ṁ))) =

−D1(g3)>D2(g3)−> = −(1 + π). Therefore, Φt(T )e−δT = e
∫ T

t (G∗t (r)−δ) dr = e
∫ T

t (−1−π−δ) dr.

Of course, this expression goes to zero, and hence (13) will always hold whenever the set

of optimal solutions (k,m) remains in a compact set separated from the boundary of R2
+.

There are a few points worth mentioning here. First, in our theoretical results we

resort to a standard free–disposal assumption to guarantee (13), which implies the non-

existence of asset pricing bubbles for a related economy. However, in applications there

could be other restrictions2 that may also guarantee (13). Second, our asymptotic con-

dition (13) should not be confused with transversality condition (19). The transversality

condition is about asymptotic values (i.e., price times quantity), whereas (13) is about

asymptotic shadow prices for constraints that are always binding. For instance, in the

literature of the optimum quantity of money, it is well known that (19) implies π > −δ.
For our asymptotic condition (13) the requirement is simply π > −1 − δ. Further, (13)

is vacuously satisfied for time intervals in which none of the constraints is saturated.

6 Concluding remarks

This paper contains several results on the differentiability of the value function for a class

of infinite–horizon continuous–time optimization problems with saturated constraints.

One main goal of our exercise is to dispense with the interiority condition of Benveniste

and Scheinkman [5]. We additionally show that the path of dual variables is unique, and

derive a version of Bellman’s equation for constrained optimization so that the feedback

control or policy function is a continuous mapping.

As illustrated in our examples above, there are many economic models that violate the

interiority condition of Benveniste and Scheinkman [5] when constraints are saturated.

To circumvent this interiority condition, we postulate three additional assumptions which

seem indispensable. First, we require the path of state variables to lie in the interior of the

domain; for if not, the value function may have kinks or the subgradient may be undefined.

Second, we require a linear independence assumption on the saturated constraints. And

third, we require non–existence of asset pricing bubbles for an associated economy. These

latter explosive paths can be ruled out by some well known free–disposal assumptions or

some contractivity conditions embedded in the saturated constrains.

The analysis presents several differences with respect to the discrete–time case con-

2For instance if g2 is always binding then our monotonicity assumption (NB)(iv) is not satisfied, but
again here we have that Φt(T )e−δT = e(−1−π−δ)T converges to zero.
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sidered in our previous paper [11]. In discrete–time, Bellman’s equation is guaranteed

under general assumptions. (Indeed, this equation holds for bounded, non–continuous

objective functions.) In continuous–time, we need certain smoothness conditions for

Bellman’s equation to be satisfied. Moreover, iterations must proceed over time intervals

rather than over simple dates as every time t has measure zero. Hence, the continuous–

time problem requires the use of infinite–dimensional optimization. We then transform a

problem with constraints into one of unconstrained optimization, and build the analysis

over finite–horizon optimization problems in a Banach–space setting.

Notwithstanding, the continuous-time formulation is more structured since optimal

trajectories are conformed by continuous arcs rather than by a sequence of countable

points. This is reflected in stronger results and sharper examples. For instance, in the

one–dimensional case the value function if differentiable under general conditions. Also,

as illustrated in several examples above the assumptions are usually easier to check in

the continuous–time formulation because a switch from a binding constraint to another

becomes easier to track down in continuous time.

7 Appendix

For a given Banach space E and its dual E>, let 〈 ·, · 〉 be the associated bilinear form

over E × E>: For fixed x ∈ E mapping 〈x, ·〉 defines a continuous linear functional on

E> and for fixed p ∈ E> mapping 〈·, p〉 defines a continuous linear functional on E.

For a bounded linear mapping A : E −→ F between Banach spaces E and F , with

dual spaces E> and F>, respectively, the adjoint is the unique linear mapping A> :

F> −→ E> satisfying

〈x,A>p〉 = 〈Ax, p〉, ∀x ∈ E, ∀p ∈ F>.

Let us now recall some basic definitions from convex analysis. Assume that f : F −→
R ∪ {∞} is an upper semicontinuous, concave function. Then, the effective domain of f

is D(f) = {x ∈ F : f(x) <∞}. Function f is called proper if D(f) 6= ∅. The set

∂f(x) = {p ∈ F> : 〈x− x′, p〉 ≤ f(x)− f(x′) ∀x′ ∈ F}

is the superdifferential of function f at x. An element p ∈ ∂f(x) is called a supergradient

of f at x. The domain of ∂f is D(∂f) = {x ∈ F : ∂f(x) 6= ∅}. The superdifferential of

f is always well defined at interior points of the domain of f , that is intD(f) ⊆ D(∂f).

Let A : E −→ F be a continuous linear operator. Assume that there is x̃ ∈ E such

that A(x̃) ∈ intD(f). Then, the following equality holds for every x ∈ E, see [8], Prop.
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5.7:

∂(f ◦ A)(x) = (A> ◦ ∂f)(A(x)), ∀x ∈ E. (20)

Let us then introduce the families of linear mappings At : Rn × L1
n(It;µt) −→

[L1
n(It;µt)]

2
:

At(x0, ut) = (xt, ut), where xt(s) = x0 +

∫ s

t

ut(r) dr (21)

and Bt : Rn × L1
n(It;µt) −→ Rn:

Bt(x0, ut) = x0 +

∫ T

t

ut(r) dr. (22)

Proposition 7.1 1. Operator At in (21) is linear and continuous. Its adjoint

A>t :
[
L∞n (It;µ

>
t )
]2 −→ Rn × L∞n (It;µ

>
t )

is defined as

A>t (pt, qt) =
(∫

It

pt(s) ds,

∫
Is

pt(r) dr + qt

)
.

2. Operator Bt given in (22) is linear and continuous. Its adjoint

B>t : Rn −→ Rn × L∞n (It;µ
>
t )

is defined as

B>t (y0) = (y0, y0).

Proof. 1. Obviously At is linear. Let us show that it is well defined and continuous.

We have ∫
It

|xt(s)|β(s, t) ds ≤ |x0|µt(It) +

∫
It

β(s, t)

∫ s

t

|ut(r)| dr.

By an application of Fubini’s theorem to the second term in the right-hand side we get∫
It

β(s, t)

∫ s

t

|ut(r)| drds =

∫
It

|ut(r)|
∫
Ir

β(s, t) ds dr

≤ ρ

∫
It

|ut(r)|β(r, t) dr <∞,

since u ∈ L1
n(It;µt), and by assumption

∫∞
r
β(s, t) ds ≤ ρβ(r, t). It is easy to prove from

these inequalities that the mapping is continuous.
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To find the adjoint A>t , consider (x0, u) ∈ Rn×L1
n(It;µt) and (pt, qt) ∈ [L∞n (It;µ

>
t )]2.

Then, using the duality pairings

〈At(x0, u), (pt, qt)〉 = 〈x0 +

∫ s

t

u(r) dr, pt〉+ 〈u, qt〉

= x0

∫
It

pt(s) ds+

∫
It

(∫ s

t

u(r) dr
)
pt(s) ds+ 〈u, qt〉.

Changing the order of integration in the second summand and applying Fubini’s Theorem,

we find

〈At(x0, u), (pt, qt)〉 = x0

∫
It

pt(s) ds+

∫ T

t

u(s)

∫
Is

pt(r) dr ds+ 〈u, qt〉

= 〈x0,

∫
It

pt(s) ds〉+ 〈u,
∫
Is

pt(r) dr〉+ 〈u, qt〉

= 〈(x0, u), A>t (pt, qt)〉.

The result for A>t is thus established.

2. Linearity and continuity of Bt is proved similarly. Moreover, by related computa-

tions we get

〈Bt(x0, u), y0〉 = 〈x0, y0〉+ 〈
∫ T

t

u(s) ds, y0〉 = 〈(x0, u), B>t (y0)〉.

Hence, B>t (y0) = (y0, y0). �

We now write the model in recursive form. This formulation is made possible by the

semigroup property of the discount factor β(T, s)β(s, t) = β(T, t) for every t ≤ s ≤ T ,

and the intertemporal separability of the objective and constraints.

Lemma 7.1 (Dynamic Pogramming Principle) For every t ≤ T <∞, the value function

V (t, x0) = sup

{∫ T

t

β(s, t)`(x(s), ẋ(s)) ds+ β(T, t)V (T, x(T ))

}
s. t. (xt(s), ẋt(s)) ∈ Ω for all s ∈ [t, T ] and xt(t) = x0. Moreover, the optimal solution

is given by the optimal pair (x∗t (s), ẋ
∗
t(s)) to problem (1) over [t, T ].

Now, for T > t let Jt,T : Rn×L1
n(It;µt) −→ R∪ {−∞} be defined as in (3). That is,

Jt,T (x0, u) = Jt,T (At(x0, u)) + β(T, t)V (T,Bt(x0, u)).
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It follows from Lemma (7.1) that the value function

V (t, x0) = sup
u∈L1

n(It;µt)

Jt,T (x0, u). (23)

By assumptions (A1)–(A3), mapping V (t, ·) is well defined and concave over int (X) at

each t, and ∂V (T, x∗t (T )) is not empty for every T .

The following lemma characterizes the superdifferential of Jt,T . In the sequel, pt(Is)

will denote
∫ T
s
pt(r) dr.

Lemma 7.2 Assume that Jt well-defined in a neighborhood of At(x0, u) ∈ intX, and

V is well defined in a neighborhood of xt(T ). Moreover, the solution At(x0, u) always

belongs to the interior of X. Then,

∂Jt,T (x0, u) =
{(
− pt(It)+β(s, t)ξt,T ,−pt(Is)− qt + β(s, t)ξt,T

)
:

− (pt(s), qt(s)) ∈ β(s, t)∂(L ◦ At)(x0, u), ξt,T ∈ ∂V (T, x(T )) a.e.
}
.

Proof. By the concavity of these functions, we must have

∂Jt,T = ∂(Jt,T ◦ At) + β(T, t)∂(V (T, ·) ◦Bt).

Also, by (20)

∂(Jt,T ◦ At) = A>t ◦ ∂Jt,T ◦ At
and

∂(V (T, ·) ◦Bt) = B>t ◦ ∂V (T, ·) ◦Bt.

Combining Lemmas 3.1 and 7.1, an element of A>t (∂Jt,T (At(x0, u))) must be of the form

(−pt(It),−pt(Is) − qt), with −(pt(s), qt(s)) ∈ β(s, t)∂L
(
At(x0, u)

)
, as well as a typical

element of the set β(T, t)B>t (∂V (T,Bt(x0, u))) must be of the form β(T, t)(ξt,T , ξt,T ) with

ξt,T ∈ ∂V (T, x(T )). �

Proof of Lemma 3.2.

Note that at the optimal solution At(x0, ẋ
∗
t ) all the conditions of Lemma 7.2 are satis-

fied. By Proposition 3.1 we then have q0 ∈ ∂V (t, x0) if and only if (q0, 0) ∈ ∂Jt,T (x0, ẋ
∗
t ).

Now, the proof follows as a straightforward consequence of the above characterizations

of the subdifferential of Jt,T at (x0, ẋ
∗
t ).

More precisely, by Lemma 7.2 we must have

qt(s) = −
∫ T

s

pt(r) dr + β(T, s)ξt,T
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with

−(pt(r), qt(r)) ∈ β(r, t)∂L (x∗t (r), ẋ
∗
t (r)) a.e. t ≤ r ≤ T .

�

Proof of Proposition 3.3. Under the stated non–negativity conditions it is easy to

see that at every point x0 the superdifferential ∂V (t, x0) must be composed of non–

negative numbers. Then this optimization problem can be reconverted into an asset

pricing model with real assets along the lines of [16]; see especially their footnote 10.

This asset pricing model considers a matrix of returns – which in this case it is given

by the vector
(
D1`(x

∗
t (s), ẋ

∗
t (s)) + G∗t (s)D2`(x

∗
t (s), ẋ

∗
t (s))

)
– and a non–negative ma-

trix of transformation of securities – which in this case it is given by matrix Φt(s). As

it is clear from Theorem 3.1 we only need to focuss on boundary solutions at t = 0,

which can be identified with long–lived assets. Then, for every optimal path (x∗t , ẋ
∗
t )

we can generate a sequence of asset prices qt(s) ∈ ∂V (s, xt(s)) so that the asset pricing

equation qt(s) = −
∫ T
s
pt(r) dr + β(T, t)ξt,T holds for ξt,T ∈ ∂V (T, xt(T )). By the proof

of Theorem 3.2 this equation can be rewritten as qt(s) =
∫ T
t

Φt(s)
(
D1`(x

∗
t (s), ẋ

∗
t (s)) +

G∗t (s)D2`(x
∗
t (s), ẋ

∗
t (s))

)
β(s, t)ds + Φt(T )β(T, t)ξt,T . We can also introduce a single con-

sumption good at each date with relative price equal to unity, and assume that the

marginal utility of consumption at the optimal point is equal to one. Asset holdings can

be defined in a rather arbitrary way, as the agent can be endowed with new securities at

each date so as to replicate the optimal path (x∗t , ẋ
∗
t ). Hence, under the stated assump-

tions it follows from [16] that the bubble term B0 = 0. �

The next proposition can be found in Aubin (1993, Problem 22).

Proposition 7.2 Let H be a proper, concave, upper semicontinuous function from Rn×
Rm to R ∪ {−∞}. Let

H(x, q) = sup
u∈Rm

{f(x, u) + uq}.

Then, x 7→ H(x, q) is a concave mapping for a fixed q, and q 7→ H(x, q) is a convex

mapping for a fixed x. Moreover, the following conditions are equivalent

−(p, q) ∈ ∂f(x, u)

−p ∈ ∂xH(x, q) and u ∈ ∂qH(x, q) .
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Proof of Theorem 4.1. Suppose that the pair (x∗t , qt) satisfies the Hamiltonian

inclusions (18) with x∗t (t) = x0. It is well known that this condition along with (NB)

and (19) constitute a sufficient criterium for optimality of (x∗t , ẋ
∗
t ) for problem (1). For

instance, the proof given in Benveniste and Scheinkman [5] can be easily adapted to our

framework; we do not repeat the details here. Let us then assume that (x∗t , ẋ
∗
t ) is an

optimal path with two associated paths of dual variables qt and q′t satisfying both the

Hamiltonian inclusions (18) and the transversality condition (19). For x0 fixed, let

VT (t, x0) = max

∫ T

t

L (xt(s), ẋt(s))β(s, t) ds+ qt(T ) · xt(T )

subject to x(t) = x0,

(24)

and

V ′T (t, x0) = max

∫ T

t

L (xt(s), ẋt(s))β(s, t) ds+ q′t(T ) · xt(T )

subject to x(t) = x0.

(25)

Note that the added linear parts qt(T )xt(T ) and q′t(T )xt(T ) are chosen so that (x∗t , ẋ
∗
t )

with x∗t (t) = x0 is the optimal solution for both optimization problems. We can readily see

that functions VT (t, x0) and V ′T (t, x0) are concave; moreover, by the same arguments as in

Lemma 3.2 these functions are of class C1 in x. By the transversality condition (19), the

sequences of functions {VT (t, x0)}T≥0 and {V ′T (t, x0)}T≥0 converge pointwise to function

V (t,X0) as T → ∞. Hence, the sequences of derivative functions {DVT (t, x0)}T≥0 and

{DV ′T (t, x0)}T≥0 converge uniformly to function DV (t, x0) on every compact set K ⊂
int(X) [see [13], Theorem 25.7]. By Remark 3.2 the convergence of these derivatives to a

unique common value DV (t, x0) implies that qt(T ) = q′t(T ) Therefore, we get uniqueness

of the path of dual variables qt. �
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[7] Dmitruk, A. V., and N. V. Kuz ḱina, “Existence theorem in the optimal control

problem on an infinite time interval,” Mathematical Notes 78, 466–480, 2005.

[8] Ekeland, I., and R. Témam, Convex Analysis and Variational Problems, SIAM,

New York, New York, 1999.

[9] Fleming, W. H., and R. W. Rishel, Deterministic and Stochastic Optimal

Control. Springer–Verlag, New York, 1975 .

[10] Goebel, R., “Regularity of the optimal feedback and the value function in convex

problems of optimal control,” Set–Valued Analysis 12, 127–145, 2004.

[11] Rincón–Zapatero, J. P., and M. S. Santos, “Differentiability of the value

function without interiority assumptions,” Journal of Economic Theory, 144, 1948–

1964, 2009.

[12] Rockafellar, T., “Integrals which are convex functionals,” Pacific Journal of

Mathematics 24, 525–539, 1968.

26



[13] Rockafellar, T., Convex Analysis. Princeton University Press, Princeton: N. J.,

1970.

[14] Rockafellar, T., “Generalized Hamiltonian equations for convex problems of

Lagrange,” Pacific Journal of Mathematics 33, 411–427, 1970.

[15] Rockafellar, T., “Integrals which are convex functionals, II,” Pacific Journal of

Mathematics 39, 439–469, 1971.

[16] Santos, M. S., and M. Woodford, “Rational Asset Pricing Bubbles,” Econo-

metrica 65, 19–58,1997.

27



&%
'$

q0

∂V (t, x0)

&%
'$
ξt,T

∂V (T, x∗t (T ))

q′0

ξ′t,T

Figure 1: The flow mapping between ∂V (t, x0) and ∂V (T, x∗t (T )).
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Figure 2: A feasible set where (LI) does not hold
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Figure 3: Feasible set Ω in the optimal growth model

30


