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In this paper we introduce a new type of positive-breakdown regression method, called

a generalized S-estimator (or GS-estimator), based on the minimization of a generalized

M-estimator of residual scale. We compare the class of GS-estimators with the usual S-

estimators, including least median of squares. It turns out that GS-estimators attain a

much higher e�ciency than S-estimators, at the cost of a slightly increased worst-case bias.

We investigate the breakdown point, the maxbias curve and the in
uence function of GS-

estimators. We also give an algorithm for computing GS-estimators, and apply it to real

and simulated data.
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1 INTRODUCTION

In the linear model one often has to cope with outliers, which can make the classical least

squares (LS) estimator highly unreliable. In fact, even a single outlier can destroy the LS

estimate. Many alternative methods have been proposed. Very often used are M- and GM-

estimators (see for example Hampel et al 1986), but their breakdown point goes down to zero

when the dimension increases. The least median of squares (LMS) and least trimmed squares

(LTS) estimators (Rousseeuw 1984) have a 50% breakdown point but a low asymptotic

e�ciency. A generalization is given by S-estimators (Rousseeuw and Yohai 1984), which

can attain an e�ciency up to 33% (H�ossjer 1992). Both MM-estimators (Yohai 1987) and

� -estimators (Yohai and Zamar, 1988) can attain arbitrarily high e�ciency without losing

their 50% breakdown point, but they pay for this with an increased bias. Note that MM-

estimators need a high-breakdown start, for which we can use one of the estimators discussed

below.

In this paper we introduce a new class of regression estimators, called generalized S-

estimators (or GS-estimators), which can have a 50% breakdown point like S-estimators,

but attain a much higher e�ciency. As a special case of GS-estimators we propose the least

quartile di�erence (LQD) estimator, which we de�ne as

�̂ = argmin
�

Qn(r1; : : : ; rn); (1.1)

where ri is the residual of the i th case, and

Qn = fjri � rjj; i < jg(hp
2
):(n

2
) (1.2)

is a scale estimator proposed by Rousseeuw and Croux (1993). Expression (1.2) means that

Qn is the
�
hp
2

�
-th order statistic among the

�
n
2

�
elements of the set fjri � rjj; i < jg: Here,

hp = [(n + p + 1)=2] where p is the number of regression parameters. It turns out that

the objective function (1.2) can be computed very quickly by using an e�cient algorithm.

Therefore, the LQD can easily be implemented by adapting an existing LMS program. The

gaussian e�ciency of the LQD regression is shown to be 67.1%, which is more than twice

the e�ciency of any S-estimator with 50% breakdown point. Moreover, the LQD does not

require the choice of tuning constants.

An important property of GS-estimators is that their objective function does not depend

on the intercept term. (The intercept can be estimated afterwards, with high statistical
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e�ciency and consuming negligible computation time.) Another advantage of GS-estimators

is that they are well-suited for models with an asymmetric error distribution, unlike the usual

S-estimators of which the objective function only depends on ri through jrij, hence positive
residuals are attached the same importance as negative residuals of the same size. Therefore,

GS-estimators are more generally applicable. Note that the pairwise di�erences ri� rj have
a symmetric distribution even when the ri themselves do not.

2 ROBUSTNESS AT FINITE SAMPLES

We will work with a linear model denoted as

yi = �1xi1 + : : :+ �p�1xi;p�1 + � + errori for i = 1; : : : ; n: (2.1)

The parameter to be estimated is � = (�; �) 2 IRp, where � 2 IRp�1 is the slope and � is the

intercept. Our observations are of the form zi = (xi; yi) = (ui; 1; yi) 2 IRp+1. This means

that the actual explanatory variables are combined in a vector ui 2 IRp�1: (We require of

course that p � 2.) As usual, we assume that n=p > 5 to avoid the curse of dimensionality.

We de�ne a generalized S-estimator �̂ as

�̂ = argmin
�

sn(�); (2.2)

where sn(�) is based on the residuals ri = yi � �tui � � through the equation

 
n

2

!�1X
i<j

�(
ri � rj
sn(�)

) = kn;p: (2.3)

To avoid having multiple solutions (or no solutions) it is better to de�ne

sn(�) = supfs > 0;

 
n

2

!�1X
i<j

�(
ri � rj
s

) � kn;pg: (2.4)

Note that sn(�) does not depend on � because ri � rj doesn't. We will require that:

(R) The function � is even, non-decreasing on the positive numbers, and continuous at 0

with �(0) = 0. There are only a �nite number of points where � is not continuous or

non-di�erentiable. Furthermore 0 < �(1) <1, and �(c) = �(1) for some c > 0.

We will denote limn!1 kn;p = k.
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Because sn(�) is independent of the intercept, the latter has to be estimated afterwards.

We can estimate � by a location estimate based on the numbers ri(�̂; 0) = yi � �̂
t
ui, for

instance by using the median or a more e�cient 50% breakdown estimator.

We will pay particular attention to the GS-estimator given by

�(x) = I(jxj � 1) and kn;p = (

 
n

2

!
�
 
hp
2

!
+ 1)=

 
n

2

!

with hp = [(n + p + 1)=2]: Then we have that sn(�) = Qn(�) = fjri � rjj; i < jg(hp
2
):(n

2
):

(One should multiply Qn(�) with a certain constant factor to make it consistent as a scale

estimator, but that is immaterial to our current goal of estimating �.) Note that k = 3=4.

The scale estimator Qn was discussed in Rousseeuw and Croux (1993). We will denote the

corresponding regression estimator (1.1) as LQD; because the objective function is approx-

imately the �rst quartile of the pairwise di�erences of the residuals. It is instructive to

compare this with the LMS objective function, which is given by

fjrij; 1 � i � nghp:n: (2.5)

We will prove that the LQD regression always exists, and has the exact �t property and

maximal breakdown point. Using those facts, we will show the existence, exact �t property,

and maximal breakdown point for a whole class of generalized S-estimators.

Throughout this section we will assume the property:

(H) no
�
hp
2

�
of the di�erences (ui � uj; yi � yj) lie on the same vertical hyperplane in IRp.

By "vertical hyperplane" we mean a hyperplane containing (0; 0) and (0; 1): Note that this

condition is stronger than requiring that there are no hp observations (xi; yi) lying on a

vertical hyperplane in IRp+1. In Figure 1a we see that no hp observations (ui; yi) are lying on

the same a�ne hyperplane, but nevertheless condition (H) is not satis�ed. If the observations

follow a continuous distribution, (H) has probability 1.

Theorem 1. Under condition (H), there always exists a solution to argmin� Qn(�):

(All proofs are given in the appendix.) In order to establish the breakdown point we need

another regularity condition.

De�nition: We say that the di�erences of the ui are in general position if no
�
p
2

�
of the

ui � uj with i < j belong to the same hyperplane in IRp�1.
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If the di�erences of the ui are in general position, then also the ui themselves are in

general position. The latter means that no p of the ui lie on the same a�ne hyperplane in

IRp�1, which is equivalent to saying that no p of the xi lie on the same hyperplane in IRp.

In Figure 1b we have a situation where neither the ui nor their di�erences are in general

position, while in Figure 1c we see that it can happen that the ui themselves are in general

position but their di�erences are not.

Note that this condition on the di�erences ui � uj is more stringent than the condition

on the individual ui, but not much more. If the ui have a continuous distribution, both

conditions hold almost surely. From a semantic point of view, the ui being in \general"

position also precludes such linear relations between the ui �uj (actually, in computational

geometry the phrase "general position" is often interpreted in this stronger sense). When a

data set contains a few exceptions to general position this does not mean that GS-estimators

can no longer be used, but merely that the expression in Theorem 2 below will be slightly

reduced.

Let us now look at the �nite-sample breakdown point (Donoho and Huber, 1983). The

breakdown point of an estimator T at a sample Z is de�ned as

"�n(T;Z) = minfm=n; sup
Z0

jT (Z)� T (Z 0)j =1g; (2.6)

where Z 0 is obtained by replacing any m observations by arbitrary points. (We will use for

j:j the euclidean norm.)

Theorem 2. If the di�erences of the ui are in general position, then the breakdown point

of the LQD estimator is given by "�n(�̂; Z) = ([(n� p)=2] + 1)=n; which is the maximal value

for any regression equivariant estimator.

From the proof it follows that we obtain the maximal breakdown point for any objective

function fjri � rjj; i < jgq:(n
2
) where 

[(n+ p)=2] � 1

2

!
+ p� 1 � q �

 
[(n+ p + 1)=2]

2

!
: (2.7)

We have chosen to de�ne the LQD based on the largest rank
�
hp
2

�
where hp = [(n+p+1)=2],

which is also in accordance with the rank hp used in the LMS objective (2.5).

From the general relation between the breakdown point and the exact �t property

(Rousseeuw and Leroy 1987, page 123) the next result immediately follows.
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Corollary. If at least hp = [(n+p+1)=2] of the observations satisfy yi = �t
0ui+�0 exactly

and the di�erences of their ui are in general position, then �̂ = �0 no matter what the other

observations are.

Remark 1: It is easy to see that if we take a high-breakdown estimator �̂ for the intercept,

with "�n(�̂; Y ) � ([(n � p)=2] + 1)=n for any univariate sample Y , then we also have the

maximal breakdown point and the exact �t property for �̂ = (�̂; �̂).

Remark 2: It is not advisable to use GS-estimators for �tting a zero-intercept model

to data that were actually generated with an intercept, because they estimate the slope of

a point cloud regardless of the position of the origin. For instance, let us look at Figure

1d. Applying LQD yields an acceptable slope estimate, indicated by the dotted line, but

because of the zero-intercept model the actual LQD regression (solid line) does not �t the

data points. Note, however, that a study of the LQD-based residuals, all having the same

sign and size, does reveal immediately that a zero-intercept model is inappropriate for these

data (model misspeci�cation).

Now we return to GS-estimators of the type (2.2) with general �-function.

Theorem 3. The existence, the maximal breakdown point and the exact �t property hold for

GS-estimators under the same conditions as for the LQD when

kn;p
�(c)

= (

 
n

2

!
�
 
hp
2

!
+ 1)

, 
n

2

!

which implies that k=�(c) = 3=4.

The most popular choice for a �-function is the biweight, �(x) = min(3x2=c2 � 3x4=c4 +

x6=c6; 1): If we choose c = 0:9958 (and thus k = 0:75) we obtain a 50% breakdown regression

estimator which we will call the biweight GS-estimator. This estimator is consistent (H�ossjer,

Croux and Rousseeuw 1993).

The usual S-estimators, which can be de�ned by the objective function,

sn = supfs > 0;
1

n

nX
i=1

�(
ri
s
) � kn;pg; (2.8)

have maximal breakdown point if kn;p=�(c) = (n � hp + 1)=n: Therefore we obtain the

maximal breakdown point if k=�(c) = 1=2, where k = limn!1 kn;p. The S-estimator with

biweight �-function and 50% breakdown point (hence, c = 1:547) will in this paper be called

the biweight S-estimator.
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3 MAXBIAS CURVES

In this section we follow the approach of Martin, Yohai and Zamar (1989). Because the

maxbias curve is an asymptotic notion, we �rst have to determine the functional corre-

sponding to a GS-estimator. We will add to condition (R) that �(1) = 1 (this is only a

normalization) and we will drop the condition that \� is constant for large x". For any

distribution F we de�ne the scale functional

s(F ) = supfs > 0; EF�(
r1 � r2
s

) � kg; (3.1)

where r1 and r2 are i.i.d. according to F and 0 < k < 1: We denote by s(�;K), where

K is the joint distribution of (u; y), the same scale functional evaluated at the distribution

of the residuals r(�) = y � �tu � �, where we note that this scale does not depend on �.

The corresponding GS-estimator then has the functional version T given by s(T (K);K) =

inf� s(�;K); hence T is regression and a�ne equivariant.

Suppose that our model distribution K0 of (u; y) is elliptical about the origin. We

may assume w.l.o.g. that T (K0) = 0 due to regression equivariance. Denote by G0 the

distribution of the ui and by F0 that of the errors. Consider the contamination neighborhood

V" = fK;K = (1�")K0+"K�g; where K� can be any distribution. Then the maxbias curve

is given by

B"(T ) = supfjT (K)j; K 2 V"g: (3.2)

The asymptotic breakdown point may then be de�ned as "� = inff"; B"(T ) =1g: Suppose
that:

(G) G0 is spherical, PG0
(ut�) = 0 for all � 6= 0 in IRp; and for all � the distribution of

�tu is unimodal;

(F) F0 has a unimodal, continuous and symmetric density.

De�ne the functions

g(s;�) = EK0�K0
�(
y1 � y2 � �t(u1 � u2)

s
) and ~g(s;�) = EK0

�(
y � �tu

s
): (3.3)

SinceG0 is spherical, g and ~g only depend on j�j and s. It holds that g and ~g are continuous,

strictly increasing in j�j and strictly decreasing in s (for s > 0). This can be proven as in

Lemma 3.1 of Martin, Yohai and Zamar (1989) by using the fact that the distributions of

u1�u2 and y1�y2 also satisfy (G) and (F). Therefore we may de�ne g�11 (�; j�j) as the inverse
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of g w.r.t. s, and g�12 ("; s) as the solution j�j of ~h("; s; j�j) = k, where k = limn!1 kn;p was

de�ned below (2.4) and

~h("; s; j�j) = (1� ")2g(s; j�j) + 2"(1� ")~g(s; j�j) (0 < " < 1): (3.4)

By means of two lemmas, given in the appendix, we now obtain the maxbias curve:

Theorem 4. Under the conditions (G) and (F) above, we have

B"(T ) = g�12 ("; g�11 (
k � 2" + "2

(1 � ")2
; 0)) for " � min(

p
1� k; 1�p1� k)

= 1 elsewhere:

In the case were (u; y) is multivariate normal N(0; Ip) we obtain

~g(s; 
) = h(

p
1 + 
2

s
) and g(s; 
) = h(

q
2(1 + 
2)

s
);

where h(�) = E�(�u) for u � N(0; 1): Note that h(�) is increasing and continuous for � > 0,

so that h�1 is well-de�ned. We can compute B"(T ) for any " < "� by �rst computing

s1 =
p
2
.
h�1(

k � 2"+ "2

(1� ")2
):

Then B"(T ) is given by the solution of the following equation in 
:

(1� ")2h(

q
2(1 + 
2)

s1
) + 2"(1� ")h(

p
1 + 
2

s1
) = k:

In the special case where � is a step function �(x) = I(jxj > c), we �nd that h(�) =

2(1 ��(c=�)) and thus h�1(t) = c=��1(1� t=2):

Remark 1: Theorem 4 implies that the breakdown point becomes

"� = min(
p
1 � k; 1�p1 � k): (3.5)

So for the step function �(x) = I(jxj > c) with PF0(y1 � y2 � c) = 1 � k=2, yielding the

(1 � k)th quantile of the pairwise di�erences of residuals, we obtain (3.5). This gives the

maximal breakdown point "� = 50% when k = 3=4; which corresponds to the LQD:

Remark 2: The derivative of the maxbias curve at 0 is in�nite, hence the gross-error

sensitivity of GS-estimators is in�nite. This is a property of all regression estimators with

dimension-free maxbias curve (He and Simpson, 1993). However, as Yohai and Zamar (1992)
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have proposed, one could de�ne a modi�ed gross-error-sensitivity as 
�� = lim"#0B"(T )=
p
":

In the case of a multivariate normal distribution, we obtain 
�� =
�
2
p
2(1� h(1))

.
h0(
p
2)
�1=2

:

For step functions �(x) = I(jxj > c) we obtain 
�� =
�
2
p
2(2�(c) � 1)

.
(c�(c=

p
2))

�1=2
where c =

p
2��1(1 � k=2). In particular, for k = 0:75 we obtain 
��(LQD) = 2:399. One

can compare this with 
��(LMS) = 2:160: For the biweight GS we obtain 
�� = 2:412, and

for the biweight S-estimator 
�� = 2:267.

Figure 2a plots the maxbias curve of the LQD estimator, together with those of the LMS

and the biweight S- and GS-estimators. We see that the bias of the LQD estimator is only

slightly larger than that of the biweight S, whereas we will see that its e�ciency is much

better (67% instead of 28%). Switching from LQD to the biweight GS, which has a smooth

� function, again increases the bias only a little (but the e�ciency gain will also be small).

In Figure 2a we also see the maxbias curve of the TAU67-estimator (Yohai and Zamar,

1988). The latter estimator is based on two biweight �-functions, the �rst with c = 1:547

to obtain a 50% breakdown point, the second with c = 3:26 to obtain a gaussian e�ciency

of 67.1%. (We use the TAU67 estimator here for comparison with the LQD, which has the

same e�ciency.) We see that the maxbias curve of TAU67 is very close to that of the LQD.

Furthermore 
��(TAU67)=2.442, thus for small " the LQD behaves slightly better. (Note

that the maxbias curve of a � -estimator with 95% e�ciency is somewhat higher.)

In view of Remark 1, we note that there are often two di�erent step functions � which yield

GS-estimators with the same breakdown point. For example, k1 = 0:5 (corresponding with

the median interpoint distance) and k2 = 1�(1�p0:5)2 � 0:91 both yield a 29% breakdown

estimator. It is interesting to see that their maxbias curves behave rather di�erently (see

Figure 2b): the smaller value of k (which corresponds with the higher quantile) is preferable.

Note that the maxbias curve of the LQD(0:5)-estimator is very close to the LQD for up to

about 25% of contamination. Afterwards the LQD(0.5) bias increases rapidly, while that of

the LQD increases more slowly.

A referee asked to compute the breakdown rate (BR), as de�ned by Mazzi (1991) and

Zamar (1992). For a 50% breakdown estimator T , the BR is given by

BR(T ) = lim
""0:5

B"(T )

B"(LMS)
: (3.6)

Following the proofs and computations in Mazzi (1991), we obtain that BR(LQD)=0:5+
p
2

in the gaussian case. The breakdown rate of the biweight S- and GS-estimators, and also of
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TAU67, equals in�nity. Therefore, the maxbias of the LQD is lower than that of the biweight

S and TAU67 in a neighborhood of the breakdown point.

4 INFLUENCE FUNCTION AND EFFICIENCY

The in
uence function (see Hampel et al 1986) describes the (standardized) e�ect of a

single outlier on the estimator. It is an asymptotic notion, based on the same vector-valued

functional T (K) as in the previous section. Let K0 be a �xed distribution representing the

central model, and let K" = (1� ")K0+ "�u;y where �u;y is the distribution which puts all

its mass at the point (u; y): Then the in
uence function is de�ned as

IF (u; y) = lim
"#0

T (K")� T (K0)

"
: (4.1)

Another de�nition is given by a von Mises expansion: if there exists a function IF : IRp�1 �
IR! IRp�1 (which depends on the estimator and underlying distribution K0) such that

p
n(�̂n � �0 �

1

n

nX
i=1

IF (ui; yi)) = oP (1); (4.2)

then we call IF the in
uence function. Under regularity conditions both de�nitions coincide.

The latter de�nition has the advantage that it readily implies that, if E[IF (u; y)] = 0 and

EjIF (u; y)j2 <1; the estimator �̂n is consistent and asymptotically normal with asymptotic

covariance matrix

V = E[IF (u; y)IF (u; y)t]: (4.3)

H�ossjer, Croux and Rousseeuw (1993) proved the asymptotic normality of GS-estimators,

with the function IF speci�ed below, under the conditions:

(G') The distribution of the ui satis�es EG0
[u] = 0 and EG0

juj3 < 1; and EG0
[uut] is

positive de�nite;

(F') The error distribution F0 has a unimodal density f , which is twice di�erentiable with

a bounded second derivative.

We may assume (due to equivariance) that T (K0) = �0 = 0 and that s(0;K0) = 1, in which

case the in
uence function is given by the following theorem:
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Theorem 5. If the model distribution K0 satis�es assumptions (G') and (F'), and if �

satis�es (R), then the in
uence function of the generalized S-functional is given by

IF (u; y) =
 (y)

EF0 [ 
0
(y)]

(EG0
[uut])�1u; (4.4)

where  (y) = EF0[ (y � Y )] and  = �0:

From Formula (4.3) we can then compute asymptotic covariances. The e�ciency of a

GS-estimator at the gaussian model is thus e =
�R
 
0
(y)d�(y)

�2.R
 (y)2d�(y) : If f is

symmetric, the in
uence function of the LQD estimator becomes

IF (u; y) = �f(y � c)� f(y + c)

2
R
f 0(c+ y)f(y)dy

(EG0
[uut])�1u; (4.5)

where PF0(y1 � y2 � c) = 5=8. In Figure 3a we made a plot of this in
uence function when

(u; y) � N(0; I2). We see that for �xed u, the in
uence function is redescending (in fact,

it goes exponentially to zero for y tending to in�nity). On the other hand, the function

IF (�; y) is unbounded in u, hence the overall in
uence function is not bounded. From (4.5)

it follows that the total in
uence is small when jyj is large, except when juj is exponentially
large compared to jyj. In the latter situation, the in
uence function is large at a point (u; y)

lying in a direction with a very small inclination, whose e�ect on the actual estimated slope

is therefore negligible.

For the biweight GS-estimator we obtain a very similar plot (see Figure 3b). This il-

lustrates that the LQD estimator, with its non-smooth �-function, does have an in
uence

function very similar to that obtained with a smooth �-function. There is also hardly a gain

in e�ciency: 68.4% for the biweight GS compared to 67.1% for LQD. This is very di�erent

from the situation for usual S-estimators, where the quantile objective functions (like LMS)

yield estimators converging at a lower rate.

In Figure 3c we see the in
uence function of the usual biweight S-estimator. It has the

same shape as the GS-estimator, but it is steeper. That is the reason why its e�ciency

is lower (28.7%). In Figure 3d we plotted the in
uence function of the LTS, which is still

steeper and corresponds to an even lower e�ciency.

One might argue that the generalized S-estimator should be compared to an S-estimator

with ~�(y) = E�(y � Y ) � E�(Y ) for its �-function. This indeed yields an S-estimator with

high e�ciency, but with a lower breakdown point and a higher maxbias curve.
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Formula (4.4) also holds for some unbounded � functions. If we take for example �(y) = y2

then we obtain the least squares estimator (the objective function is the standard deviation).

This estimator is extremely sensitive to outliers in u and in y. If we take �(y) = jyj we obtain
Gini's average di�erence as objective function, corresponding to Wilcoxon scores. From

Figure 4a we see that this estimator protects against vertical outliers, but not at all against

bad leverage points. The latter estimator can be seen as a smoothed version of the Least

Absolute Deviations estimator (L1 estimator), which corresponds to a plain S-estimate with

the same �-function. Its in
uence function is plotted in Figure 4b. Again, the e�ciency

increases (from 63.6% to 95.5%) when working on the pairwise di�erences instead of the

individual residuals. Finally, in Figure 4c we see the in
uence function of the optimal robust

95% e�cient Mallows estimator (see Hampel et al 1986), which is bounded. Analogously,

Figure 4d gives the IF of the 95% e�cient Schweppe estimator.

5 COMPUTATION AND SIMULATION

In order to compute a GS-estimator we have to minimize the objective function s(�), where

� is a p-dimensional vector. There has been a substantial amount of research on algorithms

for S-estimators, especially the LMS. The same kind of techniques can be used for computing

GS-estimators, including the LQD estimator.

The basic scheme for computing S-estimators is the p-subset algorithm (Rousseeuw and

Leroy 1987), which minimizes the objective function over all �J which correspond to �tting

a subset J with p observations (out of the n available points). Note that the p-subset version

of the LMS is itself a high-breakdown regression estimator (Rousseeuw and Bassett 1991),

which is also true for the LQD. Therefore we can use

�̂
�
= argmin

�
J

Qn(yi � �t
Jui); (5.1)

where �J is determined by the p-subset J . If we use the e�cient algorithm of Croux and

Rousseeuw (1992) to compute Qn then this objective function merely needs O(n log n) oper-

ations, yielding an overall computation time of O(np+1 log n) if all p-subsets are considered.

By comparison, the exhaustive p-subset algorithm for LMS needs O(np+1) time, and also

needs O(np+1 log n) if the intercept is adjusted in every step. Therefore the LQD needs no

more computation time than the LMS, while achieving a much better statistical e�ciency.

11



Note that the p-subset algorithm can be modi�ed to run much faster (this holds for all

estimators of this type, including LMS, LQD, S- and GS-estimators). The idea is not to

consider all
�
n
p

�
= O(np) possible p-subsets, but instead to use only O(n) such subsets ac-

cording to a particular design (Rousseeuw 1993) which ensures that the regression estimator

still has the deterministic 50% breakdown point. The resulting LQD algorithm needs only

O(n2 log n) operations.

Computing the objective function of the biweight GS takes O(n2) operations (using a

�xed number of iterations to solve equation (2.3)), which is more time consuming than the

LQD. One can reduce the actual computation time, although it remains O(n2), in the

following way. When considering m trial values �J we don't need to compute s(�J) each

time. Indeed, suppose that ~s is the currently best scale. Generalizing an observation of

Yohai and Zamar (1991), we then have

s(�J ) � ~s , X
i<j

�(
ri � rj

~s
) < kn;p

 
n

2

!
: (5.2)

Therefore, we only have to compute a new scale estimate when (5.2) holds. This happens

O(logm) times. At each new best estimate ~� it is possible to carry out some local improve-

ment as in Ruppert (1992). The smoothness of our objective function indicates that Newton

steps can be useful. For this, we compute

�(�) =
s(�)

d
��1

X
i<j

 (
ri � rj
s(�)

)(ui � uj); (5.3)

where �k;l =
P

i<j(ui;l � uj;l)(ui;k � uj;k)t and d = E 0(y1 � y2) = E� 
0(y=

p
2). We search

for the smallest value of k(� 10) for which s(�+2�k�(�)) < ~s; if there is any. An additional

trick is to use

(ri � rj)(� + 2�(k+1)�(�)) =
1

2
(ri � rj)(�) +

1

2
(ri � rj)(� + 2�k�(�)) (5.4)

to speed up the computation. Some experiments with this algorithm show that the objective

function will be computed only a few times. The numberm is obtained by a tradeo� between

robustness and speed of computation. When computation time permits, carrying out the

Newton steps at each �J is even more accurate.

Remark: Stromberg (1993) has given an exact O(np+2) algorithm for the LMS, which

can be generalized to the LQD estimator because

min
�
jri � rjj(hp

2
) = min

�
min
J2Ch

max
(i;j)2J

jri � rjj = min
J2Ch

min
�

max
(i;j)2J

jri � rj j;

12



where Ch = fJ � f1; : : : ; ng2; for all (i; j) 2 J : i < j and #J =
�
hp
2

�
g: Thus we have to

compute Chebyshev �ts �c on f(ui�uj; yi�yj); (i; j) 2 Jg for all possible J . Only at these
values �c do we have to compute the objective function, which needs O(n log n) operations.

Now using a theorem of Cheney (1966, page 36), it is su�cient to look at Chebyshev �ts

on collections of p observations (ui � uj ; yi � yj) with i < j. Because the computation time

for such a �t only depends on p, we obtain a total time of O(n2p+1 log n), which of course is

only practical for small values of n and p.

The data in Table 1 were obtained from T. Vos of the EPFL in Lausanne (Switzerland).

The experiment went as follows. Labeled nitrogen (nitrogen-15) was administered to barley

plants in the form of fertilizer (NH4NO3) in order to study the nitrogen cycle. The nitrogen

is taken up by the plants and converted, after a certain time, to organic material in the soil.

The purpose of the study was to explain the organic nitrogen by means of other variables.

The variables included in the study are: time (in days) after addition of nitrogen (x1),

nitrogen content in mineral form in the soil (x2), nitrogen content in the plants (x3), and

nitrogen content in organic form in the soil (y).

Following Rousseeuw and van Zomeren (1990), we made a diagnostic plot (Figure 5a)

of the standardized robust residuals ri=Q(r1; : : : ; rn) obtained by the LQD method, versus

robust distances RDi obtained with the MVE estimator. In this plot we can identify 6

good leverage points and 2 bad leverage points. The latter (cases 13 and 14) stand out

considerably. (Note that also a designed experiment can yield leverage points!) A diagnostic

plot of LS residuals versus Mahalanobis distances (see Figure 5b) does not reveal outliers or

leverage points. It would be possible to apply LS regression to this data without cases 13

and 14 (while keeping the good leverage points, since they augment the e�ciency).

We also performed a small simulation study based on 1000 samples f(ui; yi); i = 1; : : : ; ng
from a bivariate gaussian distribution with unit covariance matrix, for various sample sizes

n. For each sample we computed the LMS, LTS, LQD, S-, GS-, and TAU67 estimators

by means of the exhaustive p-subset algorithm. Table 2 lists the resulting �nite-sample

e�ciencies of these estimators, where those of the scale estimators were normalized as in

Rousseeuw and Croux (1993).

For the slope, we note that LQD outperforms both LMS and LTS, the gain being larger

for increasing n. The �nite-sample e�ciencies of LMS, LTS, and LQD all converge quite

13



Table 1: Nitrogen Data Set with Robust Distances of (xi1; xi2; xi3) based on the MVE, as

well as Standardized Residuals ri=�̂ from the LQD Regression

i xi1 xi2 xi3 yi RDi ri=�̂

1 0.00 61.45 0.00 12.18 0.72 0.46

2 0.00 58.11 0.01 6.57 0.63 -0.50

3 0.00 65.35 0.01 6.99 0.84 -0.29

4 1.00 47.94 0.22 10.69 0.46 -0.07

5 1.00 57.85 0.13 13.75 0.63 0.60

6 1.00 35.23 0.28 10.84 0.61 -0.29

7 4.00 44.12 0.40 15.94 0.41 0.54

8 4.00 33.19 0.39 9.41 0.52 -0.71

9 4.00 24.18 0.40 17.81 0.77 0.46

10 19.00 25.03 2.40 17.46 0.84 -0.25

11 19.00 30.61 3.43 23.78 0.46 0.92

12 19.00 23.28 3.67 18.84 0.84 0.00

13 49.00 2.76 29.67 57.08 23.00 5.43

14 49.00 1.87 26.75 48.11 19.88 3.84

15 49.00 1.04 23.59 23.26 16.52 -0.29

16 80.00 0.87 26.08 35.37 13.38 0.17

17 80.00 0.44 31.00 28.82 18.64 -0.64

18 80.00 0.20 23.92 30.45 11.08 -0.73

19 111.00 0.42 18.99 44.63 0.84 -0.29

20 111.00 0.63 23.73 51.75 5.14 1.08

21 111.00 0.38 22.02 51.21 3.35 0.90

14



Table 2: Finite-Sample E�ciencies of the LMS, LTS, LQD, Biweight S, Biweight GS, and

TAU67 Estimators

slope scale

n LMS LTS LQD S GS � LMS LTS LQD S GS �

10 20.8 23.1 30.2 28.1 35.2 37.2 36.1 35.0 45.3 42.5 50.0 59.2

20 19.9 20.0 30.7 26.9 36.5 50.8 36.6 33.0 54.2 45.7 57.9 72.2

40 16.9 14.9 36.0 25.5 43.5 54.3 38.5 34.0 65.2 49.2 69.4 73.8

60 16.0 13.9 36.8 28.1 47.0 60.5 37.2 32.5 68.5 48.4 71.3 83.5

80 15.3 12.8 36.9 28.3 52.2 63.2 40.2 33.1 75.2 51.7 77.8 83.5

100 13.4 13.4 38.6 26.8 52.1 63.9 38.2 32.1 72.1 49.4 74.1 80.9

200 12.8 11.6 45.3 28.5 58.5 66.4 38.7 31.9 77.0 50.4 78.3 81.0

1 00.0 07.1 67.1 28.7 68.4 67.1 36.7 30.7 82.3 53.9 82.9 82.7

slowly to their asymptotic limits. (Also note that the LMS is more e�cient that the LTS

for a large range of sample sizes!) The �nite-sample e�ciencies of the biweight S are quite

stable, but they are below those of LQD. The GS- and TAU67 estimators have the best

performance overall.

For the corresponding estimators of the error scale we see that the e�ciencies of LMS

and LTS are rather stable, whereas the others converge more slowly. Also here the LQD,

GS- and TAU67 estimators outperform the plain S-estimator, both asymptotically and for

�nite samples.

6 OUTLOOK

Similar to generalized S-estimators, we may construct other classes of high-breakdown es-

timators. For example, we can de�ne a generalized R-estimator (or GR-estimator) as

�̂n = argmin�Dn(r1; : : : ; rn); where

Dn(r1; : : : ; rn) =
X
i<j

a(R+(ri � rj))jri � rjj: (6.1)

Here, R+(ri � rj) stands for the rank of ri � rj among the
�
n
2

�
di�erences fri � rj; i < jg.

We assume that the scores are generated by a function h+ : [0; 1]! IR+ using

a(i) =
Z i=(n

2
)

(i�1)=(n
2
)
h+(t)dt:
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(When h+ = 1 we obtain Wilcoxon scores.) Since the objective (6.1) is location invariant,

we can estimate the intercept afterwards.

If h+(u) = 0 for all u > 1=4 and h+(1=4) > 0 we obtain a 50% breakdown regression

estimator. For instance, if h+ = �1=4 we obtain the LQD. When h+(u) = I(juj � 1=4) we

obtain the estimator

�̂n = argmin
�

(hp
2
)X

k=1

fjri � rjj; i < jgk:(n
2
): (6.2)

Note that this estimator cannot be written as a GS-estimator. An advantage of GR-

estimators is that their objective function (6.1) is explicit, so one does not have to solve

an equation. But in most cases (6.1) requires O(n2) computation time. We think that the

maximal e�ciency of a GR-estimator wouldn't be much higher than that of the LQD (in

fact, the e�ciency of (6.2) is 66.04%) and that the LQD can be seen as a prototype of this

class of estimators.

If we put h(t) = h+(2t� 1) for t 2 [12; 1] and h(t) = �h+(1 � 2t) for t 2 [0; 12]; then the

in
uence function at the model distribution F will be given by

IF (u; y) =
EFh( ~F (y � Y ))

B(h; F )
(E[uut])�1u; (6.3)

where ~F is the distribution of y1 � y2 when the yi are i.i.d. according to F , and B(h; F ) =

� R h( ~F (y)) ~F 00(y)dy: If we further denote A(h; F ) =
R �
EFh( ~F (y � Y ))

�2
dF (y) then we

obtain the asymptotic normality n1=2(�̂n � �)! N(0; (E[uut])�1A(h; F ) /B2(h; F )) :

Instead of working with GS-estimators based on a kernel �(ri; rj) = jri� rjj of order two,
one could also use higher order kernels. If we use a generalized M-estimator (Ser
ing 1984)

as objective function, then s(�) is de�ned as the solution of the equation 
n

l

!�1 X
i1<:::<il

�(
�(ri1 ; : : : ; ril)

s(�)
) = kn;p:

We want � to be scale equivariant and location invariant. If we take �(ri1 ; : : : ; ril) =

sdv(ri1; : : : ; ril), where sdv stands for the standard deviation, we obtain a 50% breakdown

estimator if k=�(1) = 1� 2�l: A prototype of this class is

�̂n = argmin
�

fsdv(ri1; : : : ; ril); i1 < : : : < ilg(hpl ):(nl):

These higher order estimators will have a higher e�ciency, but also a higher sensitivity to

gross errors. We do not recommend these estimators in practice, since their computation

time becomes too large.
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Looking in a di�erent direction, we note that GS-estimators can also be extended to

high-breakdown estimation of scatter matrices. Consider a data set x1; : : : ;xn of points in

IRp. Then a GS-estimator of its scatter can be de�ned as a symmetric positive de�nite

matrix C which minimizes det(C) subject to

 
n

2

!�1X
i<j

�(k xi � xj kC) � ~kn;p (6.4)

where k xi � xj kC stands for ((xi � xj)tC�1(xi � xj))1=2. Note that the constraint (6.4)

is location invariant, unlike the usual S-estimators (Rousseeuw and Leroy 1987, page 263)

where it is necessary to estimate a location vector T simultaneously. A special case of (6.4)

is the constraint

fk xi � xj kC ; i < jg
(
~h

2
):(n

2
)
� ~k; (6.5)

yielding an analog to LQD regression. For the computation of the scatter matrices given by

(6.4) and (6.5) one can adapt existing algorithms for the MVE and S-estimators.

7 APPENDIX

Proof of Theorem 1. Denote M = maxi<j jyi � yjj. Due to condition (H), we have

inf
j�j=1

fj(ui � uj)
t�j; i < jg(hp

2
):(n

2
) = � > 0:

For j�j > 2M=� we obtain jri � rjj � jj(ui � uj)t�j � jyi � yjjj � j(ui � uj)t�j �M �
�j�j �M > M for at least

�
n
2

�
�
�
hp
2

�
+ 1 di�erences jri � rj j. Thus for all j�j > 2M=� it

is true that Qn(�) > M � Qn(0): Since � ! Qn(�) is continuous, Qn(�) will attain its

minimum value inside the compact ball B(0; 2M=�): 2

Proof of Theorem 2. Denote "�n = "�n(LQD; Z): For any regression equivariant estimator

we have that "�n � ([(n � p)=2] + 1)=n (Rousseeuw and Leroy 1987, page 125), so it is

su�cient to prove the reverse inequality. We can assume w.l.o.g. that T (Z) = 0. Denote

by f(u0i; y0i); i = 1; : : : ; ng the contaminated sample obtained by replacing k = [(n � p)=2]

observations from Z, and by �1 the corresponding estimate. Denote M = maxi jyij, and
r0i = y0i � �tu0i. We will prove that j�1j < C, where C only depends upon the original

sample.
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Note that jri(0) � rj(0)j = jyi � yjj � 2M for all "good" points (ui; yi). Since
�
n�k
2

�
=�

[(n+p+1)=2]
2

�
�
�
hp
2

�
, we have that Qn(0) � 2M . So it is su�cient to prove that for all j�j � C

it holds that Qn(�) > 2M , because then it is clear that j�1j � C. De�ne

� =
1

2
inff� > 0; there is a (p � 2) dimensional subspace V in (y = 0) such that V �

contains

 
p

2

!
di�erences ui � uj (i < j)g;

where V � consists of the points with distance to V less than or equal to �. Due to our

condition of general position, we have � > 0. Denote � = �=n, and take C = 10M=�. Take

j�j � C and denote byH the hyperplane in IRp with equation y = �tu: Then L = H\(y = 0)

has dimension (p � 2) in IRp�1.

We will partition the good observations into classes, induced by the following equivalence

relation:

(ui; yi) � (uj; yj) , there exist k (0 � k � n � 2) di�erent observations ui1; : : : ;uik

such that ui � ui1 2 L�;ui2 � ui3 2 L�; : : : ;uik � uj 2 L�:

Denote by B1; : : : ; Bm the classes with more than one element, and by B0 the union of the

other classes. One can see that

ui;uj 2 Bl ) ui � uj 2 L� for l � 1:

Due to the de�nition of � , we have
Pm

l=1

�
#Bl

2

�
<
�
p
2

�
:

Now we will divide the "bad" points into subclasses. Denote by Cl (1 � l � m) the

collection of bad points (u0j; y
0
j) for which there exists an element (ui; yi) in Bl such that

jr0i � r0j j � (�j�j � 2M)=4. For each element (ui; yi) in B0, we denote the collection of bad

points (u0j; y
0
j) for which jr0i � r0j j � (�j�j � 2M)=4 by Ci+m (1 � i � m0 = #B0): Note that

some of the Ci+m can be empty. The bad points that do not belong to any Cl (1 � l � m+m0)

are put in C0.

If u 62 L� then jut�j > �j�j: Therefore, if two good observations (ui; yi) and (uj ; yj) do

not belong to the same class Bl (l � 0) or both belong to B0 (and thus ui � uj 62 L�), then

jr0i � r0jj = j(yi � yj)� �t(ui � uj)j � jjyi � yjj � j�t(ui � uj)jj > �j�j � 2M;

where we have used that j�j � 2M=� and jyi�yjj � 2M: Now we can see that the collections

Cl (0 � l � m+m0) are disjoint (using the triangular inequality).
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From the above it follows that jr0i � r0jj � (�j�j � 2M)=4 for at most

mX
l=1

 
#Bl

2

!
+

mX
l=1

(#Bl)(#Cl) +
m0X
l=1

(#Cl+m) +

 Pm+m0

l=0 #Cl

2

!

couples i < j. Using the fact the each Bl (l � 1) contains at most p � 1 elements, we �nd

that the above expression is less than or equal to 
p

2

!
� 1 + k(p � 1) +

 
k

2

!
=

 
k + p� 1

2

!
+ p � 2;

hence jr0i � r0jj > (�j�j � 2M)=4 > 2M at least 
n

2

!
�
 
[(n+ p)=2] � 1

2

!
� p + 2

times. Since, if we assume the natural condition n > p, 
[(n+ p)=2] � 1

2

!
+(p� 1) �

 
[(n+ p)=2] � 1

2

!
+([(n+ p)=2]� 1) =

 
[(n+ p)=2]

2

!
�
 
hp
2

!

we have that Qn(�) > 2M . 2

Proof of Theorem 3. Looking at the proofs of the preceding propositions for the special

case where �̂ is the LQD, it is su�cient to prove that there exist constants 
 > 0 and � > 0

such that


Q(r1; : : : ; rn) � s(r1; : : : ; rn) � �Q(r1; : : : ; rn); (7.1)

where Q(r1; : : : ; rn) = fjri � rjj; i < jg(hp
2
):(n

2
).

We can take 
 = 1=c. Indeed, suppose that Q > cs. Then there will be
�
n
2

�
�
�
hp
2

�
+ 1

di�erences jri � rjj greater than cs. For an " > 0 small enough, we will have that 
n

2

!�1X
i<j

�(
ri � rj
s+ "

) �
 
n

2

!�1
(

 
n

2

!
�
 
hp
2

!
+ 1)�(c) = kn;p

but then s does not satisfy (2.4) any more.

For � we can take � = 1=��1(�(c)=(
�
hp
2

�
+ 1)). (We de�ne ��1(u) = supft > 0; �(t) � ug,

and then we have that �(��1(u)) � u for all u.) It holds that ��1(�(c)=(
�
hp
2

�
+ 1)) > 0

because otherwise �(t) > �(c)=(
�
hp
2

�
+ 1) for all t > 0. Due to the continuity of � at zero

this would yield �(c) = 0, which is a contradiction. Now suppose s ��1(�(c)=(
�
hp
2

�
+ 1)) > Q,

then
�
hp
2

�
di�erences jri � rjj=s are less than ��1(�(c)=(

�
hp
2

�
+ 1)) and thus, for an " small

enough, 
n

2

!�1X
i<j

�(
ri � rj
s� "

) �
 
n

2

!�1
�(c)(

 
hp
2

!
/(

 
hp
2

!
+ 1) +

 
n

2

!
�
 
hp
2

!
) < kn;p
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which is in contradiction with (2.4). 2

In order to prove Theorem 4, we need the following two lemmas:

Lemma 1. Let (u1; y1) � K0 and (u2; y2) � K�, where K� can be any distribution. Then

for all s > 0 and for all � > 0:

EK0�K�

"
�(
y1 � y2 � �t(u1 � u2)

s
)

#
� EK0

"
�(
y1 � �tx1

s
)

#
: (7.2)

Proof of Lemma 1. Using symmetry and unimodality of y1 and �tu1 we �nd that

z = (y1��tu1)=s is unimodal and symmetric. Therefore, E�(z� z�) � E�(z) where z� can

be any stochastic variable. This proves (7.2). 2

Lemma 2. Let (u; y) � K0;u
�
n be uniformly distributed on the line segment [�n�

�; 2�n�
�],

and put yn = utn�
� and K�

n � (u�n; y
�
n): Suppose �n !1, �n ! ~� and j~�j < j��j. Then

lim
n!1

EK0�K�

n

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
= 1 for all s > 0 (7.3)

lim
n!1

EK�

n�K
�

n

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
= 1 for all s > 0: (7.4)

Proof of Lemma 2. Take " > 0. We have that

jEK0�K�

n

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
� 1j

= j 1
�n

Z 2�n

�n
EK0

"
�(
y � �n

tu � t(j��j2 � �n
t��)

s
)

#
d t � 1j

= jEK0

"
�(
y � �n

tu� tn(j��j2 � �n
t��)

s
)

#
� 1j (7.5)

where �n � tn � 2�n (in the last step we used the mean value theorem for integrals of

positive continuous functions). Denote Hn the distribution of (y � �n
tu)=s; since �n is a

bounded sequence we can �nd a compact set C for which HnfCg >
p
1 � ". Denote further

xn = tn(j��j2 � �n
t��)=s, then xn ! 1 (using that limn!1 j��j2 � �n

t�� > 0). So for n

large enough, we have for all x 2 C that �(x� xn) >
p
1 � ". We can rewrite (7.5) as

1 �
Z
C
�(x� xn)dHn(x)�

Z
IRpnC

�(x� xn)dHn(x) � 1�
Z
C
�(x� xn)dHn(x)

� 1 � inf
x2C

�(x� xn)HnfCg � 1� (1 � ") = ":
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This proves (7.3). We continue with the proof of (7.4):

jEK�

n�K
�

n

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
� 1j

= jEK�

n�K
�

n

"
�((

�� � �n

s
)t(u1 � u2))

#
� 1j

= j 2
�n

Z �n

0
(1 � t

�n
)�((

�� � �n

s
)t��t)d t� 1j; (7.6)

where we worked out the distribution of u1 � u2. Denote xn = (j��j2 � �n
t��)=s. Then

xn > � > 0 for n large. Choose L such that �(xnt) � �(t�) > 1 � "=4 for all t > L. For n

big enough we have that �n > L and 2L=�n < "=2: Then (7.6) equals

j 2
�n

Z L

0
(1� t

�n
)(�(xnt)� 1)d t +

2

�n

Z �n

L
(1� t

�n
)(�(xnt)� 1)d tj

� 2L

�n
+

2

�n
(�n � L) sup

t>L
j�(xnt)� 1j � 2L

�n
(1 � "=4) + "=2

� 2L

�n
+ "=2 � "=2 + "=2 = ":

This proves (7.4). 2

Proof of Theorem 4. Let c = g�12 ("; s1) where s1 = g�11 ((k�2"+"2)=(1�")2; 0). Suppose
that " < min(1 �p1� k;

p
1� k):

We will �rst prove that B"(T ) � c. Take any distribution K of the form K = (1�")K0+

"K� and consider a slope j�j > c. It is su�cient to prove that

s(�;K) > s(0;K): (7.7)

Since ~h("; s1; c) = k, we have that ~h("; s1; j�j) > k. Using continuity, there must exist an

s2 > s1 such that ~h("; s2; j�j) > k: Using this last inequality, Lemma 1 and the positivity of

�, we �nd

EK�K

"
�(
y1 � y2 � �t(u1 � u2)

s2
)

#

= (1� ")2g(s2;�) + 2"(1� ")EK0�K�

"
�(
y1 � y2 � �t(u1 � u2)

s2
)

#

+"2EK��K�

"
�(
y1 � y2 � �t(u1 � u2)

s2
)

#

� (1� ")2g(s2;�) + 2"(1� ")~g(s2;�) = ~h("; s2;�) > k:

Therefore,

s2 � s(�;K): (7.8)
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Now for any s > s1 we have that

EK�K

�
�(
y1 � y2
s

)
�
� (1� ")2g(s; 0) + 2"(1� ") + "2

� (1� ")2g(s1; 0) + 2"(1 � ") + "2 = k:

We can conclude that s � s(0;K), and thus

s1 � s(0;K): (7.9)

Combining (7.8) and (7.9) yields (7.7).

Now we will prove the other inequality

B"(T ) � c: (7.10)

Take any 0 < c1 < c and j��j = c1. Let K�
n be a contaminating distribution correponding to

(u�n; y
�
n), where y

�
n = ��

t
u�n and u

�
n is uniformly distributed on the line segment [�n�

�; 2�n�
�]

and �n ! 1. (In fact, we want both location and spread of u�n to go beyond all bounds

when n increases.) To prove (7.10), it is enough to show that

sup
n
jT (Kn)j � c1; (7.11)

where Kn = (1� ") + "K�
n. Suppose that (7.11) is not true, then we are able to construct a

subsequence, which we shall still call Kn, for which limn!1 �n = ~�; where T (Kn) = �n and

j~�j < j��j = c1: Now we have

EKn�Kn

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
= (1 � ")2g(s; j�nj)

+2"(1� ")EK0�K�

n

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
+ "2EK�

n�K
�

n

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
:

Using Lemma 2 and the de�nition of s1 yields for all s < s1 that

lim
n!1

EKn�Kn

"
�(
y1 � y2 � �n

t(u1 � u2)

s
)

#
� (1� ")2g(s; 0) + 2"(1 � ") + "2

> (1� ")2g(s1; 0) + 2"(1 � ") + "2 = k:

Therefore, limn!1 s(�n;Kn) � s and thus

lim
n!1

s(�n;Kn) � s1: (7.12)
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On the other hand ~h("; s1; c1) < ~h("; s1; c) = k: Due to the continuity of ~h we can �nd an

s2 < s1 such that ~h("; s2; c1) < k. Using the fact that y�n = ��tu�n exactly, we have that

EKn�Kn

"
�(
y1 � y2 � ��t(u1 � u2)

s2
)

#

= (1� ")2g(s2; c1) + 2"(1 � ")~g(s2; c1) = ~h("; s2; c1) < k:

Therefore,

s(��;Kn) � s2: (7.13)

Combining (7.12) and (7.13) shows that for n large enough �n does not minimize s(�;Kn),

which gives a contradiction. Therefore, (7.11) must be true.

To complete the proof, we show that if " " min(
p
1� k; 1�p1� k) then

g�12 ("; g�11 (
k � 2"+ "

(1 � ")2
; 0))!1:

This follows from k � 2"+ " � 0 , " � 1�p1 � k and (1�")2+2"(1�") � k , " � p1� k:

2

Proof of Theorem 5. Combining equations (11), (15) and (17) of Theorem 1 in H�ossjer

et al. (1993) yields (4.4) according to de�nition (4.2). Here we will give a proof using

de�nition (4.1). The functional T is given by T (K) = argmin� s(�;K); where s(�;K)

satis�es EK�K

h
�((y1 � y2 � �t(u1 � u2))=s(�;K)

i
; and (u1; y1) and (u2; y2) are two inde-

pendent variables drawn from K. Since T (K) minimizes s(�;K) we have

EK�K

"
 (
y1 � y2 � T (K)t(u1 � u2)

s(T (K);K)
)(u1 � u2)

#
= 0:

Also the contaminated distribution K" = (1� ")K0 + "�u;y has to satisfy

EK"�K"

"
 (
y1 � y2 � T (K")t(u1 � u2)

s(T (K");K")
)(u1 � u2)

#
= 0:

Working this out yields

(1� ")2EK0�K0

"
 (
y1 � y2 � T (K")t(u1 � u2)

s(T (K");K")
)(u1 � u2)

#

+2"(1 � ")EK0

"
 (
y1 � y � T (K")t(u1 � u)

s(T (K");K")
)(u1 � u)

#
= 0:
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Di�erentiating with respect to " and evaluating in 0 gives

EK0�K0

"
 0(y1 � y2)f�

pX
l=1

IFl(u; y;K0)(u1;l � u2;l)� (y1 � y2)
@s(T (K");K")

@"
j"=0g(u1;k � u2;k)

#

+2EK0
[ (y1 � y)(u1;k � uk)] = 0

for all 1 � k � p� 1. Since y and u are independent at K0 and EG0
(u1;k � u2;k) = 0 we �nd

�EF0�F0 [ 
0(y1 � y2)] IF (u; y)

tEG0�G0
[(u1 � u2)(u1;k � u2;k)]

+2EF0 [ (y1 � y)]E [u1;k � uk] = 0

for all 1 � k � p � 1. Since E(u1) = 0 and EG0�G0
[(u1 � u2)(u1 � u2)t] = 2EG0

[u1u
t
1] we

obtain equation (4.4). 2
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Figure 1. Examples where: a) condition (H) is not satis�ed; b) neither the ui nor their

di�erences are in general position; c) the ui are in general position but their di�erences are

not; d) a zero-intercept model is inappropriate.



Figure 2. Maxbias curves of: a) the LQD, LMS, biweight S-, biweight GS-, and the

TAU67 estimators; b) the LQD(0.5) and LQD(0.91) estimators.



Figure 3. In
uence functions of the LQD, biweight GS-, biweight S-, and LTS estimators.



Figure 4. In
uence functions of the Jaeckel estimator based on Wilcoxon scores, the L1

estimator, and the optimal robust 95% e�cient Mallows and Schweppe estimators.



Figure 5. Diagnostic plots of nitrogen data: a) standardized robust residuals obtained

by the LQD method versus robust distances RDi based on the MVE; b) standardized LS

residuals versus Mahalanobis distances.


