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1 INTRODUCTION

In the linear model one often has to cope with outliers, which can make the classical least
squares (LS) estimator highly unreliable. In fact, even a single outlier can destroy the LS
estimate. Many alternative methods have been proposed. Very often used are M- and GM-
estimators (see for example Hampel et al 1986), but their breakdown point goes down to zero
when the dimension increases. The least median of squares (LMS) and least trimmed squares
(LTS) estimators (Rousseeuw 1984) have a 50% breakdown point but a low asymptotic
efficiency. A generalization is given by S-estimators (Rousseeuw and Yohai 1984), which
can attain an efficiency up to 33% (Hossjer 1992). Both MM-estimators (Yohai 1987) and
T-estimators (Yohai and Zamar, 1988) can attain arbitrarily high efficiency without losing
their 50% breakdown point, but they pay for this with an increased bias. Note that MM-
estimators need a high-breakdown start, for which we can use one of the estimators discussed
below.

In this paper we introduce a new class of regression estimators, called generalized S-
estimators (or (S-estimators), which can have a 50% breakdown point like S-estimators,
but attain a much higher efficiency. As a special case of GS-estimators we propose the least
quartile difference (LQD) estimator, which we define as

8= argmin Q,(r1, ..., ), (1.1)
B
where r; is the residual of the ¢ th case, and

Qu = {lri =il ¢ < T} ey (1.2)

is a scale estimator proposed by Rousseeuw and Croux (1993). Expression (1.2) means that
Q. is the (th) -th order statistic among the (;) elements of the set {|r; — r;|; ¢ < j}. Here,
h, = [(n + p+ 1)/2] where p is the number of regression parameters. It turns out that
the objective function (1.2) can be computed very quickly by using an efficient algorithm.
Therefore, the LQD can easily be implemented by adapting an existing LMS program. The
gaussian efficiency of the LQD regression is shown to be 67.1%, which is more than twice
the efficiency of any S-estimator with 50% breakdown point. Moreover, the LQD does not
require the choice of tuning constants.

An important property of GS-estimators is that their objective function does not depend

on the intercept term. (The intercept can be estimated afterwards, with high statistical

1



efficiency and consuming negligible computation time.) Another advantage of GS-estimators
is that they are well-suited for models with an asymmetric error distribution, unlike the usual
S-estimators of which the objective function only depends on r; through |r;|, hence positive
residuals are attached the same importance as negative residuals of the same size. Therefore,
GS-estimators are more generally applicable. Note that the pairwise differences r; —r; have

a symmetric distribution even when the r; themselves do not.

2 ROBUSTNESS AT FINITE SAMPLES

We will work with a linear model denoted as
yi=Bxa + ...+ B, 1Ty +a+error; fore=1,...,n. (2.1)

The parameter to be estimated is @ = (8, a) € IR?, where 8 € IR’™" is the slope and « is the
intercept. Our observations are of the form z; = (x;,y:;) = (w;, 1,y;) € IR’*'. This means
that the actual explanatory variables are combined in a vector u; € IRF™'. (We require of
course that p > 2.) As usual, we assume that n/p > 5 to avoid the curse of dimensionality.

We define a generalized S-estimator B as

A

B = argmin s,(8), (2.2)
B

where s,(8) is based on the residuals r; = y; — 3'u; — a through the equation

() S =k (2.3

<J

To avoid having multiple solutions (or no solutions) it is better to define

50(B) = sup{s > 0; () Sy > ), (2.4)

2 <t S

Note that s,(3) does not depend on « because r; — r; doesn’t. We will require that:
(R) The function p is even, non-decreasing on the positive numbers, and continuous at 0
with p(0) = 0. There are only a finite number of points where p is not continuous or
non-differentiable. Furthermore 0 < p(c0) < oo, and p(c¢) = p(o0) for some ¢ > 0.

We will denote lim,, . k,, = k.



Because s,(8) is independent of the intercept, the latter has to be estimated afterwards.
We can estimate « by a location estimate based on the numbers ri(B,O) =y — Btui, for
instance by using the median or a more efficient 50% breakdown estimator.

We will pay particular attention to the GS-estimator given by

ple) = I(z| 2 1) and kn,p:<(g) _ (’;) ‘1) /(Z)

with h, = [(n + p 4+ 1)/2]. Then we have that s,(8) = Q.(8) = {|ri —rj; i < j}(f;p)(g)
(One should multiply @,(8) with a certain constant factor to make it consistent as a scale
estimator, but that is immaterial to our current goal of estimating 3.) Note that k& = 3/4.
The scale estimator (), was discussed in Rousseeuw and Croux (1993). We will denote the
corresponding regression estimator (1.1) as LQD, because the objective function is approx-

imately the first quartile of the pairwise differences of the residuals. It is instructive to

compare this with the LMS objective function, which is given by
{|r2|7 1 S 1 S n}hp:n- (25)

We will prove that the LQD regression always exists, and has the exact fit property and
maximal breakdown point. Using those facts, we will show the existence, exact fit property,
and maximal breakdown point for a whole class of generalized S-estimators.

Throughout this section we will assume the property:

(H) no (th) of the differences (u; — u;,y; — y;) lie on the same vertical hyperplane in IR".
By 7vertical hyperplane” we mean a hyperplane containing (0,0) and (0, 1). Note that this
condition is stronger than requiring that there are no h, observations (x;,y;) lying on a
vertical hyperplane in IRPT!. In Figure la we see that no h, observations (u;, y;) are lying on

the same affine hyperplane, but nevertheless condition (H) is not satisfied. If the observations

follow a continuous distribution, (H) has probability 1.

Theorem 1. Under condition (H), there always exists a solution to argmmﬁ Qn(3).

(All proofs are given in the appendix.) In order to establish the breakdown point we need

another regularity condition.

Definition: We say that the differences of the u; are in general position if no (g) of the

u; —u; with 7 < j belong to the same hyperplane in IR,
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It the differences of the u; are in general position, then also the u; themselves are in
general position. The latter means that no p of the u; lie on the same affine hyperplane in
IRP™!, which is equivalent to saying that no p of the x; lie on the same hyperplane in IR?.
In Figure 1b we have a situation where neither the u; nor their differences are in general
position, while in Figure 1c we see that it can happen that the u; themselves are in general
position but their differences are not.

Note that this condition on the differences u; — u; is more stringent than the condition
on the individual u;, but not much more. If the u; have a continuous distribution, both
conditions hold almost surely. From a semantic point of view, the u; being in “general”
position also precludes such linear relations between the u; —u; (actually, in computational
geometry the phrase ”general position” is often interpreted in this stronger sense). When a
data set contains a few exceptions to general position this does not mean that GS-estimators
can no longer be used, but merely that the expression in Theorem 2 below will be slightly
reduced.

Let us now look at the finite-sample breakdown point (Donoho and Huber, 1983). The

breakdown point of an estimator 1" at a sample Z is defined as
e2(T, 7) = min{mfn; sup |T(Z) — T(7)] = oo}, (2.6
Z/

where 7’ is obtained by replacing any m observations by arbitrary points. (We will use for

|.| the euclidean norm.)

Theorem 2. If the differences of the u; are in general position, then the breakdown point
of the LQD estimator is given by 52([3, Z)=([(n—p)/2]+ 1)/n, which is the mazimal value

for any regression equivariant estimator.

From the proof it follows that we obtain the maximal breakdown point for any objective

function {|r; —r;|; 1 < ]}q(n) where
N2

([(n—l—p;/Q] - 1) 1< ([(n+p2+1)/2])‘ 2.7)

We have chosen to define the LQD based on the largest rank (th) where h, = [(n+p+1)/2],
which is also in accordance with the rank h, used in the LMS objective (2.5).
From the general relation between the breakdown point and the exact fit property

(Rousseeuw and Leroy 1987, page 123) the next result immediately follows.

4



Corollary. If at least h, = [(n+p+1)/2] of the observations satisfy y; = Bu; + ag exactly
and the differences of their u; are in general position, then B = B, no matter what the other

observations are.

Remark 1: It is easy to see that if we take a high-breakdown estimator & for the intercept,
with €(&,Y) > ([(n — p)/2] + 1)/n for any univariate sample Y, then we also have the
maximal breakdown point and the exact fit property for 6 = (B, &).

Remark 2: It is not advisable to use (GS-estimators for fitting a zero-intercept model
to data that were actually generated with an intercept, because they estimate the slope of
a point cloud regardless of the position of the origin. For instance, let us look at Figure
1d. Applying LQD yields an acceptable slope estimate, indicated by the dotted line, but
because of the zero-intercept model the actual LQD regression (solid line) does not fit the
data points. Note, however, that a study of the LQD-based residuals, all having the same
sign and size, does reveal immediately that a zero-intercept model is inappropriate for these
data (model misspecification).

Now we return to GS-estimators of the type (2.2) with general p-function.

Theorem 3. The existence, the maximal breakdown point and the exact fit property hold for
GS-estimators under the same conditions as for the LQD when

km,:(n_hp L n
p(c) 2 2 2

which implies that k/p(c) = 3/4.

The most popular choice for a p-function is the biweight, p(z) = min(32?/c* — 32/ +
25/c%, 1). If we choose ¢ = 0.9958 (and thus k& = 0.75) we obtain a 50% breakdown regression
estimator which we will call the biweight GS-estimator. This estimator is consistent (Hossjer,
Croux and Rousseeuw 1993).

The usual S-estimators, which can be defined by the objective function,

n

1 ;
sp=sup{s > 00 =37 p(~) = ko). (2:8)

i=1
have maximal breakdown point if k,,/p(¢c) = (n — h, + 1)/n. Therefore we obtain the
maximal breakdown point if k/p(c) = 1/2, where k = lim,,— k,,. The S-estimator with
biweight p-function and 50% breakdown point (hence, ¢ = 1.547) will in this paper be called
the biweight S-estimator.



3 MAXBIAS CURVES

In this section we follow the approach of Martin, Yohai and Zamar (1989). Because the
maxbias curve is an asymptotic notion, we first have to determine the functional corre-
sponding to a GS-estimator. We will add to condition (R) that p(oc) = 1 (this is only a
normalization) and we will drop the condition that “p is constant for large x”. For any

distribution F' we define the scale functional

rn —7T

s(F) =sup{s > 0; Epp(

) >k}, (3.1)

where r; and ry are i.i.d. according to F' and 0 < k < 1. We denote by s(8, K), where
K is the joint distribution of (u,y), the same scale functional evaluated at the distribution
of the residuals 7(3) = y — B'u — a, where we note that this scale does not depend on a.
The corresponding GS-estimator then has the functional version T' given by s(T'(K), K) =
infﬁ s(B, K), hence T' is regression and affine equivariant.

Suppose that our model distribution Ky of (u,y) is elliptical about the origin. We
may assume w.l.o.g. that T(Ky) = 0 due to regression equivariance. Denote by G/ the
distribution of the u; and by [y that of the errors. Consider the contamination neighborhood
V. ={K;K = (1—¢)Ko+eK*}, where K* can be any distribution. Then the maxbias curve
is given by

B.A(T) =sup{|T(K)|; K € V.}. (3.2)

The asymptotic breakdown point may then be defined as ¢* = inf{e; B.(T') = oo}. Suppose
that:
(G) Gy is spherical, Pg,(u’8) =0 for all 3 # 0 in IR?, and for all 3 the distribution of

B'u is unimodal;
(F) Fb has a unimodal, continuous and symmetric density.

Define the functions

(?Jl —y2 — B (us — u2)) and g(s,3) = EKOp(y =L

S S

. (3.3)

9(57 5) = EI(O XKOP

Since G is spherical, ¢ and § only depend on |3| and s. It holds that ¢ and ¢ are continuous,
strictly increasing in |3| and strictly decreasing in s (for s > 0). This can be proven as in

Lemma 3.1 of Martin, Yohai and Zamar (1989) by using the fact that the distributions of
u; —uy and y; —ys also satisfy (G) and (F). Therefore we may define g7 ' (-, |3]) as the inverse
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of g w.r.t. s, and g;'(e, s) as the solution |3] of 71(5,5, |B|) = k, where k = lim,,—, k,, was
defined below (2.4) and

hie,s,181) = (1= 2)g(s,18]) + 2e(1 = €)a(s,[B]) (0 <e<1). (3-4)
By means of two lemmas, given in the appendix, we now obtain the maxbias curve:

Theorem 4. Under the conditions (G) and (F) above, we have

B(T) = 92—1(5,g1—1(’€(—12_7f‘3$;‘:2,0)) for e <min(vI—k1—vI—k)

= oo elsewhere.

In the case were (u,y) is multivariate normal N(0,1,) we obtain

IR and g = n 2T,

S

g(s,7) = h(

where h(X) = Ep(Au) for u ~ N(0,1). Note that ~()) is increasing and continuous for A > 0,
so that ~~! is well-defined. We can compute B.(T') for any ¢ < ¢* by first computing

Then B.(T') is given by the solution of the following equation in ~:

(= a2 o D

S1 S1

)= k.

In the special case where p is a step function p(x) = (x| > ¢), we find that A()\) =
2(1 — ®(c/N)) and thus A71(t) = ¢/O7H(1 —1/2).

Remark 1: Theorem 4 implies that the breakdown point becomes

e =min(v1 —k, 1 —v1—k). (3.5)

So for the step function p(x) = I(|x| > ¢) with Pr(y1 — y2 < ¢) = 1 — k/2, yielding the
(1 — k)th quantile of the pairwise differences of residuals, we obtain (3.5). This gives the
maximal breakdown point e* = 50% when & = 3/4, which corresponds to the LQD.

Remark 2: The derivative of the maxbias curve at 0 is infinite, hence the gross-error
sensitivity of GS-estimators is infinite. This is a property of all regression estimators with

dimension-free maxbias curve (He and Simpson, 1993). However, as Yohai and Zamar (1992)
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have proposed, one could define a modified gross-error-sensitivity as v** = lim. o B:(T")/+/z.
In the case of a multivariate normal distribution, we obtain v** = (2\/5(1 — h(1)) /h’(ﬂ) ) 12 )
For step functions p(x) = I(|x| > ¢) we obtain v** = (2\/5(2@@) — 1)/(@15(0/\/5)))”2
where ¢ = /207'(1 — k/2). In particular, for & = 0.75 we obtain v**(LQD) = 2.399. One
can compare this with v**(LMS) = 2.160. For the biweight GS we obtain v** = 2.412, and
for the biweight S-estimator v** = 2.267.

Figure 2a plots the maxbias curve of the LQD estimator, together with those of the LMS
and the biweight S- and GS-estimators. We see that the bias of the LQD estimator is only
slightly larger than that of the biweight S, whereas we will see that its efficiency is much
better (67% instead of 28%). Switching from LQD to the biweight GS, which has a smooth
p function, again increases the bias only a little (but the efficiency gain will also be small).
In Figure 2a we also see the maxbias curve of the TAUG7-estimator (Yohai and Zamar,
1988). The latter estimator is based on two biweight p-functions, the first with ¢ = 1.547
to obtain a 50% breakdown point, the second with ¢ = 3.26 to obtain a gaussian efficiency
of 67.1%. (We use the TAUG6T estimator here for comparison with the LQD, which has the
same efficiency.) We see that the maxbias curve of TAU6T is very close to that of the LQD.
Furthermore v**(TAU67)=2.442, thus for small ¢ the LQD behaves slightly better. (Note
that the maxbias curve of a 7-estimator with 95% efficiency is somewhat higher.)

In view of Remark 1, we note that there are often two different step functions p which yield
GS-estimators with the same breakdown point. For example, &y = 0.5 (corresponding with
the median interpoint distance) and ky = 1 —(1—+/0.5)? & 0.91 both yield a 29% breakdown
estimator. It is interesting to see that their maxbias curves behave rather differently (see
Figure 2b): the smaller value of k (which corresponds with the higher quantile) is preferable.
Note that the maxbias curve of the LQD(0.5)-estimator is very close to the LQD for up to
about 25% of contamination. Afterwards the LQD(0.5) bias increases rapidly, while that of
the LQD increases more slowly.

A referee asked to compute the breakdown rate (BR), as defined by Mazzi (1991) and
Zamar (1992). For a 50% breakdown estimator T', the BR is given by

(3.6)

Following the proofs and computations in Mazzi (1991), we obtain that BR(LQD)=0.5+ /2

in the gaussian case. The breakdown rate of the biweight S- and GS-estimators, and also of
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TAU67, equals infinity. Therefore, the maxbias of the LQD is lower than that of the biweight
S and TAUGT in a neighborhood of the breakdown point.

4 INFLUENCE FUNCTION AND EFFICIENCY

The influence function (see Hampel et al 1986) describes the (standardized) effect of a
single outlier on the estimator. It is an asymptotic notion, based on the same vector-valued
functional T'(K') as in the previous section. Let Ky be a fixed distribution representing the
central model, and let K. = (1 — ¢) Ky + ¢ Ay, where Ay, is the distribution which puts all

its mass at the point (u,y). Then the influence function is defined as

IF(u,y)=1lim

10 £

(4.1)

Another definition is given by a von Mises expansion: if there exists a function IF: IRP™' x
IR — IR"~" (which depends on the estimator and underlying distribution Ky) such that
1 n
VB, — B0 — =3 11 (wi,yi) = op(1), (4.2)
=1
then we call 1" the influence function. Under regularity conditions both definitions coincide.
The latter definition has the advantage that it readily implies that, if E[/F(u,y)] = 0 and

E|IF(u,y)|* < oo, the estimator Bn is consistent and asymptotically normal with asymptotic

covariance matrix

V = E[IF(u,y)IF(u,y)]. (4.3)

Hossjer, Croux and Rousseeuw (1993) proved the asymptotic normality of GS-estimators,

with the function I F specified below, under the conditions:

(G’) The distribution of the u; satisfies Eg,[u] = 0 and Fg,|ul® < oo, and Eg,[uu’] is

positive definite;

(F’) The error distribution Fy has a unimodal density f, which is twice differentiable with

a bounded second derivative.

We may assume (due to equivariance) that T(Ky) = 8, = 0 and that s(0, K) = 1, in which

case the influence function is given by the following theorem:



Theorem 5. [f the model distribution Ko satisfies assumptions (G°) and (F’), and if p
satisfies (R), then the influence function of the generalized S-functional is given by

U(y)
Er ¥ (y)]

where T(y) = Ex [0y — V)] and 6 = o'

IF(u,y)= (Ea, [uut])_lu, (4.4)

From Formula (4.3) we can then compute asymptotic covariances. The efficiency of a
GS-estimator at the gaussian model is thus ¢ = (f@l(y)dq)(y))z/f@(y)qu)(y) I f s

symmetric, the influence function of the LQD estimator becomes

fly—c) = fly+¢)
2 flle+y)fly)dy

where Pr,(y1 — y2 < ¢) = 5/8. In Figure 3a we made a plot of this influence function when

[F(u,y) = — (Eg,[ua']) ™, (4.5)

(u,y) ~ N(0,I;). We see that for fixed u, the influence function is redescending (in fact,
it goes exponentially to zero for y tending to infinity). On the other hand, the function
ITF(-,y) is unbounded in u, hence the overall influence function is not bounded. From (4.5)
it follows that the total influence is small when |y| is large, except when |u| is exponentially
large compared to |y|. In the latter situation, the influence function is large at a point (u,y)
lying in a direction with a very small inclination, whose effect on the actual estimated slope
is therefore negligible.

For the biweight GS-estimator we obtain a very similar plot (see Figure 3b). This il-
lustrates that the LQD estimator, with its non-smooth p-function, does have an influence
function very similar to that obtained with a smooth p-function. There is also hardly a gain
in efficiency: 68.4% for the biweight GS compared to 67.1% for LQD. This is very different
from the situation for usual S-estimators, where the quantile objective functions (like LMS)
yield estimators converging at a lower rate.

In Figure 3¢ we see the influence function of the usual biweight S-estimator. It has the
same shape as the GS-estimator, but it is steeper. That is the reason why its efficiency
is lower (28.7%). In Figure 3d we plotted the influence function of the LTS, which is still
steeper and corresponds to an even lower efficiency.

One might argue that the generalized S-estimator should be compared to an S-estimator
with p(y) = Ep(y —Y) — Ep(Y) for its p-function. This indeed yields an S-estimator with

high efficiency, but with a lower breakdown point and a higher maxbias curve.
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Formula (4.4) also holds for some unbounded p functions. If we take for example p(y) = y*
then we obtain the least squares estimator (the objective function is the standard deviation).
This estimator is extremely sensitive to outliers in u and in y. If we take p(y) = |y| we obtain
Gini’s average difference as objective function, corresponding to Wilcoxon scores. From
Figure 4a we see that this estimator protects against vertical outliers, but not at all against
bad leverage points. The latter estimator can be seen as a smoothed version of the Least
Absolute Deviations estimator (11 estimator), which corresponds to a plain S-estimate with
the same p-function. Its influence function is plotted in Figure 4b. Again, the efficiency
increases (from 63.6% to 95.5%) when working on the pairwise differences instead of the
individual residuals. Finally, in Figure 4c we see the influence function of the optimal robust
95% efficient Mallows estimator (see Hampel et al 1986), which is bounded. Analogously,
Figure 4d gives the [F of the 95% efficient Schweppe estimator.

5 COMPUTATION AND SIMULATION

In order to compute a GS-estimator we have to minimize the objective function s(3), where
B3 is a p-dimensional vector. There has been a substantial amount of research on algorithms
for S-estimators, especially the LMS. The same kind of techniques can be used for computing
(GS-estimators, including the LQD estimator.

The basic scheme for computing S-estimators is the p-subset algorithm (Rousseeuw and
Leroy 1987), which minimizes the objective function over all 3, which correspond to fitting
a subset J with p observations (out of the n available points). Note that the p-subset version
of the LMS is itself a high-breakdown regression estimator (Rousseeuw and Bassett 1991),

which is also true for the LQD. Therefore we can use

8" = argmin Q.(y; — Bhuy), (5.1)

J

where 3; is determined by the p-subset J. If we use the efficient algorithm of Croux and
Rousseeuw (1992) to compute @),, then this objective function merely needs O(n logn) oper-
ations, yielding an overall computation time of O(n*! logn) if all p-subsets are considered.
By comparison, the exhaustive p-subset algorithm for LMS needs O(n?*!) time, and also
needs O(n?*!logn) if the intercept is adjusted in every step. Therefore the LQD needs no

more computation time than the LMS, while achieving a much better statistical efficiency.
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Note that the p-subset algorithm can be modified to run much faster (this holds for all
estimators of this type, including LMS, LQD, S- and GS-estimators). The idea is not to
consider all (;) = O(n”) possible p-subsets, but instead to use only O(n) such subsets ac-
cording to a particular design (Rousseeuw 1993) which ensures that the regression estimator
still has the deterministic 50% breakdown point. The resulting LQD algorithm needs only
O(n?logn) operations.

Computing the objective function of the biweight GS takes O(n?) operations (using a
fixed number of iterations to solve equation (2.3)), which is more time consuming than the
LQD. One can reduce the actual computation time, although it remains O(n?), in the
following way. When considering m trial values 8; we don’t need to compute s(3,) each

time. Indeed, suppose that s is the currently best scale. Generalizing an observation of

Yohai and Zamar (1991), we then have

=5 o Tl <) (5:2)

1<J

Therefore, we only have to compute a new scale estimate when (5.2) holds. This happens
O(log m) times. At each new best estimate B it is possible to carry out some local improve-
ment as in Ruppert (1992). The smoothness of our objective function indicates that Newton

steps can be useful. For this, we compute

A(B) = =AY (= (5

where Ay, = ZZ»Q(UM —u; )iy —ujp)t and d = EY'(y1 — y2) = Eq>¢’(y/\/§). We search
for the smallest value of k(< 10) for which s(8+27%A(3)) < 3, if there is any. An additional

— u]‘), (53)

trick is to use

(ri =r)(8 + 27 "HVAB)) = 5(ri = ;)(B) + %m —r)(BH2FAB) (54)

to speed up the computation. Some experiments with this algorithm show that the objective
function will be computed only a few times. The number m is obtained by a tradeoff between
robustness and speed of computation. When computation time permits, carrying out the

Newton steps at each 8 is even more accurate.

Remark: Stromberg (1993) has given an exact O(n?*?) algorithm for the LMS, which

can be generalized to the LQD estimator because

mpnlre =il ey = I%H%ICIJ (nax [ri = r;| = min Hg,ﬂ max [y =],
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where ¢, = {J C {1,...,n}% forall (i,j) € J : i < j and #J = ("7)}. Thus we have to
compute Chebyshev fits 8, on {(w; —u;,y; —y;); (¢,7) € J} for all possible J. Only at these
values 3. do we have to compute the objective function, which needs O(nlogn) operations.
Now using a theorem of Cheney (1966, page 36), it is sufficient to look at Chebyshev fits
on collections of p observations (u; —u;,y; — y;) with ¢ < j. Because the computation time
for such a fit only depends on p, we obtain a total time of O(n**!logn), which of course is

only practical for small values of n and p.

The data in Table 1 were obtained from T. Vos of the EPFL in Lausanne (Switzerland).
The experiment went as follows. Labeled nitrogen (nitrogen-15) was administered to barley
plants in the form of fertilizer (NH4NO3) in order to study the nitrogen cycle. The nitrogen
is taken up by the plants and converted, after a certain time, to organic material in the soil.
The purpose of the study was to explain the organic nitrogen by means of other variables.
The variables included in the study are: time (in days) after addition of nitrogen (1),
nitrogen content in mineral form in the soil (x3), nitrogen content in the plants (x3), and
nitrogen content in organic form in the soil (y).

Following Rousseeuw and van Zomeren (1990), we made a diagnostic plot (Figure 5a)
of the standardized robust residuals r;/Q(r1,...,r,) obtained by the LQD method, versus
robust distances RD; obtained with the MVE estimator. In this plot we can identify 6
good leverage points and 2 bad leverage points. The latter (cases 13 and 14) stand out
considerably. (Note that also a designed experiment can yield leverage points!) A diagnostic
plot of LS residuals versus Mahalanobis distances (see Figure 5b) does not reveal outliers or
leverage points. It would be possible to apply LS regression to this data without cases 13
and 14 (while keeping the good leverage points, since they augment the efficiency).

We also performed a small simulation study based on 1000 samples {(u;,y;); ¢ =1,...,n}
from a bivariate gaussian distribution with unit covariance matrix, for various sample sizes
n. For each sample we computed the LMS, LTS, LQD, S-, GS-, and TAU67 estimators
by means of the exhaustive p-subset algorithm. Table 2 lists the resulting finite-sample
efficiencies of these estimators, where those of the scale estimators were normalized as in
Rousseeuw and Croux (1993).

For the slope, we note that LQD outperforms both LMS and LTS, the gain being larger
for increasing n. The finite-sample efficiencies of LMS, LTS, and LQD all converge quite

13



Table 1: Nitrogen Data Set with Robust Distances of (&1, 2, 2;3) based on the MVE, as
well as Standardized Residuals r;/6 from the LQD Regression

7 i1 Zio Zia s RD;, /6
1 0.00 61.45 0.00 12.18 0.72 0.46
2 0.00 58.11 0.01 6.57 0.63 -0.50
3 0.00 65.35 0.01 699 084 -0.29
4 1.00 4794  0.22 10.69 0.46 -0.07
) 1.00 57.85 0.13 13.75 0.63 0.60
6 1.00 35.23  0.28 10.84 0.61 -0.29
7 4.00 44.12 040 1594 0.41 0.54
8 4.00 33.19 0.39 941 052 -0.71
9 4.00 24.18 040 17.81  0.77 0.46
10 19.00 25.03 240 17.46 0.84 -0.25
11 19.00 30.61 3.43 23.78% 0.46 0.92
12 19.00 23.28 3.67 18.84 0.84 0.00
13 49.00 2.76 29.67 57.08 23.00 5.43
14 49.00 1.87 26.75 48.11 19.88 3.84
15 49.00 1.04 23.59 23.26 16.52 -0.29
16 80.00 0.87 26.08 35.37 13.38 0.17
17 80.00 0.44 31.00 28.82 18.64 -0.64
18 80.00 0.20 23.92 30.45 11.08 -0.73
19 111.00 0.42 18.99 44.63 0.84 -0.29
20 111.00 0.63 23.73 51.75 5.14 1.08
21 111.00 0.38 22.02 5H1.21 3.35 0.90

14



Table 2: Finite-Sample Efficiencies of the LMS, LTS, LQD, Biweight S, Biweight GS, and
TAU67 Estimators

slope scale
n LMS LTS LQD S GS T LMS LTS LQD S GS T
10 20.8 23.1 30.2 28.1 352 372 36.1 35.0 45.3 425 50.0 59.2
20 19.9 20.0 30.7 269 36.5 50.8 36.6 33.0 5H4.2 457 579 722
40 16.9 149 36.0 255 435 54.3 38.5 34.0 652 49.2 694 738
60 16.0 13.9 36.8 281 47.0 60.5 37.2 32,5 685 484 71.3 835
80 15.3 128 36.9 283 522 63.2 40.2 33.1 752 51.7 T77.8 83.5
100 13.4 134 38.6 26.8 52.1 63.9 382 32.1 721 494 74.1 80.9
200 12.8 11.6 453 285 585 66.4 38.7 319 77.0 504 783 81.0
o0 00.0 07.1 67.1 28.7 684 67.1 36.7 30.7 82.3 539 829 827

slowly to their asymptotic limits. (Also note that the LMS is more efficient that the LTS
for a large range of sample sizes!) The finite-sample efficiencies of the biweight S are quite
stable, but they are below those of LQD. The GS- and TAUG67 estimators have the best
performance overall.

For the corresponding estimators of the error scale we see that the efficiencies of LMS
and LTS are rather stable, whereas the others converge more slowly. Also here the LQD,
GS- and TAUG6T estimators outperform the plain S-estimator, both asymptotically and for

finite samples.

6 OUTLOOK

Similar to generalized S-estimators, we may construct other classes of high-breakdown es-
timators. For example, we can define a generalized R-estimator (or GR-estimator) as
Bn = argminﬁ Dy (r1,...,7r,), where
Dy(r1y .. yrs) :Za(ﬂ""(ri—rj)ﬂri—rﬂ. (6.1)
i<j
Here, R*(r; — r;) stands for the rank of r; — r; among the (g) differences {r; — r;; ¢ < j}.
We assume that the scores are generated by a function A : [0,1] — IR, using

e
ali) = /(i_l)/(;)h (1)dt.
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(When AT = 1 we obtain Wilcoxon scores.) Since the objective (6.1) is location invariant,
we can estimate the intercept afterwards.

If ¥ (u) =0 forallu > 1/4 and A*(1/4) > 0 we obtain a 50% breakdown regression
estimator. For instance, if h™ = 61,4 we obtain the LQD. When At (u) = I(|u] < 1/4) we

obtain the estimator .

A )

B, =argmin Y {|r; —rj]; 1 < j}k(n) (6.2)

6 k=1 ?

Note that this estimator cannot be written as a (GS-estimator. An advantage of GR-
estimators is that their objective function (6.1) is explicit, so one does not have to solve
an equation. But in most cases (6.1) requires O(n?) computation time. We think that the
maximal efficiency of a GR-estimator wouldn’t be much higher than that of the LQD (in
fact, the efficiency of (6.2) is 66.04%) and that the LQD can be seen as a prototype of this
class of estimators.

If we put h(t) = h*(2t — 1) for t € [1,1] and h(t) = —hT(1 — 2t) for ¢ € [0,1], then the

influence function at the model distribution F' will be given by

th(a = BP0 =)

(Eluu’]) 'y, (6.3)

where [ is the distribution of y; — y, when the y; are i.i.d. according to F', and B(h, F') =
—fh(F(y))F”(y)dy. If we further denote A(h,F) = [ (Eph(F(y — Y)))QdF(y) then we
obtain the asymptotic normality nl/z([;n — B) — N(0,(E[uu'])~tA(h, F) /| B*(h, F)) .
Instead of working with GS-estimators based on a kernel {(r;,r;) = |r; —r;| of order two,
one could also use higher order kernels. If we use a generalized M-estimator (Serfling 1984)

as objective function, then s(83) is defined as the solution of the equation

(1) 5 prfleend

i1<...<il S
We want ¢ to be scale equivariant and location invariant. If we take &(ry,...,r;,) =
sdv(riy, ..., ), where sdv stands for the standard deviation, we obtain a 50% breakdown

estimator if k/p(o0) = 1 — 27, A prototype of this class is

A

B, = argmin{sdv(r; ,...,r;); 11 < ... <} ihpy (ny-
(7):(7)

These higher order estimators will have a higher efficiency, but also a higher sensitivity to
gross errors. We do not recommend these estimators in practice, since their computation

time becomes too large.
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Looking in a different direction, we note that (GS-estimators can also be extended to
high-breakdown estimation of scatter matrices. Consider a data set xy,...,x, of points in
IR?. Then a GS-estimator of its scatter can be defined as a symmetric positive definite

matrix C' which minimizes det(C') subject to

() Sollx = o) = (6.4

i<

where || x; — x; ||¢ stands for ((x; — x;)'C™ (x; — X]'))l/z. Note that the constraint (6.4)
is location invariant, unlike the usual S-estimators (Rousseeuw and Leroy 1987, page 263)
where it is necessary to estimate a location vector T' simultaneously. A special case of (6.4)
is the constraint

Ul xi—x%j ez < ]}(g)(n) > INC, (6.5)

2

yielding an analog to LQD regression. For the computation of the scatter matrices given by

(6.4) and (6.5) one can adapt existing algorithms for the MVE and S-estimators.

7 APPENDIX

Proof of Theorem 1. Denote M = max;<; |y; — y;|. Due to condition (H), we have
Miaﬁlilﬂ(ui —w)'Bl;i < ey =8>0.

For [B] > 2M/6 we obtain [r; — rj| = [[(w; —u;)'8| = |yi — y;l| = [(w; — ;)8 = M =

0|8 — M > M for at least (;) — (th) + 1 differences |r; — r;|. Thus for all |3 > 2M/¢ it

is true that Q,(8) > M > Q,(0). Since 8 — Q,(B) is continuous, @,(B) will attain its

minimum value inside the compact ball 5(0,2M/6). O

Proof of Theorem 2. Denote e* = £*(LQD, 7). For any regression equivariant estimator
we have that ¢& < ([(n — p)/2] + 1)/n (Rousseeuw and Leroy 1987, page 125), so it is
sufficient to prove the reverse inequality. We can assume w.l.o.g. that T(Z) = 0. Denote
by {(ul,y!); ¢ = 1,...,n} the contaminated sample obtained by replacing k = [(n — p)/2]
observations from Z, and by B3, the corresponding estimate. Denote M = max; |y;|, and

ri = y! — B'ut. We will prove that |3,| < C, where C' only depends upon the original

sample.
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Note that |r;(0) — r;(0)| = |y; — y;| < 2M for all "good” points (u;,y;). Since (”;k) =
([(n+p;—1)/2]) > (th)7 we have that Q,(0) < 2M. So it is sufficient to prove that for all |3| > C

it holds that ),,(8) > 2M, because then it is clear that |3,] < C. Define

1
T = §inf{,u > 0; there is a (p — 2) dimensional subspace V in (y = 0) such that V*

contains (}2?) differences u; —u; (¢ < j)},

where V*# consists of the points with distance to V' less than or equal to y. Due to our
condition of general position, we have 7 > 0. Denote p = 7/n, and take C' = 10M/p. Take
13| > C and denote by H the hyperplane in IR” with equation y = B'u. Then L = HN(y = 0)
has dimension (p — 2) in [RP™".

We will partition the good observations into classes, induced by the following equivalence

relation:
(u;,y;) ~ (u;,y;) < there exist k (0 < k < n — 2) different observations u,,,...,u;,
such that u; —u;, € L?,u;, —u;, € L”,...,u;, —u; € L”.
Denote by By, ..., B,, the classes with more than one element, and by By the union of the

other classes. One can see that
u,u; € Bi=u,—u; €L’ forl>1.

Due to the definition of 7, we have >°", (#QBZ) < (g)

Now we will divide the "bad” points into subclasses. Denote by C; (1 < [ < m) the
collection of bad points (u},y}) for which there exists an element (u;,y;) in B; such that
[ri = 7’| < (p|B] —2M)/4. For each element (u;,y;) in By, we denote the collection of bad
points (uf,y}) for which [r] —ri| < (p|B] —2M)/4 by Ciy, (1 <@ <m' = #By). Note that
some of the Cj4,, can be empty. The bad points that do not belong to any C; (1 <1 < m+m')
are put in Cj.

If u g L* then |u’8| > p|B|. Therefore, if two good observations (u;,y;) and (u;,y;) do
not belong to the same class B; (I > 0) or both belong to By (and thus u; — u; ¢ L?), then

et =l = [(yi — ;) — B (wi —wy)| > |lyi — ;| — 18" (ws — wy)|| > p|B] — 2M,

where we have used that |3| > 2M/p and |y; —y,| < 2M. Now we can see that the collections

C; (0 <1< m+m') are disjoint (using the triangular inequality).
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From the above it follows that |rj —ri| < (p|B| — 2M)/4 for at most

!

i (#QB ) + é(#&)(#m " :zl<#c,+m> i (Z?iﬁ”;' #Cz)

couples ¢ < j. Using the fact the each B; (I > 1) contains at most p — 1 elements, we find

that the above expression is less than or equal to

(-rse- (1)

hence [r] —ri| > (p|B| — 2M)/4 > 2M at least

()= (A1

times. Since, if we assume the natural condition n > p,
we have that Q,.(83) > 2M.

Proof of Theorem 3. Looking at the proofs of the preceding propositions for the special
case where B is the LQD, it is sufficient to prove that there exist constants v > 0 and 6 > 0
such that

YTy yrn) S 8(r1y .y 1) S OQ(r1y o), (7.1)

where Q(r1,...,rn) = {|ri — ;i < j}(f;p)(g)
We can take v = 1/c. Indeed, suppose that ¢} > ¢s. Then there will be (;) — (hp) +1

2

differences |r; — r;| greater than ¢s. For an ¢ > 0 small enough, we will have that

but then s does not satisfy (2.4) any more.

For 6 we can take 6 = 1/p_1(p(c)/((h2p) +1)). (We define p~!(u) = sup{t > 0; p(t) < u},
and then we have that p(p~'(u)) < w for all w.) It holds that p_l(p(c)/((h;) +1)) >0
because otherwise p(t) > p(c)/((h;) + 1) for all t > 0. Due to the continuity of p at zero
this would yield p(¢) = 0, which is a contradiction. Now suppose s p_l(p(c)/((th) +1)) > Q,
then (th) differences |r; — r;|/s are less than p_l(p(c)/((th) + 1)) and thus, for an ¢ small

enough,

() gz () e ) ) ()<
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which is in contradiction with (2.4). O
In order to prove Theorem 4, we need the following two lemmas:

Lemma 1. Let (uy,y1) ~ Ko and (ug,y2) ~ K*, where K* can be any distribution. Then
for all s > 0 and for all 3 > 0:

(yl—yz—f (111 —112))

Erosrx |p (7.2)

S

> B, [p(w)] ‘

Proof of Lemma 1.  Using symmetry and unimodality of y; and B'u; we find that
z = (y; — B"uy)/s is unimodal and symmetric. Therefore, Ep(z — 2*) > Ep(z) where z* can

be any stochastic variable. This proves (7.2). O

Lemma 2. Let (u,y) ~ Ko,u’ be uniformly distributed on the line segment [A,8",21,87],
and put y, = u! B" and K* ~ (u*,y*). Suppose A\, — oo, 3, — B and |B| < |8*|. Then

JE— JE— t JE—
lim Exyrcs lp(yl y2 = B (W “2))1 =1 foralls>0 (7.3)
n—00 S
JE— JE— t JE—
lim By [p(yl Y2 — B (W u2))] =1 forall s>0. (7.4)
n—00 S

Proof of Lemma 2. Take ¢ > 0. We have that

— — ¢ u; —u
|E]{O><](7*l [p(yl Y2 671 ( 1 2))] _ 1|

S

— Ai/jA"EKO [p(y_ﬂ”tu_t(iﬂ*P_ﬂ”tﬂ*))l dt—1|
o e | B (1.5)

where A, < t, < 2\, (in the last step we used the mean value theorem for integrals of
positive continuous functions). Denote H, the distribution of (y — 3,'u)/s; since B, is a
bounded sequence we can find a compact set C' for which H,{C'} > /T —¢c. Denote further
z, = t,(|3%* — B,'8%)/s, then x, — o (using that lim, .. |3*]* — 3,'8" > 0). So for n
large enough, we have for all z € C' that p(x — z,,) > /1 —c. We can rewrite (7.5) as

1 — /C ple —a,)d H,(x) — / ple —a,)dH, () < 1-— /C ple — a,)dH,(x)

RP\C
<l—infple —a,) H,{C} < 1—-(1—-¢)=c¢.

reC -
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This proves (7.3). We continue with the proof of (7.4):

— — ¢ u; —u
|E](7*l><](7*l [p(yl Y2 671 ( 1 2))] _ 1|

L e Tl BT
= 12 [0 a1y, (1.6)

where we worked out the distribution of u; — uy. Denote x, = (|8%|> — 8,'8%)/s. Then
x, > 6 > 0 for n large. Choose L such that p(x,t) > p(té) > 1 —¢/4 for all t > L. For n
big enough we have that A\, > L and 2L/\,, < /2. Then (7.6) equals

2= Dttty - Dt b= [0 = S plat) - D]
N Jo TN M e A,
2L 2 2L
< 2Ly 20— Lysup lplent) — 1] < 251 = c4) + o2
)\n )\n t>L )‘n
2L
< )\——|-5/2 <e/2+¢/2=¢.
This proves (7.4). O

Proof of Theorem 4. Let ¢ = g3'(e, s1) where s; = g7 ((k—2e+¢%)/(1—¢)%,0). Suppose
that ¢ < min(1 — /1 — k, /1 — k).
We will first prove that B.(T') < ¢. Take any distribution K of the form K = (1—¢)Ky+

eK* and consider a slope |3] > ¢. It is sufficient to prove that
s(B,K) > s(0,K). (7.7)

Since iz(e,sl,c) = k, we have that 71(5,51, |B|) > k. Using continuity, there must exist an

83 > 81 such that 71(5, 89, |B|) > k. Using this last inequality, Lemma 1 and the positivity of

p, we find
Brexr | p(i=¥2= Sﬂ;(ul - uQ))]
= (1—¢)%g(s2,8) +2e(1 — &) Excyxic- [p(yl — Y2 it(ul - uz))
e Erey e [p(yl — Y2~ Sﬁ:(ul - Uz))l
> (1 —¢)2g(s2,8) + 25(1 — €)di(s2, B) = h(z,52,8) > k.
Therefore,

s < 8(B8, K). (7.8)
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Now for any s > s; we have that

< (L—¢)%(s,0) +2¢(1 — ) + ¢
< (1—¢)%g(s1,0) +2e(1 —e) + &> = k.

Ern [p(yl — Y2 )]

We can conclude that s > (0, K'), and thus
s > s(0, K). (7.9)

Combining (7.8) and (7.9) yields (7.7).

Now we will prove the other inequality
B.A(T) > c. (7.10)

Take any 0 < ¢; < cand |37 = ¢;. Let K be a contaminating distribution correponding to
(ur,y?), where y* = 8*'u’ and u? is uniformly distributed on the line segment [\, 3", 2, 37]
and A, — oo. (In fact, we want both location and spread of u} to go beyond all bounds

when n increases.) To prove (7.10), it is enough to show that
sup |T(K,)| = e, (7.11)

where K, = (1 —¢) + K. Suppose that (7.11) is not true, then we are able to construct a
subsequence, which we shall still call K, for which lim,_.. 8, = 3, where T(K,) =, and
18] < 87| = ¢1. Now we have

s, [p&“ v Bl = “”)] (1= )(s,18,)

S

! ¢
+2e(1 =€) Eroxry lp(?h v2 = B U UZ))] + &*Exx i l/’(yl 2~ Bn ug)) :

S S

Using Lemma 2 and the definition of s; yields for all s < s; that

(y1 — Y2 —5; (111 —112))

lim Er,xx, [p > (1—¢)%g(s,0) +2e(1 —e)+¢&*
> (1 —¢)g(s1,0) +2e(1 —¢) + & = k.
Therefore, lim,,—. $(8,,, K,,) > s and thus

lim s(8,,, K.) > s1. (7.12)

n—oo
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On the other hand 71(5,51,01) < iz(e,sl,c) — k. Due to the continuity of & we can find an
s9 < sq such that 71(5, 59,¢1) < k. Using the fact that y= = 8~'u’ exactly, we have that

* 1
—y2— B (u;y —u
Fr s, p(yl Yo (uy 2))

52

= (1 —2)%g(s2,¢1) + 21 — &)g(s9,¢1) = h(e, s2,¢1) < k.

Therefore,
(B, K,) < sg. (7.13)

Combining (7.12) and (7.13) shows that for n large enough 3, does not minimize s(-, K,,),
which gives a contradiction. Therefore, (7.11) must be true.

To complete the proof, we show that if € T min(v/1 — &k, 1 — /1 — k) then

k—2e4¢

30 (o 0)

This follows from k —2e + ¢ >0 & ¢ < 1—y/1 —kand (1—e)*4+2e(1—¢) <k e < VI —k.
O

Proof of Theorem 5. Combining equations (11), (15) and (17) of Theorem 1 in Héssjer
et al. (1993) yields (4.4) according to definition (4.2). Here we will give a proof using
definition (4.1). The functional T is given by T(K) = argminﬁ s(B, K), where s(8, K)
satisfies Fryr [p((yl —yo — B (g — uz))/s(ﬁ,[&')], and (uq,y;) and (ug,y2) are two inde-

pendent variables drawn from K. Since T'(K) minimizes s(3, K) we have

y1—y2 — T(K)'(u; —uy) _
Exxx [@/ﬂ( SR, K) J(uy — ug)] = 0.

Also the contaminated distribution K. = (1 — ¢) Ky + ¢Ay,, has to satisfy

y1 —y2 — T(K.)' (w1 — uy)
E( 4 — — U.
Kex K. [¢( S(T([(5)7[(5) )(U1 u2) 0
Working this out yields
—yy — T(K.)"(u; — uy)
1 o 2E( ( yl y2 .
( 5) Kox Ko [¢( S(T([(5)7[(5) )(ul u2)

i —y = T(K)' (wm —u) -
s(T(K.), K.) J(u = U)] = 0.

12e(1 — &) By, [;z;(
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Differentiating with respect to ¢ and evaluating in 0 gives

0s(T(K.), K.)
Oe

P
EKoxKo %/)/(?h - 92){— Z]Fl(uv Y, Ko)(ul,l - U2,l) - (y1 - yz) |s:0}(u1,k - Uz,k)

=1
+2E5k, [(y1 — y)(wap — ug)] = 0

for all 1 <k <p—1. Since y and u are independent at Ky and Eg,(u1x — uzy) = 0 we find
_EFOXFO W)/(yl - y2)] ]F(uv y)tEGo x G [(ul - u2)(u17k - u27k)]

+2EF [{(y1 — y)] B [urr —ug] =0

for all 1 <k <p—1. Since F(uy) = 0 and Fg,xq, [(w1 — uz)(u; —uy)'] = 2E¢, [ugul] we

obtain equation (4.4). O
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Figure 1. Framples where: a) condition (H) is not satisfied; b) neither the u; nor their

differences are in general position; ¢) the u; are in general position but their differences are

not; d) a zero-intercept model is inappropriate.
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TAUG7T estimators; b) the LQD(0.5) and LQD(0.91) estimators.
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Figure 3. Influence functions of the LQD, biweight GS-,
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Figure 4. Influence functions of the Jaeckel estimator based on Wilcoxon scores, the L4

estimator, and the optimal robust 95% efficient Mallows and Schweppe estimators.
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Figure 5. Diagnostic plots of nitrogen data: a) standardized robust residuals obtained
by the LQD method versus robust distances RD; based on the MVE; b) standardized LS

restduals versus Mahalanobis distances.



