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Estimating multivariate location and scatter with both affine equivariance and positive breakdown has
always been difficult. A well-known estimator which satisfies both properties is the Minimum Volume
Ellipsoid Estimator (MVE). Computing the exact MVE is often not feasible, so one usually resorts
to an approximate algorithm. In the regression setup, algorithms for positive-breakdown estimators
like Least Median of Squares typically recompute the intercept at each step, to improve the result.
This approach is called intercept adjustment. In this paper we show that a similar technique, called
location adjustment, can be applied to the MVE. For this purpose we use the Minimum Volume Ball
(MVB), in order to lower the MVE objective function. An exact algorithm for calculating the MVB is
presented. As an alternative to MVB location adjustment we propose L1 location adjustment, which
does not necessarily lower the MVE objective function but yields more efficient estimates for the
location part. Simulations compare the two types of location adjustment. We also obtain the maxbias
curves of both L1 and the MVB in the multivariate setting, revealing the superiority of L1.

Keywords: intercept adjustment, L1 estimation, location estimation, location adjustment, minimum
volume ellipsoid, robustness

1. Introduction

The Minimum Volume Ellipsoid (MVE) (Rousseeuw 1985) is
defined as the smallest regular ellipsoid covering at least h ele-
ments of the data set X = {x1, . . . , xn} ⊂ R

p, where the MVE
location estimator is the center of that ellipsoid and the MVE
scatter estimator corresponds to its shape matrix. Equivalently,
we can consider the minimization problem

(µ̂, Ŝ ) := argmin
(µ,S) ∈ R

p×SPD(p)
|S|=1

d2
h (µ, S) (1.1)

where SPD(p) is the set of all symmetric positive definite
matrices S ∈ R

p×p. We call Ŝ the “shape matrix” because Ŝ
determines the shape of the ellipsoid but not its magnitude,
since necessarily |Ŝ| = 1. By d2

h (µ, S) we denote the hth ordered
squared distance between xi and µ in the metric given by S, i.e.
d2

h (µ, S) = {(xi−µ)t S−1(xi−µ); 1 ≤ i ≤ n}(h) = {‖xi−µ‖2
S; 1 ≤

i ≤ n}(h) = mediani‖xi − µ‖2
S where ‘median’ stands for the

hth order statistic. Then the MVE estimator is given by

(µ̂, �̂) := (
µ̂, c(n, p, h)d2

h (µ̂, Ŝ )Ŝ
)

(1.2)

where c(n, p, h) is a correction factor to make �̂ consistent for
� at the normal model. If one wants to maximize the breakdown
point of the estimator, the value of h in (1.1) and (1.2) can be
set at h = [ n+p+1

2 ] ≈ n
2 (Lopuhaä and Rousseeuw 1991). But

if (as is often the case) one knows that the fraction of outliers
is at most α where 0 < α < 1

2 , we can work with the estimator
MVE(α) in which h = �n(1 − α)�. The choice α = 1

4 is a good
default value.

Throughout the paper we will assume not to be in the
very degenerate situation where some h elements of X =
{x1, . . . , xn} ⊂ R

p all lie in a (p − 1)-dimensional hyperplane.
This is a necessary condition for the existence of the MVE.
If such h points exist, they can be covered by ellipsoids with
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arbitrary small volume, but the infimum volume cannot be
attained by a regular ellipsoid. In (1.1) the infimum of d2

h (µ, S)
also becomes zero but again cannot be attained. The condition
is also sufficient for the existence of the MVE, since the infimum
volume is then the minimum of a finite number ( n

h ) of strictly
positive volumes.

In a regression model yi = β t xi + α + εi (i = 1, . . . , n) with
slope parameter β ∈ R

p−1 and intercept parameter α ∈ R, the
Least Median of Squares (LMS) estimator (Rousseeuw 1984)
of (α, β) is defined by

(α̂, β̂) = argmin
(α,β)∈R×R

p−1
median

i
( yi − β t xi − α)2. (1.3)

Usually, the intercept estimate α̂ is computed conditionally on
the value of the slope estimate β̂ in order to lower the value of the
objective function. This intercept adjustment process consists of
splitting up the minimization problem (1.3) into two parts:

β̂ = argmin
β∈R

p−1
median

i
( yi − β t xi − α̂(β))2

with

α̂(β) := argmin
α∈R

median
i

( yi − β t xi − α)2.

This corresponds to saying that α̂(β) is the univariate LMS
location estimate of the n numbers yi − β t xi (i = 1, . . . , n).
Fortunately there exists an exact algorithm for the univariate
LMS location estimate, since it is the midpoint of the shortest in-
terval containing h observations (Rousseeuw 1984, Theorem 2).

Analogously, we can rewrite (1.1) as follows:

Ŝ = argmin
S∈SPD(p)

|S|=1

d2
h (µ̂(S), S) (1.4)

where for a given S with |S| = 1 we put

µ̂(S) := argmin
µ∈R

p
dh(µ, S)

= argmin
µ∈R

p
median

i
‖xi − µ‖S

= argmin
µ∈R

p
median

i
‖S−1/2xi − S−1/2µ‖ (1.5)

where S1/2 denotes the symmetric root of S (i.e. S1/2S1/2 = S
with S1/2 symmetric). Using the transformed data set Y =
{yi = S−1/2xi , i = 1, . . . , n}, we obtain

µ̂(S) = S1/2 argmin
θ

median
i

‖yi − θ‖. (1.6)

(Note that µ̂(Ŝ) with Ŝ defined by (1.4), equals µ̂, and there-
fore remains affine equivariant.) The value of θ minimizing
mediani‖yi −θ‖ is the center of the ball with smallest (nonzero)
volume that covers at least h points of the data set Y . This
corresponds to the minimum volume ball estimator defined by
Rousseeuw (1984, p. 877). It is known that this estimator is or-
thogonal equivariant and has a 50% breakdown point. However,
to our knowledge, no exact algorithm to compute this estimator
has yet appeared in the literature. Section 2 of this paper presents

such an algorithm. The (p + 1)-subset algorithm with location
adjustment for computing the MVE is outlined in Section 3.

The purpose of location adjustment using the MVB is to lower
the value of the objective function (1.1). It is similar to the
well known intercept adjustment technique in robust regression
which is believed to be beneficial. In Section 4 we show by
means of a simulation study that location and intercept adjust-
ments indeed lower the value of the objective function, but that
the statistical benefit of this decrease it not so important as it
might seem. On the other hand, location adjustment using the
L1-location estimator (presented in Section 5) does increase the
statistical efficiency of the location estimator, while not lowering
the value of the objective function. Expressions for the maxbias
curves of the MVB and the L1-estimator are derived in Section 6,
allowing for a better theoretical understanding of the robustness
behavior of these two orthogonally equivariant estimators. A
comparison with the Feasible Solution Algorithm of Hawkins
(1993b) is made in Section 7, while Section 8 concludes.

2. Computation of the minimum volume ball

Given Y = {y1, . . . , yn} ⊂ R
p, the MVB location estimator is

defined as

MVB(Y ) = argmin
µ∈R

p
median

i
‖yi − µ‖ (2.1)

where again the median stands for the hth order statistic.
The pseudocode below gives an exact algorithm for the MVB

estimator:

1. Initialize Rbest by +∞.
2. For any integer 2 ≤ k ≤ p + 1 and any k-subset J =

{i1, . . . , ik} ⊂ {1, . . . , n} do:

2.1 Put AJ := affinespan {y j : j ∈ J }. If dim(AJ ) < k −1,
goto 2 (i.e., drop this J ).

2.2 Therefore, dim(AJ ) = k − 1. Determine the unique
point µJ in AJ that lies at the same Euclidean distance
of all y j for j ∈ J by solving a k × k linear system of
equations.

2.3 Compute RJ := mediani‖yi −µJ ‖. If RJ ≥ Rbest goto 2.
2.4 Put µbest := µJ and Rbest := RJ .

3. Report MVB(Y ) := µbest as well as Rbest.

Theorem 1. This algorithm yields the exact MVB estimator
(2.1).

The proof is given in the Appendix.
The problem is to find k and the optimal subset {i1, . . . , ik}.

Going through all possible subsets J of all possible sizes, and
computing RJ in O(n) time for each of them, yields the com-
plexity O((n2 + · · · + n p+1)n) = O(n p+2). Although the exact
MVB takes a lot of time, its number of operations is still poly-
nomial in n.
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Since the exact MVB algorithm is too time-consuming, we
also consider an approximate algorithm where step 2 only draws
Nsamp subsets of size p + 1. (By simulations, we found that the
subset J yielding Rbest and µbest has size (p + 1) with a fairly
high probability.)

Another alternative is a very rough 1-subset approximate
algorithm:

1. For each j = 1, . . . , n, compute R j := mediani‖yi − y j‖.
2. Set MVB(Y ) equal to the observation y j attaining the lowest

R j .

This algorithm is less precise but it remains orthogonal equiv-
ariant and still has a 50% breakdown point. Moreover, it only
takes O(n2) operations.

3. Location adjustment by the MVB

Finding the exact solution of the MVE minimization problem
(1.1) is often not feasible. Therefore, one usually resorts to the
approximate (p + 1)-subset algorithm. One can easily adapt
this algorithm to incorporate a location adjustment using the
minimum volume ball estimator. This leads to the following
algorithm:

1. Initialize Rbest by +∞.
2. For any (p + 1)-subset J ⊂ {1, . . . , n} do:

2.1 Compute µJ = 1
p+1

∑
i∈J xi and CJ = 1

p

∑
i∈J (xi −

µJ )(xi − µJ )t . If |CJ | = 0 goto 2.
2.2 Compute SJ = |CJ |−1/pCJ hence |SJ | = 1.
2.3 Transform the data set X to Y = {yi = S −1/2

J xi ; i =
1, . . . , n}.

2.4 Compute the estimate θJ := MVB(Y ) and put RJ :=
mediani‖yi − θJ ‖.

2.5 If RJ ≥ Rbest goto 2.
2.6 Put Sbest := SJ , θbest := θJ and Rbest := RJ .

3. Report the final estimate (µ̂, �̂) where µ̂ = S1/2
best θbest and

�̂ = c(n, p, h)R2
bestSbest. Note that the minimized objective

value (1.1) equals R2
best.

As the dimension p increases, it becomes infeasible to con-
sider all ( n

p+1 ) subsets. Then we can still search over a random
selection of Nsamp subsets of size p +1. One can also apply the
MVB adjustment only once, as a final improvement to the usual
(p + 1)-subset algorithm for the MVE.

Note that all these versions of the MVE combined with MVB
location adjustment are affine equivariant methods, because we
apply the orthogonally equivariant MVB to the data in the MVE
metric.

4. Simulations

The (p + 1)-subset algorithm for the MVE was described by
Rousseeuw and Leroy (1987, pp. 259–260). An actual program
was provided by Rousseeuw and van Zomeren (1990) and in-

corporated in S-Plus and SAS. It is also easy to implement the
algorithm in a matrix language like Gauss, which we did here. We
compared the following estimators of location and scatter: the
original (p + 1)-subset estimator (µ̂p, �̂ p), the (p + 1)-subset
estimator (µ̃, �̃) with MVB adjustment at each step, and the
(p + 1)-subset estimator ( ˜̃µ, ˜̃�) with a single MVB adjustment
at the end.

We generated two types of data configurations. The first one
is the normal situation where Xi ∼ N (0, Ip) for i = 1, . . . , n. In
the second situation, 20% of the observations are contaminated
by replacing them by 100e1 where e1 is the first unit vector. This
yields a cluster of extreme outliers. We considered p = 2, n =
30 with Nsamp = 400, and p = 3, n = 40 with Nsamp = 500.

Summary values over m = 500 runs were computed, such as
the bias and the mean squared error of the location estimators

Bias(µ̂) = ‖µ̄ − µ‖ =
∥∥∥∥∥
(

1

m

m∑
k=1

µ̂k

)
− µ

∥∥∥∥∥ (4.1)

MSE(µ̂) = 1

m

m∑
k=1

‖µ̂k − µ‖2, (4.2)

where µ̂k is the estimate of location from the kth simulated
sample and the true parameter isµ = 0. To measure the deviation
from sphericity of the estimated scatter matrix �̂k of the kth
sample, we calculated

φk = trace(�̂k/p)p

det(�̂k)

according to Maronna and Yohai (1995). In Table 1, we reported

median
k=1,...,m

ln φk .

Note that the matrices �̂ p and ˜̃� only differ by a factor, and
therefore have the same deviation from sphericity. Finally, the
average value of the objective function (1.1) over the m runs is
listed.

In Table 1, we see that applying the MVB adjustment does
lower the MVE objective function compared to the original
(p+1)-subset MVE algorithm, especially when the adjustment is
carried out in each step. Indeed, by construction of the algorithms
we know that (µ̃, �̃) always yields lower values for the objec-
tive function than ( ˜̃µ, ˜̃�), which on its turn yields lower values
than (µ̂p, �̂ p). On the other hand, the adjustments don’t have
much impact on the bias, MSE and mediank ln φk since these do
not improve much. Even when the adjustment is carried out in
every step, we do not gain much statistical precision, while the
computation time increases drastically. There are however some
cases (e.g. p = 3 for Normal data, . . . ) where the improvement
turns out to be significant.

These results are similar to the regression framework. For
instance, Table 2 compares the Least Trimmed Squares (LTS)
estimator computed with or without intercept adjustment. The
univariate LTS can be computed exactly with an algorithm of
Rousseeuw and Leroy (1987, pp. 171–172). Let us now generate
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Table 1. Using location adjustment by the MVB

Normal data 20% contaminated data

(µ̂p, �̂ p) (µ̃, �̃) ( ˜̃µ, ˜̃�) (µ̂p, �̂ p) (µ̃, �̃) ( ˜̃µ, ˜̃�)

p = 2 Bias(µ̂) 0.008 0.008 0.008 0.028 0.015 0.018
n = 30 MSE(µ̂) 0.234 0.229 0.231 0.259 0.228 0.252

medk ln φk 0.594 0.586 0.594 0.408 0.364 0.408
AvekObjk 1.016 0.878 0.985 1.508 1.293 1.453

p = 3 Bias(µ̂) 0.018 0.023 0.023 0.037 0.035 0.028
n = 40 MSE(µ̂) 0.295 0.266 0.319 0.310 0.301 0.353

medk ln φk 0.921 0.786 0.921 0.702 0.719 0.702
AvekObjk 2.150 1.897 2.108 2.991 2.616 2.885

In each of four situations, simulating m = 500 samples yields the bias and MSE of the location estimators, the mediank=1,...,m ln φk of the scatter
estimators, and the average value of the MVE objective function. The standard errors around the reported values are about 0.01 for the bias and the
mean squared error. The standard errors for the average value of the objective function are between 0.01 and 0.03. For the median of the deviations
of the sphericity measures the standard error is of the order 0.025.

Table 2. Using intercept adjustment when computing LTS regression

Standard data 20% vertical outliers 20% horizontal outliers

(β̂ p, α̂ p) (β̃, α̃) ( ˜̃β, ˜̃α) (β̂ p, α̂ p) (β̃, α̃) ( ˜̃β, ˜̃α) (β̂ p, α̂ p) (β̃, α̃) ( ˜̃β, ˜̃α)

100 × Bias(β̂) 0.142 0.079 0.142 0.331 0.262 0.331 0.125 0.172 0.125
100 × MSE(β̂) 0.463 0.460 0.463 0.422 0.430 0.422 0.414 0.385 0.414
100 × Bias(α̂) 1.677 1.749 1.700 0.227 0.275 0.786 2.010 1.428 2.720
MSE(α̂) 0.129 0.124 0.126 0.134 0.123 0.122 0.020 0.014 0.027
AvekObjk 0.810 0.781 0.799 1.195 1.148 1.174 1.194 1.147 1.174

In three situations, simulating m = 500 samples gives the bias and MSE of the slope and intercept estimators and the average value of the LTS
objective function. Standard errors around the simulated bias are about 0.1 for 100× the regression slope vector and 0.01 for 100× the intercept.
For the MSE we have standard errors of about 0.15 for 100× the MSE of the slope vector and 0.01 for the MSE of the intercept.

three different situations. In the first one, the model is given by

yi = β1xi,1 + β2xi,2 + β3xi,3 + α + ei for i = 1, . . . , 40

(4.3)

with β1 = β2 = β3 = α = 1. Here, ei ∼ N (0, 1) and the explana-
tory variables are generated independently as xi, j ∼ N (0, 10) for
j = 1, . . . , 3. The second configuration replaces the first 8 points
by outliers in the y-direction: ei ∼ N (10, 1) for i = 1, . . . , 8.
In the third situation, these were replaced by outliers in
the x-direction with xi,1 ∼ N (100, 10) and ei ∼ N (0, 1) for
i = 1, . . . , 8.

Bias and MSE, defined as in (4.1) and (4.2), were computed
for estimators of the regression and intercept parameters using
the p-subset algorithm without intercept adjustment, with in-
tercept adjustment in every step, and using intercept adjustment
only at the final stage. In Table 2 we see that intercept adjustment
indeed lowers the LTS objective function, especially if the ad-
justment is carried out at each step, whereas the bias and MSE
of the coefficients do not change significantly. This matches
our simulation results for multivariate location and scatter
(Table 1).

5. L1 adjustment

We have seen that MVB adjustment lowers the value of the MVE
objective function. But MVB adjustment does not appreciably
increase the finite sample efficiency of the estimator, while it
requires much computation time. That is why we thought of
replacing the MVB adjustment by a different adjustment which is
less time consuming. The L1 location estimator appears suitable
since it has the same breakdown and equivariance properties
as the MVB estimator, and is easier to compute. Moreover, it
has a better statistical efficiency than the MVB. For a given
p-dimensional data set Y = {y1, . . . , yn} the L1 estimatorµL (Y )
is the solution of the minimization problem

µL (Y ) = argmin
µ∈R

p

n∑
i=1

‖yi − µ‖. (5.1)

A fast algorithm for the L1 estimator is given in Hössjer and
Croux (1995).

We can now carry out location adjustment by means of the L1

estimator. For this it suffices to take the algorithm in Section 3,
and to replace step 2.4 by
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Table 3. Using L1 adjustment when computing the MVE

Normal data 20% contaminated data

(µ̂p, �̂ p) (µ̃, �̃) ( ˜̃µ, ˜̃�) (µ̂p, �̂ p) (µ̃, �̃) ( ˜̃µ, ˜̃�)

p = 2 Bias 0.0079 0.0062 0.0034 0.0211 0.4082 0.4015
n = 30 MSE 0.234 0.093 0.094 0.259 0.277 0.272

medk ln φk 0.594 0.531 0.594 0.408 0.404 0.408
AvekObjk 1.016 1.055 1.332 1.508 1.677 2.178

p = 3 Bias 0.0178 0.0036 0.0057 0.0369 0.4605 0.4601
n = 40 MSE 0.295 0.092 0.093 0.310 0.328 0.328

medk ln φk 0.921 0.845 0.921 0.702 0.693 0.702
AvekObjk 2.150 2.093 2.461 2.991 3.109 3.695

In each of four situations, simulating m = 500 samples yields the bias and MSE of the location estimators, the mediank=1,...,m ln φk of the scatter
estimators, and the average value of the MVE objective function.

2.4’ Compute the L1 estimate θJ := µL (Y ) and calculate
RJ := mediani‖yi − θJ ‖.

Everything else remains the same. Of course, we can do this
both in the case of exhaustive search over all (p + 1)-subsets as
in the version of Nsamp randomly drawn (p + 1)-subsets. Also,
we can apply the L1 location adjustment only once at the end.
This corresponds to the two-stage estimator defined as:

compute the MVE estimator (µ̂, �̂) and then replace µ̂ by

˜̃µ := argmin
µ∈R

p

n∑
i=1

‖xi − µ‖�̂ . (5.2)

The breakdown point and asymptotic properties of this estimator
were studied in Lopuhaä (1992), Hössjer and Croux (1995). Note
that all these versions of “MVE with L1 location adjustment”
remain exactly affine equivariant.

We performed a modest simulation study to compare the
random (p + 1)-subset algorithm for MVE computed with and
without the L1 location adjustment. The simulation setup is
similar to the one described in Section 4. Table 3 summarizes
the results. As expected, this type of location adjustment does
not reduce the MVE objective function. Surprisingly, the effect
of L1 adjustment on Bias(µ̂), MSE(µ̂) and mediank ln φk is the
same whether the adjustment is carried out at each step or only
at the end. The latter version, denoted as ( ˜̃µ, ˜̃�), is of course
the fastest to compute.

So, is L1 adjustment beneficial? For the scatter matrix
estimator, we see that medk ln φk remains about the same in
all situations. For the location estimates, it depends on whether
the data are normal or contaminated. For normal (uncontam-
inated) data, the L1 adjustment preserves the small bias and
substantially reduces the MSE, since L1 has a better statistical
efficiency. But for contaminated data the MSE remains the
same, whereas the bias becomes much higher.

6. Maxbias curves

In this section, we will compare the maxbias curves of the
location estimators MVB and L1 in the multivariate setting. The

maxbias of a location estimator T at the model distribution F
and a given amount of contamination ε is given by

B(ε, T, F) = sup
H

‖T ((1 − ε)F + εH ) − T (F)‖ (6.1)

where H can be any distribution.
We will compute the maxbias curves for point contami-

nation at normal model distributions, and due to orthogonal
and translation equivariance we can take F = N (0, �) with
� = diag(λ1, . . . , λp), λ1 ≥ · · · ≥ λp > 0. The univariate stan-
dard normal distribution function will be denoted by �. All
proofs are given in the Appendix.

Theorem 2. (a) The maxbias B(ε, L1, F ) of the L1 location
estimator at F is given by the solution b of the equation

1√
2πλ1

∫ +∞

−∞

∫ +∞

0

z√
z2 + v

e
− 1

2

(
z+b√

λ1

)2

gV (v) dv dz = − ε

1 − ε

(6.2)

where gV denotes the probability density function of the ran-
dom variable V = ∑p

i=2 λi Y 2
i where the variables Yi are i.i.d.

univariate standard normal.
(b) The maxbias B(ε, MVB, F ) is the positive solution b of the
equation ∫

‖y‖≤R+
ε

g(( y + be1)t�−1( y + be1)) dy

=
√

λ1 . . . λp(1 − 2ε)

2(1 − ε)
, (6.3)

where R+
ε is defined implicitly by∫

‖y‖≤R+
ε

g( yt�−1 y) dy =
√

λ1 . . . λp

2(1 − ε)
(6.4)

where g(t) = ( 1√
2π

)p e− t
2 and e1 is the first unit vector.

(c) For the maxbias of translation equivariant multivariate
location estimators at normal models, the lower bound of He
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Fig. 1. Maxbias curves of the location estimators L1 and MVB together with the lower bound, for p = 2 and λ1 = λ2 = 1

and Simpson (1993) becomes√
λ1�

−1

(
1

2(1 − ε)

)
. (6.5)

In Fig. 1, we have plotted the maxbias curves of L1 and MVB
at F = N (0, I2) together with the lower bound (6.5). We see
that the L1 estimator has a much lower maxbias curve than
MVB. The maxbias curve of L1 is very close to the lower
bound and it is smooth in the neighborhood of ε = 0. On the
other hand, the maxbias curve of MVB is not differentiable at
ε = 0, and resembles the maxbias curve of LMS regression that
was obtained by Martin, Yohai and Zamar (1989). Other values
of p ≥ 2 and λ1, . . . , λp yield maxbias curves with comparable
relative behaviors.

Note that this result seems to contradict the simulation results
of the previous sections (Tables 1 and 3), where the MVB yielded
a much smaller bias than L1. This is because the maxbias curve is
a “worst case” concept. In the simulation, the contaminating dis-
tribution was a point mass far away from the center of the model
distribution. However, the “worst case” contaminating distribu-
tion for the MVB is a point mass much closer to this center, as
can be seen from the proof of Theorem 2 part (b). Indeed, the
MVB is a redescending estimator: observations far away from
the bulk of the data have no influence on the MVB, whereas
outliers somewhat closer to the center may affect the MVB.

7. A comparison with the Feasible
Solution Algorithm

Exact computation of the MVE is possible (Cook, Hawkins and
Weisberg 1993): consider all possible subsets of size h, called

halfsamples, and compute the volume of the smallest ellipsoid
covering all the points in the halfsample (which can be done in
an exact manner by using the algorithm of Titterington 1975).
The optimal halfsample has then the smallest value of all com-
puted volumes, and the MVE is the ellipsoid associated with
this optimal halfsample. Since the total number of all possible
halfsamples is enormous, the exact computation is infeasible
in practice. Unless the sample size is very small, one always
needs to resort to approximative algorithms. In this paper, we
focused on the (p +1)-subset algorithm, but more sophisticated
algorithms exist, like heuristic search algorithms (Woodruff and
Rocke 1993) or the Feasible Solution Algorithm (FSA, Hawkins
1993b). In this section we make a comparison with the FSA al-
gorithm, which is well known and also used for computing the
Least Median of Squares regression estimator (Hawkins 1993a).

The FSA starts from a randomly selected halfsample.
Afterwards points in the halfsample are exchanged with points
not belonging to it as long as this decreases the value of the
objective function, i.e. the volume of the smallest ellipsoid
covering all the points in the half-sample. If no further de-
crease is observed, then the obtained halfsample is called a
“feasible solution”. The algorithm considers a total number
of Nfsa random starts. This number needs to be sufficiently
high, certainly when applying FSA to noisy data sets. We used
the implementation presently made public at the Statlib server
(http://lib.stat.cmu.edu/general/) with Nfsa = 50 random starts
(Hawkins 1993b used the same value of Nfsa for a data set with
similar dimensions). The computation time required for the FSA
is much higher than for the (p + 1)-subset algorithm. A precise
comparison of computation time is difficult, since tuning pa-
rameters need to be chosen by the user (Nsamp, Nfsa, h) and the
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Table 4. Using location adjustment for the FSA

Normal data 20% contaminated data

FSA + MVB + L1 FSA + MVB + L1

p = 2 Bias(µ̂) 0.028 0.028 0.022 0.027 0.026 0.388
n = 30 MSE(µ̂) 0.242 0.242 0.092 0.228 0.227 0.261

medk ln φk 0.606 0.606 0.606 0.385 0.385 0.385
AvekObjk 0.823 0.823 1.293 1.257 1.257 2.119

p = 2 Bias(µ̂) 0.006 0.006 0.011 0.411 0.411 0.784
n = 30 MSE(µ̂) 0.248 0.248 0.098 10.09 10.14 7.580

medk ln φk 0.973 0.973 0.973 0.682 0.682 0.682
AvekObjk 1.519 1.519 2.241 2.365 2.365 3.752

In each of four situations, simulating m = 500 samples yields the bias and MSE of the location estimators, the mediank = 1,...,m ln φk of the scatter
estimators, and the average value of the MVE objective function.

platforms on which the programs run may be different. For the
values of n, Nsamp and Nfsa given in the simulation study, we
may say that FSA is roughly 300 times slower than the (p + 1)-
subset algorithm for p = 2 and 500 times for p = 3. This remains
about the same when an L1 adjustment is performed in the final
step, since computing the L1 estimator only once is very cheap.
Adding the MVB location adjustment to the (p + 1)-subset al-
gorithm makes the FSA about 150 times slower for p = 2, and
250 for p = 3. If the sample size and the dimension increase, we
expect these differences in computation time to become even
bigger. Note that we did not consider the case where the adjust-
ment is made in every step, since this is computationally too
expensive for the MVB, while giving not much extra gain (see
discussion in Section 4).

While the computation time for the FSA is of a higher order of
magnitude than for (µ̂p, �̂ p) and for ( ˜̃µ, ˜̃�), the FSA succeeds
in finding the lowest value of the objective function among the
considered methods. This can be seen from the first column of
Table 4, where the results of the simulation study of Section 4 are
reported for the FSA. So we may say that the FSA attains its goal:
achieving low values of the objective function (1.1). However
the statistical benefits are rather limited: for the scatter part there
is no significant difference with (µ̂p, �̂ p) or with ( ˜̃µ, ˜̃�), and
for the location part there is only a slight improvement in MSE.
(Recall that standard errors around the simulated bias and MSE
are about 0.01, and about 0.02 for the sphericity measures). Note
that for p = 3 we have a huge bias and MSE under contamination.
This is because breakdown occured in 8 out of the 500 runs.
Increasing the value of Nfsa upto 100 did prevent this breakdown,
but also doubled the computation time for the FSA.

Once the FSA solution of the MVE problem is obtained, one
could think of improving the location estimate by adding an
MVB or L1 adjustment at the end. Since we will only need to
do this once, it will not be very costly in comparison to the total
computation time needed for the FSA. Table 4 reports the sim-
ulation results for FSA with location adjustment using MVB
or L1. Striking is that no difference can be observed between
plain FSA and FSA + MVB. In fact, both procedures give very

often (but not always) the same result. If the FSA has found the
true MVE, then the MVB adjustment will of course not alter
the estimate. Checking whether the MVB adjustment changed
the location estimator can therefore be seen as a necessary,
but not sufficient, condition to having found the exact MVE.
Using an L1 adjustment yields values comparable to ( ˜̃µ, ˜̃�) in
Table 3: an increase of the value of the objective function, but a
better statistical efficiency as measured by the MSE.

8. Conclusions

In this paper, we showed how the Minimum Volume Ball Estima-
tor can be used for location adjustment of the Minimum Volume
Ellipsoid Estimator. This adjustment always decreases the MVE
objective function, but has little effect on the bias and MSE of
µ̂. On the other hand, location adjustment based on L1 does not
necessarily lower the MVE objective function, but improves the
efficiency of µ̂ for normal data.

In order to reduce the effect of extreme outliers on the L1

adjustment, one can insert a reweighted L1 estimator instead.
Thus amounts to applying the L1 estimator only to those obser-
vations which satisfy a certain condition. The algorithm given
in Section 3 can easily be modified to compute this estimator. It
suffices to replace step 2.4 by:

2.4” Compute the L1 estimate θJ := µL (Y ∗) where Y ∗ = {yi ∈
Y ; (xi − µJ )t S−1

J (xi − µJ ) ≤ χ2
p;0.975

χ2
p;0.5

median j (x j − µJ )t

S−1
J (x j − µJ )} and calculate RJ := mediani‖yi − θJ ‖.

As in the case of unweighted L1, this type of adjustment does
not lower the MVE objective function. According to some sim-
ulations, the bias of the resulting estimator is similar to that of
the plain MVE estimator, while its MSE is better even in the
contaminated situation.

An important advantage of the L1 estimator is that its maxbias
curve comes close to the lower bound, and is lower than the
maxbias curve of the MVB location estimator. The situation
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is completely analogous to the regression setup. We have seen
in Section 4 that adjusting the intercept by the univariate LTS
lowers the LTS objective function, but does not have much effect
on the MSE of the coefficients. Adjusting the intercept by the
univariate sample median yields a more efficient and low-bias
intercept estimate.

Our recommendation is therefore to use the L1 adjustment:
it is cheap in computation time, has a low bias curve, and gives
more efficient estimates of the multivariate location parameter
in the normal case. Using MVB adjustment (or the Feasible
Solution Algorithm which we discussed in Section 7) gives lower
values of the objective function associated with the Minimum
Volume Ellipsoid estimators, but at a high computational cost.
Moreover, we also showed that lower values of the objective
function do not guarantee a higher statistical precision.

Appendix

Proof of Theorem 1: Since

min
µ

median
i

‖xi − µ‖ = min
µ

min
1≤ii <···<ih≤n

max
1≤ j≤h

∥∥xi j − µ
∥∥

= min
1≤i1<···<ih≤n

min
µ

max
1≤ j≤h

∥∥xi j − µ
∥∥
(9.1)

the MVB is the smallest ball covering a certain subset of h points.
Suppose w.l.o.g. that i j = j( j = 1, . . . , h) yields the minimum
in (9.1). Denote by B(µ̂, R̂) the minimum volume ball covering
x1, . . . , xh ∈ R

p. It is sufficient to prove that there exist k points
(2 ≤ k ≤ p + 1) such that{

µ̂ ∈ L = affinespan{x1, . . . , xk} with dim(L) = k − 1

‖xi − µ̂‖ = R̂ for i = 1, . . . , k
(9.2)

The main tool used in this proof is the observation that all
functions ‖xi − µ‖ − R(i = 1, . . . , h) are continuous in µ

and R. Suppose that no point lies on the surface of the ball
B(µ̂, R̂). Then for any δ > 0 sufficiently small, B(µ̂, R̂ − δ)
still contains x1, . . . , xh but has a smaller volume, a contradic-
tion. If one and only one point, say x1, satisfies ‖x1 − µ̂‖ = R̂,
consider the ball with center µ̂∗ = µ̂ + δ(x1 − µ̂) and radius
R̂∗ = R̂ − δ‖x1 − µ̂‖ = (1 − δ)R̂ < R̂. For δ > 0 small enough,
B(µ̂∗, R̂∗) will still contain x1, . . . , xh , another contradiction.
So, there exist at least two distinct points lying on the surface of
the ball (remember that we assumed that no h observations can
lie in a (p − 1) dimensional hyperplane, hence at least two of
these h observations must be different).

Let m ≥ 2 be the number of observations x1, . . . , xm satis-
fying ‖xi − µ̂‖ = R̂, and select as many affinely independent
points out of these as possible. Let us call them x1, . . . , xk .
Clearly, k ≥ 2. If k = p + 1, then all the conditions stated
in (9.2) are satisfied. On the other hand, if k < p + 1, let
L := affinespan{x1, . . . , xk} hence dim(L) = k − 1. The only
condition which remains to be proved is that µ̂ ∈ L . If µ̂ �∈ L ,
take a = PL (µ̂)− µ̂ with PL (µ̂) denoting the orthogonal projec-

tion of µ̂ onto L . Using orthogonality of a and xi − PL (µ̂) we
obtain for any λ > 0 and for 1 ≤ i ≤ m:

‖xi − (µ̂ + λa)‖2 = ‖xi − PL (µ̂)‖2 + ‖PL (µ̂) − (µ̂ + λa)‖2

= ‖xi − PL (µ̂)‖2 + (1 − λ)2‖a‖2

= R̂2 + λ(λ − 2)‖a‖2

For λ sufficiently small, the ball B(µ̂∗, R̂∗) where µ̂∗ = µ̂ +
λa and R̂∗2 = R̂2 + λ(λ − 2)‖a‖2 has a smaller radius than
B(µ̂, R̂) while still containing all the points, a contradiction.
Hence, µ̂ ∈ L . �

Proof of Theorem 2, part (a): If G denotes a distribution on
R

p, the L1 estimator is given by the functional T (G) satisfying

T (G) = argmin
t

∫
(‖x − t‖ − ‖x‖) dG (x). (9.3)

Therefore, T (G) satisfies
∫

u(x − t) dG (x) = 0 where u( y) =
y

‖y‖ if y �= 0 and 0 otherwise. Let F = N (0, �), with � =
diag(λ1, . . . , λp), λ1 ≥ · · · ≥ λp > 0. Under contamination, the
model becomes Fε = (1 − ε)F + εH where H can be any
distribution and the functional T (Fε) satisfies

∫
u(x − t)

dFε(x) = 0 ⇔ (1−ε)
∫

u(x−t) dF (x) + ε
∫

u(x−t) dH (x) = 0.
By definition of L1 and due to the form of F , the most influential
distribution H is given by a point mass placed at infinity on the
first axis. Replacing H by �ξe1 , where e1 is the first unit vector,
yields

(1 − ε)
∫

u(x − t) dF (x) + εu(ξe1 − t) = 0. (9.4)

Letting ξ tend to + ∞ shows that T (Fε) = T ((1−ε)F +ε�∞e1 )
satisfies

(1 − ε)
∫

u(x − T (Fε)) dF (x) + εe1 = 0

⇒
{∫

u(x − T (Fε))1 dF (x) = − ε
1−ε

(i)∫
u(x − T (Fε)) j dF (x) = 0, for 2 ≤ j ≤ p (ii)

Due to the symmetry of F , only the first coordinate of T (Fε)
differs from zero and equation (ii) is trivially satisfied when
T (Fε) j = 0. On the other hand, equation (i) yields∫

(x1 − T (Fε)1)

‖x − T (Fε)1e1‖ dF (x) = − ε

1 − ε
(9.5)

Denoting T (Fε)1 = b and ϕ the probability density function of
the standard normal distribution, the right hand side of (9.5)
becomes:∫

· · ·
∫

x1 − b√
(x1 − b)2 + x2

2 + · · · + x2
p

f (x1) . . . f (x p) dx1 . . . dx p

= 1√
λ1 . . . λp

∫
· · ·

∫
x1 − b√

(x1 − b)2 + x2
2 + · · · + x2

p

× ϕ

(
x1√
λ1

)
. . . ϕ

(
x p√
λp

)
dx1 . . . dx p
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=
∫

· · ·
∫

y1
√

λ1 − b√
( y1

√
λ1 − b)2 + λ2 y2

2 + · · · + λp y2
p

× ϕ( y1) . . . ϕ( yp) dy1 . . . dyp

where Y1, . . . , Yp
iid∼ N (0, 1). Letting V = ∑p

i=2 λi Y 2
i and Z =

Y1
√

λ1 − b, equation (i) becomes:

1√
λ1

∫ +∞

−∞

∫ +∞

0

z√
z2 + v

ϕ

(
z + b√

λ1

)
gV (v) dz dv = − ε

1 − ε

where gV is the probability density function of V . �

Proof of Theorem 2, part (b): If G denotes an arbitrary distri-
bution on R

p, the Minimum Volume Ball Estimator is given by
the functional T (G) which is the first argument of (µ, R) mini-
mizing R subject to PG(X ∈ B(µ, R)) ≥ 1

2 . Here, B(µ, R) repre-
sents the ball with center µ and radius R. Let F = N (0, �), with
� = diag(λ1, . . . , λp), λ1 ≥ · · · ≥ λp > 0. We have T (F) = 0
and

PF (X ∈ B(0, R)) =
∫

‖x‖≤R
dF (x)

= 1√
det(�)

∫
‖x‖≤R

g(xt�−1x) dx,

where g(t) = ( 1√
2π

)pe− t
2 .

Since the bias will be largest if we contaminate at a point in
the direction of the first unit vector e1, we can take Fε of the
form Fε = (1 − ε)F + ε�ξe1 , with w.l.o.g. ξ > 0. The maxbias
curve of the MVB estimator is now given by

B(ε, MVB, F ) = sup
ξ

‖T (Fε)‖ = sup
ξ

|T (Fε)1| (9.6)

since T (Fε)k = 0, ∀k > 1 due to symmetry. For ξ fixed, the MVB
is given by (µε(ξ )e1, Rε(ξ )) minimizing the second argument
among all (µe1, R) satisfying

PFε
(X ∈ B(µe1, R)) ≥ 1

2
⇔ (1 − ε)

1√
det(�)

×
∫

‖x−µe1‖ ≤ R
g(xt�−1x) dx + ε I (|ξ − µ| ≤ R) ≥ 1

2
. (9.7)

We can limit ourselves to three possible solutions for the above
problem:

• type I: µε(ξ ) = 0 and Rε(ξ ) < ξ (i.e. the point contamination
is outside the ball B(µε(ξ )e1, Rε(ξ ))).

• type II: µε(ξ ) = 0 and Rε(ξ ) ≥ ξ (i.e. the point contamination
is inside the ball B(µε(ξ )e1, Rε(ξ ))).

• type III: µε(ξ ) > 0 and Rε(ξ ) = ξ − µε(ξ ) (i.e. the point con-
tamination is on the edge of the ball B(µε(ξ )e1, Rε(ξ ))). This
case assumes that Rε(ξ ) ≤ ξ since µε(ξ ) > 0. The other case,
µε(ξ ) ≤ 0, is not worth investigating since type II attains in
this case a lower value for the objective function.

In the first situation, the constraint (9.7) becomes

(1 − ε)
1√

det(�)

∫
‖x‖ ≤ R

g(xt�−1x) dx ≥ 1

2

and Rε(ξ ) would be given by the solution of∫
‖x‖ ≤ R

g(xt�−1x) dx =
√

det(�)

2(1 − ε)
, (9.8)

which is independent from ξ and will be denoted by R+
ε . Simi-

larly, type II would yield an Rε(ξ ) = R−
ε defined by∫

‖x‖ ≤ R
g(xt�−1x) dx =

√
det(�)(1 − 2ε)

2(1 − ε)
. (9.9)

For type III, we only need to consider values of ξ greater than
R−

ε . Replacing µε(ξ ) by ξ − Rε(ξ ) in the constraint shows that
Rε(ξ ) would be a solution of the equation∫

‖x−(ξ−R)e1‖ ≤ R
g(xt�−1x) dx =

√
det(�)(1 − 2ε)

2(1 − ε)
. (9.10)

For any ξ ≥ R−
ε , such a solution will be denoted by R̃ε(ξ ).

One can easily verify that R−
ε < R+

ε , R̃ε(R−
ε ) = R−

ε , R̃ε(ξ ) ≤
ξ and that R̃ε(ξ ) increases strictly in ξ . Combining all these
results, we obtain:


(µε(ξ )e1, Rε(ξ )) = (0, R−
ε ) for ξ < R−

ε

(µε(ξ )e1, Rε(ξ ))
= ((ξ − R̃ε(ξ ))e1, R̃ε(ξ )) for R−

ε ≤ ξ < R+
ε

(µε(ξ )e1, Rε(ξ ))

=
{

((ξ − R̃ε(ξ ))e1, R̃ε(ξ )) if R̃ε(ξ ) ≤ R+
ε

(0, R+
ε ) otherwise

for ξ ≥ R+
ε

(9.11)

The bias is either equal to 0 (type I and II) or to ξ − R̃ε(ξ )
(type III) which strictly increases with respect to ξ . The maximal
bias (9.6) equals thus ξ ∗ − R̃ε(ξ ∗) where ξ ∗ satisfies

R̃ε(ξ ∗) = R+
ε ⇔

∫
‖x−(ξ∗−R+

ε )e1‖ ≤ R+
ε

g(xt�−1x) dx

=
√

det(�)(1 − 2ε)

2(1 − ε)
.

Therefore, the maximal bias B(ε, MVB, F) is the solution b of∫
‖x−be1‖ ≤ R+

ε

g(xt�−1x) dx =
√

det(�)(1 − 2ε)

2(1 − ε)
. (9.12)

Transforming the variable x to y = x − be1, equation (6.3) fol-
lows from (9.12). �

Proof of Theorem 2, part (c): According to Theorem 2.1
in He and Simpson (1993), a lower bound for the maxbias
B(ε, T, F) at the normal model {Fθ = N (θ, diag(λ1, . . . , λp)) |
θ ∈ R

p} is given by the solution b0 of

inf
‖z‖ = 1

dv

(
F0, F2b0z

) = ε

1 − ε
(9.13)
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where the variation distance dv(F0, F2b0z) equals∫
( f (x) − f (x − 2b0z))+dx. Denote Hz = {x ∈ R

p | f (x) ≥
f (x − 2b0z)} = {x ∈R

p | zt�−1x ≤ b0zt�−1z}. Then,

dv

(
F0, F2b0z

) = PF (Hz) − PF (Hz − 2b0z)

= PF ({x ∈ R
p | − b0zt�−1z ≤ zt�−1x

≤ b0zt�−1z})
= P0({x ∈ R

p | |(�− 1
2 z)t x| ≤ b0zt�−1z}),

where P0 = N (0, I).
Due to ‖z‖ = 1 and the symmetry of P0,

dv

(
F0, F2b0z

) = �({y ∈ R | |y| ≤ b0

√
zt�−1z})

= 2�(b0

√
zt�−1z) − 1 (9.14)

which becomes minimal for z equal to the normalized eigenvec-
tor corresponding to the smallest eigenvalue of �−1, yielding

inf
‖z‖ = 1

dv

(
F0, F2b0z

) = 2�

(
b0√
λ1

)
− 1. (9.15)

Combining (9.13) and (9.15) yields

b0 =
√

λ1�
−1

(
1

2(1 − ε)

)
. (9.16)

�
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