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Abstract 

 
In this paper, we use a propensity score-based methodology to analyze the role of 
demographic and human capital characteristics of minorities in the U.S. in explaining their 
high occupational segregation with respect to whites. Thus, we measure conditional 
segregation based on an estimated counterfactual distribution in which minorities are given 
the relevant characteristics of whites. Our results show that the different levels of attained 
education by ethnicity and race explain a substantial share of occupational segregation of 
non-whites in the U.S., while English skills or immigration status are especially relevant for 
explaining segregation among Hispanics and Asians. 
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Introduction 

The unequal distribution of population groups across occupations in the United States 

based on their race and ethnicity has received considerable attention during past years. 

Confinement of a demographic group to certain types of jobs undermines social 

cohesion in a country and may be linked to racial discrimination. It, further, may 

reduce people’s opportunities to earn income and social recognition, especially when 

minorities are able to work only in low-paid jobs regardless of their skills.  

The fact that minorities in the United States such as Hispanics, Asians, or blacks face 

high levels of segregation in their jobs has already been documented (Albelda, 1986; 

King, 1992; Spriggs and Williams, 1996; Queneau, 2009; Alonso-Villar, Del Río and 

Gradín, 2010). Less clear is to what extent their high level of segregation is explained 

by differences in the attributes of these groups with respect to whites. Especially 

important are skill-related characteristics such as attained level of education, the ability 

to speak English, or immigrants’ labor experience in the host country. The level of 

human capital determines the types of jobs that a worker qualifies for, and her 

exclusion from certain jobs on the basis of lacking the necessary skills leads to 

segregation of a different nature based on pre-labor market conditions that should be 

treated differently than segregation that remains even when these variables are taken 

into account. The uneven geographical distribution of workers across the country is 

another factor that could affect segregation. If Asians or Hispanics are concentrated 

mostly in certain areas of the U.S., it is reasonable to expect that they will be 

overrepresented in jobs that are more available in those regions. Similarly, other factors 

such as workers’ age or the limited transferability of skills of immigrants could 

partially explain observed segregation.  

Little has been done so far, however, in measuring occupational segregation 

conditioned by these covariates in a sufficiently general way, and in quantifying the 

individual contribution of each of these differential characteristics in explaining the 

observed level of segregation. The literature has dealt, so far, with this problem in 

various ways, such as using decomposition by subgroups, designing specific 

segregation indices, or running multivariate regressions that exploit the variability of 

segregation across local markets or along time, among other methods. 
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It is important to note that a low level of conditional segregation does not preclude any 

form of discrimination. Discrimination could still be present because a low level of 

human capital in a specific group might be the result of either unequal opportunities in 

obtaining the demanded skills or of anticipating low returns on these skills due to 

prevailing discrimination in the labor market. What is clear is that both types of 

segregation, explained and unexplained by characteristics, are of a different nature and 

should be treated differently. Furthermore, the identification and quantification of 

which factors underlie segregation will help to better understand this phenomenon, its 

evolution, and what policies would be more effective in reducing it.  

The aim of this paper is to adapt a methodology based on the DiNardo, Fortin, and 

Lemieux (1996) propensity score technique, used in decomposing wage differentials, to 

construct a counterfactual employment distribution in which one minority, i.e. blacks, 

is given the relevant characteristics of the reference group, i.e. whites. The level of 

occupational segregation in this counterfactual distribution is the conditional (or 

unexplained) segregation, while the difference between conditional and unconditional 

segregation represent the part that is explained by characteristics and can be further 

decomposed into the individual contribution of each covariate of interest. This method, 

which is consistent with the way in which conditional wages are usually computed to 

decompose wage differentials, is more general than others that have been previously 

proposed in the literature because it fits any kind of segregation measure and allows an 

analysis of segregation curves. In fact, it allows an explanation of the different 

proportions of workers by race in each occupation. Further, it applies to any number 

and type of covariates, either discrete or continuous. Using this methodology, we 

conduct an empirical analysis of segregation among minorities in the United States 

using the American Community Survey 2005-07, which will show that a significant 

proportion of the unconditional segregation of non-white workers is related to their 

specific endowments, with the magnitude and explicative factors varying by race and 

ethnicity. 

The structure of the paper is as follows. The first section briefly reviews the literature. 

Then we introduce our methodology, to continue with the empirical analysis of 

segregation among minorities in the United States. The final section summarizes the 

main contributions of the paper. 
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1. The literature 

Occupational segregation in the U.S. based on race or ethnicity has been the focus of 

several studies in the past. Albelda (1986) measured the dissimilarity index for the 

1958-81 period using annual data provided by the Department of Labor, identifying a 

decreasing trend in occupational segregation by race, especially among women. This 

convergence in employment distribution by race was driven by major structural 

changes in the economy such as changes in educational distribution and the business 

cycle. Other studies (King, 1992; Spriggs and Williams, 1996) have further documented 

reductions in segregation by race and extended the analysis to population subgroups. 

Queneau (2009) showed that the reduction in racial segregation (blacks vs. non-blacks) 

between 1983 and 2003 was accompanied by an increase in ethnic segregation 

(Hispanic vs. non-Hispanics), indicating that both trends occur mainly due to a 

composition effect. More recently, using the 2007 American Community Survey, 

Alonso-Villar, Del Río, and Gradín (2010) measured multigroup segregation and 

showed that Latino and Asian minorities faced the highest levels of segregation by 

comparing their distributions across occupations with the employment structure of the 

economy (local segregation). These authors also remarked on the relatively lower level 

of segregation among female racial/ethnic groups compared with males.1

The extent to which the observed level of segregation can be explained by the groups’ 

having different characteristics has already been addressed in various ways. One 

obvious solution involves computing segregation by specific partitions of the 

population by some relevant characteristics (for instance, Massey, 1979 or, more 

recently, Hellerstein and Neumark, 2008, or Alonso-Villar, Del Río, and Gradín, 2010], 

but this alternative does not solve the problem, as it does not allow the researcher to 

control for many attributes at the same time or to consider continuous variables. 

Several approaches have tried to identify factors explaining segregation by estimating 

multivariate regressions exploiting variability either along time (i.e. Albelda, 1986; 

Tomaskovic-Devey et al., 2006) or across local markets (Alonso-Villar, Del Río and 

Gradín, 2010). Carrington and Troske (1998) estimated different OLS and ordered 

probit models of racial composition. Other papers have used the information of 

multivariate regressions to construct specific indices accounting for conditional 

 

                                                           
1 Other studies have, rather, focused on workplace and inter-firm segregation (for example, 
Carrington and Troske, 1998; Tomaskovic-Devey et al., 2006; Hellerstein and Neumark, 2008). 
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segregation. Spriggs and Williams (1996) constructed the L-index of segregation, which 

measures the extent to which race or sex affects the probability of being in an 

occupation, using logit estimates.2

2. Methodology 

 Measuring residential segregation, Bayer, McMillan 

and Rueben (2008) estimated regressions for the percentage of households of each race 

by census blocks and used the coefficients to compare own-race exposure predicted by 

the average characteristics of the model and by the average characteristics of the 

population as a whole. Aslund and Skans (2009) developed an approach in which they 

non-parametrically estimated the propensity of individuals’ holding jobs with some 

discrete characteristics to be immigrants and used these estimates to achieve a 

counterfactual distribution by randomly allocating minority status to individuals 

within each cell resulting from crossing these characteristics, using the probability of 

being an immigrant as equal to the fraction of immigrants in the cell. Other statistical 

procedures can be found in Sethi and Somanathan (2009) and Mora and Ruiz-Castillo 

(2009). 

2.1 Measuring unconditional segregation 

The measurement of occupational segregation is still a controversial issue in labor 

economics. In order to approach racial/ethnic segregation by occupation, most often, 

segregation has been measured in pair-wise comparisons between two given groups, 

typically a non-white minority (blacks or Hispanics) and whites.3

                                                           
2 Kalter (2000) also links the dissimilarity index to a multivariate logit model. 

 With respect to 

measurement, several indices can be found in the literature, with the dissimilarity 

index (Duncan and Duncan, 1955) being, by far, the most popular in empirical analysis 

despite its well-known limitations. Other indices have been proposed fulfilling better 

properties, most of them borrowed from measurements of income inequality. 

Examples of these are the Gini index or the Generalized Entropy family of indices, 

which embraces the Theil index or the Hutchens square root as particular cases 

3 Most recently, the study of multigroup segregation has allowed the measurement of the 
overall segregation of all racial groups considered together. Reardon and Firebaugh (2002) 
surveyed several of these indices and evaluated their properties. In some cases, this overall 
segregation can be interpreted as the weighted sum of segregation of each group with respect to 
the whole economy (Alonso-Villar and Del Río, 2010). 
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(Duncan and Duncan, 1955, Hutchens, 1991, 2004). For this reason, in our empirical 

analysis, we will use a bundle of indices in order to check the sensitivity of our results. 

For simplicity, let us consider a population of size N divided into two groups: N1, 

whites, and N0, non-whites. We are interested in measuring the segregation of this 

population across T occupations in the economy. Let us denote by ( )i
T

ii nnn ,...,1=  the 

distribution for one group across occupations, such that ∑
=

=
T

j

i
j

i nN
1

, i={0,1}. Then, 

based on the proportions of whites and non-whites in each occupation, we define the 

following segregation indices4
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D is the dissimilarity index proposed by Duncan and Duncan (1955). H is the Hutchens 

square root index, whose appealing properties are well-described in Hutchens (1991, 

2004).5
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Note that D, G, and H are bounded between 0, when there is no segregation because 

whites and non-whites have the same distribution across occupations, and 1, when 

segregation is at its maximum because there is no overlap between both distributions 

(whites and non-whites work in different occupations). 
                                                           
4 For simplicity, we will focus the analysis on pair-wise comparisons, but note that our 
methodology could be adapted to the multigroup case.  
5 Note that H (multiplied by 4) is a member of the family of Generalized Entropy GE(c) 
measures when c= 0.5, while T corresponds to c=1. T is not defined if 01 =jn for any j. 
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An alternative and more robust approach to rank two distributions according to their 

level of segregation is to directly compute the segregation curves (Duncan and 

Duncan, 1955; see a formalization in Hutchens, 1991) that represent the cumulative 

proportion of whites on the ordinate and the cumulative proportion of non-whites on 

the abscissa when occupations are ordered in increasing values of ( )101
jjj eee + . The 45º 

line indicates the case of no segregation and, thus, nonintersecting segregation curves 

for two distributions indicate a lower level of segregation for the one with the curve 

lying closer to the 45º line. A variety of segregation indices will be consistent with this 

partial ordering, including those discussed above.6

 2.2 Measuring conditional segregation 

 

In this section, we adapt the approach of DiNardo, Fortin, and Lemieux (1996) to the 

measurement of occupational segregation.7

),z ,( WeF

 This propensity score technique was 

initially proposed in the context of decomposing the wage differential between two 

given distributions across the entire distribution. In presenting the procedure, we first 

need to reformulate the notation. Each individual observation belongs to a joint 

distribution of occupations { }Te ...,2 ,1∈ , (continuous or discrete) individual 

characteristics ),...,,...,z ,( 21 Kk zzzz =  defined over the domain zΩ , and a dummy W 

indicating group membership. The joint distribution of occupations and attributes of 

each group is the conditional distribution )|z ,( WeF . The discrete density function of 

occupations for each group, )(ef i , can be expressed as the product of two conditional 

distributions: 

dziWzfiWzefdziWzedFiWefef

zz

i )|(),|()|,()|()( =⋅=====≡ ∫∫ ,  (3) 

where i=1 for whites and 0 for non-whites. 

Then, under the general assumption that the structure of occupations of non-whites, 

represented by the conditional density )0,|( =Wzef , does not depend on the 

                                                           
6 Note that D indicates the maximum vertical distance between the 45º line and the segregation 
curve, while G is twice the area between the 45º line and the segregation curve. 
7 The approach presented here can, obviously, be applied to segregation across other types of 
units (such as workplaces or schools, for example). 
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distribution of attributes, we can define the hypothetical counterfactual distribution 

)(ef z : 

dzWzefdzWzfWzefdzWzfWzefef

z

z

z

z

z

z ∫∫∫ ===⋅⋅===⋅== )0|,()0|()0,|()1|()0,|()( ψψ (4) 

as the density that would prevail if the population of non-whites kept their own 

conditional probability of being in a given occupation, )0,|( =Wzef , but had the same 

characteristics of whites given by their marginal distribution )1|( =Wzf . Expression (4) 

shows that this counterfactual distribution can be produced by properly reweighting 

the original distribution of the target group. The reweighting scheme zψ  can be 

obtained, after using Bayes’ theorem, as the product of two probability ratios: 
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The first ratio is given by the unconditional probabilities of group membership and is a 

constant. The second ratio is given by conditional probabilities and can be obtained by 

pooling the samples for whites and non-whites and estimating a logit (or probit) model 

for the probability of being white conditional on z. We will estimate the following logit 

model 

)ˆexp(1
)ˆexp()|1Pr(
β

β
z

zzW
+

== ,    (6) 

where β̂  is the associated vector of estimated coefficients. 

For any given segregation index S, we can measure unconditional segregation defined 

over the distributions of occupations for whites and non-whites, 

( ) ( ))0|(),1|( ==≡ WefWefSeS , and define segregation conditional on z to be the same 

index computed after replacing the density of non-whites by the counterfactual: 

( ))(),1|()|( efWefSzeS z=≡ . This is the amount of (unexplained) segregation that 

remains after controlling for characteristics. The difference between unconditional and 

conditional segregation (counterfactual) provides a measure of segregation that is 

actually explained by our covariates z. This is in line with how wage differentials are 

usually decomposed into their characteristics (explained) and coefficients 
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(unexplained) effects. Then, unconditional segregation can be divided into its 

explained and unexplained parts: 

[ ] )|()|()()( zeSzeSeSeS +−= .     (7) 

One advantage of this method is that it permits the gathering of additional information 

using the counterfactual distribution. For example, we can also construct the 

conditional segregation curve or estimate the conditional density for any occupation in 

which we are interested. 

Further, the explained term can be additionally disaggregated into the detailed 

contribution of each covariate (or subset of covariates) zk in order to identify which 

factors are more explicative. With )( kzs  being the relative contribution of covariate k,  

[ ])|()()()|()( zeSeSzszeSeS
k

k −=− ∑ .    (8) 

In order to obtain this detailed decomposition, we need to compute a new 

counterfactual distribution )(ef
kz  in which the corresponding reweighting factor kzψ  is 

obtained, setting all of the other logit coefficients but this one to zero (Lemieux, 2002). 

Alternatively, we can shift all of the coefficients in a specific sequence, computing the 

contribution of each factor as the result of changing its associated coefficients. This 

recalls the well-known path-dependency problem in inequality decomposition because 

the contribution of a factor to the overall differential in income will depend on the 

order in which we consider them. This difficulty will be overcome in the empirical 

analysis by computing the Shapley decomposition that results from averaging over all 

possible sequences (Chantreuil and Trannoy, 1999; Shorrocks, 1999).8

3. Empirical analysis 

 

 3.1 Data 

The data used in the empirical analysis comes from the 2005-07 release of the Public 

Use Microdata Sample (PUMS) file of the American Community Survey (ACS) 
                                                           
8 See Gradín (2010) for an application of a similar procedure for the decomposition of income 
distribution differentials across racial groups. Statistical inference for both the aggregate and the 
detail decompositions can be executed using bootstrapping. However, in the empirical analysis 
shown in the next section, no inference was made because the large dimension of the dataset 
makes bootstrapping too time-consuming a task. 
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conducted by the U.S. Census Bureau, thus reflecting the pre-recession situation in the 

U.S. labor market. This survey is the result of pooling a series of monthly samples 

jointly accounting for 3 percent of the overall population living in the U.S. in housing 

units during the period (and 2 percent of those living in group quarters during 2006-7). 

The sample amounts to 4,123,320 observations9 of employed workers for which a 

variety of information is provided about their socio-demographic characteristics and 

labor market performance. In particular, we will analyze five different possible 

explicative factors: i) education, 16 groups defined by the census according to the level 

attained, going from no schooling to doctorate degree); ii) the ability to speak English, 

chosen among five categories (speaks only English, speaks English very well, well, not 

well, not at all); iii) immigrant status, distinguishing between those born in the U.S. 

and immigrants of different periods after arrival in the U.S. (less than a year, 1 to 5 

years, 5 to 15 years, more than 15 years); iv) geographical location, defined as 158 

metropolitan/nonmetropolitan areas of work10

Regarding race and ethnicity, people are asked in the survey to choose the race(s) with 

which they most closely identify and to answer whether they have or not 

Spanish/Hispanic/Latino origin. Based on self-reported identity, we identified the 

following mutually exclusive groups of workers: i) the four major single-race non-

Hispanic groups, that is, whites, African Americans/blacks, Asians, and Native 

Americans (who could be American Indian, Alaskan, Hawaiian, or Pacific Island 

natives); ii) Hispanics of any race, but distinguishing whites from non-whites; and iii) 

others (non-Hispanics choosing other races or more than one race). Segregation will be 

measured separately for each gender due to the evidence of different occupational 

distributions of women and men of the same group membership. Regarding 

occupations, we have considered the detailed list of 469 occupations provided in the 

; and v) age measured in years and age 

squared. 

                                                           
9 After a check to prevent the influence of outliers, four Hispanic male observations with 

)|0Pr( zW =  of close to zero were discarded. Its inclusion would lead to disproportionally large 
counterfactual weights, according to expression (5). 
10 We considered 140 MSA with at least 4,000 sample observations. Workers were assigned to 
the MSA using the information of Public Use Microdata Area corresponding to the place of 
work (POWPUMA) available in publicly accessible ACS files, which, in some cases, required 
the assignment of a given POWPUMA to the MSA in which it has a larger population, 
according to the census. Workers with a job abroad were removed from the sample, and 
workers with a job but not currently working were assigned according to their area of 
residence. The remaining metropolitan and non-metropolitan areas were categorized, 
respectively, into the nine U.S. geographical regions, resulting in a total of 158 areas. 
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public PUMS files, which is based on the 2000 Standard Occupational Classification 

(SOC) System. 

 3.2 Unconditional segregation 

It is well-known that there are high levels of occupational segregation of minorities 

with respect to whites in the U.S. The first four columns of Table 1 report for each 

demographic group (race or ethnicity by gender) the corresponding level of 

unconditional segregation as measured by the four indices described in the previous 

section. For all minorities, it is true that men are always more segregated than women 

with respect to (non-Hispanic) whites of the same gender.11

The ranking of groups according to their level of segregation is generally the same 

regardless of the index we use. In fact, most minorities can be ranked according to their 

segregation level using the segregation curves depicted in Figure 1 with no need to use 

indices. In the case of men, all distributions can be ranked despite some overlap 

between the curves of the most highly segregated minorities. Non-white Hispanic 

males show a higher level of segregation than any other group according to all indices, 

followed by Asian males and Hispanic white males. Workers of other races present the 

lowest level of segregation among men, followed by Native Americans and blacks. 

When no distinction is made among Hispanic males regarding their race, Asian males 

are slightly more highly segregated than they are, except for the dissimilarity index.  

  

Regarding women, there are also clear dominance relationships for their segregation 

curves, but the curves are closer to one another, and the curve of white Hispanics 

crosses the corresponding curve for blacks and can hardly be distinguished from 

Asians’. According to all indices, non-white Hispanics and Asians also show the 

highest levels of segregation for women, but with white Hispanics and blacks having 

similar levels to those of Asians, especially for the dissimilarity index. Thus, Native 

American women and those of other races tend to show the lowest levels of 

segregation.  

                                                           
11 In contrast, Alonso-Villar, Del Río, and Gradín (2010) found that Hispanic females are more 
segregated than Hispanic males when they are compared with the economy as a whole (instead 
of with whites). 
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Figure 1. Unconditional occupational segregation curves for whites/nonwhites in the US, 
2005-07 
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Table 1. Conditional and unconditional white/nonwhite occupational segregation in the US, 
2005-07 

 Unconditional Conditional 
Group Duncan Gini Theil Hutchens Duncan Gini Theil Hutchens 
Blacks         
males 0.280 0.383 0.242 0.060 0.255 0.347 0.202 0.050 

females 0.245 0.333 0.192 0.046 0.220 0.306 0.163 0.039 

Asians         

males 0.323 0.447 0.367 0.086 0.228 0.324 0.181 0.045 

females 0.244 0.351 0.253 0.056 0.169 0.239 0.115 0.027 

Native Americans         

males 0.241 0.334 0.185 0.047 0.170 0.252 0.120 0.030 

females 0.211 0.294 0.156 0.038 0.171 0.249 0.121 0.030 

Hispanics         

males 0.327 0.444 0.347 0.082 0.162 0.234 0.100 0.024 

females 0.265 0.371 0.270 0.060 0.121 0.173 0.062 0.015 

white males 0.308 0.420 0.318 0.074 0.167 0.239 0.105 0.025 

white females 0.244 0.345 0.247 0.054 0.116 0.170 0.066 0.016 

nonwhite males 0.351 0.476 0.389 0.095 0.201 0.291 0.166 0.039 

nonwhite females 0.292 0.405 0.308 0.070 0.205 0.290 0.176 0.039 

Other races         

males 0.167 0.236 0.091 0.023 0.126 0.180 0.055 0.014 

females 0.142 0.200 0.068 0.017 0.118 0.167 0.053 0.013 
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 3.3 Conditional segregation 

It seems natural to ask to what extent the specific attributes of these groups along 

relevant dimensions such as education or geographic or demographic characteristics 

can explain their segregation levels. It is clear that groups such as Hispanics and 

Asians, which have in common a large share of recent immigration, tend to be far more 

segregated than the rest of groups with more native-born workers.12 Indeed, groups 

with many immigrants tend to have different educational profiles, being either less 

educated (Hispanics) or more educated (Asians) than whites and any other group. To a 

lesser extent, other minorities, such as blacks and Native Americans, traditionally have 

faced lower educational outcomes compared with whites.13 Further, immigrants face a 

series of barriers causing mismatches of educational attainment and occupation of 

employment (over- and under-education) more often than the native-born population: 

limited international transferability of skills, selectivity into migration, and labor-

market discrimination (Chiswick and Miller, 2009). English proficiency tends to be 

more limited,14 especially among Hispanics, considerably narrowing the range of 

available jobs and making promotion more difficult. Very often, jobs requiring low 

English skills are also those demanding low non-language skills (Maxwell, 2010). 

Hispanics are younger than any other group in age and, thus, have less experience, 

while Asians are similar in age to other minorities but are still younger than whites.15

                                                           
12 While foreign-born workers comprised 82 percent of Asians of any sex, 65 percent of 
Hispanics males, and 53 percent of Hispanic females, they accounted for 5 percent of whites and 
less than 15 percent of blacks and Native Americans. 

 

Minorities, additionally, tend to be located in specific areas of the country, with Asians 

and Hispanics being concentrated in geographical regions such as the Pacific, Middle 

Atlantic (Asians), and West South Central (Hispanics). Similarly, blacks are more 

overrepresented in the South Atlantic region and Native Americans in the West South 

Central area.  

13 For example, 39 percent of Hispanic men working have attained less than a secondary 
education (compared to 9 percent of whites and Asians, 13 percent of blacks, and 15 percent of 
Native Americans). Similarly, 54 percent of Asian male workers have achieved a bachelor’s 
degree or higher compared to 32 percent of whites, 18 percent of blacks, and 11 percent of 
Latinos. Differences among women are similar. 
14 Among Hispanics, about 32 percent of men and 22 percent of women lack English skills 
(speak the language not well or not at all). This compares with 12 percent of Asian men 
(women: 14 percent), 4 percent of men of other races (women: 2 percent), and less than 1 
percent in the rest of groups. 
15 The median Hispanic male worker is 35 years old (36 in the case of females), compared with 
42 for whites, 39 for blacks and Asians, and 38 for Native Americans (the corresponding figures 
for women are roughly similar). 
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All of these factors altogether could differentially affect the opportunities of workers 

belonging to these minorities in the labor market, thus influencing segregation across 

occupations. For this reason, applying the methodology described in the previous 

section, we compute segregation conditional on a number of covariates, accounting for 

geographical location, education, English proficiency, immigration, and age, as 

described in the data description. Conditional segregation for each group is reported in 

the four last columns of Table 1, while Table 2 reports the change in the percentage of 

unconditional segregation after conditioning for all characteristics in the first block in 

the table.16

Segregation is, generally, reduced after accounting for covariates even if the extent 

varies significantly across groups and indices. These reductions are slightly higher in 

relative terms for women than for men in the cases of white Hispanics and Asians, of a 

similar magnitude in the case of blacks, and lower in the other cases (non-white 

Hispanics, Native Americans, and workers of other races). Taking the Duncan and 

Duncan dissimilarity index as a reference, it turns out that conditioning on covariates 

reduces more significantly the level of segregation for Hispanics than for any other 

group: about 47 percent for males and 54 percent for females. However, it is 

noteworthy that these reductions are similar for white and non-white Hispanic men 

but substantially lower for non-white females of the same ethnicity. The reductions for 

Asians (men and women) and Native American men are also high, around 30 percent. 

The lowest reductions are found in the case of blacks (9-10%). Native American females 

reduce segregation by 19% and people of other races by 17 percent (females) and 24 

percent (males). The results from the Gini index are pretty similar to the those of the 

dissimilarity index, while those arising from using the Theil and Hutchens indices are 

qualitatively similar but differ in magnitude, with, generally, even larger reductions 

than those discussed above. For example, the reduction for white Hispanic males is 

about 65-67 percent and around 71-73 percent for females.  

 

As a consequence, after controlling for covariates, according to conditional segregation, 

black males turn to be, now, the most segregated group of workers, followed by Asian 

males. Conditional segregation curves are presented in Figure 2. Clearly, in the case of 

men, the segregation curve for blacks is below the others, while the curves for Asians 

                                                           
16 Estimates of the logit regressions for the probability of being white used in the computation of 
conditional segregation are reported in the Appendix. 



 
 

14 

and non-white Hispanics cross each other at the bottom of their employment 

distributions, and Native American and white Hispanics overlap for most of the range. 

In the case of women, segregation curves intersect in several cases, and there is a great 

range of overlap among them, indicating that the segregation levels are close. The most 

salient downward movement in the ranking after controlling for covariates according 

to segregation indices is observed in the case of white and non-white Hispanic males. 

The former has, now, a similar or lower level compared to those of Native Americans 

and Asian women. Similarly, white Hispanic women have become, along with workers 

of other races, the group with the lowest segregation levels. Still, female groups have 

lower levels of segregation than men’s groups, except for Native Americans and non-

white Hispanics, where they have similar levels.  

Figure 2. Conditional occupational segregation curves for whites/nonwhites in the US, 2005-

07 

 

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
cu

m
ul

at
iv

e 
pr

op
or

tio
n 

of
 w

hi
te

 m
en

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
cumulative proportion of nonwhite men

Other races White Hisp.

 Native A. Nonwhite Hisp.

 Asian  Black

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
cu

m
ul

at
iv

e 
pr

op
or

tio
n 

of
 w

hi
te

 w
om

en

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
cumulative proportion of nonwhite women

Other races White Hisp.

 Asian Native A.

Nonwhite Hisp.  Black

 



 
 

15 

Table 2. Factors explaining white/nonwhite occupational segregation in the US, 2005-07 
Percentage of change in unconditional segregation due to each set of characteristics (Shapley values) 

 All characteristics Geographic area Education 
Group D G T H D G T H D G T H 
Blacks             
males -8.8 -9.4 -16.5 -17.3 4.8 4.6 9.6 8.8 -14.6 -14.0 -25.2 -25.3 

females -10.2 -7.9 -15.2 -14.8 8.8 7.3 16.1 13.9 -21.6 -16.5 -31.3 -29.6 

Asians             

males -29.5 -27.7 -50.8 -46.9 10.1 9.3 18.5 17.1 -10.1 -10.1 -14.4 -16.9 

females -30.8 -31.8 -54.6 -51.0 9.9 8.8 17.3 15.7 -6.5 -6.6 -11.9 -10.8 

Native Americans             

males -29.7 -24.5 -34.9 -35.4 -2.8 -1.8 -2.5 -1.6 -23.8 -20.0 -27.9 -30.1 

females -18.8 -15.2 -22.2 -19.8 0.6 2.0 4.7 5.6 -16.7 -15.8 -23.6 -23.9 

Hispanics             

males -50.5 -47.3 -71.1 -70.5 7.6 7.0 10.3 9.6 -23.3 -21.8 -31.1 -30.9 

females -54.2 -53.3 -77.0 -75.7 5.9 5.9 11.3 9.7 -27.9 -26.7 -37.1 -37.0 

white males -45.9 -43.1 -67.1 -65.5 7.6 7.0 9.3 9.0 -19.7 -18.5 -27.6 -26.9 

white females -52.5 -50.7 -73.1 -70.9 6.1 6.4 11.4 10.1 -24.5 -23.1 -32.7 -32.2 

nonwhite males -42.8 -38.7 -57.2 -58.7 8.6 8.4 14.1 12.7 -24.8 -23.1 -33.1 -34.0 

nonwhite females -29.9 -28.3 -43.0 -43.6 10.1 9.8 17.6 15.9 -31.1 -29.9 -54.0 -50.2 

Other             

males -24.5 -23.6 -39.6 -39.1 4.1 4.3 7.2 7.4 -8.4 -8.6 -14.5 -14.5 

Females -16.8 -16.5 -22.4 -23.2 10.6 8.8 16.6 15.2 -12.9 -12.9 -21.1 -20.5 

 English proficiency Immigration Age 
Group D G T H D G T H D G T H 
Blacks             

males 0.6 0.6 1.5 1.3 0.1 -0.6 -2.8 -1.9 0.3 0.0 0.5 -0.2 

females 0.9 1.1 2.6 2.2 -0.3 -1.7 -5.9 -4.6 2.0 1.9 3.3 3.3 

Asians             

males -10.9 -9.7 -20.7 -17.3 -10.9 -11.1 -24.7 -20.2 -7.7 -6.1 -9.4 -9.7 

females -16.0 -15.2 -26.9 -25.1 -14.2 -15.2 -29.9 -27.0 -3.9 -3.6 -3.3 -3.8 

Native Americans             

males -2.6 -2.4 -4.4 -3.3 0.3 0.3 0.6 0.6 -0.8 -0.6 -0.7 -1.0 

females -6.6 -5.8 -11.8 -9.7 0.3 0.4 0.6 0.7 3.6 3.9 8.0 7.4 

Hispanics             

males -23.4 -22.0 -32.8 -31.7 -6.9 -6.6 -12.4 -11.5 -4.4 -3.9 -5.1 -6.0 

females -28.5 -28.5 -44.6 -41.9 -4.9 -5.0 -10.5 -9.2 1.4 0.9 3.9 2.7 

white males -22.1 -20.8 -30.8 -29.7 -6.6 -6.3 -11.8 -11.0 -5.1 -4.6 -6.3 -6.9 

white females -28.8 -28.3 -43.1 -40.4 -4.6 -4.6 -9.4 -8.3 -0.7 -1.0 0.7 -0.1 

nonwhite males -21.0 -19.3 -30.6 -29.0 -5.1 -4.9 -9.6 -8.8 -0.5 0.1 2.0 0.3 

nonwhite females -20.8 -19.4 -30.4 -29.4 -2.6 -2.3 -5.2 -4.6 14.4 13.5 28.9 24.7 

Other races             

males -2.0 -1.7 -3.0 -2.9 -1.4 -1.2 -1.7 -1.7 -16.8 -16.4 -27.6 -27.3 

Females -1.3 -1.4 -2.9 -2.6 0.3 0.0 -1.4 -0.7 -13.5 -11.1 -13.6 -14.6 

Note: D=Duncan and Duncan Dissimilarity, G=Gini, T=Theil, H=Hutchens square root. 
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 3.4 Main explicative factors 

Ethnic and racial groups differ not only in the magnitude of the reduction due to 

controlling for characteristics but also in the nature of the underlying factors. The 

percentage of reduction in unconditional segregation that is induced by each set of 

variables (using the Shapley decomposition) is shown in the remaining blocks in Table 

2. Here, we discuss the case of the dissimilarity index.17

The most relevant factors underlying segregation are the ability to speak English and 

educational attainment. Each of these factors alone accounts for a reduction in the 

dissimilarity index of about 20-30 percent in the segregation of Latino workers. While 

education seems to be more relevant in explaining the segregation of non-white 

Hispanics, English proficiency appears to be more relevant for whites of the same 

origin. This compares to values ranging from about 3-7 percent of the reduction for 

these groups due to their immigration status. Thus, the time of arrival in the U.S. seems 

to be not very important in explaining the segregation of Latinos, once the gap in 

observed skills (language and education) has been taken into account.  

 

English proficiency, education, and immigration status explain about 10 percent of the 

segregation of Asian men and, respectively, 16, 14, and 6.5 percent for women of the 

same race. Thus, education and language skills are much less relevant in explaining the 

segregation of Asians than they are for Hispanics, while immigration status is more 

relevant for others, especially for Asian women. Age seems also to play a role in 

segregation for Asians (8 percent of reduction for men and 4 percent for women).  

For Native Americans and blacks, most explained segregation can be attributed to their 

educational gaps: 15 and 22 percent of reduction for, respectively, black males and 

females and 24 and 17 percent in the case of Native Americans. Among the other 

factors, only English proficiency appears to be relevant for Native American females (7 

percent). 

Unlike the other attributes, controlling for geographical location generally increases 

rather than decreases the segregation of Hispanics, Asians, and blacks. That is, 

segregation would be larger (by 6-10 percent) had Latinos had the same geographical 
                                                           
17 Note that, again, the Gini index provides similar results in sign and magnitude to those of the 
dissimilarity index, while the Theil and Hutchens indices provide similar qualitative results but 
with generally higher values. 
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distribution of whites. Similar percentages apply to the other groups. Similarly, 

controlling for age increases the segregation of non-white Hispanic women (14 

percent), while it decreases segregation for white Hispanic men, having no effect on 

others of the same ethnicity. 

Conclusions 

In this paper, we have adapted a propensity-score technique, initially proposed in the 

literature with respect to wage differentials, for the analysis of conditional segregation. 

By measuring the segregation of a counterfactual occupational distribution in which 

non-whites are given the characteristics of whites, we quantify the segregation that can 

and cannot be explained by individual characteristics. This counterfactual is simply 

constructed by reweighting the original distribution of non-whites using predictions 

from a logit model of the probability of being white. Further, we are able to identify the 

individual contribution of each factor to overall segregation by following a Shapley 

approach.  

Our technique is used to measure the conditional segregation of various minorities in 

the U.S. Our results show that the segregation of Hispanics and Asians show the 

largest levels of unconditional segregation. However, this high segregation can be, to a 

large extent, attributed to their specific characteristics, especially their lack of English 

proficiency, education attainment, and high percentage of recent immigration to the 

U.S. These three factors explain at least 50-60 percent of observed segregation for 

Hispanics and at least 30-35 percent for Asians. Among these factors, education and 

English proficiency are more important to Hispanics, while immigration status is more 

relevant for Asians. By contrast, blacks, with a larger share of native-born workers, 

show relatively low segregation levels compared to the other groups before 

conditioning, but a smaller share of that can be explained by their attributes, ending up 

with higher conditional segregation than any other group. In this case, education is the 

only salient factor. In all cases, except for Native American male workers, if minorities 

had the same geographical distribution across the country as whites, their segregation 

would be even larger; that is, the uneven geographical distribution mitigates the 

segregation that would be observed otherwise. 
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The new technique proposed here allows us to say that ethnic and racial segregation in 

the U.S. is, to a large extent, explained by individual attributes of non-whites, 

especially those related to recent immigration that are expected to eventually vanish 

with the progressive assimilation of foreign-born workers. However, a substantial level 

of segregation is explained by some minorities’ having low educational profiles 

compared to whites. This remarkably affects also those minorities with larger shares of 

native-born workers. Further, a notable share of observed segregation still remains 

unexplained and could be caused by any form of racial/ethnic discrimination faced by 

these groups in the labor market. 
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Appendix 

Table A1. Logit regressions of the probability of being white: pool samples of whites and each minority 

 Hispanic Black Asian Native American Other races 

 Male Female Male Female Male Female Male Female Male Female 
No school  -1.275 -1.103 -0.615 -0.508 -1.122 -1.477 -0.391 -0.550 -0.717 -0.833 
 (0.053) (0.073) (0.070) (0.071) (0.085) (0.084) (0.172) (0.199) (0.123) (0.171) 
Nursery to Grade 4 -1.771 -1.383 -0.866 -0.816 -0.059 -0.331 -0.287 -0.789 -1.051 -0.642 
 (0.070) (0.100) (0.084) (0.111) (0.124) (0.143) (0.239) (0.322) (0.146) (0.175) 
Grades 5-6 -2.111 -1.963 -0.676 -0.852 -0.385 -0.813 -0.581 -0.903 -1.052 -0.835 
 (0.048) (0.063) (0.058) (0.077) (0.083) (0.090) (0.196) (0.201) (0.132) (0.145) 
Grades 7-8 -0.573 -0.599 0.049 -0.324 0.042 -0.275 -0.202 -0.363 -0.488 -0.312 
 (0.029) (0.041) (0.035) (0.041) (0.058) (0.066) (0.089) (0.111) (0.074) (0.094) 
Grade 9 -0.852 -0.796 0.075 -0.135 -0.136 -0.296 -0.338 -0.421 -0.313 -0.473 
 (0.024) (0.034) (0.031) (0.035) (0.070) (0.073) (0.085) (0.096) (0.069) (0.081) 
Grade 10 -0.307 -0.289 0.009 -0.232 -0.118 -0.092 -0.252 -0.238 -0.252 -0.171 
 (0.024) (0.030) (0.022) (0.023) (0.052) (0.053) (0.065) (0.076) (0.055) (0.060) 
Grade 11 -0.341 -0.248 -0.310 -0.508 0.096 0.015 -0.232 -0.381 -0.229 -0.339 
 (0.023) (0.027) (0.020) (0.019) (0.057) (0.056) (0.058) (0.064) (0.048) (0.051) 
Grade 12 -0.280 -0.319 -0.247 -0.403 -0.231 -0.467 -0.156 -0.208 -0.161 -0.289 
(no diploma) (0.026) (0.034) (0.023) (0.025) (0.046) (0.050) (0.069) (0.080) (0.056) (0.066) 
Some college 0.239 0.209 0.251 0.191 -0.068 0.107 0.225 0.234 -0.040 -0.058 
(<1 year) (0.018) (0.018) (0.015) (0.013) (0.035) (0.037) (0.044) (0.042) (0.035) (0.034) 
1+ year in college  0.376 0.291 0.159 0.028 -0.370 -0.136 0.339 0.236 -0.092 -0.109 
(no degree) (0.014) (0.014) (0.011) (0.010) (0.024) (0.025) (0.033) (0.032) (0.026) (0.026) 
Associate's degree 0.483 0.527 0.295 0.286 -0.412 -0.137 0.384 0.307 0.008 0.065 
 (0.019) (0.018) (0.014) (0.012) (0.029) (0.029) (0.043) (0.039) (0.034) (0.032) 
Bachelor's degree 1.082 1.038 0.882 0.756 -0.889 -0.665 1.023 1.004 0.337 0.336 
 (0.015) (0.015) (0.011) (0.010) (0.020) (0.021) (0.039) (0.039) (0.026) (0.026) 
Master's degree 1.532 1.318 1.036 0.797 -0.929 -0.519 1.141 1.093 0.393 0.336 
 (0.025) (0.022) (0.017) (0.013) (0.024) (0.025) (0.058) (0.056) (0.038) (0.035) 
Professional degree 1.255 1.256 1.501 1.207 -1.156 -0.900 1.405 1.167 0.450 0.229 
 (0.034) (0.041) (0.031) (0.030) (0.033) (0.040) (0.095) (0.109) (0.056) (0.060) 
Doctorate degree 2.004 1.718 1.344 1.147 -0.955 -0.546 1.374 1.168 0.644 0.296 
 (0.052) (0.063) (0.039) (0.041) (0.034) (0.049) (0.123) (0.161) (0.074) (0.089) 
English: very well -3.188 -3.299 0.169 0.463 -1.968 -1.874 -2.009 -2.022 -0.436 -0.419 
 (0.012) (0.012) (0.019) (0.019) (0.018) (0.020) (0.034) (0.033) (0.036) (0.037) 
English: well -3.419 -3.411 0.399 0.584 -2.413 -2.313 -1.871 -1.871 -0.397 -0.411 
 (0.019) (0.020) (0.031) (0.033) (0.023) (0.025) (0.065) (0.071) (0.054) (0.065) 
English: not well -3.991 -3.928 0.724 0.627 -2.788 -2.732 -1.084 -1.035 -0.730 -0.712 
 (0.023) (0.025) (0.046) (0.046) (0.030) (0.032) (0.113) (0.127) (0.069) (0.075) 
English: not at all -4.758 -4.972 1.665 1.269 -2.911 -2.886 -0.548 -0.698 -1.149 -0.994 
 (0.053) (0.061) (0.138) (0.131) (0.071) (0.076) (0.438) (0.474) (0.118) (0.158) 
Immigrant -0.815 -0.260 -1.513 -1.336 -2.595 -2.759 0.008 0.030 -1.335 -1.099 
(0-5 years) (0.030) (0.036) (0.036) (0.040) (0.031) (0.035) (0.111) (0.121) (0.065) (0.075) 
Immigrant  -0.810 -0.335 -1.405 -1.366 -2.590 -2.722 0.440 0.420 -1.307 -1.103 
(6-10 years) (0.024) (0.027) (0.029) (0.030) (0.026) (0.029) (0.099) (0.111) (0.055) (0.065) 
Immigrant  -0.835 -0.392 -1.275 -1.253 -2.829 -2.965 0.337 0.513 -1.224 -0.973 
(11-15 years) (0.025) (0.028) (0.031) (0.030) (0.028) (0.030) (0.118) (0.113) (0.061) (0.069) 
Immigrant -1.185 -0.911 -0.973 -0.911 -3.098 -3.275 0.013 0.143 -1.352 -1.327 
(>15 years) (0.015) (0.017) (0.016) (0.016) (0.018) (0.019) (0.056) (0.060) (0.034) (0.035) 
Age -0.016 -0.044 -0.026 -0.056 0.059 0.041 -0.045 -0.066 0.031 0.026 
 (0.002) (0.002) (0.001) (0.001) (0.003) (0.003) (0.005) (0.005) (0.004) (0.004) 
Age2 (x100) 0.063 0.097 0.045 0.082 -0.030 -0.011 0.066 0.091 -0.004 0.004 
 (0.002) (0.003) (0.002) (0.002) (0.003) (0.004) (0.005) (0.006) (0.004) (0.004) 

Intercept 2.620 2.856 1.629 1.783 3.342 3.608 6.687 6.822 3.023 2.872 
 (0.040) (0.045) (0.033) (0.031) (0.063) (0.068) (0.134) (0.138) (0.076) (0.076) 
Pseudo R2 61.3 56.0 13.0 14.6 55.4 56.7 15.3 16.1 9.5 9.2 
Wald chi2(182) 233126 190,637 60,501 71,571 153,119 139,165 14,249 14,770 18,121 17,490 

Probability > chi2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

No. of observations 1,893,055 1,644,408 1,787,360 1,641,872 1,727,314 1,538,436 1,653,474 1,470,185 1,663,251 1,480,047 

 

Notes. Omitted categories: high school graduate, speaking only English, born in the US. Dummies for geographical areas 
also included in all regressions but omitted here. Separate regressions were run for white and nonwhite Hispanics but 
are also omitted here for the sake of presentation. 
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