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Abstract

We provide an analytical discussion of the optimal hedge ratio un-
der discrepancies between the futures market price and its theoretical
valuation according to the cost-of-carry model. Assuming a geometric
Brownian motion for spot prices, we model mispricing as a speci..c
noise component in the dynamics of futures market prices. Empir-
ical evidence on the model is provided for the Spanish stock index
futures. Ex-ante simulations with actual data reveal that hedge ra-
tios that take into account the estimated, time-varying, correlation
between the common and speci..c disturbances, lead to using a lower
number of futures contracts than under a systematic unit ratio, with-
out generally losing hedging ezectiveness, while reducing transaction
costs and capital requirements. Besides, the reduction in the number
of contracts can be substantial over some periods. Finally, a mean-
variance expected utility function suggests that the economic bene..ts
from an optimal hedge are substantial.
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1 Introduction

Since its launching in January 1992, the Ibex 35 futures contract quickly
became the most actively traded derivative contract in Mea Renta Variable,
the Spanish equity derivatives exchange. In fact, the futures market on the
Spanish Ibex 35 stock index is also one of the most active futures stock index
markets in the world. Acceptance of a market for a stock index futures con-
tract is related to the hedging ability of this derivative instrument. Operating
with futures, it is not only possible to guarantee a certain pro..t, but to also
bound the losses obtained over a given time period. Hedging spot positions
in the Spanish stock market became especially relevant in recent years, be-
cause the systematic decrease in interest rates as a consequence of the ..scal
and monetary policies aimed to achieve the European Union, caused a dra-
matic reallocation of private savings from riskless assets to stock exchange
positions.

The relevant issue in a hedging operation is to determine the hedge ra-
tio, which provides the number of futures contracts that must be sold to
counteract the opposite evolution in spot prices, so that, the potential losses
in one market can be owset by the gains obtained in the other. A biased
estimation of the hedge ratio implies that the losses in one market will be
higher or lower than the pro..ts in the other one. This is troublesome for a
hedging strategy, whose aim is to transform a position in the spot market
into a riskless portfolio.

According to the cost-of-carry valuation (the standard forward pricing
model), which assumes perfect markets and non stochastic interest rates and
dividend yields, the theoretical price at time ¢ (Fy;) of an index futures
contract maturing at time 7" equals the opportunity cost of keeping a basket
replicating the spot index between ¢ and 7

thT = S, o(r=d) (Tft)’ (1)

where S, is the index value and (r — d) is the net cost of carry associated to
the underlying stocks in the index, i.e., the riskless rate of return minus the
dividend yield of the stocks in the index. Alternatively, equation (1) can be
written:

rop = Tpep+ (r—d), 2

where 7, = In ( Sffl ) and rg; = In (FF’f—T) , the spot and theoretical futures
- t—1,T
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returns, respectively. Under the previous assumptions, the relationship in (2)
implies that: a) the variance of returns in the spot market equals the variance
of returns in the futures market, b) the contemporaneous rates of return of the
underlying stock index and the futures contract are perfectly and positively
correlated, and c) the non-contemporaneous rates of return are uncorrelated
and no lead-lag relationships between returns should appear. However, in
the presence of market imperfections such as transactions costs, asymmetric
information, capital requirements and short-selling restrictions, there could
be discrepancies between the traded futures price and its theoretical valuation
according to the cost-of-carry model (see Mackinlay and Ramaswamy (1988),
Lim (1992), Miller et al. (1994), Yadav and Pope (1990, 1994), and Buhler
and Kempf (1995), among others).

Market imperfections may also produce a lead-lag relationship between
spot and futures market returns, as well as between their volatilities. Then,
it may be possible to anticipate price movements and risk fuctuations in one
market from past information in the other market, a relevant question when
using the futures contract as a hedging instrument for risky stock portfolios.
In fact, there is a wealth of studies showing empirical evidence for the main
international stock index futures markets supporting the existence of such
lead-lag relationships (see, for example, Stoll and Whaley (1990), Wahab
and Lasghari (1993), Pizzi et al. (1998), lihara et al. (1996), Koutmos and
Tucker (1996), and Racine and Ackert (1998), among others).

We start by providing empirical evidence in favor of signi..cant mispricing
in the Spanish stock index futures market. Assuming that the evolution of
the stock index and the futures market returns are driven by heteroscedas-
tic, geometric Brownian motion processes, we include a market-speci..c noise
in the dynamics of theoretical futures returns. The motivation for such a
noise is that, by itself, it produces a spread between theoretical and mar-
ket futures prices, although such a hypothesis would only make sense when
volatility in the spot and futures markets could not be summarized by a
single factor. We use Engle and Kozicki (1993) approach to test for a sin-
gle common ARCH factor between the two markets, conclusively rejecting
such hypothesis. Hence, the two markets do not share an identical source of
volatility, against the cost-of-carry model.

We also provide empirical evidence for this model using data from 20/12/93
to 20/12/96 from the Spanish stock index futures market. A bivariate er-
ror correction model with GARCH perturbations is used to estimate the
conditional second moments of market returns. Our model has the follow-



ing characteristics: a) it incorporates the long-run equilibrium relationship
between spot and futures prices, b) it takes into account the cross-market in-
teractions between returns and volatilities, c) it does not impose a constant
conditional correlation coe®cient in the matrix of second moments for mar-
ket returns, a signi..cant dicerence with most previous analysis (Park and
Switzer (1995), lihara et al. (1996), Koutmos and Tucker (1996), Racine and
Ackert (1998), and Lien and Tse (1999), among others), and d) it captures
the presence of an intraday U-shaped seasonal pattern for both spot and
futures market volatility. Our model speci..cation and technique estimation
allow us to capture stochastically this intraday seasonal pattern for market
volatilities rather than through deterministic variables, as it is standard in
the literature. We estimate the model with hourly returns, using the nearest
to maturity contract, to then recover estimates for the parameters in the
theoretical model. Our estimates imply a less than perfect correlation be-
tween spot and futures returns, leading to an optimal hedge ratio below one
to hedge the spot index portfolio, without losing any hedging ecectiveness in
ex-ante simulations of hedging strategies using actual data.

The rest of the paper is organized as follows. The optimal hedge ratio
under departures from cost of carry valuation is analytically derived in Sec-
tion 2, and its main properties are discussed. In Section 3 we describe the
data used in our analysis. We start Section 4 with some preliminary empir-
ical evidence on regularities in returns and volatilities in Spanish spot and
futures stock markets. We then present the econometric approach followed
to estimate dynamic relationships across markets in conditional ..rst and sec-
ond order moments for returns, discussing the main results. In Section 5 we
recover estimates for the theoretical parameters of the model. In Section 6
we make ex-ante simulations to investigate if taking into account departures
from the theoretical cost-of-carry valuation enhances the hedging ecective-
ness of the futures contract. Finally, Section 7 summarizes and presents
concluding remarks.

2 The optimal hedge ratio

Let us assume that spot prices evolve according to a geometric Brownian
motion:
dSt = u&tstdt + O-S,tStdzl,ta (3)



where S; is the index value, p,, and o, are the conditional mean and stan-
dard deviation of spot returns, and dz;; = e Vdt, with ey, i.i.d.” N (0,1), a
Wiener process. Taking into account the no arbitrage relationship between
spot and futures prices (1), the process for the evolution of the theoretical
price of a futures contract can be obtained applying Tto’s lemma:

dE:T = Nf,tthTdt + Us,tF:Tle,t, 4)

where iy, = pi, — (7 — d). In perfect markets, the no arbitrage equilibrium
relationship is expected to hold, and the volatility of spot and futures returns
should be the same. However, there is a wealth of studies showing system-
atic discrepancies between the traded futures price and its theoretical price
according to the cost-of-carry valuation. In that situation, (4) would not
be the correct representation of the dynamic evolution of the traded futures
price. We model such discrepancy by introducing a second noise speci..c to
the derivative market:

dF,r = ,uﬁtFt,Tdt +osiFirdz s + oniFyrdzay, (%)

where F} 1 is the traded futures price and dz,; = eosV/dt, With g9y 7.5.d." N (0,1).
We do not impose any restriction on the conditional correlation between the
common noise (g1;) and the speci..c disturbance for the futures market (e2;),
which we denote by p,,,. Under (5), market returns will not exhibit a per-
fect and positive correlation. From (3) and (5), the correlation coe€cient
between returns, p,;,, can be written:

ds; dFyr
\ ,
Couv (Stdt’ Ft,Tdt)

2
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(6)
Only when oy, = 0, that is, when the two markets share the same noise, a
perfect and positive conditional correlation between market returns will be
observed.

It is assumed that the hedger holds a long spot position b; and intends to
short futures to minimize the variance of the return from the hedged position
over a given investment horizon. The hedge ratio is the number of monetary
units allocated to the short futures position per monetary unit invested in




the cash market. Denoting by h; the short futures position, the investor’s
hedging decision in a two period framework is:

Min Var, (bt gﬁlt —hy ﬁf;i)
{hu}

st dSt = ,us,tStdt + O-S,tStdzl,t

.t. 7
dFyr = ,UﬁtFt,Tdt +osiFirdz s+ on i Frrdzay (")

which amounts to:

12 2
Min bioy,
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) ©

where §; = 22 denotes the relative size of the speci..c noise in terms of the

Os,t

common noise.
As shown in appendix 1, this problem leads to the optimal hedge ratio:

@ - O-it + P12,t0s,tO Nt o 1+ p127t(5t
by Uz,t + O-?V,t + 2p1240500N 1+ 67 + 2p127t6t’

(10)

This analytical description of the optimal ratio is undetermined only when
p12; = —1 and 6; = 1. In this particular case, 1 + 67 + 2012400 = 1+
p12,:6¢ = 0, and the objective function is equal to the variance of the unhedged
position, b?U?,t, regardless of the hedge ratio. The futures price then becomes
non-stochastic and it does not provide any hedging capability. When this
situation arises, the optimal hedge ratio will be zero if there is any hedging
cost.

In the general case, the minimized conditional variance of the hedged

position is:

Bo?, (1 n 1‘;/912,#51‘/ i 1‘2"/)12,t5t ) 122, t2 12_ p%Q,t
7 1+6; + 2/)12,t5t 1+6; + 2/)12,t5t Tl 46+ 2/712,t‘5t
(11)
with 6?%&1’;& being the variance reduction factor, i.e., the ratio between
the conditional variances of the hedged and unhedged position.




Proposition 1 The optimal hedge ratio is just a function of: a) the rela-
tive standard deviation of the speci..c and common disturbances, and b) the
conditional correlation between both noises.

Proof: See equation (8).

Proposition 2 If §; = f;:j — 0 the optimal hedge ratio converges to one
and the minimized variance of the global position return approaches zero.
Both limits hold regardless of the correlation between the speci..c and common
innovations.

Proof: From (10) and(11), ’;—: — 1 and the variance reduction factor

converges to zero when &, = 224 — 0, for any value of p.

Ts,t

As the relative size of the standard deviation of the speci..c noise ap-
proaches zero, spot and futures market innovations become increasingly sim-
ilar. Consequently, both markets tend to share a common noise and the
optimal hedge ratio converges to one, the optimal value when there are no
discrepancies between the traded price of a futures contract and its valuation
according to the cost-of-carry model. As expected, under no departures from
the cost of carry valuation full hedging exectiveness is achieved and the risky
spot position can be safely converted into a riskless portfolio.

Proposition 3 If §; = "N’; — oo the optimal hedge ratio converges to zero,

ag

regardless of the correlation between the speci..c and common innovations.

Proof: From (10), 2 — 0 when & = 2% — oo,

If the speci..c futures market noise becomes very large, relative to the
common market noise, spot market fuctuations are relatively negligible. In
this case, a small number of futures contracts is needed to cover the spot
position. The minimized variance of the global position return approaches
b7o7(1 — pi,,), and the variance reduction factor depends on the correlation
between common and speci...c innovations.



Proposition 4 Under either positive or zero correlation between the speci..c
and common disturbances, the optimal hedge ratio is positive, less than 1,
and decreasing in 6.

Proof: When p,,, € [0,1], (10) is always positive. The inequality 1 +
P12,40t < 1+ 67 + 2py5,6; holds, so the hedge ratio is below one. Finally, the
derivative of Z—: in (10) with respect to ¢, is negative for p;,, > 0.

If the speci..c and common noises are positively correlated, fuctuations
in the futures market tend to follow those of the spot market. Consequently,
to cover a spot position we need to sell futures in a given proportion of the
resources allocated to the long spot position. As ¢, increases, fuctuations
in the futures market amplify those of the spot index, and an increasingly
smaller number of futures needs to be sold, so the optimal hedge ratio de-
creases to zero. A similar argument also applies under zero correlation.

Proposition 5 The optimal hedge ratio is monotonically increasing (de-
creasing) in the correlation between speci..c and common innovations if 6; <
1(>1).

Proof: The derivative of %

and positive if §; > 1.

in (10) with respect to p is positive if §; < 1,

Proposition 6 i) If the common and speci..c innovations are perfect and
positively correlated, the optimal hedge ratio is Z—: = ﬁét and we achieve full
risk hedging, ii) if the common and speci..c noises are perfect and negatively
correlated, the optimal hedge ratio is Z—: = 1_;@ and we again achieve full risk

hedging.

Proof: Both results are easily obtained from (10) and (11).

For non-zero values of ¢;, and a positive correlation between speci..c and
common noises, full hedging is only achieved under p;,, = 1 or p;p, = —1.
From (6), p;o, = 1 amounts to p,,, = 1, perfect correlation between returns
in both markets, as assumed by the cost-of-carry valuation model. On the
other hand, p,,, = —1 amounts to either p,;, = 1 (if 6; < 1), or p,;, = —1
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(if 6; > 1), and in both cases we can get a perfect hedge. When correlation
is less than perfect, the minimized variance of the hedged position is given
by (11), and it is strictly positive.

Proposition 7 The optimal hedge ratio is negative if and only if 6, > 1 and
1482 1/
55 < Prag < —1/0;.

Proof: For a given py,,, the optimal hedge ratio can be written: h

by
I+p1046t  p1(p1og

) .
T 2 Pyl ) With ¢, (p124) < 018 p1p, < —1/6;, and py(p1a,) < 0

i pr,, <~ When 6, < 1, we have: —1/8, < —42& < —1 < py,,, and

the optimal hedge ratio is positive. When §, > 1, we have: —% < —1/6;.
. 2 h*

In that case, if p;,, < —£& we have ¢, (p15,) < 0, p,(p15,) < 0, and ¥ >0.

If p1o; > —1/04, @1(p1as) > 0, va(p12,) > 0, and again % > 0. Finally, if
6 > land —1 < pyy, < —1/6;, We have ¢,(p15,) < 0,p5(p15,) > 0, and
};i <0.

For the range of correlation values between the common and speci..c
noises mentioned in the proposition, we should take the same position in
both, spot and futures markets. This makes sense when the speci..c noise
is relatively large (6; > 1) and displays a large enough negative correlation
with the common noise since then the innovation in the futures market tends
to fuctuate in the opposite direction to the spot market innovation. This is
a situation unlikely to arise in practice.

Figures 1 and 2 (appendix 2) show the optimal hedge ratio as a function
of either the correlation between speci..c and common noises, p;,,, or their
standard deviation ratio, ¢;, for given values of the other parameter. Figure
1 shows that, under positive correlation between the two noises, the optimal
hedge ratio decreases as the standard deviation ratio increases, since then
the futures market provides better diversifying opportunities. Figure 2 shows
that for most correlations, the optimal hedge ratio is quite robust to moderate
changes in the market noise ratio!, &;.

1For a large negative correlation, the hedge ratio may be above one if §; is low. There
is then also a signi..cant range for 6, in which the optimal decision to minimize the return
variance of the global position is to buy, rather than sell, futures. However, such a large,
negative correlation should be considered unlikely.



Therefore, as expected, incorporating departures from the cost of carry
valuation of the futures contract enriches the hedging analysis. The model
suggests that, if the futures markets has a speci..c noise and, consequently,
the spot and futures markets do not share an identical disturbance, the op-
timal ”short futures position” requires a less than proportional allocation
relative to the long spot position provided that the speci..c and common
noises are uncorrelated or positively correlated. On the other hand, under
a negative correlation between the two noises, the optimal hedge ratio per
unit long spot position might be above or below one, and it might lead in
extreme cases to also taking a long position in the futures market.

3 The data on Spanish markets

We now proceed to analyze the empirical evidence on the model proposed
in the previous section. Data on the futures market on the lbex 35 Spanish
stock market index was provided by MEFF RV (Mercado Espafiol de Fu-
turos, Renta Variable) for the period December 15, 1993-December 15, 1996.
This period is interesting for three reasons: a) by December 1993, the initial
years of exponential growth in the Spanish stock index futures market had
already ended, becoming a highly liquid market; b) negotiated volume stabi-
lized around three million contracts per year, and c) it covers three dicerent
episodes for the Spanish stock market: during 1994, market capitalization
registered an annual loss of almost 7%; 1995 was characterized by high price
Fuctuations and a moderate return, while 1996 shown a systematic growth in
the Ibex 35, with an annual return close to 40%. Hence, the period analyzed
can be considered as a representative sample of all possible market scenarios.

We have matched two data sets: one concerning the price and transaction
time for each trade in the futures contract on the Ibex 35 index, and another
with minute by minute Ibex 35 index data. An important source of bias when
estimating conditional second order moments of spot and futures market
returns can be the use of non-synchronous data. We eliminate this possibility
by matching each futures price with the cash index value observed at the same
minute. This way, we have two price series matched to the minute. Since the
opening cash index is refecting closing spot prices from the previous day, we
remove the ..rst hour trading interval for the spot market?, and select hourly

2The futures market opens at 10:454M. With data between December 1993 and Novem-
ber 1994, Fernandez and Yzaguirre (1996) show that, most often, it is just after 11:00AM
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market prices between 11:00 and 17:00 hours. We also exclude overnight
returns because they are measured over a longer time period, to end up with
six observations for each trading day. From these hourly prices we generate
the percent return series for each market by taking the ..rst dicerence of the
natural logarithm of prices, multiplied by 100. Since the nearest to maturity
contract is systematically the most actively traded, only data for the nearby
futures contract is used. Switching is made to the next contract on the third
Friday of each month, when a futures contract matures. Even though in some
markets switching to the next contract is made before maturity to ensure
su¢cient volume of trade, in the Spanish market there is enough liquidity
to allow for exhausting the contract period. Therefore, we handle 36 futures
contracts along the sample, with 743 trading days®. Overall, we have 4,458
return observations for each market.

For each registered time, we calculate the theoretical price Fy, for a
futures contract maturing at time T according to the discrete analogue of 1,

Fip =8 (1+re7) ZZ Ww (1+7rr), (12)

T >t

where: S; is the cash index at time j, r; is the risk free rate of return
between t and T, d,; is the gross dividend paid in period j on the ¢ — th
component of the Ibex 35, P;; is the stock market price of that component at
time j, and w;; is its weight in Ibex 35. We have used as risk-free return the
interest rate on repo operations in the secondary market for Spanish Treasury
bills. To actually compute theoretical prices, we proceed backwards starting
at maturity of each contract, using actual dividend and interest rate data.
Hence, a cost-of-carry varying according to market conditions is taken into
account*. Then, we compute mispricing at time t as the absolute spread
between actual futures market prices F; r, and our theoretical cost-of-carry
valuation, M; =| Fyr — Fip |.

Deviations from the theoretical futures price may be positively related
to the contract maturity, due to a greater risk of unanticipated dividend
changes, unanticipated earnings or ..nancing costs of marking to market, or

that all the 35 assets in the Ibex 35 have been negotiated at least once.

3We could not include data from: 02/14/95, 12/27/96, 05/27/96 and 07/29/96 because
they were incomplete in the Mea Renta Variable tapes.

4 Average daily mispricing was 11.4, 8.4 and 5.8 basis points over 1994, 1995 and 1996,
respectively. Annual cost-of-carry was 4.9%, 6.4% and 5.4% for each of three years.
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dicculties to track the index in the spot market directly, as suggested by
MacKinlay and Ramaswamy (1988), Bhatt and Caciki (1990), and Brenner
and Kroner (1995), among others. A regression of average mispricing on
time to maturity yielded a low R-squared of 0.10, but a signi..cant coe@cient
of 0.319, with standard deviation of 0.037. This is evidence that increased
uncertainty leads in fact to larger deviations from the theoretical price for
longer maturities.

A dizerent issue concerns the possibility that treating the risk-free inter-
est rate and the dividend yield as being constant might seriously bias the
evidence of mispricing. Even though we have used the actual, time vary-
ing net cost-of-carry, we checked that spurious evidence of mispricing is not
produced by a residual ecect from time variation in the cost-of-carry com-
ponents. Regressions from daily mispricing on interest rates or the dividend
yield produced in each case a non signi..cant slope and a near to zero R-
squared. When added to time-to-maturity as explanatory variables in the
mispricing regression, these variables did not contribute with any signi..cant
explanatory power. This analysis suggests that we can safely consider that
indeed, the use of actual interest rate and dividend data avoids the bias that
could arise by imposing a constant cost-of-carry.

4 Estimating a volatility transmission model

4.1 Some statistical characteristics

Tables 1 to 3 present descriptive statistics for intraday hourly returns, as well
as for squared returns, in both markets. Table 1 shows the mean, standard
deviation, skewness, kurtosis and autocorrelation functions for spot and fu-
tures market returns. As expected, the mean return is very small in both
markets, the null hypothesis of a zero mean not being rejected in either case.
There is slight negative skewness and heavy tails in both return series, com-
pared with the Normal distribution. Departures from Normality are however,
more important in the spot market, where the central cluster is sharper. Both
return series exhibit positive ..rst order autocorrelation, suggesting that the
observed return anticipates a return of the same sign next hour. However,
that autocorrelation coe®cient is signi..cant at the 5% level just for the spot
market. This is consistent with the argument that infrequent trading of
stocks in the index portfolio causes a larger inertia in the stock index (see,
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for example, Miller et al. (1994)).

Autocorrelation coe€cients for squared intraday returns are displayed in
Table 2. Estimated coe€cients slowly decrease to zero, revealing non-linear
dependence in the return series in both markets. Therefore, to analyze the
intraday causal relationship between spot and futures markets, the method-
ology representing the dynamics of market returns must take into account
higher order dependence, possibly as a result of changing volatility over time.
Interestingly enough, estimated autocorrelation coe€cients for lags multiple
of six are systematically positive and signi..cant, being much higher than
the rest. This structure may be motivated by an intraday seasonal pattern
in volatility in both markets, since we have 6 data points each market day.
This is consistent with Chan et al. (1991) and Daigler (1997), among others,
which ..nd evidence of a U-shape pattern of volatility along the day. La-
fuente (1999) has characterized the same regularity for the spot and futures
markets on the Spanish Ibex 35 index.

Table 3 shows the cross correlation function between intraday cash and
futures returns. The estimated contemporaneous correlation of 0.67 is high,
but it is not close to one, the value implied by the cost-of-carry model. The
..rst lagged return in each market seems to contain some forecasting power
regarding the return in the other market, although predictability seems to
be more important from the futures to the spot market than in the other
direction. Both estimated coe€cients are positive, showing that, in the short-
run, price movements occur in the same direction in both markets.

Since there is not much dynamic structure in returns, squared market
returns are a good proxy for conditional variances. Table 3 presents their
cross-correlation function, suggesting highly persistent cross-market volatility
interactions. These preliminary results indicate that a lead-lag relationship
exists not only between market returns, but also between their volatilities.
We incorporate these ..ndings in the modeling strategy that follows.

Besides, a contemporaneous correlation well below one suggests that more
than a single common ARCH factor may be needed to explain fuctuations
in volatility over time in both markets. To formally test this hypothesis we
provide in Table 4 results from the Engle and Kozicki (1993) test for an ARCH
common feature between the two return series, showing a clear rejection of
this hypothesis, in agreement with our theoretical model in Section 2.
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4.2 The model for returns and volatilities in spot and
futures markets

To estimate the conditional variance-covariance matrix of spot and futures
returns in a model that correctly represents the dynamics of intraday returns
in both markets, as well as their interactions, a model should be speci..ed
capturing a) the cross-market dependence between returns, b) the cross-
interactions between volatilities, and c) the presence of an intraday seasonal
pattern in spot and futures market volatilities.

We use an error correction° model with GARCH innovations. Let r,,
and r;, be the market returns, that is, r;; = s, — s;—1, and ¢, = f; — fi_1,
where s; and f; denote the logarithm of spot index and trading futures prices
respectively. The dynamics governing intraday market returns are described

by:

Ts,t 11 012 Tst—1 55 Es,t
’ = ’ + Sg—1 — + ~1))+ ’ ,
()= (o o) (s )+(5; ) en et (22 )

(13)

with &;, the vector of innovations having a conditional distribution: ¢, =
(st €fu ) | Q17 N (0,%;), where €;_; is the information set available at
time ¢ — 1 and X, is the conditional covariance matrix of returns. We include
as explanatory variable s;_; — (v, + 7v,.fi—1), an error correction term incor-
porating the short-run adjusting mechanism to deviations from the long- run
equilibrium relationship.

>From standard notation, the second order moment dynamics corre-
sponding to a GARC H (p, q) model can be represented:

vechY; = vechy + O, (B) vech (etzs;) + U, (B) vech¥:, (14)

with ® (0) = © (0) = 0, B being the backshift operator, ¢; the innovation vec-
tor, vechYy = (02, o4 0%, ), and vech (g6,) = (€2, esuere €34 ) -

SWe tested the cointegration hypothesis through three tests proposed by Engle and
Granger (1987). The ..rst one applies the Augmented Dickey-Fuller (1979) statistic to
the residuals from the cointegration equation. Additionally, we also use the tests based
on the augmented restricted and unrestricted vector autoregression representation. The
results, not shown in the paper, provided consistent evidence supporting the presence of a
common unit root between the natural logarithm of both market prices, so that an error
correction model for the returns is appropriate.
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However, we use an alternative VARMA (vector autoregressive moving aver-
age) representation. Consider the 3z1 stochastic vector:

&, = vech (eta;) — vech, (15)

of deviations to the vector of conditional means.
Substituting (14) into (13) and rearranging:

', (B)vech <5ts;) = vech® + @, (B) &, (16)

where T'. (B) = [I — (¥,(B)+6,(B))], r = max{p,q}, and &, (B) =
[I — ¥, (B)], that is, an ARMA(r,p) representation. Motivated by (16), we
posit a pure moving average process for the vector of second order moments
of intraday returns:

vech <5t5;) = vech® + (gblB + ¢ BS + ¢, B*? + ¢4BIS) £, (17)

which is a version of (16) restricted by ¥, (B) = —0, (B), together with a
particular structure for the ¥, (B) polynomial, aimed to capture seasonality
in variance. If the moving average polynomial has no roots inside the unit
circle, this representation captures a dependence among squared innovations
potentially spanning up to three market days. The following restrictions
are introduced: a) matrices ¢,, ¢4, and ¢, are diagonal, and b) we assume:
Pl = Py = gy = b33 = b3, = 0, Where ¢;; denotes the (i,5) element in
matrix ¢,. These restrictions are not relevant concerning the objectives of
the paper, and they are made only to avoid the numerical diCculties that
would arise when estimating an over-parametrized model. We still permit
cross-market interactions between volatilities through ¢3,and ¢1,.

Intraday seasonality in volatility is captured by the diagonal elements in
matrices ¢, (j = 2,3,4), which relate the conditional volatility at a given
hour to volatility at the same hour in previous days. The same applies to the
conditional covariance. This is more general than previous analysis of the
main international stock index futures markets by Park and Switzer (1995),
lihara et al. (1996), Koutmos and Tucker (1996), Racine and Ackert (1999),
among others, since in addition to allowing for conditional covariances to
change over time, we do not assume the conditional correlation coe€cient,
I.e., the ratio between the conditional covariance and the product of the
conditional standard deviations, to be constant over time.
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4.3 Estimation results

Under the assumption of a conditional Gaussian bivariate distribution for
the vector of innovations, the log likelihood for the bivariate GARCH model
Is:

T
1 /
L(9) = —3 T log (27) + g log || + &: 57 e, (18)

t=1

where 6 is the parameter vector to be estimated, and ¢; = (e;; gf,t)/. The
log likelihood function is highly nonlinear in # and a numerical maximiza-
tion technique is required. We use an exact maximum likelihood algorithm
included in the £4 Matlab toolbox ©, which uses a state space representation
of the model. The optimization algorithm used is BFGS (Broyden, Fletcher,
Goldfarb and Shanno). Unconditional second order moments are used as
initial conditions when generating time series for the conditional variances
and covariance. We adopt the following estimation strategy: a) we ..rst esti-
mate the cointegration equation by ordinary least squares, incorporating the
residuals as an exogenous vector in the model, and b) in consistency with
the imposed restrictions, we ..x the three elements in vechY to be equal to
the estimated unconditional second order moments of market returns in the
global sample. Therefore, the numerical algorithm does not iterate in these
three parameters. Overall, we have nineteen parameters left to estimate.
Tables 5 and 6 show the results of ..tting the bivariate GARCH model to
hourly data on spot and futures market returns. As we should expect, esti-
mated coeCcients on the error correction term have opposite signs, although
the one in the futures market equation is not signi..cant. The estimated er-
ror correction term turned out to be: s; = 0.0505 + 0.9936 f;, so that the
dicerence s; 1 — (v, + 7-.f:—1) can be safely interpreted as the opposite of the
empirical basis, i.e., the dicerence between the futures price and the stock
index. This is usually taken as an indicator of the subsequent tendency in the
spot market, a large positive basis anticipating an increasing spot market.
Our results are consistent with this view: the short-run estimated adjust-
ment predicts that a positive basis, the most frequent case in our sample’,

6This toolbox has been developed in the Departamento de Economia Cuantitativa,
Universidad Complutense, Madrid (Spain).

"Along the sample period the empirical basis was positive for 74% of the observed
hourly prices.
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will tend to be followed by an increase in the spot index, rather than by a
downward futures market.

Relative to market interactions, the model suggests one-way causality
from the futures to the spot market for both, returns and volatilities. First,
there are ewcects from lagged return innovations in the futures market to re-
turns in the spot market, while a similar ecect does not show up in the other
direction. Second, the size of lagged innovations in futures market returns
infuences volatility in both markets, while the size of past innovations in
spot market returns does not have any intuence on futures market volatility.
Finally, our results show a seasonal pattern not only for conditional volatili-
ties of returns in the spot and futures markets, but also for their conditional
covariance.

Table 7 reports estimated average volatilities for each trading time in-
terval along the 743 trading sessions. An intraday U -shaped curve for both
volatilities is shown, suggesting that the opening and closing trading periods
have the higher volatility. This empirical ..nding is consistent with those in
Chan et al. (1991) and Daigler (1997).

The average estimated conditional correlation coe€®cient between innova-
tions in both markets is 0.789. Such high positive value retects that innova-
tions in both price processes have most often the same sign and, consequently,
futures and spot prices move in the same direction. On the other hand, the
estimated correlation is below one, implying that the assumptions required
for perfect correlation (no transaction costs and non-stochastic interest rates
and dividend yields) are too restrictive. The average conditional variance
of returns in the futures market is higher than that of returns in the spot
market, this being observed in 75% of the available data. We will come back
to this point in section 5.

To validate the model, we used three diagnostic tests for the residuals from
the estimated GARCH model: a) a Ljung-Box statistic for the standardized
residuals to test the conditional mean speci..cation, b) a Ljung-Box statistic
for the squared residuals to test for remaining heteroscedasticity, and c) the
BDS statistic proposed by Brock et al. (1986) to test the null hypothesis that
the sequence of standardized residuals can be interpreted as realizations from
independent and identically distributed random variables. The three suggest
that the bivariate error correction GARCH model successfully captures the
dynamics of cross-market interactions between the ..rst and the second order
moments of hourly returns.
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5 Parameter estimates for the theoretical model

Let us denote by &it, 6% and &5 the estimated conditional variances

and covariance for the spot and futures market return innovations from the
GARCH model. To recover estimates for a?w and p;,, we use the theoreti-
cal expressions for the conditional variance of futures market returns and its
conditional covariance with spot market returns:

~2 ~2 ) A A
051 =054+t 0Ny +20510N D124 (19)
~ ~92 A o~ ~
Osfit = Ogy + OstONtP12,4- (20)
>From (20):
A -~ &Sfyt - &S,t
OstPiop = — ~ - (21)
ON

Substituting (21) into (19) and rearranging:
Oy =05, +0% — 20454, (22)

and we recover estimates for the conditional correlation between the common
and speci...c noises from (21) and (22):
~ ~2
Osft — O

ft ot . (23)
NI Tt

P12t =

Finally, the optimal hedge ratio can be estimated from (10) using 6, =
ont/0s: and P12~ Figures 3 to 5 provide the time evolution for the estimated
parameters 6?“ c“r?v’t,and P12, respectively, for the Ibex 35 spot and futures
markets. The conditional standard deviation of the speci...c noise turns out to
be smaller than that of the general market noise in 93% of the observations.

In the remaining 7% observations . is sometimes well higher than 5.

Consequently, the ratio 6, = &ff oscillates between 0.10 and 3.71, but with
an average value of 0.67. On the other hand, the correlation P12, bETWEEN
the speci..c and common noises is most often negative, so that either market
could turn out to be more volatile than the other. In fact, it is easy to
show that, under negative p,,,, the futures market is more volatile than the

spot market when < 16,. Mean values over the whole sample are®
P12t 2

8Expression (23) applied to average volatilities and covariance produces Pras = —22,
very close to the sample average of -.26.
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P12, = —0.26 and 5, = 0.67, so the above inequality holds and the futures
market is estimated to be on average more volatile than the spot market, as
was already shown in Table 7. In fact, 6%, > &2, is observed in 75% of the
available data. R

For our average estimated standard deviation ratio 6; = 0.67, a perfect,
positive correlation p;,, = 1 between the common and speci..c noises would
lead to an optimal hedge ratio of 0.60, and the return of the hedged position
would have zero variance. The optimal hedge ratio would increase for smaller
values of p,,,, reaching 0.69 when p;,, = .0, the variance of daily returns of
the hedged position then being 31% of the variance of the unhedged position
(the market). An optimal unit hedge ratio would arise for a correlation of
p12; = —0.67, and the variance of the hedged position would be 45% of the
market variance. This is the minimum reduction in variance that is achieved
when 6; = 0.67. From there, even more negative correlations would make
the hedge ratio to rapidly increase, while the variance of the hedged position
would again converge to zero. From (10), our estimated average correlation
of pj5; = —0.26 would lead to an optimal hedge ratio of »*/b = 0.76, and
a variance reduction factor of 0.38, provided coeC€cients were stable at their
estimated values on the full sample. In fact, Table 8 shows that there is
enough parameter variation so that annual mean values of the main variables
change signi..cantly over time.

6 Simulated hedging operations

To calibrate the exectiveness of the optimal hedge ratio characterized in
previous sections, we simulate a hedging operation using actual market data
for each of the twelve futures contracts maturing in 1996. For this exercise,
we start from an estimation of model in Section 2 with data up to December
1995, designing the hedging strategy on the basis of out-of-sample forecasts.
The hedging position is revised every Friday, when the model is estimated
again, and a forecast of the optimal hedge ratio to be applied over the next
week is obtained®. In three cases, a market holiday fell on a Friday and the
hedging position was revised the previous market day. Every Friday, futures
contracts were either bought or sold, as needed, to match the forecasted

9Experiments using the ex-ante hedge ratio calculated with the subsample used in
estimation, or the average of that ratio and the one predicted for the last day of the week,
yielded similar results to those reported in Table 8.
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hedge ratio. To obtain net returns, we computed the cost of the weekly
hedging operation taking into account a) the bid-ask spread, by paying the
ask price when buying a futures contract, and receiving the bid price when
selling the contract, and b) round-trip costs (50 pesetas/contract)!®. Futures
contracts mature the third Friday of each month. At that point, we perform
a new simulation for the next contract starting with an initial portfolio which
consists of a spot Ibex 35 basket, hedged with our estimated GARCH ratio.

Weekly hedging exectiveness is measured as the percent reduction in
volatility of hourly returns from the hedged position during that week, rela-
tive to those obtained by the unhedged position,

volatility (hedged position) — volatility (unhedged position)

100 x (24)

volatility (unhedged position)
Following the discussion in section 2, we start by comparing the standard
deviation of the returns ocered by the hedged position, with that for market
returns (the unhedged position). As a benchmark, we also use the portfolio
hedged with a unit ratio. The ..rst column in Table 9 shows the average
hedge ratio over the life of each contract. The average ratio over the 12
contracts maturing during 1996 is 0.92, in line with the 0.88 ratio obtained in
Table 8 from the parameter estimates for 1996. Thus, the number of futures
contracts involved in the hedging strategy under the estimated ratio is 8%
lower than under the unit hedge ratio and, as a consequence, transaction costs
and capital requirements are smaller than when a unit ratio is systematically
applied. In fact, the reduction in the number of futures contracts should
generally be expected to be more important. Table 8 shows that estimating
with 1994 data leads to an average hedge ratio of just 54.1%, and a 52%
expected reduction on variance, while estimates for 1995 produce a 63.4%
hedge ratio and a 43% expected reduction in return variance. Hence, the
number of futures contracts needed for hedging would have been much lower
than that used in hedging with a unit ratio in either of those two years.
The next two columns present out-of-sample ewcectiveness for the pre-
dicted hedge ratio, as well as for the constant unit ratio over the last month
of life of each contract. Hedging ecectiveness under both strategies turns

10For the period under analysis, Circular 17/93 from MEFF established 70 pesetas per
contract as the maximum transaction cost. However, traders negotiating on their own
account have variable discounts proportional to the negotiated number of contracts. Con-
sulted market-makers consider 50 pesetas/contract to be a representative average round-
trip cost.
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out to be quite similar: over the 12 contracts maturing during 1996, median
reduction in volatility was of 58.3% for the GARCH ratio, and 57.6% for
the unit ratio, respectively. Both hedged positions reduced the variance of
returns, relative to those ocered by the market, in 10 of the 12 contracts.
In fact, over the 53 weeks considered in our out-of-sample simulation, the
GARCH ratio produced a lower return variance than the unhedged position
in 40 weeks, and a lower return variance than the unit ratio in 33 weeks.
Median weekly reduction in return variance relative to the market was again
similar, 60.6% for the GARCH ratio and 59.8% for the unit ratio. As ex-
pected, these numbers improve upon the variance reduction factor of 0.19
which, as shown in Table 8, should be obtained for an ex-post, constant
parameter simulation.

For a full comparison between the two hedging strategies, we applied a
version of Kolmogorov-Smirnov statistic to test for equality of the empirical
distributions of returns from the two hedged portfolios over each of the 12
contracts. We ..rst produced a single list of all hourly returns observed under
either hedging strategy. The test was then applied by comparing the values of
the empirical distribution function under each strategy, for each observation
in the full sample of returns. Working with all individual observations should
lead to increased power in the Kolmogorov-Smirnov test. Table 9 shows that
the null hypothesis of equal return distributions cannot be rejected at any
sensible signi..cance level, except for the March contract. In that month,
GARCH hedging led to 17% reduction in volatility relative to the market,
for a 77% reduction of the unit hedge ratio.

Even though our theoretical model is developed in terms of volatility
of returns, it may also be of interest to consider price volatility. To that
extent, we use Garman-Klass (1980) statistic, applied to the six hourly data
points, to compute daily volatility of the market price of the hedged and
unhedged positions. The overwhelming evidence of non-stationarity of prices
suggests using this measure of volatility as opposed to the standard deviation,
which could produce misleading conclusions. The GARCH ratio led to lower
volatility than the unhedged position in 50 out of the 53 weeks, and lower
volatility than the unit hedge ratio in 31 weeks!!. Median reduction in price
volatility relative to the market was of 90.6% for the GARCH ratio, for a

1The GARCH ratio produced lower volatility than the unit ratio in 121 days, for 130
days in which the volatility under the unit ratio was lower. That the daily performance of
the unit ratio is more often better is due to the fact that the weeks when the unit ratio
does better, it produces lower volatility in a majority of days.
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reduction of 92.7% of the unit ratio.

According to either measure, hedging strategies did not perform well
during August and September, and the GARCH ratio did not work very
well over March either. March brought rather extreme volatility, being the
monthly median Garman-KIlass volatility 2.56 times annual median volatility.
That kind of unusual volatility seems to quickly deteriorate the performance
of hedge ratios below 1. Median daily price volatility in August was 15%
higher than over the whole year. A similar argument could not explain the
poor performance of both hedging strategies over September, when volatility
remained below annual volatility. Besides, hedging turned out to be quite
successful in July, in spite of volatility being 39% over the annual median. Re-
Fecting the poor hedging performance, correlation coe@cients between daily
market returns and those obtained from each of the two hedged portfolios
were high, between 0.55 and 0.60, during August and September. Return
correlations between the market and the GARCH hedged portfolio was also
high in March, of 0.62. This suggests that there are conditions other than
the level of volatility acecting hedging performance. Characterizing them
remains an interesting issue for further research.

It is also useful to consider the economic bene..ts from hedging, as ob-
tained from some speci...cation for the hedger’s utility function. Let us assume
a mean-variance expected utility function as in Kroner and Sultan (1993),
E.U(z) = Ey(z) — v Vary(z), where v has the interpretation of the degree
of risk aversion and risk is measured by the conditional variance of returns.

Weekly variance of returns from the unhedged position was .11368 over 1996.

* * 2
Average variance for the hedged position'?, o7 = 02, — 20, f,t% + 0%, %j;

was .07503 when the GARCH ratio was used, being .07578 when a unit
ratio was sistematically used. Hence, under a null expected return for the
hedged portfolio, and with a risk aversion value v = 4, we obtain an av-
erage weekly utility of U(z) = —4(.11368) = —.45470 for the unhedged
position, —y — 4(.07503) = —y — .30012 for the position hedged with the
GARCH ratio, where y denotes transaction costs as a rate of return, and
—4(.07578) = —.30312 under a unit hedge ratio. Hence, the investor’s weekly
utility increases, on average, by (.00300 — y) if he uses the conditional hedge

'2Using the de..nition for §;,6, = Z**, and the relationships, 0%, = 02, + o}, +

20121ONtOst s Osft = o'it + P12,40N 10 st, It is NOt hard Ho show that expression (8) for

. o\ 2
the variance of the hedged portfolio can be written as, b7 o, — QJS“% + a?-,t (%f) ] .
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rather than the unit ratio, which is what he will do so long as y < .00300.
But we have already mentioned that transaction costs for the Spanish mar-
ket are at most 70 pesetas per contract, which for an average cost of 407038
pesetas of replicating the Ibex35 basket, amounts to a negative return of
.017%. Therefore, even though the reduction in weekly variance is not too
large, the conditional hedge increases average utility for an investor with a
mean-variance utility and a risk aversion coeCcient v = 4, even after ac-
counting for transaction costs. Relative to not hedging, the gain of either
hedged strategy is obvious.

To approximate a real hedging situation, we can also consider an strategy
in which the portfolio is rebalanced each week only when the bene..ts of
doing so oxset the associated costs, i.e, when the increased expected utility
from rebalancing is large enough to omset the transaction costs of updating

the hedge. The return volatility from rebalancing would be o7 = o2, —
* \ 2
2asf7t%j; +0%, (%j;) , While that from maintaining the same hedge would be,

o o\ 2 o .
0% =02, — 20,40 + 02, ("Jbt—) , where % denotes the hedge ratio from the
last rebalancing. Therefore, a mean-variance expected utility maximizing

investor will rebalance at time ¢ if and only if,

h* B\ 2 e R\
—Yy—= U?,t - ZUSf,tb_t + 0?‘,1& b_t > = O-it - 2‘7sf,1‘/b_t + 0?‘,1& b_t
t t t t

An investor following this optional weekly rebalancing strategy over 1996
would have obtained a time aggregate utility level of -15.254, versus utility
levels of —15.606 and -15.763, had he used the GARCH ratio or the unit
hedge ratio every week, respectively. Years with more volatile ratios, as 1994
and 1995, should be expected to show even more clearly the bene..ts from
optimal rebalancing. The utility level derived from the unhedged portfolio
would have been of -23.645.

7 Summary and concluding remarks

We have derived a two period hedging model allowing for departures from
the cost-of-carry valuation of a futures contract on a stock index. Assuming
a geometric Brownian motion for the dynamics of the spot index, we have
modeled mispricing by introducing a speci..c noise in the dynamics of the

23



theoretical futures price, possibly correlated with the noise common to both
markets. The optimal hedge ratio is shown to depend on two factors: the rel-
ative size of the speci..c and common noises, and their correlation. A detailed
analysis of this theoretical model shows that it can capture many interest-
ing features of practical hedging situations, specially when the stochastic
behavior of returns in the spot and futures markets widely dizers.

We have provided empirical evidence on the model using data from the
Spanish stock index futures market over the sample period from December
1993 to December 1996. A bivariate error correction model with GARCH in-
novations has been used to estimate the parameters of the theoretical model,
from which we have computed estimates for the optimal hedge ratio dur-
ing this sample period. The model allows for transmission of returns and
volatilities between both markets, showing that the futures market has a
stronger intfuence on the spot market aspects than the other way around.
Furthermore, we have provided signi..cant evidence on intraday seasonality
in volatility in both markets. This model should be a useful tool to discuss
dicerent characteristics of the dynamic relationship between spot and futures
markets, beyond the implications for hedging exploited in this paper.

Empirical results support that spot and futures markets do not have a
common ARCH feature. Our ..ndings suggest that there is a speci..c noise
in the Spanish futures market with a small, negative correlation with the
noise common to the spot and futures markets. A negative correlation in
the theoretical model does not preclude futures market returns to be more
volatile than spot market returns and, in fact, we observe that to be the case
in 75% of the available data.

Ex-ante simulations with actual data reveal that hedge ratios that take
into account the estimated, time-varying, correlation between the common
and speci...c disturbances, lead to using a lower number of futures contracts
than under a systematic unit ratio, without losing hedging ecectiveness. Us-
ing less futures contracts for hedging implies lower transaction costs and
smaller capital requirements. Besides, the reduction in the number of con-
tracts can be substantial over some periods. Considering an investor with
a mean-variance expected utility function, we have also shown that the eco-
nomic bene..ts from an optimal conditional hedging are substantial.
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AppendiX 1. First order condition for the hedging model

Substituting the theoretical dynamics of spot and futures market returns
into the objective function, the problem can be written:

) d d d
Min Vary [bt (“s,t + Us,t%) — hy (Mf,t + 0o gt + UN,t%)]

(A1)
{he}

Using properties of the variance, and taking into account that Var; (df;tvf) =

dt o dt ’ dt
objective function:

Var, (d‘z“) =1 and Cou, (dm dz“) = p1a,, We get the expression for the

b?‘jit + Iy (Uz,t + O?V,t + 2P12,t05,t0N,t) — 2bhy (Og,t + P12,t057t‘7N,t) (A.2)

Setting the derivative with respect to h; equal to zero:

2 [ht (Og,t + O-?V,t + 2p12,t087t0N7t) — by (Jg,t + p12,t0-87t0-N7t)] = 0.

>From (A.3), simplifying and rearranging we obtain equation (10). The
second order condition ensures that this hedge ratio is in fact optimum, since:

82 Vm‘t (ht)
on?

dF, 1
Frdt

=2 (02, + 0% s+ 2012,0500N,) = 2Vary ( ) > 0. (A4)
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Appendix 2. Statistical Tables.

Table 1. Summary statistics. Market returns
Spot Market Futures market

Mean*10° -0.0281 0.0002
Standard deviation 0.0036 0.0030
Skewness -0.7131 -0.0582
Kurtosis 10.7904 3.4209
p (e, Tt—k)(a)

k=1 0.0758* 0.0241
k=2 0.0073 0.0029
k=3 0.0542* 0.0139
k=14 0.0232 0.0460*
k=25 -0.0099 0.0181
k=6 -0.0175 0.0028
k=17 -0.0231 -0.0451*
k=28 -0.0216 -0.0121
k=9 -0.0051 0.0001
k=10 0.0144 0.0408*
k=11 0.0043 0.0110
k=12 0.0250 0.0406*
k=18 0.0100 0.0296*
k=24 0.1390* -0.0040
Ljung-Box satistics®”  73.41 (0.00) 54.39 (0.00)

Notes: (@ Autocorrelation function. The standard error for the autocorrelation coedcients

can be approximated by \/414W ~ 0.015. An asterisk denotes a coe¢cient signi..cant at

the 5% level. (%) Ljung-Box test uses 24 autocorrelation coe€cients. Its p-value is shown
in parentheses.
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Table 2. Autocorrelations functions. Squared returns
Spot Market Futures market

P (Tt2> rt2—k)

k=1 0.0874* 0.1435*
k=2 -0.0028 0.0760*
k=3 -0.0056 0.0261
k=4 0.0255 0.0732*
k=5 0.1015* 0.1001*
k=6 0.2506* 0.1982*
k=17 0.0299* 0.0630*
k=38 -0.0028 0.0397*
k=9 -0.0135 0.0389*
k=10 0.0028 0.0315*
k=11 0.0241 0.0820*
k=12 0.1341* 0.1464*
k=18 0.1697* 0.1183*
k=24 0.1591* 0.1325*
Ljung-Box statistics®” 724.08 (0.00) 800.83 (0.00)

Notes: () Autocorrelation function. The standard error for the autocorrelation coeCcients
can be approximated by m ~ (0.015. An asterisk denotes a coe¢cient signi..cant at
the 5% level. (®) Ljung-Box test uses 24 autocorrelation coeCcients. Its p-value is shown
in parentheses.
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Table 3. Cross correlation functions

Returns Squared returns
P (roastre)” p(r2e %)
k=-—-24 0.0062 0.0617*
k= —18 0.0321* 0.0618*
k=-—12 0.0415* 0.0881*
k=—11 0.0003 0.1191*
k=-—10 0.0353* 0.0740*
k= -9 -0.0051 0.0105
k= —8 -0.0066 0.0307
k=-7 -0.0281 0.0215
k= —6 -0.0081 0.1194*
k= -5 -0.0179 0.2490*
k=—4 0.0144 0.0527*
k=— 0.0281 0.0201
k=-2 0.0123 0.0195
k=—1 0.0309* 0.1037*
k=20 0.6708* 0.3457*
k=1 0.1275* 0.1724*
k= 0.0198 0.0333*
k= 0.0358* 0.0295*
k= 0.0255 0.0388*
k=5 0.0314* 0.0421*
k=6 0.0102 0.0958*
k= -0.0301* 0.1187*
k= -0.0392* 0.0307*
k=9 0.0007 0.0245
k=10 0.0117 0.0012
k=11 0.0149 0.0048
k=12 0.0268 0.0569*
k=18 0.0232 0.0754*
k=24 0.0094 0.0632*

Notes:(*)rs,t and ry;_, denote spot and futures market returns in periods ¢ and ¢ — k,

respectively. The standard error for each cross-correlation coedcient can be approximated
1 . . .

by Tims s 0.015. An asterisk denotes a coeccient signi..cant at the 5% level.
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Table 4. Common ARCH features tests

k 1 2 3 4 5 6 7 8 9 10

df 2 5 8 11 14 17 20 23 26 29
min T R? 154 17.3 20.6 20.7 41.2 121.7 147.4 154.8 155.0 155.8
Critical values

o= .05 6.0 11.1 155 19.7 23.7 276 314 352 389 426
a=.01 9.2 151 20.1 247 29.1 334 376 416 456 49.6

Notes: min 7' R? shows 7" times the minimum R2-squared coeCcient in a set of regres-
sions of (754 — 6Tf,t)2 on k lags of rit, r%t, and 747;. df denotes the degrees of free-
dom for each value of k. The last two rows show critical values at the c-signi..cance levels.

Table 5. Maximum likelihood estimation. Equation for mean returns
Dependent variable

Spot market return(®) Futures market return
coeCcient coeCcient
an 0.061 (0.017)* g -0.006 (0.014)
ai <0106 (0.020)* | s -0.032 (0.018)
3, -0.078 (0.014)* 3, 0.012 (0.012)

Note:(®) Estimated standard errors in parentheses. An asterisk denotes a coe€cient signif-
icant at the 5% level.

Table 6. Maximum likelihood estimation. Variance equation
Dependent variable(®

Est Eft EstEft
coeCcient coeCcient coeCcient
¢y, @ 0.002 (0.004) 31 0.004 (0.003) | ¢35, 0.078 (0.008)*
b1 0.065 (0.011)* | ¢35 0.036 (0.008)* | ¢5, 0.012 (0.007)*
e 0.136 (0.004)* | ¢35 0.036 (0.011)* | ¢, 0.007 (0.005)
i 0.077 (0.007)* | ¢, 0.051 (0.008)*
b1 0.068 (0.004)* | ¢35 0.035 (0.005)*

Note:(®) Estimated standard errors in parentheses. An asterisk denotes a coe€cient sig-
ni..cant at the 5% level. (b)@}- denotes the (i, j) element in matrix ¢, (r=1,2,3,4).
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Table 7. Average intraday statistics from the GARCH model
Conditional second order moments(®

Trading Spot Futures Spot-Futures Conditional
hour intervals \Volatility o2, Volatility o7, Covariance o, Correlation p,;,
11:00 - 12:00 0.092 0.164 0.083 0.672
12:00 - 13:00 0.083 0.089 0.069 0.808
13:00 - 14:00 0.081 0.084 0.068 0.830
14:00 - 15:00 0.084 0.086 0.070 0.823
15:00 - 16:00 0.086 0.090 0.072 0.813
16:00 - 17:00 0.101 0.107 0.082 0.789
Global 0.088 0.103 0.075 0.789

Note: (%) Each entry is the average of GARCH moments estimated using daily data up to
the time shown as the upper end of each interval. There are 743 data points in each of
these samples. The last row uses all data points.

Table 8. Annual mean estimates for the main variables

Variance
0% o2 Osf o3 ) P12 % reduction factor
1994 0.225 0.126 0.114 0.123 0.951 -0.088 0.54 0.52
1995 0.118 0.076 0.067 0.060 0.807 -0.085 0.63 0.43
1996 0.051 0.048 0.043 0.013 0.448 -0.176 0.88 0.19
Full Sample 0.103 0.088 0.071 0.049 0.669 -0.265 0.76 0.38
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Table 9. Median Hedging ezectiveness(!)

Reduction in standard Reduction in
GARCH  deviation of returns | Kolmogorov Garman Kilass volati

hedge Hedge ratio Smirnov test® Hedge ratio
Maturity ratio GARCH Unit GARCH Unit
January 96 918 63.0% 62.7% 0.604 (0.859) 89.9% 92.2%
February 96  .920 55.9% 53.4% 0.389 (0.998) 20.0% 7.3%
March 96 912 17.1% 76.9% 1.862 (0.002) 38.4% 94.2%
April 96 .898 61.5% 58.6% 0.618 (0.839) 90.5% 90.6%
May 96 .942 58.6% 56.6% 0.493 (0.969) 94.7% 94.8%
June 96 935 67.5% 67.5% 0.591 (0.876) 92.1% 93.8%
July 96 .944 73.3% 72.5% 0.713 (0.689) 95.5% 97.0%
August 96 .864 -14.6% -22.2% 0.342 (0.999) 33.5% 39.3%
September 96 .914 -40.0% -39.5% 0.232 (0.999) 14.1% 17.6%
October 96 .920 58.0% 54.3% 0.583 (0.885) 90.6% 88.3%
November 96 .932 43.6% 53.3% 0.414 (0.995) 90.6% 93.2%
December 96  .936 59.3% 59.5% 0.466 (0.982) 96.8% 95.2%
MEDIAN .920 58.3% 57.6% 90.6% 92.7%

@ Hedging exectiveness is de..ned as the percent reduction in either weekly standard de-
viation of returns(left panel) or daily Garman-Klass volatility (right panel), in both cases
relative to the market (the unhedged position), over the last month of each contract.

) The null hypothesis is that empirical distributions of returns from the two hedged
positions are the same. p-values are shown in parentheses.
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