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Abstract

This paper analyzes the equilibrium dynamics of an optimal growth model
with endogenous depreciation, variable capital utilization, and expenditures
on the maintenance of physical capital. Maintenance reduces the depreciation
of capital, investment is subject to adjustment costs, and the degree of capital
utilization affects the activity of maintaining. We establish a set of sufficient
conditions for the existence and uniqueness of a steady state equilibrium. We
define a “delta golden rule” consistent with the proposed economic environ-
ment and we analyze the dynamic efficiency of this economy. Finally, the
steady state is found locally saddle-path stable.
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1 Introduction

Most analyses of aggregate economic activity take depreciation as exogenously given
and ignore that equipment and structures have to be maintained and repaired. More-
over, an important margin along which a firm can adjust these activities has to do
with the fraction of the installed capital stock being used. In this paper we develop
a neoclassical growth framework that incorporates the endogenous determination of
these variables. To this end, we augment the optimal growth model of saving and
investment under adjustment costs introduced by Abel and Blanchard (1983), with
a maintenance technology that acts as a substitute for investment and depends upon
both the intensity with which physical capital is utilized and its depreciation rate.

The exogenous nature of physical capital depreciation can be somewhat justi-
fied by considering a class of putty-putty models of production. However, it is well
understood that this particular view of the capital accumulation process is quite
restrictive. From the theoretical side, the assumption of exponential depreciation
dramatically reduces the possible dynamics that an optimal growth model can de-
scribe. This is particularly relevant for growth theory as well as for investment
theory. From the empirical side, the assumption of a constant depreciation rate
turns out to be more in conformity with accounting principles than with those of
economic theory. This is particularly important with respect to the measurement of
physical capital.

There is evidence that the activity of maintaining and repairing equipment and
structures [cf. McGrattan and Schmitz (1999)] is both large relative to investment
and a substitute for investment to some extent. Furthermore, Licandro and Puch
(2000) show that incorporating expenditures on the maintenance and repair of phys-
ical capital into models of aggregate economic activity will change the quantitative
answers to some key questions that have been addressed with these models.! What
it is missing is an analytical framework to characterize the equilibrium dynamics of
the joint determination of investment rates, depreciation rates and utilization rates.
Here, and this is the contribution of the paper, we give a first step in that direction
by incorporating to the neoclassical growth framework a class of maintenance ac-
tivities that are related with the capital ageing process and the decay that results
from its use.

Our model specification builds upon previous results in Escriba-Pérez and Ruiz-
Tamarit (1996) and Ruiz-Tamarit (1995). These authors explore the endogenous
determination of depreciation under putty-putty technologies in partial equilibrium.
In doing so, they introduce a maintenance activity that allows a reduction in physical
depreciation, which is positively related in turn with the intensity of use of capital
under the depreciation-in use assumption.? We put these ideas to work into a general

1See also Collard and Kollintzas (2000).
2Different specifications of this hypothesis have been discussed in Epstein and Denny (1980),



equilibrium framework.

The general equilibrium neoclassical growth model does not allow the separation
of the saving decisions of households from the investment decisions of firms. By
introducing either a two sector technology [cf. Uzawa (1964)] or installation costs
lcf. Abel and Blanchard (1983)] it is possible to overcome the essentially passive role
of investment in the model. These analyses, however, rely on constant depreciation
rates and full capacity utilization. Here we incorporate a maintenance technology
into the standard growth model with adjustment costs. This technology allows us to
augment the model to include endogenous depreciation and capital underutilization.
Thus, under the necessary assumptions to derive well-defined investment, depreci-
ation, and utilization functions, we characterize the steady state equilibrium, the
short-run dynamics and the stability properties of our model.

As a result of our technological assumptions, capital underutilization is optimal
and the investment rate is determined simultaneously with the endogenous deprecia-
tion rate. Consequently, the equilibrium path is dynamically efficient. Furthermore,
the long-run equilibrium of our economy is characterized by both optimal and golden
rule capital stocks that are below those of the standard neoclassical growth model
with adjustment costs. Consequently, our technological assumptions suggest that
a non-optimal depreciation policy, that ignores maintenance costs and variable uti-
lization, might lead the economy to an excess of installed capacity.

In addition, we focus on the analysis of the dynamic properties of optimal tra-
jectories. Once we prove local stability we present a set of numerical computations.
We shall illustrate below that the presence of a simple maintenance costs technology
can reasonably reduce the rate of convergence to the steady-state path. It turns out
that these values of the speed of convergence are more in conformity with those sup-
ported by the empirical evidence. Also, along the optimal trajectories consumption,
capital and output are positively related but the investment rate, defined as the ratio
of investment over capital, is inversely related with them. Depreciation, utilization
and maintenance rates are also inversely related with capital accumulation along
the convergence path.

These findings provide a framework for the analysis of comparative dynamics in
general equilibrium with these features. The rest of the paper is organized as follows.
In Section 2 we introduce the model along with a discussion of the maintenance and
adjustment costs technologies. In Section 3 we show existence and uniqueness of
steady state equilibrium and we characterize optimal solutions. In Section 4 we
present stability results. Section 5 concludes.

Bischoff and Kokkelenberg (1987), Motahar (1992) and Burnside and Eichenbaum (1996). See also
Rumbos and Auernheimer (1997) and the references therein.



2 The model and preliminary considerations

The goal here is to formalize endogenous depreciation, capital utilization and main-
tenance costs in the simplest optimal growth economy. In addition, we retain the
assumption that investment is subject to an adjustment costs technology. The reason
is twofold. On the one hand, this allows us to keep as a benchmark the specifica-
tion in Abel and Blanchard (1983). On the other hand, the presence of a simple
maintenance costs technology can be immediately justified in an economy where
adjustment costs generate a well-defined investment demand function. We now in-
troduce a general model of optimal growth with these features.

The economy is populated by a continuum of identical infinitely-lived households
or dynasties that grow at an exogenously given rate n > 0. Each household discounts
the future at a constant positive rate 5 > n, and derives instantaneous utility from
the consumption of an aggregate good, ¢;, according to U (¢;), which is an increasing
and strictly concave C* mapping.

The technology is represented by a C? concave production function, F(K, N),
which is increasing and linearly homogeneous in effective capital, K > 0, and labor,
N > 0. The fraction 0 < u < 1 determines the intensity of use of the installed
capital stock K, thus K = K u. N is also the population size. For simplicity of
exposition we ignore the immediate extension to the case of exogenous technical
progress of the labor augmenting type. Under the previous assumptions on F(.),

Yo = flke uy), (1)

where y and k are per capita output and per capita capital stock, respectively.
Function f(z) is C?, increasing and strictly concave for all & > 0, lim,_¢+ f(z) = 0
and f(.) satisfies the Inada conditions.

Production may be allocated to consumption, the production of new capital
goods, installation activities and maintenance services. Associated to these pur-
chases are the two key ingredients of the present analysis, namely: i) investment
is subject to an adjustment costs technology, and 4i) maintenance and repair are
subject to a maintenance costs technology.

Let us assume that adjustment costs, which are internal to the firm, are repre-
sented by a linearly homogeneous function ®(/, K), increasing in gross investment,
I > 0, and decreasing in the total capital stock, K > 0. Then ®(I,K) = ¢(i)K,
where 7 is the rate of gross investment and ¢(3) is assumed C?, increasing and strictly
convex for i > 0, with lim;_o+ ¢(4) = 0 and lim,;_, ;o ¢'(i) = +oo. Consequently,
per capita adjustment costs are then written as ¢(i)k.

By assumption, maintenance costs are internal to the firm and can be used to
preserve capital goods from depreciation and use. These maintenance costs are rep-
resented by a linearly homogeneous function M (D, K), decreasing in total deprecia-



tion D > 0 and increasing in effective capital. Consequently, M(D, K) = m(d,u)K,
where 6 > 0 is the endogenous rate of depreciation. The function m(d,u), the
average maintenance costs, is assumed positive, C?, convex and linearly homoge-
neous on ¢ > 0 and u €|0, 1[. Furthermore, we assume mgs(d,u) < 0, my(d,u) > 0,
mss (0, u) > 0, My (d,u) > 0 and mys,(0,u) < 0 for u €]0,1] and § > 0. The larger
the utilization rate and the smaller the depreciation rate, the larger the maintenance
costs of capital.®

The resource constraint is determined by the following equalities

ce + (ie + i) + m(0e,ur)) ke = f(ke ur) (2)
if?t = (it — 0 — n) Ky, (3)

where k denotes the time derivative of per capita physical capital with respect to
time.

In the present setting, every optimal solution may be decentralized as a com-
petitive equilibrium. Thus, without loss of generality we shall confine our analysis
to the planner’s problem. The planner’s optimization problem is to choose at each
moment in time the rates of investment, depreciation and capital utilization so as to
maximize the infinite stream of discounted instantaneous utilities, given the resource
constraints (2) and (3), and the initial capital stock, k.

Definition 1 An optimal solution for this economy is a set of paths {c, s, O, Uy,
ki}, for t positive, which solve

max/ U(c) e Bt g, (P)
0

subject to (2) and (3), ko > 0 given, and where all variables are assumed to be
strictly positive and u; strictly smaller than one.

Definition 2 A steady-state equilibrium for this economy is an optimal solution
{cs,1s, O¢, ug, ke } to problem (P), such that ki, ¢, i, 0¢ and vy remain constant.

It is readily shown that not only rates but also equilibrium per capita variables
remain constant at steady state. Consequently, at a steady state the equilibrium
levels grow at the rate n.

An interior optimal solution to problem (P) must satisfy, dropping time sub-
scripts, the following first order equation system

3An equivalent representation of the problem can be achieved by assuming that the depreciation
rate is a function of the utilization rate and the rate of maintenance costs to capital.



p=U'c) (1+¢'(9))
o= =U"(c) mg(d,u)
fl(ku) =my(5,u)
fo=U'(c) (i + ¢(i) + m(d,u) — f'(kwu) + p(B+0 — i)
k=(—-06—-n)k
ct+k (i+¢G)+md,u)) = flku)

given kg > 0 and the corresponding transversality condition

thm py by e” Bt =0, (10)

The multiplier i represents the shadow price of an additional unit of installed
capital. The term 1 + ¢/(7) is the marginal opportunity cost of gross investment.
Then, equation (4) states that this marginal cost must be equal to the shadow price
of capital. On the other hand, —mgs(d,u) is the marginal saving in maintenance
costs associated to an increase in the depreciation rate. An increase in ¢ reduces
the capital stock and, hence, maintenance expenditures. So, equation (5) states
that this marginal saving must be equal to the shadow price of capital. The term
m. (9, u) is the marginal maintenance cost associated to an increase in the utilization
rate. Equation (6) states that this marginal cost must be equal to the marginal
productivity of such an increase in the utilization rate, measured by the term f'(k

¢ From (4) to (6) and (9), we can write ¢ = c(k, i), i = i(k, ) , § = d(k, ) and
u = u(k, ). Additionally, combining (4) to (7) and the assumption that m(d,u) is
linearly homogeneous, the dynamic system (7) and (8) can be written in the phase
space as

BB H ik, ) = (11)
b

E ik, ) — (k) = ), (12

where o .
1+ ¢'(4)

Indeed, H (i) summarizes all the marginal effects on the return to capital. ;From the
assumed properties of function ¢(i), we can easily prove that H(i) > 0, H'(i) > 0
and H (i) < i, for all ¢ > 0. Moreover, lim;_o+ H (i) = 0 and from I’Hopital rule and
after some elementary calculations, lim;_ o H(i) = +00. In order to analyze this
dynamic system, we first show existence and uniqueness of a steady state and then
local stability.



3 Characterization of steady state solutions

The above optimization problem differs from the standard optimal growth model
with adjustment costs because of the presence of maintenance costs and the un-
derutilization of capital. Therefore, before discussing the properties of the optimal
steady state, we establish its existence and uniqueness in Proposition 1. We also
define a golden rule for this economy, that we call delta golden rule, and we study
the dynamic efficiency of the unique steady state solution and its relation with those
corresponding to the benchmark neoclassical framework.

3.1 Existence and uniqueness of steady state solutions

The following proposition establishes sufficient conditions for the existence and
uniqueness of a steady state equilibrium.

Proposition 1 Under the following limit conditions:
i) [lim, o+ me(d,u)| < 1+ ¢'(n+4), for all § >0
i) |lim,_1- ms(d,u)| > 1+ ¢'(n+9), for all § >0

An interior steady state exists and it is unique.

Proof. jFrom equation (11) H(i) = 3 at steady state. Given that H(0) = 0,
H'(i) > 0, Vi > 0, and lim;_ ;o H(7) = 400, we may easily conclude that for any
S > 0 there is only one positive value for the investment rate, 7 = H=1(3) > 0.

Then, from (12) the steady state depreciation rate 6 = H=(3) — n. Given that
H(:) <iand H'(i) >0, H1(3) > 3 > n, which implies § > 0.

We combine (4) and (5) to obtain 1 + ¢'(i) = —ms(d,u). From mgs.(d,u) < 0,
the right hand side of this equation is increasing in u. Given ¢ and ¢, conditions i)
and ii) are sufficient for the existence of a unique solution for u €]0, 1].

JFrom (6), f/(ku) = m,(0,u). Given that ¢ and u are interior at steady state,
m. (9, u) is a strictly positive finite number. From the Inada conditions imposed on
function f(.), there exists one and only one interior steady state value for k.

A steady state value for ¢ can be obtained from (9), and the existence and
uniqueness of a finite solution for it can be easily verified, given our assumptions on
functions f(.), ¢(.) and m(.). To prove positivity, let us combine (9) with the other
optimal conditions and the assumption of linear homogeneity of m(.) and get

¢ = f(ku) = ['(kukut k (1+¢/() (H(@)—n)>0

~

Given our assumptions on function f(.), the first term on the right hand side is
positive. At steady state, H(i) = > n, which implies that the last term is also
positive.



i From (4), an interior solution for p exists and is unique. W

3.2 The (modified) delta golden rule
In our framework, the feasibility constraint at steady state can be written as
¢ = flku) = k[0 +n+¢(+n)+m(,u).

Of course, the degree of capital utilization and the depreciation rate are not ex-
ogenously given. In order to make intertemporal efficiency comparisons we define a
delta golden rule.

Definition 3 The delta golden rule is the value of k consistent with the mazimiza-
tion of steady state consumption with respect to k, & and u, i.e., the solution of the

following system:
fku)u=206+n+ ¢ +n)+m(d,u) (13)

f'(ku) = my(6,u)
1+ ¢'(6+n) =—ms(d,u).

Notice that the last two equations in Definition 3 are equal to equations (6) and
(4)/(5), respectively. In the following proposition, we show that an interior delta
golden rule exists and is unique.

Proposition 2 Under conditions i) and i) of Proposition 1 together with n > 0,
there is a unique delta golden rule.

Proof. Combining the three equations in Definition 3, we get

H()+n)=n.
Provided that n > 0, since H'(i) > 0, H(n) < n, and lim;_, ,, H(i) = 00, there
exists one and only one § > 0 satisfying Definition 3.

For a finite ¢, the left hand side of the last equation in Definition 3 is constant.
The right hand side is increasing in u, since mg,(0,u) < 0. Then, conditions i) and
ii), are sufficient for the existence of a unique solution for u €|0, 1].

Given a finite § > 0 and u €]0, 1], the right hand side of the first equation in
Definition 3 is finite. From f”(.) < 0 and the Inada conditions, one and only one
interior solution for & does exist. W

For obvious reasons, any steady state value for the per capita capital stock that
exceeds the delta golden rule value, denoted k,, is dynamically inefficient irrespective

8



of the corresponding values for § and u. Of course, the steady state of our model
economy, denoted k*, is optimal and verifies that k&* < k,. For further comparative
analysis it is convenient to express equation (11) at steady state equilibrium values

FIE uu* =6+ B+ o6 +n) +m(d*,u*) + (8 —n)¢' (6 +n), (14)
We call this equation the modified delta golden rule, to distinguish it from the mod-
ified golden rule of the Ramsey-Cass-Koopmans model. We should note from (14)
that determination of the optimal capital stock requires the simultaneous determina-
tion of all control variables. Consequently, there are important sources of variation in
steady-state solutions related to changes in the parameters of the maintenance and
adjustment costs technologies. This is an important implication of our model spec-
ification that goes beyond the somewhat counterfactual differences in preferences,
population growth and technical progress the standard model needs to account for
income differences across countries.

The following proposition shows the relation between the modified delta golden
rule and the delta golden rule for some key variables.

Proposition 3 The following relations between the modified delta golden rule and
the delta golden rule must hold: §* > §,, i* > i, u* > u,, k* < k, and y* < y,.

Proof. The golden rule implies 6, = H~'(n) — n, while at steady state §* =
H='(3) —n. Since 8 > n and H(.) is monotonically increasing, H=(3) > H~'(n).
Thus, §* > 4,.

Moreover, given i, = 6, + n = H '(n) and * = §" +n = H1(3), we also
conclude that 7* > 4,.

For both the golden and the modified golden rule, 1 + ¢'(§ + n) = —ms(d,u).
Given that ¢” > 0 and §* > d,, then 1+ ¢'(§, + n) < 1+ ¢'(6* + n), implying that
ms(6y,ug) > ms(0*, u*). Now, given mgs > 0, ms(8*,u*) > ms(d,,u*). The previous
statements imply that ms(d,,u,) > ms(6*,u*) > ms(d,, u*), and the comparison
between the two extreme terms, given mg, < 0, says that u* > u,.

By definition, the golden rule implies ¢, > ¢*. Using the aggregate resource
constraint, we get

[(kgug) — (64 + 1+ ¢(d, +n) +m(dg,ug)) kg >
> (k™) — (0" +n+ ¢(0" +n) +m(d*,u")) k"
Then, using equation (13) and (14), and rearranging terms we obtain the following
inequality:
Flhgug) — f'(kgug)kgug > f(k™u") — f'(K"u")k"u" + (8 — n)[1 + ¢'(0" + n)]k" >
> f(k*u*) — fI(K*u )k u®.

9



So, given the strict concavity of the production function we may easily conclude
that k,u, > k*u*. Then, given u, < u* , it becomes obvious that £* < k,.

;From the previous result, y* < y,. W

Thus, a higher productivity of physical capital in the long-run is associated with
long-run levels of the depreciation rate, the investment rate and the utilization rate
that are above those of the golden-rule solution. This result is standard in the
optimal growth literature. Less immediate results show up through comparison
with the Ramsey-Cass-Koopmans and the Abel-Blanchard models.

Indeed, the equilibria of the Ramsey-Cass-Koopmans model (say, kr) and that
of Abel and Blanchard (say, k4) are characterized by

fl(kr)=6+p (15)

and ,

fllka) =6+ 8+¢(0+n)+(B-—n)g(d+n) (16)
respectively, where the utilization rate is supposed to be equal to one and the de-
preciation rate is an exogenous parameter. Under standard assumptions on the
adjustment cost function, ¢(.) should be positive, which implies that k4 < kg. In
Proposition 4, we compare the Abel and Blanchard steady state equilibrium with
our delta and modified delta golden rules. In order to do this comparison, we as-
sume that § = §* +m*, where m* = m (6*,u*), and ¢(i) = ¢(i — m*). The rationale
for these assumptions is the following. In our model, maintenance and repair are
considered separate economic activities, but in Abel and Blanchard, investment in-
cludes them. Consequently, in our model depreciation is net of maintenance, but not
in Abel and Blanchard. For the same reason, we must renormalize the investment
function: it depends on gross investment in Abel and Blanchard and on investment
net of maintenance in our model.

Proposition 4 k* < k4 if O(k) = _% < 1.

Proof. Since § = &* + m(6*,u*), ¢(z) = ¢ (x — m(6*,u*)) and u* < 1, from (14)
and (16) we get f'(k*u*) > f'(k*u*)u* = [’ (ka). Consequently, k*u* < k4 and

ka _f'(ka)ka
Let us define G(k) = f'(k)k. We can easily prove that, for £ > 0, G'(k) > 0 &
©(k) < 1. Then,
[ (ka) ka
—_— >
which completes the proof. B

if Ok <1,

10



O(k) represents the curvature of the production technology f(k). For a CES
production function with elasticity of substitution larger than one, this assumption
holds for any k£ > 0. This result can also hold for a CES production function with
gross complementarity, provided that k4 is not too large, since lim;_ o+ O(k) = 0
independently of the elasticity of substitution.

The intuition behind the result in Proposition 4 is straightforward. A non-
optimal depreciation policy, that ignores variable maintenance costs and utilization,
leads the economy to an excess of installed capacity. However, this excess of capacity
is not necessarily dynamically inefficient.

4 Dynamic analysis of optimal trajectories

In Proposition 5 we prove local stability of the unique interior steady state equilib-
rium.

Proposition 5 The unique interior steady state equilibrium of the dynamic system
(11) and (12) is locally saddle-path stable.

Proof. A first order Taylor expansion of (11) and (12) may be written in matrix

form as )
( k > ( We(k*, pe*)  1L(K", p*) > ( k—k* >
4 Ue(k*, p*) Tu(k™, 1) p—=pt )

where x* denotes the steady state value of z. As it is shown in the Appendix, the
coefficients of the Jacobian matrix J* are:

(K, u*) = b (i — 67) > 0
T (K", p*) = k* (&% — 6%) > 0
w(K*,p07) = —p" H'(i%)if, > 0
Pu(k® p*) = =" H'(i")i;, < 0

Following Kurz (1968), the trace of the Jacobian matrix must be:

)1

trace J* =y, + vy = k*[iy — 64 — p H'(¢")iy, = 8 —n >0,

where v, and 7, are the eigenvalues. On the other hand, the determinant of the
Jacobian matrix is:

det J* =7y - yy = p H' ()K" [i},6} —i107] <0 (17)

Consequently, the two eigenvalues are, respectively, v, = &2+ \/ [£52]2 — |det J*| >

0 and v, = % — \/[5—;"]2 — |det J*| < 0. These features of the Jacobian matrix

11



b o' 5* u* k* k, ka va (%) v(%)

10 0.16 0.048 0.85 1.04 1.36 1.07 9.72 3.84
6.5 0.40  0.059 1.00 4.21 5.43 4.22 8.23 3.40
10 0.40 0.048 0.85 4.58 6.07 5.09 6.50 2.80
24 0.40 0.033 0.66 4.89 6.97 6.47 4.12 2.00
140 0.40 0.018  0.55 291 5.20 4.34 2.00 1.10
10 0.75 0.048 0.85 381.80 541.60 615.00 2.50 1.45

Table 1: Effect of parameters b and « on steady-state values and the rates of con-
vergence

mean that the system has a saddle point dynamical structure. So, given the initial
condition for the predetermined variable kq and the transversality condition (10), the
system places on the stable arm and then converges to the steady state equilibrium.
Otherwise the system explodes. W

In particular, given kg < k* convergence implies that k(t) increases but p(t)
decreases because 11(0) > p*. The speed of convergence, measured as the absolute

value of the negative eigenvalue, is given by v = —v,, with m > 0.

It seems difficult to state general conditions characterizing the speed of conver-
gence in our model. To further examine the dynamic properties of the convergence
path we resort to numerical computations. First, we investigate the impact of our
technological assumptions in the speed of convergence of the neoclassical growth
model. The following specific functional forms are used throughout: U(c) = Ing,

flku) = (ku)®, ¢(i) = (b/2)i* and m(d,u) = du?/d.

We consider our model, together with the Abel and Blanchard model under the
corresponding interpretations of the depreciation rate and the investment rate as
discussed above. We fix parameters S = 0.01, n = 0.0075 and d = 0.005, the other
parameters varying as specified in Table 1.4 Tt is worth pointing out that parameter
d of the maintenance costs function affects the steady-state values u*, £* and k, but
not the rate of convergence. In this table, v 4 is the speed of convergence of the Abel
and Blanchard model.

The main conclusion that can be drawn from Table 1 is that the rate of conver-
gence in our model is substantially reduced compared with the standard neoclassical
growth model with adjustment costs. Indeed, the decrease in the speed of conver-
gence we obtain assigns more importance to the transitional dynamics of our model.
This result is in line with related literature that shows the importance of variable
utilization rates of capital in shaping the saddle path and the convergence rate. For

4The benchmark value of the adjustment cost coefficient, b = 10, is chosen to get a plausible
value for Tobin’s ¢ (1.5). For the benchmark value of the capital elasticity, o = 0.40, we consider
variations in parameter b such that u = 1, v4 = 2% and v = 2%, respectively.

12



b a du/dk di/dk d6/dk de/dk dm/dk

10 0.16 -0.6159 -0.0621 -0.0253 0.0637 -0.0694
6.5 0.40 -0.1752 -0.0163 -0.0082 0.0523 -0.0179
10 0.40 -0.1320 -0.0119 -0.0056 0.0484 -0.0145
24 0.40 -0.0873 -0.0071 -0.0030 0.0444 -0.0115
140 0.40 -0.1089 -0.0057 -0.0020 0.0604 -0.0237
10 0.75 -0.0012 -0.0001 -0.0001 0.0265 -0.0001

Table 2: Effect of parameters b and « in the dynamic behavior of variables along
the convergence path

instance, Rumbos and Auernheimer (1997) quantitatively compare the rate of con-
vergence of small open model economies with fixed and variable utilization rates.
They find slower convergence under variable utilization, the absolute differences go-
ing up to 18 per cent. Here we have a lot more intratemporal substitution between
investment and maintenance through a variable utilization rate and an endogenous
depreciation rate; so much so that convergence is at least twice as fast in the standard
neoclassical model with adjustment costs. Furthermore, for our baseline economy
with b = 10 and a = 0.40 we obtain a rate of convergence which is more in confor-
mity with those reported in some empirical studies (Barro and Sala-i-Martin (1992)
report annual rates of convergence of the order of 2 per cent).

Finally, Table 2 summarizes the dynamic behavior of the variables in our model
along the capital accumulation convergence path for alternative values of b and a. In
all our numerical experiments consumption and investment react as in the standard
neoclassical model.

As the initial stock of capital is below its steady state value, the optimal initial
reaction is to accumulate, maintain and utilize capital at higher rates than in steady
state. For this reason, in the adjustment process all these rates are decreasing. How-
ever, the depreciation rate does not initially decrease, but increase. This depends
crucially on the negative sign of the cross derivative in the maintenance function:
from (5), utilization and depreciation move in the same direction.

5 Conclusions

In this paper we introduce maintenance costs, endogenous depreciation and capital
utilization rates in an otherwise optimal growth model with investment adjustment
costs. Our model specification generalizes that of Abel and Blanchard (1983) and
provides a theoretical framework for the analysis of comparative dynamics in a
class of general equilibrium models with capital underutilization and maintenance

13



activities.

The social optimum is characterized by an endogenous simultaneous determi-
nation of the investment rate, the depreciation rate and the utilization rate. This
circumstance has some relevant implications. First, in steady state capital is opti-
mally underutilized and maintenance activities are optimally undertaken. Second,
we define a delta golden rule and we show that the steady state equilibrium of our
economy verifies a modified delta golden rule, which is dynamically efficient. Finally,
we show that the unique steady state equilibrium is locally stable.

But we have taken only one necessary step in characterizing the equilibrium
dynamics of a growth model with endogenous depreciation, capital underutilization
and spending on maintenance and repair. Further work, in line with Licandro and
Puch (2000), is needed to definitively establish the extent to which including these
features in aggregate models will change the answers to quantitative questions.
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Appendix: Control functions and its partial deriva-
tives at steady state

Taking equations (4)-(6), (9), and the production function in intensive form y =
f(ku), we can implicitly define the following optimal control functions: v = u(k, ),
i = ik, p), § = 0(k, ), c = clk, ), and y = y(k,p). Via the implicit function
theorem we can identify the corresponding partial effects, evaluated at the steady
state where H(i) + 6 —i= 0 —n > 0:
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where A = —U'¢"U"k[ms)? My, — ["k] — f"kU'mss|U'¢" — U"k|[ms]?] > 0. Finally,
after some elementary manipulations, we obtain that ¢ — 0 > 0.

16



