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ABSTRACT 

 

A Smoothed-Distribution Form of Nadaraya-Watson Estimation 

Given observation-pairs ��� , ���, � � 1,… , �, taken to be independent observations of the 

random pair ��, 
�, we sometimes want to form a nonparametric estimate of ���� �

��
|� � ��. Let 
�  have the empirical distribution of the ��, and let ��� , 
�� have the 

kernel-smoothed distribution of the ��� , ���. Then the standard estimator, the Nadaraya-

Watson form �������, can be interpreted as ��
�|�� � ��. The smoothed-distribution 

estimator ������ � ��
�|�� � �� is a more general form than ������� and often has 

better properties. Similar considerations apply to estimating ����
|� � ��, and to local 

polynomial estimation. The discussion generalizes to vector ���, ���. 
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1 Introduction

Suppose that we have a sample of real observation-pairs (xi, yi) drawn in-
dependently from some joint probability distribution fX,Y . (In fact, we
aim to discuss observation-pairs of vectors, although the main ideas can
be expounded in the scalar special case.) The problem we discuss is that
of providing nonparametric estimates of the conditional mean and variance
m (x) ≡ E (Y |X = x), V (x) ≡ V ar (Y |X = x). Kernel-density-based meth-
ods for doing so originate in the work of Nadaraya (1964) and Watson (1964).
However, study of the probabilistic nature of the Nadaraya-Watson estima-
tors m̂NW (x) and V̂NW (x) suggests that they are to some extent inconsistent
with the belief that a kernel-density-based function f̂X,Y is our best available
approximation to fX,Y ; inconsistent in the sense that they form estimates
using the empirical distribution of the yi, rather than the kernel-smoothed
distribution. This consideration suggests that it would be more natural to
use ‘smoothed-distribution’estimators m̂S (x) and V̂S (x). Such estimators
are derived and studied in the next section. The remainder of the present
section sketches motives for obtaining estimates of m (x) and V (x).
Watson (1964, p. 359) introduced m̂NW (x) as providing ‘a simple com-

puter method for obtaining a "graph" from a large number of observations’,
by which is meant drawing a curved regression-like line through a scatter plot,
to reveal a pattern of relationship obscured by the number and variability
of the points on the graph. Simonoff (1996, pp. 134-6) accordingly locates
his useful introductory discussion of Nadaraya-Watson estimation within the
subject of nonparametric regression. Applications appear in, for instance,
Barrett and Dorosh’s (1996) study of farmer welfare and rice prices in Mada-
gascar. They provide Nadaraya-Watson regressions of such combinations as
per-capita income against land holdings, and household activity against land
holdings.
One motive for the study of conditional variance, in the scalar context,

is the wish to know the dispersion of the (xi, yi) about the line m (x). An
estimate of V (x) = E

[
(Y −m (x))2 |X = x

]
allows us to draw such lines as

m̂ (x) ± 2

√
V̂ (x), indicative of variability about m (x). However, in order

to construct confidence intervals that take into account the in-general non-
normal shape of f̂Y |X , a bootstrapping method is usually applied, based on
repeated resampling from the observations (xi, yi). (See Simonoff, 1996, p.
48; Barrett and Dorosh, 1996, p. 661, n. 10; Fiorio, 2004.) As a practical
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matter, we do not pursue the subject here.
Conditional variance is also the subject of study in its own right, especially

as regards the heteroscedasticity of economic time series, inaugurated by
Engle (1982) and Engle and Bollerslev (1986). (For a review of nonparametric
methods in this context see Linton and Yan, 2011.) Giannopoulos (2008),
for instance, models a situation in which it is known that the correlation
between time series innovations increases at times of high volatility. To do so
he uses an estimator of the Nadaraya-Watson type, obtaining the estimated
variance-covariance matrix as a function of the innovation levels. The study
illustrates that Nadaraya-Watson methods can be applied to variances as
well as means, and vectors as well as scalars.
Nadaraya-Watson estimates of the conditional mean and variance have

continued to be the focus of theoretical investigation. Parzen (1963) provided
an early discussion of the asymptotic properties of kernel-density estimates.
Simonoff(1996) discusses alternatives such as local polynomial regression and
spline smoothing; also the characteristic kernel-density problems of bound-
ary bias, bandwidth selection, and the presence of autocorrelation. And for
a recent overview of non-parametric regression, see Wasserman (2006, par-
ticularly chapters 4 and 5).

2 Main Results

Let wi = (xi,yi), i = 1, . . . , n, xi ∈ Rp, yi ∈ Rq be a sample of observation-
pairs drawn independently from the distribution with density fX,Y. We
consider estimation of the vector m (x) ≡ E (Y|X = x) and of the matrix
V (x) ≡ V ar (Y|X = x).
Our discussion is initially confined to the scalar case p = q = 1, and to

estimators of the scalar value m (x). We begin by reviewing the approach
independently inaugurated by Nadaraya (1964) and Watson (1964), in which
an estimate of m (x) is formed by substituting kernel-density estimates of
fX,Y and fX into the exact expression m (x) =

∫
yfX,Y (x, y) dy/fX (x). An

estimate f̂X,Y is of the form

f̂X,Y (x, y) =
1

n

∑ 1

|Hi|
Ki

[
H−1i (w −wi)

]
where the kernel function Ki satisfies

∫
Ki (w) dw = 1,

∫
wKi (w) dw =

02,
∫ ∫

ww′Ki (w) dw = I2, and the Hi are nonsingular 2 × 2 bandwidth
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matrices. (This and all subsequent summations are over i and run from
1 to n.) The corresponding estimate of the marginal distribution fX is
f̂X (x) =

∫
f̂X,Y (x, y) dy. In order to obtain a closed-form expression for∫

yf̂X,Y (x, y) dy, the Nadaraya-Watson approach imposes on the kernel func-
tions the product form Ki (x, y) = KX,i (x)KY,i (y) and on the bandwidth

matrices the diagonal form Hi =

(
hX,i 0

0 hY,i

)
. It is shown in section 3

below that the resulting estimator of m (x) is

m̂NW (x) =

∑ yi
hX,i

KX,i

(
x−xi
hX,i

)
∑

1
hX,i

KX,i

(
x−xi
hX,i

) . (1)

Notice that this expression involves neither hY,i nor KY,i. If we spec-
ify constant bandwidths hX,i = hX , and constant marginal kernel functions
KX,i = KX , we obtain the simpler form

m̂NW (x) =

∑
yiKX

(
x−xi
hX

)
∑
KX

(
x−xi
hX

) . (2)

Equation (2) is the usual form quoted for the Nadaraya-Watson estima-
tor; (1) generalizes to the case of variable bandwidths and variable kernel
functions.
Irrespective of the derivation of (1) and (2), and the special assumptions

they involve, we can provide the two definitions with a direct probabilistic
interpretation, provided we exclude the case in which the kernel function
Ki is permitted to be negative. The point of doing so is that, in these
circumstances, the function f̂X,Y is itself an exact density, corresponding to
a pair of continuously-distributed random variables we call

(
XS, Y S

)
. Then

the kernel-density approximation f̂X can alternatively be interpreted as the
exact marginal distribution of XS. Write

pj (x) ≡
1

hX,j
KX,j

(
x−xj
hX,j

)
∑

1
hX,i

KX,i

(
x−xi
hX,i

) . (3)

To interpret pj (x), let I be an integer-valued random variable whose
probability distribution is defined by P (I = i) = n−1, i = 1, . . . , n. Let
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(
XE, Y E

)
= (xI , yI), so I selects one of the observations at random and

equiprobably. Then
(
XE, Y E

)
has the empirical distribution of the (xi, yi)

(which distribution fails to possess a density function). The pair
(
XS, Y S

)
smooths out the empirical distribution by adding a random perturbation
pair (εi, ζ i) to whichever (xi, yi) is chosen by I. (The superscript S stands
for ‘smoothed-distribution’.) Let (εi, ζ i) have means zero and variance matrix
Ωi. The joint distribution of (εi, ζ i) and

(
εj, ζj

)
for i 6= j plays no part in

the analysis, and need not be specified. (In terms of the discussion above,
Ωi = HiH

′
i, and the pair H

−1
i (εi, ζ i)

′ has the density Ki. We discuss later
what values to choose for Ωi. Here we say only that a good choice would
reflect the covariance structure of points near (xi, yi).) Then

(
XS, Y S

)
=

(xI + εI , yI + ζI) =
(
XE + εI , Y

E + ζI
)
.

The kernel-density approximations f̂X,Y and f̂X can be interpreted as
the exact densities fXS ,Y S and fXS respectively; hence without assuming
either the product form for Ki (x, y), or a diagonal form for Hi, we ob-

tain
∫
yf̂X,Y (x,y)dy

f̂X(x)
= E

(
Y S|XS = x

)
, a quantity we write as m̂S (x). In gen-

eral m̂S (x) differs from the Nadaraya-Watson estimator given by equations
(1) and (2). To interpret the right-hand-sides of these equations, note that
εi/hX,i has the marginal density KX,i =

∫
Kidy. Then by Bayes’theorem

P
(
I = j|XS = x

)
=

lik
(
XS = x|I = j

)
P (I = j)∑

lik (XS = x|I = i)P (I = i)
= pj (x) (4)

showing that pj (x) yields the conditional probability that I = j, given that
XS = x. From (1), (3) and (4) we obtain

m̂NW (x) =
∑

yiP
(
I = i|XS = x

)
= E

(
Y E|XS = x

)
. (5)

This exact probabilistic interpretation of m̂NW (x) draws attention to
three of its characteristics. First, the right-hand side of (5) explains the
fact, noted earlier, that the form of kernel-smoothing adopted for the yi does
not affect m̂NW (x). Second, it shows that m̂NW (x) is defined by a slightly
unbalanced expression, in that it conditions an empirical random variable on
a smoothed one. Finally, the central expression of (5) shows that m̂NW (x)
is confined to the convex hull of the yi. This property causes m̂NW (x) to
flatten out in the tails even when the points of the scatter-plot of the (xi, yi)
lie nearly on a sloping straight line.
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As we have seen, the estimator

m̂S (x) ≡ E
(
Y S|XS = x

)
, (6)

is the appropriate generalization of m̂NW (x), to non-independent perturba-
tions (or in other words, to non-separable kernel functions Ki). Comparison
of (5) and (6) shows that m̂NW (x) looks at the empirical distribution of the
yi, while m̂S (x) looks at their smoothed distribution. Thus m̂S (x) is less
likely than m̂NW (x) to be strongly influenced by particular observations.
To obtain a closed-form expression for m̂S (x) without imposing indepen-

dence on the perturbations εi and ζ i, we instead impose bivariate normality,

by specifying (εi, ζ i)
′ ∼ N2 (02,Ωi). Let Ωi ≡

(
ri si
si ti

)
. Then the dis-

tribution of ζ i conditional on εi = x − xi is N
(
si
ri

(x− xi) , ti − s2i
ri

)
. Now

E
(
Y S|XS = x

)
=
∑
E
(
Y S|I = i,XS = x

)
pi (x). Using Bayes’theorem, as

above,

pj (x) =
r
−1/2
j exp

(
− (x−xj)2

2rj

)
∑
r
−1/2
i exp

(
− (x−xi)2

2ri

) .
It is convenient to define Ŷ S

i ≡ Ŷ S
i (x) ≡ E

(
Y S|I = i,XS = x

)
= yi +

si
ri

(x− xi). With this notation,

m̂S (x) =
∑

Ŷ S
i pi (x) = m̂NW (x) +

∑ si
ri

(x− xi) pi (x) . (7)

As expected, m̂S (x) and m̂NW (x) are identical if the local covariances si are
zero.
The discussion above extends naturally to the estimation of the condi-

tional variance V (x) ≡ V ar (Y |X = x). As we show in the next section, the
natural counterparts of (5) and (6) are

V̂NW (x) = V ar
(
Y E|XS = x

)
=
∑

y2i pi (x)− m̂NW (x)2 (8)

V̂S (x) = V ar
(
Y S|XS = x

)
=
∑[

ti −
s2i
ri

+
(
Ŷ S
i

)2]
pi (x)− m̂S (x)2 .(9)

The local covariance matrices Ωi are under our control, and we now con-
sider how they might be chosen. This is really a separate subject, and we
provide only introductory comments. One possibility is to make the Ωi all
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equal, and all proportional to the sample variance-covariance matrix Σ̂XY

of the (xi, yi). If xi and yi have, overall, a high level of correlation, we
might expect m̂S (x) with a constant Ω to outperform m̂NW (x), since the
latter works best when Ω is diagonal. These comments hold true in par-
ticular if fX,Y has the bivariate normal shape. Figures 1a, 1b, 1c show

different estimated m̂ (x), and indicative error bands m̂ (x)± 2

√
V̂ (x), for a

sample of observations (xi, yi) drawn independently from the distribution

N

(
02,

(
1 0.8

0.8 1

))
. The matrices Ωi = Ω were all set equal to the

sample variance matrix, scaled so that the bandwidth hX = Ω
1/2
11 equals

1.059σXn
−1/5 ∼= 0.58. (Here we follow the optimizing bandwidth criterion

for normal samples given by Simonoff 1996, p. 45, with σ = 1.) The par-
ticular sample chosen for graphical portrayal was obtained by generating
101 samples of 20 observations each, and selecting the median sample, on
the criterion statistic

∑
(yi − m̂S (xi))

2 /
∑

(yi − m̂NW (xi))
2. Sample t was

generated using Stata’s random seed t. We designed this automatic proce-
dure in order to guard against selection of a sample particularly favourable
to m̂S (x) over m̂NW (x), though we admit to having chosen a general context
- small sample, highly correlated observations, unproblematic choice of Ωi -
where we expected the advantages of smoothed-distribution estimation over
empirical-distribution estimation to be most clearly demonstrable.

Figures 1a, 1b, 1c about here.

Figure 1a shows the results from linear regression of yi on xi, including
an intercept term; Figure 1b shows the Nadaraya-Watson estimates (5) and
(8); and Figure 1c shows the corresponding smoothed-distribution estimates
(6) and (9). Both Figure 1b and Figure 1c show the tendency, that we noted
above, of m̂NW (x) to flatten out to the right and left of the scatter plot,
even when the observations exhibit a strong linear trend. The indicative
error bands tighten to the right of Figure 1b because of the isolated point
near (3, 2.5). What happens is that for x > 3, the probability pi (x) tends to 1
for the relevant i, thus V ar

(
Y E|XS = x

)
tends to 0. The same phenomenon

is visible, though less marked, in the other tail. Other samples show different
behaviour: if the points at the right and left of the sample are more numerous
and more dispersed, the Nadaraya-Watson indicative dispersion band stays
wider. For the smoothed-distribution estimator m̂S (x) in Figure 1c, the
estimated regression line and dispersion band are much closer to those in

6



Figure 1a. In 99 of the 101 samples, the sum of squared errors was lower under
smoothed-distribution estimation than under Nadaraya-Watson estimation.
The case of a normal data-generating distribution provides just one ini-

tial testing-ground for a kernel-density method, though we do want such a
method to perform well in this simple context. In general fX,Y may have a
shape far from that of the normal density, for instance having markedly non-
elliptical, even non-convex, contours or being multimodal. Such possibilities
are of course a major motive for introducing kernel-density methods in the
first place. Thus in general we wish to adapt the Ωi to local conditions. The
problem we face is a generalization of the scalar kernel-density problem of
choosing the local bandwidth hi. For discussion of the scalar version of this
problem, see Simonoff (1996, pp. 54-6). And for discussion of the multivari-
ate version, see Simonoff (1996, pp. 105, 114). A natural approach is to let
Ωi be proportional to the sample covariance matrix of the (xi, yi), weighted
by pi (xi). In more detail, we could define

Ω (x) ∝
(

V ar
(
XE|XP = x

)
Cov

(
XE, Y E|XP = x

)
Cov

(
Y E, XE|XP = x

)
V ar

(
Y E|Y P = x

) )
where XP has a ‘pilot’kernel-density function (Simonoff, 1996, p. 55), used
to obtain an initial approximation to fX . We could impose a suitable band-
width on XP by the criterion of Simonoff already alluded to. Then set
Ωi ≡ Ω (xi). A natural way to choose the scaling constant is to impose the
condition V ar

(
XS
)

= V ar
(
XP
)
. But here we do not pursue this large topic

further.
We now generalize our four estimators to the case where the observations

are vector-pairs (xi ∈ Rp,yi ∈ Rq). Assume that the perturbation vector(
ε′i
...ζ ′i

)′
has a multivariate normal distribution with zero means and (p+ q)×

(p+ q) covariance matrix Ωi, partitioned as
(

Ri S′i
Si Ti

)
, where Ri is p× p,

Si is q×p andTi is q×q. Bayes’theorem tells us that the posterior probability
that XS arises as a perturbation of the particular observation xj is

pj (x) = P
(
I = j|XS = x

)
=
|Rj|−1/2 exp

(
−1
2

(x− xj)
′R−1j (x− xj)

)∑
|Ri|−1/2 exp

(
−1
2

(x− xi)
′R−1i (x− xi)

) .
(10)
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It is convenient to define

ŶS
i ≡ ŶS

i (x) ≡ E
(
YS|XS = x, I = i

)
= yi + SiR

−1
i (x− xi) .

The resulting conditional mean and conditional variance estimators, de-
rived in the next section, are

m̂NW (x) ≡ E
(
YE|XS = x

)
=
∑

yipi (x)

m̂S (x) ≡ E
(
YS|XS = x

)
=
∑

ŶS
i pi (x)

= m̂NW (x) +
∑

SiR
−1
i (x− xi) pi (x)

V̂NW (x) ≡ V ar
(
YE|XS = x

)
=
∑

yiy
′
ipi (x)− m̂NW (x) m̂NW (x)′

V̂S (x) ≡ V ar
(
YS|XS = x

)
=

∑[
Ti − SiR

−1
i S′i + ŶS

i ŶS′
i

]
pi (x)− m̂S (x) m̂S (x)′ . (11)

Finally we comment briefly on local polynomial estimation, a general-
ization of Nadaraya-Watson estimation. Such estimation involves minimiza-
tion of the function

∑
(yi − g (x− xi))2K

(
x−xi
h

)
, where g is a polynomial.

Once the parameters of g have been estimated, m (x) is estimated by ĝ (0).
(Nadaraya-Watson estimation is the case when g is of degree 0.) The proce-
dure amounts to fitting a polynomial curve through the (xi, yi) by weighted
regression, the weights being high near x. Since the weights K

(
x−xi
h

)
are

proportional to pi (x), we could equivalently minimize the objective func-

tion
∑

(yi − g (x− xi))2 pi (x) = E
[(
Y E − g

(
x−XE

))2 |XS = x
]
, a for-

mulation that still holds when we generalize to variable bandwidths. We
might ask what happens if the empirical variables XE and Y E are replaced
by the smoothed variables XS and Y S. If both changes are made, the ob-
jective function reduces to E

[(
Y S − g (0)

)2 |XS = x
]
, which is minimized

by ĝ (0) = E
(
Y S|XS = x

)
= m̂S (x), the smoothed-distribution estimator

already discussed. To avoid this simplification we could replace Y E by Y S

but leave the first occurrence of XE unchanged. If we do so, we obtain the
objective function E

[(
Y S − g

(
x−XE

))2 |XS = x
]
. Estimation ofm (x) by

minimization of this expression merits study as a promising variant of local
polynomial estimation.
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3 Proofs

To show how equation (1) follows from the assumption that Ki has the
product form, note that in these circumstances

f̂X,Y (x, y) =
1

n

∑ 1

hX,ihY,i
KX,i

(
x− xi
hX,i

)
KY,i

(
y − yi
hY,i

)
and integrating out y yields

f̂X (x) =
1

n

∑ 1

hX,i
KX,i

(
x− xi
hX,i

)
.

Since 1
hY,i

∫
yKY,i

(
y−yi
hY,i

)
dy = yi, the final integral required is∫

yf̂X,Y (x, y) dy =
1

n

∑ yi
hX,i

KX,i

(
x− xi
hX,i

)
.

Replacing fX,Y and fX (x) by f̂X,Y and f̂X in the exact expressionm (x) =∫
yfX,Y (x, y) dy/fX (x) yields (1).
To prove the equations (11), we use a form of the law of total variance.

If a random variable W is of exactly one of n types, and type i occurs with
probability pi and has mean µi and variance Vi, then E (W) =

∑
piµi and

V ar (W) =
∑
pi (Vi + µiµ

′
i)− (

∑
piµi) (

∑
piµi)

′.
In the present context, the type is the value of I. Conditional on XS = x,

type i occurs with probability pi (x). In these circumstances, the uncon-

ditional distribution of (ε′i, ζ
′
i)
′ is by assumption N

(
0p+q,

(
Ri S′i
Si Ti

))
.

Conditional on I = i and XS = x, implying εi = x − xi, ζI has mean
SiR

−1
i (x− xi) and variance Ti − SiR

−1
i S′i; thus (under the same condi-

tions) YE has mean yi and variance 0; while YS has mean ŶS
i and variance

Ti − SiR
−1
i S′i. The results (11) follow immediately. The equations (7) and

(9) are the scalar special case.
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Fig. 1a. Linear Regression Estimates, Normal Sample (N=20, rho=0.8).
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Fig. 1b. Nadaraya-Watson Estimates.
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