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Abstract

This paper presents a survey on the application of heuristic opti-
mization techniques in the broad field of finance. Heuristic algorithms
have been extensively used to tackle complex financial problems, which
traditional optimization techniques cannot efficiently solve. Heuristic
optimization techniques are suitable for non-linear and non-convex
multi-objective optimization problems. Due to their stochastic fea-
tures and their ability to iteratively update candidate solutions, heuris-
tics can explore the entire search space and reliably approximate the
global optimum. This overview reviews the main heuristic strategies
and their application to portfolio selection, model estimation, model
selection and financial clustering.
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1 Introduction

The financial paradigm entails simple mathematical models but often im-
poses unrealistic assumptions. Basic financial models consist of linear and/or
quadratic functions which ideally can be solved by traditional optimization
techniques like quadratic programming. However, the finance community
soon realizes the complexity of the economic environment and the market
inefficiency. To cope with this, the financial community develops more re-
alistic mathematical models which include more complex, often non-convex
and non-differentiable functions with real world constraints. Under these
more challenging conditions quadratic programming routines or other clas-
sical techniques will often not result in the optimal solution (or even in a
near-optimum).

Heuristic optimization methods1 are flexible enough to tackle many com-
plex optimization problems (without a linear approximation of the objective
function). Heuristics’ flexibility stems either from the random initialization
or from the intermediate stochastic selection and acceptance criterion of the
candidate solutions. However, the optimization results should be carefully
interpreted, due to the random effects introduced during the optimization
process. Besides, repetitions of the algorithm might generate heterogenous
solutions from an unknown distribution. To approximate the optimum solu-
tion without any prior knowledge of the distribution, Gilli and Winker (2009)
suggested repeating an experiment with different parameter settings or ap-
plying extreme value theory. Also, Jacobson et al. (2006) developed a model
to approach the unknown distribution of the results.

This paper examines the modern financial problems of portfolio selection,
robust model estimation and selection and financial clustering. It analyzes
research papers published during the last two decades, where alternative
heuristic techniques were applied independently or complementarily to other
computational techniques. Furthermore, this overview extends the contribu-
tions collected in Gilli et al. (2008), who presented the most popular heuristics
and their usage in finance. Moreover, this work emphasizes and distinguishes
the implementation characteristics of several applications.

The paper is organized as follows: Section 2 reports on heuristic and
hybrid meta-heuristic methods and describes the basic algorithms. Also, it
discusses some implementation issues that should be considered when ap-
plying heuristics. Section 3 introduces in more detail the technical issue of
parameter setting in heuristic optimization algorithms. In due course, an

1The expressions ‘heuristic optimization methods’, ‘heuristic strategies’, ‘heuristic tech-
niques’, ‘meta-heuristics’ and ‘heuristics’ will be used interchangeably throughout the pa-
per.
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established methodology, Response Surface Methodology (RSM) (Box and
Draper (1987)), is used for parameter calibration. To the best of my knowl-
edge, RSM has not been applied so far in the context of parameter tuning for
heuristics. Section 4 addresses contemporary problems in finance and ana-
lyzes how heuristics can be applied to approach and overcome them. Finally,
Section 5 concludes and suggests further applications of heuristics to open
financial questions.

2 Heuristic Optimization Techniques

Heuristic optimization techniques form part of the broad category of com-
putational ‘intelligent’ techniques which have, in principle, solved non-linear
financial models. In comparison with other intelligent techniques, heuris-
tics need little parameter tuning and they are less dependant on the choice
of starting solutions. Heuristics provide an alternative or optimize the cur-
rent intelligent techniques, like Neural Networks (NN) (Ahn et al. (2006)).
The interaction of heuristics with other intelligent techniques is discussed in
Section 4.

A diverse range of optimization heuristics have been developed to solve
non-linear constrained financial problems. The first application of heuristics
in finance can be found in the work of Dueck and Winker (1992), who used
Threshold Accepting (TA) for portfolio optimization with different utility
criteria. Their basic methodology is described in Section 4.1. This overview
explains the basic optimization heuristic algorithms applied in the recent
literature to financial problems.

The two main classes of heuristic algorithms are construction heuristics
and improvement (or local search) heuristics. Construction heuristics start
from an empty initial solution and construct, e.g. by the means of nearest
neighborhood, the candidates that form an optimum solution (Hoos and
Stützle (2005), ch.1). Local search heuristics iteratively update a set of
initial candidates that improve the objective function. While constructive
methods are easy and fast to implement and can be applied to problems like
scheduling and network routing, they do not appear in practical financial
problems. This might be due to their tendency to local optima and their
problem-specific performance.

This chapter addresses only local search methods. Figure 1 decomposes
the local search methods to trajectory methods and population based meth-
ods. The mechanisms of neighborhood structure, as well as the number of
solutions that are updated simultaneously is what distinguish local search
methods. Here we present the four most common local search heuristics
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found in the financial literature. For an extensive description of heuristic
optimization techniques see also Winker (2001), ch.5.

2.1 Trajectory Methods

2.1.1 Simulated Annealing

Simulated Annealing (SA) as well as TA (section 2.1.2) are threshold methods
that accept a neighboring solution based on a threshold value. In that sense,
they can accept not only improvements but also controlled impairments of
the objective function value as long as a threshold is satisfied. SA is inspired
by the principals of statistical thermodynamics, where the changes (transfor-
mations) in the energy are related to macroscopic variables, i.e. temperature.
SA relates the change in the objective value to a probability threshold. The
probability value is subject to a macroscopic variable, T. T is iteratively
changed and the best objective function value is reported. Algorithm 1 de-
scribes the general outline of a SA implementation.

Initially, the algorithm randomly generates a solution (2:). Next, for
a predefined number of iterations, I, the following steps are repeated. In
every iteration a new neighboring solution is randomly generated (4:). The
algorithm always accepts the new solution if it results in an improvement of
the objective function value. However, an impairment is also accepted with
a diminishing probability (6:), e−∆/T > u. u is a uniformly distributed value
lying in the interval [0, 1]. The new solution is carried onto the next iteration
and is used as a benchmark.

The probability value is influenced by changes in the objective function
value and the ‘temperature’ T. Ceteris paribus, the higher the (negative)
change, ∆, the lower the probability that an impairment will be accepted.
The ‘temperature’ T controls the tolerance of the algorithm in accepting
downhill moves. The lower its value is, the less tolerant it is to negative
changes. This is required, especially at the end of the search, where we believe
we are closer to the optimum solution and impairments are unwelcome.

By allowing moves towards worse solutions, the algorithm has a chance
to escape local minima. The number of iterations or the properties of the
temperature define the stopping criterion. In the latter case the temperature
reduces until an equilibrium state is found where no further change in the
objective function value can be observed.

2.1.2 Threshold Accepting

Dueck and Scheuer (1990) and Moscato and Fontanari (1990) conceived the
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Algorithm 1 General Simulated Annealing Algorithm.
1: Initialize I, T
2: Generate at random a solution χ0

3: for r = 1 to I do

4: Generate neighbor at random, χ1 ∈ N (χ0)
5: Compute ∆ = f(χ0) − f(χ1)
6: if ∆ < 0 or e−∆/T > u then

7: χ0 = χ1

8: end if

9: Reduce T
10: end for

idea of building a simple search tool appropriate for many types of optimiza-
tion problems named TA. Like SA, TA enables the search to escape local
minima by accepting not only improvements, but also impairments of the
objective function value. Nonetheless, the impairment acceptance is not a
probabilistic decision but rather a given threshold sequence. More precisely,
until the stopping criterion is met, the current candidate solution is com-
pared with a neighboring solution (∆ = f(χ0) − f(χ1)). A threshold value
(τ) determines to which extent not only local improvements, but also local
impairments are accepted (∆ < τ). For a comprehensive overview of TA, its
parameter settings and its convergence properties, see Winker (2001).

Winker and Fang (1997) and Winker and Maringer (2007) suggested a
data driven approach for the construction of the threshold sequence. The
threshold sequence is ex-ante constructed based on the search space. The lo-
cal differences of the fitness function are sorted in descending orders. Thus,
they represent a diminishing threshold sequence. The reduction of the neigh-
borhood allows a wider search space at the beginning of the search and a
greedy search towards the end. Moreover, Lyra et al. (2010b) proposed a
threshold sequence based on the differences in the fitness of candidate solu-
tions that are found in a specific place of the search process. Local differences
actually calculated during the optimization run are considered. As a result,
the threshold sequence adapts to the region where the current solution be-
longs and to the objective function used. By using a moving average, a
smooth threshold sequence is obtained. In addition, the thresholds decrease
linearly with the number of iterations.
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2.2 Population based Methods

2.2.1 Genetic Algorithms

Genetic Algorithms (GA) are one of the oldest evolutionary optimization
methods. They were developed by Holland (1975). They have been applied
to numerous financial problems including trading systems, stock and portfolio
selection, bankruptcy prediction, credit evaluation and budget allocation.
Their wide applicability springs from generating new candidate solutions
using logical operators and from evaluating the fittest solution. A thorough
explanation of the algorithm follows.

Algorithm 2 depicts the implementation details of GA. First in (2:), a

population np of initial solutions P
(0)
j,i is randomly initialized. Usually, the

solutions are encoded in binary stings but, other representations can be used.
The objective function value (or the fitness value) is estimated for every
initial solution. Second, the algorithm iteratively generates nG new candidate
solutions, ‘chromosomes’, as follows: The two fittest candidate solutions P

(0)
.,r1

and P
(0)
.,r2, ‘parent chromosomes’, are chosen from the initial set to generate a

new candidate solution, ‘reproduce’. The reproduction or update consists of
two mechanisms, the recombination of existing elements, ‘genes’, crossover
and random mutation.

Algorithm 2 Genetic Algorithms.
1: Initialize parameters np, nG

2: Initialize and evaluate population P
(0)
j,i , j = 1, · · · , d, i = 1, · · · , np

3: for k = 1 to nG do

4: for i = 1 to np do

5: Select r1,r2 ∈1, · · · ,np, r1 6= r2 6= i

6: Crossover and mutate P
(0)
.,r1

and P
(0)
.,r2

to produce P
(u)
.,i

7: Evaluate f(P
(u)
.,i )

8: if f(P
(u)
.,i ) < f(P

(0)
.,i ) then

9: P
(1)
.,i = P

(u)
.,i

10: else

11: P
(1)
.,i = P

(0)
.,i

12: end if

13: end for

14: end for

There are alternative ways to crossover which are problem-specific and can
improve the performance of GA. The simplest way is to choose randomly a
crossover point and copy the elements before this point from the first parent
and the elements after the crossover point from the second parent. This
way, we construct the first child chromosome. The second child chromosome
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↓crossover-point

parent1 =
(

1 1 0 1 | 0 1 0 ... 1
)

1×k

parent2 =
(

1 0 1 0 | 1 1 0 ... 1
)

1×k

child1 =
(

1 1 0 1 | 1 1 0 ... 1
)

1×k

child2 =
(

1 0 1 0 | 0 1 0 ... 1
)

1×k

Figure 2: The crossover mechanism in GA.

combines the second part of the first parent chromosome and the first part
of the second parent chromosome. Figure 2 shows such a simple crossover
procedure. An alternative crossover operators is to select more than one
random crossover points (Back et al. (1996)) or to apply a uniform crossover
(Savin and Winker (2010)).

To complete the update, a random mutation of the elements takes place.
During mutation the new elements change randomly. In the case of binary
encoding a few randomly chosen bits change from 1 to 0 or from 0 to 1.
Hence, for each member of the population a new candidate solution, ‘children
or offspring’, is produced and evaluated (7:). In some implementations of GA
a number of elite solutions, ‘elite chromosomes’, are transferred unmodified
to the next step. These are solutions with distinguished characteristics like
good fitness value. Finally, only the solutions with the best objective function
value survive the generation evolution.

2.2.2 Differential Evolution

Similar to GA, Differential Evolution (DE) is a population based technique,
originated by Storn and Price (1997), but more appropriate for continuous
problems. The attractiveness of this technique is the little parameter tuning
needed.

During the initialization phase, Algorithm 3 (1:), the population size
np and the generation number nG should be determined. Two technical
parameters F and CR should also be initialized at this stage. In order to
achieve convergence, np should be increased more than ten times the number

10



Algorithm 3 Differential Evolution.
1: Initialize parameters np, nG, F and CR

2: Initialize population P
(1)
j,i , j = 1, · · · , d, i = 1, · · · , np

3: for k = 1 to nG do

4: P (0) = P (1)

5: for i = 1 to np do

6: Generate r1,r2,r3 ∈1, · · · ,np, r1 6= r2 6= r3 6= i

7: Compute P
(υ)
.,i = P

(0)
.,r1

+ F × (P
(0)
.,r2

- P
(0)
.,r3

)
8: for j = 1 to d do

9: if u < CR then

10: P
(u)
j,i = P

(υ)
j,i

11: else

12: P
(u)
j,i = P

(0)
j,i

13: end if

14: end for

15: if f(P
(u)
.,i ) < f(P

(0)
.,i ) then

16: P
(1)
.,i = P

(u)
.,i

17: else

18: P
(1)
.,i = P

(0)
.,i

19: end if

20: end for

21: end for

of parameters to be estimated,2 while the product of np and nG defines the
computational load. Price et al. (2005) in their book about DE state that,
although the scale factor F has no upper limit and the crossover parameter
CR is a fine tuning element, both are problem specific. Winker et al. (2010)
in an application of DE propose values for F = 0.8 and CR = 0.9. Their
calibration procedure as well as a more statistically oriented methodology
are explained in Section 3.

As mentioned above, the initial population of real numbers is randomly
chosen and evaluated (2:). Then, for a predefined number of generations the
algorithm performs the following procedure. According to the characteristics
of a population based approach a set of population solutions P

(0)
.,i is updated.

The algorithm updates a set of parameters through differential mutation (7:)
and crossover (9:) using arithmetic instead of logical operations.

While both in GA and DE the mutation serves as a mechanism to over-
come local mimina their implementation differs. Differential mutation gen-
erates a new candidate solution by linearly combining some randomly chosen
elements and not by randomly mutated elements, as GA does, whereas each
element of the current solution crosses with a uniformly designed candidate

2A practical advice for optimizing objective functions with DE given on
www.icsi.berkeley.edu/ ∼ storn/.
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and not with an existing one.
Particularly, differential mutation constructs new parameter vectors P

(υ)
.,i

by adding the scaled difference of two randomly selected vectors to a third
one. (7:) demonstrates the ‘metamorphosis’ (modification), where F is the
scale factor that determines the speed of shrinkage in exploring the search
space.

Further, during crossover, (9:), DE combines the initial elements with the

new candidates. With a probability CR, each component P
(0)
j,i is replaced by

a mutant one P
(υ)
j,i resulting in a new trial vector P

(u)
j,i (Figure 3).

Finally, the value of the objective function f(P
(u)
.,i ) of the trial vector is

compared with that of the initial element f(P
(0)
.,i ). Only if the trial vector

results in a better value of the objective function, it replaces the initial ele-
ment in the population. The above process repeats until all elements of the
population are considered and for a predefined number of generations.

...
...

u1 ud

CR CR

uniform crossover

P
(u)
1,i

. . . P
(u)
d,i

...
...

u1 ud

CR CR

uniform crossover

P
(u)
1,i

. . . P
(u)
d,i

Figure 3: Crossover representation for the the first and the last parameter
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2.3 Hybrid Methods

2.3.1 Hybrid Meta-Heuristics

Heuristic optimization algorithms, also known as meta-heuristics in their
general setting, are suitable for optimizing many combinatorial problems.
Though, as different meta-heuristics exhibit different (advantageous) char-
acteristics, a combination of them can be beneficial for finding the optimal
solution. When two or more meta-heuristics are combined, new hybrid com-
putational intelligent techniques are constructed. The basic advantage of
hybrid meta-heuristics is that they can combine the outstanding character-
istics of specific heuristics.

Numerous hybrid meta-heuristics can be constructed when combining dif-
ferent heuristics and their characteristics. The taxonomy based on hybrids’
design (algorithm architecture) merges a hierarchical and an independent
scheme (see Talbi (2002)). Figure 4 presents this classification. The first
two columns represent the hierarchical classification, while the last column
the flat scheme. A low-level hybrid crosses components of different meta-
heuristics. In a high-level method the meta-heuristics are autonomous (col-
umn 1). Both a high and a low level methods distinguish relay and cooper-
ative hybridization (column 2). In the latter group the heuristics cooperate
and in the former group they are combined in a sequence.

Furthermore, hybrid meta-heuristics can be categorized based on other
characteristics, independent of the hierarchy. These are homogenous or het-
erogenous, global or partial, and general or special. When identical in struc-
ture meta-heuristics are used, a homogenous hybrid is constructed. Two
different meta-heuristics construct a heterogenous hybrid. When the whole
search space is explored by heuristics we have a global hybridization. In a
partial hybrid, different heuristics explore only a part of the solution space.
General hybrid algorithms are suitable for solving the same type of problems,
whereas special hybrids combine meta-heuristics that solve different types of
problems. Besides their advantages, hybrids should be applied with caution
since algorithm performance will be well affected by parameter tuning, which
becomes more intense as compared to single heuristics.

Two characteristics distinguish optimization heuristics; the number of so-
lutions they iteratively update and the mechanism for this update. The first
characteristic refers to the distinction between trajectory search and popu-
lation search heuristics and the second to the mechanism of neighborhood
solution construction. Let us take a threshold heuristic as an example, i.e.
TA, and a population based heuristic, i.e. GA. The new hybrid resulted from
a composition of a threshold and a population based method is a high-level or

13
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Figure 4: Classification of Hybrid Meta-Heuristics

heterogenous, global, general hybrid also known as Memetic Algorithm (MA)
(Moscato (1989)). On the one hand, a GA can explore efficiently a wider
search space using the cross over and mutation mechanisms. On the other
hand, TA can well escape local minima by its acceptance criterion. It accepts
neighborhood solutions even if they result in a deterioration, as long as they
do not exceed the threshold value. Thus, combining these meta-heuristics
can be beneficial for the algorithm convergence. In the next sections some
applications of hybrid meta-heuristics are described, e.g. Maringer (2005)
used a MA in the context of risk factor and portfolio selection.

2.3.2 Other Hybrids

Often in the literature, additional hybridizations of meta-heuristics with ei-
ther constructive methods or other intelligent techniques can be found. Some
selected applications are presented in the following.

Gilli and Winker (2003) constructed a hybrid optimization technique us-
ing the Nelder-Mead simplex search and the TA algorithm. They model the
behavior of foreign exchange (DM/US-$) market agents while optimizing the
Agent Based Model (ABM) parameters. The Nelder-Mead simplex search
(Lagarias et al. (1999)) has the advantage of finding an optimum solution
with few computational steps.3 Starting from d + 1 (in this application 3)
initial solutions, the search moves to a better solution that is a reflection of
this initial triangle or makes bigger steps if the reflection results in an im-
provement of the objective function value. However, if the simplex method
cannot find a reflection point that outperforms the initial parameter settings,
the search space shrinks and the algorithm gives a solution which is nothing
more than a local optimum. To overcome the problem, the authors applied
the acceptance criterion of TA (Section 2.1.2). Using that technique they
showed that interactions between market agents could realistically represent
foreign exchange market expectations.

3The simplex search chooses an efficient step size.
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In a different application, Trabelsi and Esseghir (2005), Ahn et al. (2006)
and Min et al. (2006) used GA together with other intelligent technics to
select an optimal set of bankruptcy predictors. Besides model selection,
these papers applied GA to tune the parameters of bankruptcy prediction
models. Trabelsi and Esseghir (2005) constructed a hybrid algorithm which
evolves an appropriate (optimal) artificial neural network structure and its
weights. Ahn et al. (2006) and Min et al. (2006) forecast bankruptcy with
Support Vector Machines (SVM). GA selected the best set of predictors and
estimated the parameters of a kernel function to improve SVM performance
using data from Korean companies. The latter paper stressed the potentials
of incorporating GA to SVM in future research.

Varetto (1998) applied GA to train NN. The meta-heuristic was used not
only for model selection, but also for weight estimation.

Despite of the potentials of meta-heuristics in tuning or training other
techniques, e.g. NN and SVM, they should be applied with caution. First,
the more unknown parameters a heuristic algorithm has, the more complex
an algorithm is. Hence, it will be difficult to evaluate the consistency of the
results. So, keeping the implementation simple is more advisable. Second,
different heuristics are suitable for different types of problems. Selecting the
appropriate heuristic technique will improve the performance of the hybrid,
e.g. the application of DE, instead of GA, in weight estimation might im-
prove both the efficiency and the computational time of the hybrid since DE
appears to be more suitable for continuous problems.

2.4 Technical Details

2.4.1 Constraint Handling Techniques

Real world financial problems face simultaneously several constraints. Heuris-
tics are able to consider almost any kind of constraints, resulting generally
in good approximations of the optimal solution. However, the presence of
constraints makes the search spaces discontinuous and finding a solution that
satisfies all the constraints might be a demanding task. Several methods to
handle constraints are suggested in the literature so as to ensure at the end
a feasible solution.

When running the optimization heuristics, the problem constraints have
to be taken into account. To this end, alternative methods can be considered:
rewriting the definition of domination, such that it includes the constraint
handling; imposing a penalty on infeasible solutions; applying a repair func-
tion to find the closest feasible solution to an infeasible one.

The first possibility has been described for the application of DE in credit
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risk assignment in Krink et al. (2007). The intuitive idea of this constraint
handling technique is to leave the infeasible area of the search space as quickly
as possible and never return. For minimization problems, the procedure can
be described as follows within Algorithm 3, Section 2.2.2:

1. If the new candidate solution P
(u)
j,i and the current candidate solution

P
(0)
j,i satisfy the side constraints, P

(u)
j,i replaces P

(0)
j,i if its fitness f(P

(u)
j,i )

satisfies the condition f(P
(u)
j,i ) ≤ f(P

(0)
j,i ).

2. If only one candidate solution is feasible, select the feasible one

3. If both solutions violate constraints, . . .

(a) . . . select the one that violates fewer constraints.

(b) . . . if both solutions violate the same number of constraints, P
(u)
j,i

replaces P
(0)
j,i if its fitness f(P

(u)
j,i ) satisfies the condition f(P

(u)
j,i ) ≤

f(P
(0)
j,i ).

In the second possibility, a penalty technique allows infeasible candidate
solutions while running the algorithm as a stepping stone to get closer to
promising regions of the search space. In this case, a penalty term is added
to the objective function. Solutions should be penalized the more they violate
the constraints.

Dueck and Winker (1992) (Section 4.1) provide an implementation of TA
where infeasible solutions are accepted to pass on to the next step by impos-
ing a punishment function. The penalty function is added to the objective
function (utility function), which ensures at the end a feasible solution. Lyra
et al. (2010b) (Section 4.4) implemented TA for credit risk assignment with
both the constraint-dominated handling technique and a penalty technique.
To guarantee a feasible solution at the end and avoid early convergence to a
local minimum, the penalty was increased over the runtime of the algorithm.
An increasing penalty function was also applied by Gimeno and Nave (2009)
(Section 4.2) in an GA implementation to parameter estimation.

In contrast, Krink et al. (2009) in an application of DE to index tracking
(Section 4.1.4), applied a repair function to find the closest feasible solution
to an infeasible one.

Generally, Lyra et al. (2010b) found that the constraint-dominated han-
dling technique performed well while taking comparatively little computation
time. However, depending on the kind of objective function used the penalty
technique may improve the reliability of heuristics, i.e. reduce the variance
of the results obtained. Depending on the type of the objective function,
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different penalty weight functions can be applied, e.g. linear, exponential,
increasing or decreasing with the iteration number. Since calculation of the
penalty weight function might increase the CPU time, a rather simple penalty
function is recommended.

2.4.2 Calibration Issues

The selection of parameter values for a heuristic optimization algorithm is
essential for its efficiency. These parameters are the iteration number, the
neighborhood structure and the new solution (candidate) acceptance crite-
rion. A simple, but sometimes time consuming way to select the parameter
values is to iteratively run the algorithm for different parameter values and
then extract some descriptive statistics (Maringer (2005)). Nonetheless, a
regression analysis or a Response Surface Analysis (Box and Draper (1987)))
can also be tested. For a small number of parameters, the above methods
are efficient and relatively fast in finding the optimal parameter settings for
a heuristic algorithm.4 Alternatively, in higher dimensions (higher number
of parameters) a heuristic can optimize the parameters of another heuristic.

Winker et al. (2010) implemented DE for LMS estimation of the CAPM
and the multifactor model of Fama-French. A detailed description of this
optimization problem is given in Section 4.2.2. While DE, as any optimiza-
tion heuristic technique, should not depend on the specific choice of starting
values, the optimal combination of the technical parameters, F and CR, de-
termines the speed of convergence to the global solution and the variability
of the results, respectively. To find the optimal combination of F and CR,
the authors run the algorithm for different combinations of F and CR. The
procedure is illustrated in Algorithm 4 for parameter values ranging from 0.5
to 0.9.

Algorithm 4 Calibration Issues.
1: Initialize parameters np, nG

2: Initialize population P
(1)
j,i , j = 1, · · · , d, i = 1, · · · , np

3: for F = 0.5, · · · , 0.9 do

4: for CR = 0.5, · · · , 0.9 do

5: Repeat Algorithm 3 from line 3-21
6: end for

7: end for

Figure 5 exhibits the dependence of the best objective value obtained for

4See Section 3 for an application of Response Surface Analysis to the estimation of DE
parameters in an application to Least Median of Squares (LMS) estimation of the CAPM
and a multifactor model.
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different combinations of F and CR for the LMS objective function (Sec-
tion 4.2.2) using the first 200 daily stock returns of the IBM stock starting
on January, 2nd, 1970. The population size np and the number of generations
nG are set to 50 and 100, respectively. The left side of Figure 5 presents the
results for a single run of the algorithm, while the right side shows the mean
over 30 restarts. Although the surface is full of local minima for CR below
0.7, it becomes smoother as CR reaches 0.8 independent of the choice of F .
The results clearly indicate that for higher values of CR, results improve,
while the dependency on F appears to be less pronounced. Based on these
results, values of F = 0.8 and CR = 0.9 are proposed for estimating the
parameters of the CAPM and the Fama-French factor model.
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Figure 5: Calibration of technical parameters.

Instead of repeating a core algorithm numerous times,5 a more efficient ex-
perimental design methodology can be applied, namely RSM.

3 Response Surface Analysis for Differential

Evolution

3.1 Response Surface Analysis

RSM helps explore the relationship between the objective function value and
the level of parameters using only few level combinations (Box and Draper
(1987)). The aim of RSM is to find the parameters value with little tuning
and without precise prior knowledge of their optimum value.

RSM consists of three main stages. In the first stage, the input variables
are initialized. The initialization is based on a prior knowledge about the best

5In this case 41 × 41 for all combinations of F and CR ranging in 0.5:0.01:0.9.
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combination of parameters that will optimize the objective function. These
values constitute the reference or the center points. Next, the experimental
domain is specified. It is based on orthogonal and/or rotatable experimental
designs.6 Inside this domain the factors are assigned specific values (levels),
at which the response variable is estimated.

In the final stage, a second order polynomial is fitted using the designed
experiments. After differentiation, this results in the optimal set of param-
eters. The reason for choosing a polynomial relationship is that no prior
information about the existing relationship between the input and the re-
sponse variable is needed.

yi = β0 +
∑

βiXi + βiiX
2
i + βijXiXj + ε , (1)

where

yi minimum median of squared residuals for i− th setup of input variables
β ′s parameters of equation
X ′s input variables for setup i
ε residual .

To find the optimal combination of factors’ value that optimize the objec-
tive function of interest one should first understand how the objective func-
tion value changes with possible changes in the factors’ level. To discover
the relationship, the most common process is trial and error. By randomly
changing the factor values (either simultaneously or one at a time) one can
investigate the reaction of the objective function value. If the lower and up-
per bounds of the factor levels are known, one can evaluate the objective
function for these factor combinations and then make some inference about
the possible relationship between the parameters and the objective function.
Alternatively, one can model the relationship by considering either a linear
or a non-linear shape. When the shape of the relationship is not known a
priori, for three factors, a second order polynomial relationship can be tested
(see Equation 1).7 This process approximates either linear or quadratic re-
lationship.

3.2 Implementation Details for Differential Evolution

RSM explores the relationship between several input variables (factors) and a
response output. In this exercise, the performance of RSM is tested in finding

6Orthogonal and rotatable designs are described in detail in what follows.
7A higher order polynomial can be tested when there are enough data points.
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the optimal combination of DE parameters value in the specific application
of obtaining the CAPM parameters to minimize the median of squares error.

The input variables are the (scaling) factor F , the crossover probability
CR and the population size np. Note that for DE the product of the popu-
lation size np and number of generations nG determines the computational
complexity of the algorithm. Hence, the aim is to find the optimal combi-
nation of the parameters F , CR and np for a given computational load np
× nG. For that, the computational load (np × nG) is kept constant. Three
different levels of computational resources are considered, with nG × np=
500, 2500 and 5000 meaning, low, medium and high complexity, respectively.
Since the product of np × nG should be constant, an adjustment is made on
nG in each alteration.

The response variable is the minimum value obtained for

min
α,β

(med(ε2
i,t)) , (2)

where εi,t = yi,t − α− βxi,t are the residuals of a factor model.
To specify the factor levels that help estimate the parameters of Equation

1, a Central Composite Design (CCD) is applied. CCD is an experimental
method that efficiently builds a second order model for the response variable
(Barker (1985)). Efficiency means to obtain a representative relationship
between the parameters and the objective function of interest with the least
parameter tuning.

CCD contains five level-combinations. First, a two level full factorial de-
sign assigns two levels, a low and a high level, to the three factors (input vari-
ables). Thus, eight experiments result from the two level-combinations (23)
in our problem. A two level factorial combination alone can capture a pos-
sible linear relationship between the input variable and the response output.
The two levels range symmetrically around a center point (e.g. Fcenter±0.1).
In addition to the two level factorial design, three additional levels are as-
signed to the factors. That is, first, a level that represents the best known
value for the factors (Fcenter). Also, in order to expand the experimental
domain, two additional levels are considered, both above and below the high
and low values considered above.

By using five levels for each factor a curvilinear relationship, even up
to a fourth level, or a quartic relationship can be investigated. Besides,
we are able to search the optimal factor levels over a wider experimental
domain. The efficiency of the CCD stems from the fact that it uses only 18
level combinations to calibrate the input variables. Alternatively, a five level
full factorial design uses 53 = 125 level-combinations. The Appendix gives a
detailed explanation and a numerical representation of the CCD experiments.
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For each level-combination of input variables a response value is obtained,
the minimum median of squared residuals, Equation 2. To control for the
randomness in the heuristic’s output, the experiments are repeated 10 times.
The mean response value (mean out of 10 repetitions of Equation 2) for
each combination is reported. Using the response values from all setups
(experiments), a second order polynomial is fitted.

Factors’ optimal values are determined by differentiating the fitted second
order polynomial with respect to each input variable, Equation 3.8

∂y

∂Xi
= βi + 2βiiXi + βijXj = 0 (3)

Then, the optimal combination of input variables is used to estimate
Equation 2. The median of squares residuals for CAPM estimation is com-
pared with the best known optimum reported by Winker et al. (2010).

3.3 Output

Tables 1 and 2 report the optimal combination of DE parameters, as sug-
gested by RSM using orthogonal and rotatable designs, respectively. We
report results for different computational complexities, low, medium and
high (columns 1-4). The optimal values of np are rounded up to the nearest
integer. Since the values of np are large enough, the rounding does not af-
fect the mathematical results of the design (does not influence dramatically
the objective function value). The reported optimal parameter combinations
are used to evaluate the performance of DE. For that, Equation 2 is evalu-
ated and the median of squares residuals for CAPM estimation is reported.
The evaluation is repeated 30 times to control for the stochastic effects of
heuristics. Columns 5 to 11 report for each set of parameters the best value,
the median, the worst value, the variance, the 5th percentile, the 90th per-
centile, and the frequency of the best value occurs over 30 repetitions of the
algorithm.

Table 1 presents the results of RSM with orthogonal design. The output
suggests that the level of the scale factor F is irrelevant for the convergence of
DE especially when CR is above 0.7. With np at least ten times the number

8For this step the build-in Matlab 7.6 function, quadprog is used. This tool uses a
reflective Newton method for minimizing a quadratic function. It is effective for quadratic
functions when only bound constraints are considered. In our problem the lower bound
of F , CR, np reflect the lower level CCD design, while the upper bounds are 2, 1 and inf,
respectively. The upper bound of F is based on Price et al. (2005), CR is a probability,
whereas np has no real upper limit. The choice of lower bounds prevents the Newton
method from stacking in a local optimum.
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of parameters of the objective function (parameters of CAPM) and CR above
0.7, the algorithm can converge to the best results reported in Winker et al.
(2010). Although, for medium computational load the algorithm finds the
global optimum just once, in 13 other cases it approaches the optimum with
accuracy of 4 decimals. For high computational complexity the algorithm is
more stable and results in the best reported optimum (Winker et al. (2010))
in all 30 repetitions.

Table 2 reports the results of RSM for rotatable design. RSM results
in slightly different optimal parameter settings. Yet, np must be at least
ten times the number of parameters in order for the algorithm to reach the
global optimum. For medium computational complexity the optimum is
identical with that of orthogonal design with lower variance in 30 repetitions.
Similarly, for high computational complexity the global optimum can be
found, but not repetitively. Generally, np is an important parameter in the
convergence of DE and CR stabilizes the algorithm.

RSM is proven to be a useful starting tool for calibrating the parameters of
DE that best minimize the median of squares residual (Equation 2) without
using high computational resources. Of course, one should bear in mind
that the analysis is sensitive to the starting values (centers) as well as the
dispersion of the high and low design points around the center. Shrinking or
widening the distance between the design points (distance of factorial and
orthogonal designs from center) might result in highly uncertain parameter
estimates.

Possible extensions of the approach might include different formulations
(or transformations), other than a polynomial one, to represent the relation-
ship between the parameters and the objective function. Also, in higher
dimensions (higher number of parameters) a heuristic tool can be used to
optimize the parameters’ values.

4 Heuristics in Finance

4.1 Portfolio Selection

In the simple case of the Markowitz mean-variance (MV) framework with two
assets, investors choose their optimal portfolio by maximizing the expected
portfolio return (E = w1µ1 +w2µ2) given their risk profile, or by minimizing
the portfolio risk (V = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1,2) for a given desirable level

of return. The variance of a stock σ2
1 is the covariance σ1,1. These models

consist of a linear function and a quadratic function of the weighted asset
covariances which can be solved by traditional optimization techniques like

22



Table 1: Optimal Orthogonal Design to minimize Median of Squares Residuals.
CPU F CR np Best Med Worst Var q5% q90% Freq

H 0.6597 0.9871 25 4.9935 · 10−5 4.9935 · 10−5 4.9935 · 10−5 4.7501 · 10−41 4.9935 · 10−5 4.9935 · 10−5 30
M 0.6616 0.7226 26 4.9935 · 10−5 4.9935 · 10−5 5.6897 · 10−5 1.7661 · 10−12 4.9935 · 10−5 5.1175 · 10−5 1
L 1.3457 0.6587 13 5.0069 · 10−5 5.2804 · 10−5 9.9768 · 10−5 1.5042 · 10−10 5.0075 · 10−5 6.9232 · 10−5 1

Table 2: Optimal Rotatable Design to minimize Median of Squared Residuals.
CPU F CR np Best Med Worst Var q5% q90% Freq

H 0.6318 0.6318 81 4.9935 · 10−5 4.9935 · 10−5 4.9935 · 10−5 4.7501 · 10−41 4.9935 · 10−5 4.9935 · 10−5 1
M 0.6322 0.9910 26 4.9935 · 10−5 4.9935 · 10−5 4.9935 · 10−5 2.8666 · 10−29 4.9935 · 10−5 4.9935 · 10−5 1
L 1.3041 1.0000 11 5.0079 · 10−5 5.1599 · 10−5 5.4474 · 10−5 9.0143 · 10−13 5.0089 · 10−5 5.2711 · 10−5 1
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quadratic programming.
However, investors may well seek to optimize utility criteria other than

MV (like a Cobb-Douglas objective function for portfolio choice) or other risk
criteria (like Value at Risk (VaR), expected shortfall (ES)). Alternative risk
criteria are mainly chosen to relax the normality assumption of returns and
to accommodate the asymmetry of asset returns. A non-convex, complex,
non-differentiable utility function (with linear or non-linear side conditions)
will not result in the optimum (efficient) portfolio selection (or in any op-
timum near) by quadratic programming routines. The optimum might be
even difficult to approach for a linear utility function (an absolute or semi-
absolute deviation risk function) when constraints are considered (Mansini
and Speranza (1999)). Yet, optimization heuristics are flexible enough to
optimize portfolios based on complex objective functions without the need
for a linear approximation of the objective function.

The seminal work of Dueck and Winker (1992) opened new horizons to
portfolio optimization using heuristics, more precisely using TA. In that ap-
plication, two more complex risk functions other than variance were opti-
mized, being a semi variance function and a weighted mean geometric return
function. Considering a slightly more complex objective function, even with
linear side conditions on the weights, the problem was not tractable with
standard optimization algorithms. TA, with fairly limited computational re-
sources available, could select among 71 bonds of the Federal Republic of
Germany profitable portfolios (minimize risk functions given expected re-
turn) in reasonable time. The portfolios were 5% to 30% more profitable
than the usual practice until that point, meaning human portfolio selection.
No transaction costs were considered though.

In the last two decades, heuristic optimization techniques have been ap-
plied to higher-dimension problems, due to extensive availability of computa-
tional resources. They have been applied to portfolio optimization problems
that also allow for side conditions like transaction cost, taxes, cardinality
constraints, etc. The following subsections describe the most recent research
in this direction.

4.1.1 Transaction Costs and integer Constraints

Apart from the alternative utility criteria that can be pursued by an investor,
several other implications and constraints appear in real life in portfolio se-
lection problems. The constraint considered here is transaction costs. In
the early literature transaction costs were omitted, mainly for simplicity.
However, the selection process with transaction costs can often result in
totally different optimal portfolios (Dueck and Winker (1992)). Thus, mod-
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ern portfolio selection includes transaction costs in the optimization process
(Maringer (2005)).

Transaction costs can appear in the form of minimum amount, propor-
tional amount on trading volume and fixed fees per trade. For an investment
in asset am m = 1, . . . ,M , transaction costs (c) can vary between

cf fixed costs

cv = cp · am· S
(0)
m variable costs where S

(0)
m is the current stock price

max{cf , cv} variable costs with lower (minimum) limit
cf + cv fixed plus variable costs .

The optimization algorithm selects the assets am and their weights by
using (ideally) the total budget amount. Then, transaction costs are part of
the budget. Often, a budget amount is uninvested since only integer numbers
of assets can be bought. In such a case the excess amount can be deposited.

If one of the above conditions is considered the search space is far from
being smooth and convex. Hence, it might be difficult to approach the global
optimum or even something near. In that respect, heuristic techniques can
be applied. SA, TA and GA are often used in portfolio selection problems.
SA and TA are flexible enough to adjust approximately to any restrictions.
Their construction (Section 2) allows for faster and more efficient application
to discrete financial problems. GA has the additional advantage of simulta-
neously maintaining a population of candidate portfolios.9

Maringer (2005), ch. 3, applied SA to portfolio selection with transaction
costs. He used 30 German assets from the DAX index. For the optimal
portfolio composition, budget constraints with transaction costs and inte-
ger constraints are included and compared. Integer constraints and several
types of transaction schemes were used and their relationship to the invest-
ment level was tested. The study concluded that the presence of transaction
costs, when also non-negativity and integer constraints are included, affected
the optimal portfolio structure. Different cost schemes could affect the di-
versity of the portfolio which could lead to different utilities. The number
of different assets invested are reduced with increasing transaction schemes.
One exception are investors facing only a fixed cost scheme with an initial
investment over 1 million. Nevertheless, SA, Section 2.1.1, could help find a
portfolio composition with better diversification (improvement of the utility
function) and higher Sharpe Ratio (SR) than the simplified model with no
transaction costs.

9In high dimensions, the simultaneous maintenance of many candidate solutions can
be a computational burden.
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In reality not only transaction costs appear, but also other constraints like
transaction limits and cardinality constraints. Together these constraints
can add to the complexity of the problem and harden the construction of
an optimal portfolio. This is especially prominent when we consider small
portfolios. The induction of additional constraints into the portfolio selection
problem is presented in the following sections.

4.1.2 Minimum Transaction Lots

Minimum transaction lots is a type of integer constraint. It constraints the
number of units from a specific stock or bond that should be bought simul-
taneously. That is, a minimum bundle of units, e.g. 5000 or multiples, from
a specific asset should be bought. The constraint is formulated in terms of
money as,

lm = Nm · S(0)
m , (4)

where

lm minimum transaction lots in money
Nm minimum required units of asset m .

In the late 1990s, Mansini and Speranza (1999) showed that for a linear
utility function (an absolute or semi-absolute deviation risk function) when
linear constraints (minimum transaction lots and proportional transaction
costs) are considered the problem is NP hard. They applied variants of
evolutionary heuristic algorithms to solve the portfolio selection problem with
transaction lots. The algorithm would select the k cheapest assets ak to
construct the portfolio. Different crossover points indicated the securities in
and out of the portfolio. The half non-selected assets were replaced by the k
low cost assets in the portfolio. Instead of a typical stopping criterion, e.g.
reach fixed iteration number, the algorithm was repeated until a number of
assets was tested in the portfolio construction. This basic algorithm (and
some variations) allowed for a good10 solution to the portfolio optimization
problem in reasonable time. The distinctive advantage of that heuristic was
the independence of the computational time from the number of assets.

In another application, Gilli and Këllezi (2002) optimized their portfolio
choice using as risk measures VaR and ES (4.1.5). In that application the
problem structure allowed for transaction lots constraints. Also, transaction

10A good solution is the one that has low distance from the theoretical MV framework)
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costs and cardinality constraints were considered. For the optimization, a tra-
jectory heuristic, TA, was applied instead of a population based one. They
confirmed the robustness of TA when compared with quadratic programming
under MV framework and without any integer constraints. Both approaches
resulted in the same optimum MV portfolio. When other non-convex ob-
jective functions, such as VaR and ES, together with integer constraints,
like transaction lots, were introduced, TA could easily deal with those in
reasonable computational time.

By nature, asset weights are continuous variables. So, Krink and Paterlini
(2009) propose a Differential Evolution algorithm for Multiobjective Portfolio
Optimization (DEMPO) for portfolio selection under the MV framework with
risk measures other than variance, i.e. VaR and ES. Transaction lots, weight
constraints and limit on the proportion of assets in a particular sector or
industrie are considered. The algorithm adopts DE for weight selection. DE
could approximate closer and faster the MV frontier compared to quadratic
programming (QP) and another GA. Still, the convergence of DE to the
exact front shape can be further improved. To overcome local minima, the
acceptance criterion of a local search method can be used. It would also be
of interest to test its performance in an even more realistic framework with
transaction costs and cardinality constraints (some additional constraints are
included in Fastrich and Winker (2010)).

4.1.3 Cardinality versus Diversity

In reality, private investors choose a rather small-sized portfolio which is not
necessarily diversified internationally (Cuthbertson and Nitzsche (2005), Ch.
18). Small portfolios, when optimally chosen, can diversify the risk away
and thus increase investor’s utility. Besides, portfolios with fewer stocks are
easier to manage and less expensive in terms of total transaction costs than
larger more diversified portfolios.

In order to select the optimal size of a portfolio, an additional integer
constrain is needed, namely a cardinality constraint. Cardinality constrains
the number of different assets (A) in a portfolio, #{A} = K. When K varies
from 1, . . . , K the constraint is formulated as

∑

M

am ≤ kmax , (5)

where

kmax maximum number of different assets in portfolio
A integer quantities of active positions in portfolio
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am active position in asset, m = 1,. . . ,M .

The optimization algorithm is slightly altered to find not only which as-
set weights are optimal but also which assets should be ideally selected from
the available ones by optimizing a given objective function. So, different
k from M assets

(

M
k

)

and their combinations are selected based on the in-
vestors risk profile. This additional integer constraint (especially, together
with transaction costs and transaction lots) results in a discrete combinato-
rial optimization. While traditional selection algorithms result in suboptimal
portfolios as the number of assets and constraints increases, heuristics serve
as a panacea. Heuristics can capture the discrete selection nature of the
problem and consider at the same time the additional constraints. The fol-
lowing literature imposes a cardinality constraint in the portfolio selection
problem and improves or optimizes the risk-return SR or the MV portfolio,
respectively.

First Chang et al. (2000) and later on Maringer (2005) used heuristics to
replicate the efficient frontier with integer constraints. Chang et al. (2000)
used three different heuristics, GA, Tabu Search (TS)11 and SA to replicate
all the Pareto-optimal (non dominated) portfolios of the efficient frontier
under cardinality and transaction lots constraints. While a multiple agent
heuristic, GA, resulted in fairly better approximations of the theoretical ef-
ficient frontier, it needed comparatively more time. In contrary, Maringer
(2005) reported the superiority of a single agent heuristic, SA, in selecting a
portfolio that maximizes SR.12

Alternatively, Maringer (2005) combined a local and a population search
method to improve the selection procedure for Markowitz efficient frontier.13

The performance of the hybrid meta-heuristic was tested against a pure meta-
heuristics, like SA and a variant of it. While all three methods share local
search characteristics, which help to escape fast inferior solutions, the hy-
brid meta-heuristic was more reliable – closer to the best-known solution.

11TS belongs to local search heuristics. For a comprehensive representation of the
algorithm see Glover and Laguna (1997).

12Its distinctive selecting performance lies on the random initial selection of assets and
the update procedure of the candidate solution. Initially, assets are randomly selected
and included in the portfolio. It is flexible to select not only between asset with high
risk premium per unit of risk (SR), but also good asset combinations. In the update
procedure an asset is added not only if it improves the SR but also if it contributes to the
diversification of risk. Ideally, these are assets with negative (or low) correlation.

13In the Sharpe framework the heuristic encoded only the asset selection, whereas in the
Markowitz efficient frontier identification, the heuristic encoded both weight and model
selection. The last approach improved the performance of heuristics.
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The results suggest a rather small-sized portfolio, which when optimized by
heuristics can replicate relatively accurately the market index. For the few
k from M assets and their combinations, the weights are quickly identified
by the algorithm and more computational effort is then devoted to update
(improving) the candidate selection. Thus, the algorithm results at the end
in a portfolio that can be as diversified as the market index.

Further research can be devoted in identifying the factors affecting the
optimal K. More precisely, how different risk aversion, utility functions or
stock index affect the choice of K. One alternative is to endogenize in the
optimization process the choice of K.

4.1.4 Index Tracking

A straight-forward extension of an active portfolio optimization with cardi-
nality considerations is the passive tracking of an index with a limited number
of assets. In the former case, investors choose the portfolio that best opti-
mizes their utility function (risk-return equilibrium) under constraints. This
decision is called active portfolio management. In the other case, investors
are convinced that in the long run the best thing to do is to mimic the market
index. In passive selection, investors look for the optimal combination of as-
sets to track the index as close as possible. Typically, the objective function
of interest, hereafter called the tracking error, is to minimize the distance
between the selected portfolio’s daily returns and index returns.

This is a twofold optimization where the optimal asset positions and their
weights should be selected. In addition, investors face all the constraints
discussed in the previous sections which result in a complex optimization
problem. Selecting the optimal asset positions is a discrete combinatorial
problem whereas selecting the optimal asset weights is a continuous problem.
In that respect, alternative heuristics (suitable for discrete or continuous
problems) or a combination of them are applied.

Maringer and Oyewumi (2007) applied DE to track a portfolio with con-
strained number of assets that mimics best the DJIA64 index. The objective
function of interest is to minimize the root-mean-squared deviation of the
selected portfolio’s daily returns from those of the index. The resulted track-
ing portfolio outperformed both in- and out-of-sample, in terms of daily asset
returns, in many cases the index. For smaller portfolios (especially for cardi-
nality below 30), the positive difference increases for the in-sample training
set. Yet, for cardinality below 40 the suggested portfolio is more volatile
than the index. However, the higher volatility is outweighed with a higher
return-to-risk ratio. Whereas heuristics perform reliably also in this complex
problem, there was no clear-cut indication of the optimal number of assets
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that best minimize the tracking error.
More insides to the trade-off between the optimal number of asset in

a portfolio and the tracking error is given by Krink et al. (2009). They
also applied DE but with a combinatorial search operator (DECS-IT)14 to
track the perfectly diversified market portfolio by minimizing the volatility
between the log-returns of the benchmark (DJIA65 and Nikkei 225 price
indices) portfolio and the tracking portfolio in every time period.15 DECS-
IT could potentially solve that selection problem with constraints and provide
quality results in reasonable time. The results suggested that by increasing
the number of assets in a portfolio the in-sample annualized tracking error
volatility reduces up to a certain limit. The same is true for the relationship
between cardinality and out-of-sample performance.

There are still however some open questions for constrained index track-
ing, namely the performance of the tracking portfolio in different window
set-ups16 and the factors affecting the volatility in the results. Finally, one
can further investigate the effect of index composition in selecting the maxi-
mum number of assets of the tracking portfolio.

4.1.5 Downside Risk Measures

As mentioned in Section 4.1.2, alternative risk measures can be used in place
of variance, e.g. VaR and ES. These measures relax the normality assumption
of returns imposed by the MV framework. So, instead of minimizing the mean
(positive and negative) squared deviations from the expected return, the risk
of having negative deviations from the expected portfolio value is minimized.
Specifically, the above risk measures minimize either the probability that
the expected value of the portfolio falls below a given value (VaR) or the
expectancy of such a fall (ES).

Like semi-absolute risk function, VaR and ES cannot always be opti-
mized by traditional linear or quadratic solvers. Especially, in the presence

14DE is by nature more suitable for continuous problems. Thus, a combinatorial operator
is needed to improve the performance of DE in the discrete combinatorial asset selection.
Using this tool the quality of the results and the runtime of the algorithm improved.

15Additionally, by building an artificial index they evaluated the performance of DE
using the asset weights instead of the returns. They evaluated the asset weights’ distance
of the benchmark portfolio (Nikkei 225 price index was considered) from those found in the
tracking portfolio. The benchmark asset weight are calculated from market values. For
this experiment they neglected the cardinality constraint. DECS-IT could very precisely
replicate the 225 asset weights. In a comparison with QP (with no cardinality or weight
constraints), the two methods could obtain similar results.

16Maringer and Oyewumi (2007) experimented with one and two year windows and
suggested that shorter in-sample windows together with higher cardinalities are more
important for the out-of-sample performance.

30



of integer constraints, i.e., transaction lots and cardinality constraints, the
search space is highly non-smooth and discontinuous. Thus, it is difficult to
choose an optimal portfolio that satisfies these constraints in a reasonable
time. Gilli and Këllezi (2002), Gilli et al. (2006) and Krink and Paterlini
(2009) approach the portfolio selection problem under discrete scenarios by
optimization heuristics. Apart from one application of DE (Krink and Pater-
lini (2009)), TA is often the heuristic used for discrete optimization. Winker
and Maringer (2004) constructed a hybrid population based algorithm with
local search characteristics for the same problem.

In more recent extensions, Gilli and Schumann (2010c) presented alter-
native measures of reward and risk, like the Omega function, and Gilli and
Schumann (2009) and Gilli and Schumann (2010d) compared the performance
of portfolios selected by various risk measures with MV portfolio. TA was
used as an optimization algorithm for portfolio construction. A unanimous
finding all along was that minimizing risk, as opposed to maximizing reward,
often resulted in good prediction of the out-of-sample frontier.

4.2 Robust Model Estimation

Apart from using meta- or hybrid-heuristics for the direct optimization of fi-
nancial problems, e.g. for asset allocation, much literature is concentrated on
the application of heuristics for the indirect optimization of models through
parameter estimation. In due course, heuristic algorithms calibrate the pa-
rameters of financial and economic nonlinear models that improve the accu-
racy (precision) and reliability of core financial models.

4.2.1 Nonlinear Model Estimation

Convergence and Estimation of GARCH Models

In reality, sporadic extreme observations can force the distribution of histor-
ical stock returns to lean away from the mean. For daily returns the prob-
ability of observing this phenomenon is higher than normal, forcing their
distribution to exhibit excess kurtosis. Yet, the excess kurtosis decreases
with increasing time horizons. As such, daily financial returns exhibit time
varying volatility. A one period ARCH model depicts this characteristic,
V ar(εt) = α0 + α1ε

2
t−1, where εt denotes the volatility of daily returns of

an AR(1 ) process (Gouriéroux (1997)). Furthermore, a model conditional
also on the previous risk (error) components is a generalized autoregressive
conditional heteroskedasticity (GARCH) model.
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The parameters of such non-linear models are most often estimated by
maximizing the (log)-likelihood function. But, finding the parameters that
give an optimal solution is not guaranteed using standard econometric soft-
wares. Sometimes, different softwares result in different optimal solutions
(local optima) and the solution is very sensitive to the parameters’ starting
values. Heuristic optimization overcomes this problem and provides a close
to optimum solution for such non-linear models.

Maringer (2005) applied SA to find the parameters of a GARCH model
which maximize the (log)-likelihood function. Maringer and Winker (2009)
applied TA for the same non-linear problem and simultaneously provided a
framework for studying the convergence properties of such estimators based
on heuristics. Maringer (2005) used the GARCH(1,1) model to estimate the
daily volatility of the German mark/British pound exchange rate. Therefore,
the author implemented a SA algorithm like the one presented in Section
2.1.1. In every iteration one parameter was chosen for further alteration.
The selected parameter changed by adding a uniform random error. The
random error narrowed as the iteration number increased. With I = 50 000
iterations and a shrinking neighborhood structure, a low deviation was re-
ported between heuristic optimization outcome and true parameters’ value.
Maringer and Winker (2009) inferred the same superior performance of TA
in comparison to standard numerical econometric packages.

A more refined statistical framework is suggested by Maringer and Winker
(2009) for analyzing the parameters of heuristics that will further improve the
converge of estimators. In due course, they estimate the number of iterations,
as a function of sample size, needed by a TA approximation to converge, with
a given probability, to the true maximum likelihood estimator of a GARCH
model. This is possible, due to the good parameter approximation of search
heuristics, reported above. It is evident that the value of the TA maximum
likelihood estimator is much closer to the true one compared to what other
numerical packages report. This is true in particular for small sample sizes.
An interesting extension is the derivation of joint converge properties for
higher order GARCH models (or more complex estimators in general). Be-
sides, heuristic techniques can also be considered for selecting the lag order
for historic volatility estimation approaches.

Indirect Estimation and Agent Based Models

Modeling the behavior of market participants becomes even more challeng-
ing when it cannot be determined by prior information like in a GARCH
model. Especially when agents’ behavior is either less rational or heteroge-
nous. ABMs are flexible to simulate the behavior of market participants,
called agents, and the interaction between them. Simulating the actual be-
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havior of agents using ABM can result in a realistic representation of the
basic features of daily financial returns, namely excess kurtosis and time
varying volatility.

However, the estimation of ABM parameters and the validation of their
performance in a realistic market setting with actual data are complex tasks.
This is mainly due to the large number of parameters and the non-analytical
evaluation of such models. Gilli and Winker (2003) introduced a hybrid TA
algorithm to estimate an ABM of foreign exchange markets. The hybrid
combined simplex search ideas with TA algorithm. Later on, Winker et al.
(2007) proposed an evaluation tool for such a model.

Gilli and Winker (2003) used a hybrid TA approach to optimize the ABM
parameters. ABM were applied to the model of foreign exchange (DM/US-
$) market agents suggested by Kirman (1991) and Kirman (1993). It was
tested whether the interaction between two types of agents (fundamentalists
and chartists) could realistically explain the excess kurtosis and time varying
volatility of returns. For this test, excess kurtosis (kd) as well as time varying
volatility (α1) of an ARCH(1) model were calculated by simulating the expec-
tations of foreign exchange rate based on agents behavior. The efficiency of
agent based modeling was tested with empirical data. A hybrid TA (Section
2.3.2) was applied for optimizing the parameter of ABM. Importantly, in the
particular application simplex did not even result in a local optimum due to
the high Monte Carlo sampling variance of the initial parameter estimates.
To overcome the problem of high Monte Carlo variance on estimating the
parameters with relatively low number of repetitions, the authors applied
the acceptance criterion of TA. Larger values of threshold sequence correct
for the high variance (see also Section 2.1.2). Using these techniques they
showed that interactions between market agents could realistically represent
foreign exchange market expectations.

Future research can introduce alternative models to ABM, such as MS-AR
or SETAR or STAR.17 In addition, a design approach, like the one discussed
in the Appendix, can serve as a benchmark for the estimation of parameters’
starting values.

Yield Curve Estimation

Apart from the log-likelihood function of GARCH estimation, there are
also other non-linear functions that are used to estimate financial and eco-
nomic models. Yet, most of these models depend heavily on the parameter

17Maringer and Meyer (2007) introduced and compared SA, TA and DE to the estima-
tion of parameters of the STAR model.
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estimation value, as ABM do. Likewise, the term structure of interest rates,
or as it is widely known the yield curve, is typically estimated (Gimeno and
Nave (2009)) using non-linear models, while the input parameters’ values are
crucial.

The term structure of interest rates refers to market’s expectations of
interest rates in different time horizons. For example, it depicts the expected
interest rate for a loan starting in one, two or ten years from now that
lasts for one or several years. Central banks need to calculate the forward-
looking interest rates of different maturities on a daily basis. These interest
rates serve as an instrument of monetary policy or they are offered by banks
to loans of different maturities or they are used in other sectors for asset
and derivative pricing. For the calculation of forward rates central banks
most frequently use the Nelson-Siegel (Nelson and Siegel (1987)) function
or the Nelson-Siegel-Svensson (NSS) function (Svensson (1994)). The model
estimates the (spot and) forward interest rates that form the yield curve.
For that, the NSS approach models forward interest rates based on short
and long term future maturities and the transition between them. This way
it can capture the shape of the yield curve.

Financial pricing calls for an accurate estimation of forward interest rates.
According to Gimeno and Nave (2009) traditional optimization techniques
failed to converge towards a global optimum solution, when estimating the
parameters of NSS (a non-linear function). Besides, traditional optimization
techniques are sensitive to initial coefficient values, which causes variability
in the estimated parameters. The following papers show how this problem
can be avoided by using optimization heuristic techniques.

Gimeno and Nave (2009) and Fernández-Rodŕıguez (2006) suggested ap-
plication of GA to accurately estimate the coefficients of the Nelson-Siegel
function and its extension, the NSS function, while Gilli and Schumann
(2010b) applied DE. The fitness function corresponds to the weighted sum
of squared deviations of the actual (observed) coupon bond prices of differ-
ent maturities from the ones calculated using the estimated forward interest
rates. The error term is a weighted function of the bond’s duration period.
The authors compared the fitness function value using both traditional opti-
mization techniques, like non-linear least squares optimization, and heuristics
for simulated and real world bond prices of different maturities. Overall, GA
and DE resulted in lower and less volatile estimation errors.

An interesting extension would be interesting to compare the computa-
tional time and efficiency of both GA and DE. An alternative implementation
is to use an improved hybrid optimization algorithm which combines a heuris-
tic and a numerical optimization method. Gilli and Schumann (2010a) and
Gilli and Schumann (2011) discuss the application of DE together with a

34



direct local search optimizer (Nelder-Mead search) in parameter estimation.
They estimated the parameters of the Heston (more easily) and the Bates
model, both used in pricing options. Good model fit was reported for the
suggested hybrid.

4.2.2 Robust Estimation of Financial Models

Least Median of Squares Estimation

The last core financial model discussed in this section is the CAPM. A
substantial amount of research in financial market economics has focused
on the robust estimation of the CAPM parameters. Robust estimation tech-
niques have been suggested in the statistical literature as a solution to the low
breakdown point of simple estimation approaches, principally, ordinary least
squares (OLS). In particular, only a single influential observation can change
the parameters of the OLS coefficients significantly (Rousseeuw 1984).

For the linear explanation of the risk premium on individual securities
relative to the risk premium on the market portfolio, Chan and Lakonishok
(1992) had used least absolute deviations arguing that absolute residuals
have smaller influence on LS than squared residuals. Ronchetti and Genton
(2008) used shrinkage robust estimators for estimating and predicting the
model. Recently, Winker et al. (2010) compare OLS and least median of
squares (LMS) estimation in the CAPM and the multifactor model of Fama-
French factors (Fama and French (1993)). Rousseeuw and Leroy (1987) define
the LMS estimator as the solution to the following optimization problem:

min
α,β

(med(ε2
i,t)) , (6)

where εi,t = yi,t−α− βxi,t are the residuals of a factor model. While the
LMS estimator has a high breakdown value, its objective function is com-
plex with many local minima. Figure 6 shows the above objective function,
evaluated for the CAPM residuals, using the 200 daily stock returns of the
IBM stock starting on January 2nd, 1970.

The existence of many local minima is evident, which calls for a heuristic
optimization application. Using a rolling window analysis on some stocks
from the DJIA index, DE compared to TA allowed a faster and more reliable
estimation of β in the factor models. However, the estimates obtained by
LMS do not exhibit less variation (from those resulting from OLS) as might
have been expected from the outlier related argument. Furthermore, the
relative performance of both estimators in a simple one-day-ahead conditional
forecasting experiment is mixed. Still, a proof of concept is provided, i.e.,
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Figure 6: Least median of squared residuals as a function of α and β

LMS estimates obtained by means of heuristic optimization can be used for
real life applications.

Some extensions of the paper are straightforward based on the results re-
ported. First, the method should be applied to different data sets, e.g., stock
returns from other stock indices or stock markets. Furthermore, it would be
of interest to identify in more detail the situations when the estimation and
forecast based on LMS outperforms OLS and vice versa.

4.3 Model Selection

This section presents the use of heuristics in selecting a set of independent
variables which better explain a given explanatory variable. One can ar-
gue that the more factors we include in a model, the better the model fit
or its predictive performance will be, as we have more chances to include
the important factors. But, the higher the chances are also to include some
unimportant factors which worsen the predictive performance of our model.
Traditionally, statistical methods are applied for model selection, e.g. discrim-
inant analysis, stepwise analysis etc. However, statistical methods ignore the
economic or theoretical relationship between the variables and rely on strong
distributional assumption for the factors.

Heuristic optimization methods can be trained, by the objective function,
to select some economically meaningful factors. Also, for their application
no strong statistical hypotheses are made, e.g. normality assumption for the
distribution of factors.
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4.3.1 Risk Factor Selection

A different perspective to the asset pricing yields the risk factor selection
for the Asset Pricing Theory (APT) model. Like asset selection, risk factor
selection is a complex combinatorial problem which in high dimensions is
computationally very demanding. More importantly, for problems including
more than ten factors, complete enumeration of all possible combinations is
difficult to be tested in reasonable time. One alternative is to use heuristic
optimization methods for model selection (Winker (2001)).

Maringer (2005), Ch. 7 applied a hybrid meta-heuristic, a MA (Section
2.3.1) to select the appropriate firm and industry specific indices for asset
return estimation, at a given point in time, based on the APT model. The
hybrid meta-heuristic initially selects a subset of factors and combines the
properties of SA and GA (Section 2.1.1 and 2.2.1) to find an optimum subset
of MSCI factors that best explain asset returns based on the APT model.
That is, get the highest possible explanatory power, adjusted R2. MA was
able to identify the 5 out of 103 MSCI indices that explain a satisfactory
percentage of S&P 100 asset price variation.

Future work can concentrate on improving the selection performance of
the hybrid meta-heuristic. The use of another trajectory search method, like
TA, instead of SA can also be tested. TA has the advantage to construct the
candidate solution acceptance criterion based on information from problem’s
search area. To enhance the economic credibility of the neighborhood con-
struction (factor sets), more weight can be given to neighborhood solutions
with economically sound interpretation (and less weight on non-economic
sound sets). This will only be possible in the presence of information about
the economic factors affecting the returns of a specific asset at a given time.
In addition, more emphasis can be given in the model weight selection. A
meta-heuristic technique can be used to assign factors’ weights based on their
economic credibility.

4.3.2 Selection of Bankruptcy Predictors

Factor selection refers also to the selection of predictors so as to evaluate
the credibility (solvency) of a debtor (bank client/portfolio). The Basel II
Accord on Banking Supervision legislates the framework for banks credit
risk assessment (Basel Committee on Banking Supervision 2006). Under
this framework banks are required to detain a minimum capital to cover
portfolio losses from expected defaults. Expected losses equal the product of
the exposure at default (EAD), the loss given default (LGD) and a binary
variable that determines the borrower’s default grade (D). Based on the
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internal rating approach (IRB) banks can estimate internally these three risk
components. Extensive literature (see Kumar and Ravi (2007) for a review)
is devoted on determining the default grade D. This section addresses the
development of a credit model responsible for this binary assignment.

It is evident from the current financial and credit market crisis that credit
institutions should develop a more valid credit risk model for the classifica-
tion of borrowers. Its derivation is subject to a diverse range of risk factors
and their weights. Hamerle et al. (2003) report a generalized factor model
for credit risk composed by firm specific financial data, economic factors and
their lags, systematic and idiosyncratic factors. For credit model and weight
selection, statistical techniques vary among linear discriminant analysis (Alt-
man (1968), Varetto (1998), etc), conventional stepwise analysis (Butera and
Faff (2006)), logit analysis, neural networks (Angelini et al. (2008) and Di
Tollo and Lyra (2010)) and genetic algorithms (Back et al. (1996)).

Back et al. (1996) applied discriminant analysis, logit analysis and neural
networks for score selection and failure prediction. Each one of this tech-
niques assumes a different interaction among factors. Discriminant analy-
sis assumes a linear relationship, logit analysis adopts a logistic cumulative
probability function, whereas neural networks allow a non-linear relationship
between explanatory variables. They used stepwise selection to choose the
risk factors for the discriminant model and the logistic regression model. Ad-
ditionally, GA were used in NN for choosing the links. While each technique
constructed different models (one, two and three years prior to failure), their
predictive ability differ. The GA based model resulted in perceptibly smaller
type I and type II errors,18 at least one and three years prior to failure.

In the same vein Trabelsi and Esseghir (2005), Ahn et al. (2006) and Min
et al. (2006) trained GA that resulted in an optimal selection of bankruptcy
predictors. Besides model selection, these papers applied GA to tune the pa-
rameters of bankruptcy prediction techniques. Trabelsi and Esseghir (2005)
constructed a hybrid algorithm that evolves an appropriate (optimal) arti-
ficial neural network structure and its weights. Ahn et al. (2006) and Min
et al. (2006) forecast bankruptcy with SVM. Genetic algorithms select the
best set of predictors and estimate the parameters of a kernel function to
improve SVM performance using data from Korean companies. The latter
paper stressed the potentials of incorporating GA to SVM in future research.

Varetto (1998) applied GA to train neural networks. The meta-heuristic
was used not only to model selection, but also to weight estimation. Besides,
they used genetic rules for credit clustering. The latter technique is discussed
in the following section. NN were compared with a statistical technique,

18Smaller type I and type II errors can be interpreted as lower misclassification error.
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discriminant analysis, in terms of insolvency diagnosis (failure prediction) for
4738 small Italian companies. To estimate the insolvency criterion, the fitness
function, a regression model was fitted using a set of weighted indication
variables. GA were used to select the optimal set of financial ratios. For
weight estimation, a predefined range of values was assigned to the weights
and split in intervals of equal length. GA identified the number of intervals
to be added to the lower bound of the range. The above estimation asserts
an economic interpretation of the weights in less time than human intuition.

In the context of risk factor selection for bankruptcy prediction other
meta-heuristics or hybrid meta-heuristics can also be tested. For example,
TA and MA. Alternatively, a different heuristic optimization technique can
be applied for weight selection. Given the continuous nature of this problem
DE can be suitable. In that respect, a population algorithm for continuous
problems can result faster and more efficiently in the optimum weight values.
Other heuristics can also be used in factor selection in SVM framework. DE
for selecting the parameters of a kernel function and TA for choosing the
important factors of the credit risk model. Such an application may further
improve the performance of SVM.

What is still an open question in selecting bankruptcy predictors is whether
it is necessary (and how) to chose the desired number of risk factors included
in a model. The more factors we include in a model, the better will be
the model fit, as we have more chances to include the important factors.
But, the higher the chances are also to include some unimportant factors
(‘overfit’) which affect (worsen) the predictive performance of our model.
Meta-heuristics can be used to endogenously determine the optimal number
of factors that can be included in a model (see Lyra et al. (2010b) and Lyra
et al. (2010a) for an application of TA for determining the optimal number
of credit risk grades).

4.4 Financial Clustering

Risk factor selection, credit risk quantification and credit risk assignment
are complementary procedures for qualified credit risk management. While
Section 4.3 presented the development of a credit model and the quantifica-
tion of credit risk using meta-heuristics, the clustering of credit risk using
heuristic techniques is addressed in this section.

Data clustering has always been on the epicentrum of research work using
either statistical or intelligent techniques, namely discriminant analysis and
logit or neural networks, support vector machines and case-based reasoning,
respectively. Yet, classification of data in several groups with constraint
consideration can make the problem NP-hard (Brucker (1978)). Heuristics
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are proven to be a reliable tool for financial data classification.

4.4.1 Credit Risk Assignment

Basel II (Basel Committee on Banking Supervision (2006)) requires banks to
detain sufficient capital to bare losses that arise not only from expected but
from unexpected economic downturns. Provision can cover expected losses,
however additional capital or regulatory capital (RC) is required to cover
unexpected losses. To calculate RC banks should first assign their client
into groups based on their credit risk characteristics, i.e. the probability that
borrowers will default the subsequent year (PD).

Then, each group is assigned a ‘pooled PD’ or a ‘mean PD’ which distin-
guishes it from other groups. The deviation from the ‘mean PD’ determines
the required capital detained and consequently the lending rate assigned to
each risk group. An important aspect for banks is to avoid misstatement (un-
der/over statement) of capital requirements resulting from misclassification
of clients. To achieve this, borrowers should be assigned to a number of ho-
mogeneous groups. Therefore, an efficient classification tool is required that
minimizes the misclassification error (or the regulatory capital) and satisfies
the other constraints imposed by Basel II.

The design of a risk rating system for the assignment of borrowers into
homogenous grades is subject to a number of constraints imposed by Basel
II. Apart from having at least seven clusters for non-defaulted borrowers (§
404 of Basel Committee on Banking Supervision (2006)), the EAD in each
bucket shall be no higher than 35% of the total borrowers’ exposure in a
given portfolio (Krink et al. (2007)). Thus, we avoid having high concentra-
tion of exposure in a given grade. Further, the ‘mean PD’ for each grade
should exceed 0.03%, (§ 285 of Basel Committee on Banking Supervision
(2006)). An additional constraint regarding the lower bound on the number
of borrowers in each bucket is necessary to ensure that no bucket is empty
and that the number of borrowers in each bucket is adequate to statistically
evaluate ex-post the precision of the classification system.19 Introducing the
above constraints into the clustering problem increases its complexity. Thus,
heuristics have been suggested in the recent literature to tackle financial
classification problems.

Krink et al. (2007) and Krink et al. (2008) contribute to this context by
clustering borrowers to a fixed (given) number of buckets and optimizing dif-
ferent objective functions. In either case, DE compared with other heuristics,

19Previous literature (Krink et al. (2007)) specifies that it should exceed a given per-
centage, e.g. 1%, of the total number of borrowers in a given portfolio. In Lyra et al.

(2010a), the lower bound is set using statistical benchmarks.
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like GA and Particle Swarm Optimization (PSO), showed consistently supe-
rior performance in the discrete problem of credit risk rating. In addition,
little parameter tuning was required compared with GA and PSO. Lyra et al.
(2010b) extent the previous literature by determining not only the optimal
size but also the optimal number of clusters. By doing so, the precision of
the classification approach could be statistically evaluated ex-post. They pro-
posed a TA algorithm to exploit the inherent discrete nature of the clustering
problem. This algorithm is found to outperform alternative methodologies
already proposed in the literature, such as standard k-means and DE. While
DE performed reliably for a set of small and medium size Italian companies,
TA was more efficient (better grouping solutions) and faster.

The superiority of TA in this problem instance stems from the fact that
a fast update of the objective function is feasible and thus computation time
is largely independent of the number of clusters. However, for larger data
sets and for other more realistic linear and non-linear constraints (such as
the modeling of the dependence structure of defaults or the application of
heuristics in a dynamic clustering framework) the problem becomes compu-
tationally more demanding. It is an open challenge to improve the computa-
tional efficiency of heuristics in the computationally demanding problem of
financial clustering.

4.4.2 Portfolio Performance Improvement by Clustering

So far, we addressed the direct application of heuristics in asset selection (Sec-
tion 4.1) when complex utility functions and constraints are considered. The
discussed literature reported, in many instances, higher portfolio returns, for
a given risk, using heuristics. An indirect application of heuristics in portfo-
lio selection (asset allocation) is found in Zhang and Maringer (2010a) and
Zhang and Maringer (2010b). They suggest pre-clustering assets according
to their performance so as to improve the asset allocation procedure.

The clustering of assets before portfolio selection serves as an alterative to
the equally weighted asset allocation 1/N or the Markowitz allocation based
on risk-return equilibrium. In latter case, high dimensional portfolios or pos-
sible inaccurate estimations of expected returns or covariance matrices,20 may
result in a sub-optimal allocation of resources. In due course, pre-clustering
may help reduce the dimensionality of the problem and thus facilitate the
optimization procedure. Pre-clustering involves first clustering assets into a
given number of clusters so as to improve the overall portfolio SR. Then,

20The equally weighted asset allocation is data independent. So, its performance does
not depend on a portfolio’s dimensions.
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with-in class, traditional asset allocation procedures are applied. Finally, a
weighted composition of these clusters constructs the target portfolio.

Zhang and Maringer (2010a) used and compared two different heuris-
tics, DE and GA, to clustering financial data (FTSE assets). Compared
with traditional non-clustering allocation approaches, pre-clustering of as-
sets improved the SR distribution of clustered portfolios, according to both
in-sample and out-of-sample simulation studies. Heuristics are proven to be
a reliable tool for clustering financial data, as indicated by the improved
SR distributions. Nevertheless, GA resulted in better SRs than DE in all
restarts. Besides, GA outperformed DE. GA resulted in higher and more
stable fitness values. As indicated from the results, GA performed well in
the discrete problem of clustering, mainly because of their discrete nature
(construction), Section 2.2.1.21

In the above application a predefined number of clusters was used to parti-
tion assets. A possible extension in this direction is to determine the optimal
number of clusters based on the sample size and the index composition used.
Further, the potential performance of the suggested clustering design in the
presence of highly volatile asset returns should further be investigated.

4.4.3 Identification of Mutual Funds Style

Clustering data, especially data with complex schemes, can help extract all
the available information. Besides, as discussed in Section 4.4.2, clustering
avoids, to a high extent, the ‘curse of dimensionality’ problem often faced in
large portfolio management. The aim of clustering is the partition of data in
order to minimize the within (homogeneity) and maximize he between clus-
ters variance (heterogeneity). Brucker (1978) has shown that for a number of
clusters higher than three the problem is highly complex. So, the recent liter-
ature has developed a number of new classification approaches which combine
classical statistical methodologies, e.g. principal component analysis (PCA),
and intelligent techniques, e.g. DE, NN to tackle the problem.

Pattarin et al. (2004) proposed a combination of PCA and GA to group
the historical returns of the Italian mutual funds and identify their style.
First, PCA selected the order of the process (the lag order). Second, the
evolutionary algorithm (GA for medoids evolution - GAME) classified the

21To adjust the continuous optimization technique, DE, to a discrete problem, a random
noise (z) term is added to the scaled difference of two randomly selected vectors, during
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random noise is added with a given probability and it follows a normal distribution. The
candidate solutions are rounded up to the nearest integer.
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historical returns in homogenous groups.22 The new classification method
based on GA was successful in identifying the mutual fund style with less in-
formation than the classification method of the Italian mutual fund managers
association (‘Assogestioni’).

Future applications can consider the use of other heuristics in financial
data clustering. Das and Sil (2010) recommended a revised DE algorithm
in clustering the pixels of an image. They used a kernel induced similarity
function to measure the distance from the cluster center. The advantage of
this measure, in relation to the Euclidean distance, is that it allows non-linear
classification of data. That implementation improved the accuracy, the speed
and the robustness of DE compared to GA. A similar implementation could
be used in financial clustering problems.

5 Conclusions

This survey gives an overview of some modern financial optimization prob-
lems. Often the additional constraints and the high-dimensionality of these
problems, make them complex and thus difficult to solve by standard opti-
mization algorithms. The paper suggests heuristic optimization techniques as
an alternative. In the presented literature heuristics provide reliable approx-
imations and are successfully applied to optimize financial problems with
great potentials. The paper shows some promising fields of application of
heuristic optimization techniques and some possible extensions in that direc-
tion.

Optimization heuristic techniques are flexible to tackle a broad variety of
complex optimization problems. This is due to the stochastic elements intro-
duced during the optimization process. Explicitly, the optimization process
involves stochastic initialization, intermediate stochastic selection and ac-
ceptance of the candidate solution. Nonetheless, the outcomes (optimization
results) should be carefully interpreted, while numerous repetitions of the
algorithm are recommended.

The choice of the appropriate heuristic technique is of particular impor-
tance for its efficiency. Heuristic methods differ in their acceptance criteria,
the actual way of creating new solution and the number of solutions they
maintain and generate in every iteration. In the literature discussed in this
survey, DE has shown remarkable performance in continuous numerical prob-
lems, e.g. parameter estimation, when compared with other heuristics, i.e.

22GAME offers the flexibility of either using heuristics or statistical approaches in choos-
ing the number of lags included in the model. In that application a PCA was used for the
selection.
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TA. Even if DE is specialized on continuous numerical problems, it has al-
ready shown better performance than GA and PSO in tackling the credit
risk bucketing. Nonetheless, local search heuristics, particularly TA, is faster
and more robust to deal with the discrete problem of credit risk assignment.

It seems that there is no clear-cut recipe when to use which type of
heuristics. It may depend on the nature of the problem (discrete or continu-
ous search space), the computational resources and the application. Future
research might analyze further the criteria for optimal algorithm selection.

An additional aspect affecting the efficiency of heuristics is the initial pa-
rameter settings. They are vital, for they provide a trade-off between com-
putational time and solution quality. An open challenge in the application
of heuristics is to set a more refined statistical framework for estimating the
heuristic parameters, which will further improve the converge of the estima-
tion results. Maringer and Winker (2009) estimated the number of iterations,
as a function of sample size, needed by a TA to precisely converge, with a
given probability, to the true maximum likelihood estimator of a GARCH
model. An interesting extension in this direction is the derivation of joint
convergence properties for more complex estimators.

To sum up, heuristic methods have been applied to many promising
fields of commercial applications, like portfolio selection with real world con-
straints, robust model estimation and selection and financial clustering with
good potential. They are flexible enough to account for different constraints
and provide reliable results where traditional optimization methods fail to
work. Still, more research should be devoted to identifying the problem
framework (what is a ‘good problem for heuristics’) in which heuristics clearly
outperform traditional optimization methods or in which some heuristics are
preferred instead of other heuristic methods.

Appendix

Central Composite Design

This section provides a detailed explanation and a numerical representation of
the CCD experiments. First, for the factorial design we assign to the param-
eters two discrete ‘levels’(F = 0.7, 0.9, CR = 0.7, 0.9 and np = 20, 50). This
range constitutes the experimental region and is carefully specified around
an initial value (center point) for each parameter. The initial levels depend
upon a priori knowledge about the best parameter combination that optimize
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a given objective function.23 Three different levels of computational resources
are considered, with nG × np= 500, 2500 and 5000 meaning, low, medium
and high complexity, respectively. Since the product of np × nG should
be constant, an adjustment is made on nG in each alteration. The aim is to
find the combination of parameters that optimize an objective function value
using these fixed computational times.

Second, we conduct an additional experiment using the center points.
The center points equal the median (center) of the ’levels’ used in the above
factorial design (F = 0.8, CR = 0.8 and np = 35). This experiment is
repeated 4 times to measure the magnitude of random error (σ2), resulting
from different values of the response variable for identical settings (Fang et
al. (2006)). Table 3 illustrates the experimental region where the three factor
levels, low, center and high, are coded -1, 0 and 1, respectively.24

Table 3: Experimental Design Coding.

Code F CR np
-1 0.7 0.7 20
0 0.8 0.8 35
1 0.9 0.9 50

Finally, two more extreme levels are considered for each input variable
which extent the experimental region by α times the original range, defined
above e.g. ±α·△F = ±α·0.1. A proportion of α determines the distance of
the additional extreme levels from the center. The value α is calculated in
this experiment based on orthogonal and rotatable designs (Box and Draper
(1987) and Barker (1985)). Each design suggests a different distance from
the center points. An orthogonal design is more concentrated around the
center point while a rotatable design covers a wider surface area. When little
is known about the search domain a rotatable design might be more helpful
in exploring it, since it allows for a higher dispersion around the origin.
However, one should be careful in choosing the distribution of experimental
points around the origin, since unreasonably low or high values might result

23Practical advice for optimizing objective functions with DE is given on
www.icsi.berkeley.edu/∼storn/.

24To code the factor levels the following rule is applied, e.g. for the high level of F :

Fhigh − Fcenter

(Fhigh − Flow)/2
=

0.9 − 0.8

(0.9 − 0.7)/2
= 1 (7)
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Figure 7: CCD Graph for three factors.
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in high uncertainty of the response output.25

These additional levels are coded with α and are sequentially placed at
±α. When α is positive, the equivalent proportion of α is +0.1414, +0.1414
and +7 value for F , CR and np, respectively. The equivalent α is added to
the center point of each input parameter (e.g. for F 0.8 + α). When α is
negative, a proportion of it is deducted from the center point (e.g. for F 0.8
- α).26 Only one parameter is altered every time, while all other parameters
take the center value. In a similar way as above, the Greek letters indicate
which factor deviates from the center point.27

Table 4 demonstrates the experimental design with all 18 level combina-
tions considered in the exercise. The graphical representation of these com-
binations is shown in Figure 7. There are only 15 possible factor level com-
binations and the experiment using factors’ center levels (F = 0.8, CR = 0.8
and np = 35) is repeated four times. Also, Figures 8 and 9 illustrate all factor
level-combinations used to form the experimental region for orthogonal and
rotatable designs, respectively.

All 18 set-ups of the experimental design are used to estimate Equation
2. Then, a second order polynomial is fitted and the optimal combination
of DE factors is determined. Finally, Equation 2 for CAMP is re-estimated

25While experimental methodologies should be applied when there is some knowledge
about the levels of the input variables, Lin et al. (2010) suggest that uniform design might
be even better than orthogonal and rotatable ones in the absence of design knowledge.

26The decimal positions are omitted for np value since they do not improve or destroy
the integrity (mathematical results) of the design.

27For the explicit calculation of α’s based on orthogonal and rotatable design see Hill
and Lewicki (2006).
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Table 4: Experimental Design (Simulation Setup).

Design Combination Setup F CR np
Factorial r 1 -1 -1 -1

χ 2 1 -1 -1
ψ 3 -1 1 -1
χψ 4 1 1 -1
ω 5 -1 -1 1
χω 6 1 -1 1
ψω 7 -1 1 1
χψω 8 1 1 1

Center node 9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0

Orthogonal +αχ 13 α 0 0
-αχ 14 −α 0 0
+αψ 15 0 α 0
-αψ 16 0 −α 0
+αω 17 0 0 α
-αω 18 0 0 −α
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based on the optimal factor values and its performance is tested against the
LMS residuals reported in Winker et al. (2010).

Figure 8: CCD with orthogonal design
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Figure 9: CCD with rotatable design
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