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ABSTRACT

No-arbitrage term structure models impose cross-sectional restrictions among yields and
can be used to impose dynamic restrictions on risk compensation. This paper evaluates the
importance of these restrictions when using the term structure to forecast future bond yields.
It concludes that no cross-sectional restrictions are helpful, because cross-sectional properties
of yields are easy to infer with high precision. Dynamic restrictions are useful, but can be
imposed without relying on the no-arbitrage structure. In practice, the most important
dynamic restriction is that the first principal component of Treasury yields follows a random
walk. A simple model built around this assumption produces out-of-sample forecasts that
are more accurate than those of a variety of alternative dynamic models.
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1 Introduction

No-arbitrage affine term structure models are rapidly becoming important forecasting tools.

In particular, Gaussian versions are employed by Duffee (2002), Dai and Singleton (2002),

and Christensen, Diebold, and Rudebusch (2010) to predict Treasury yields, by Cochrane

and Piazzesi (2008) to predict excess bond returns, and by Ang and Piazzesi (2003) to predict

macroeconomic activity. This literature argues that models satisfying no-arbitrage should

produce more accurate forecasts than models that do not impose such restrictions.

Affine term structure models are linear factor models of the term structure. Like other

standard factor models, they have a time series and a cross-sectional component. The former

is a description of the dynamics of a low-dimensional vector of factors. The latter is a linear

mapping from factors to the yield on anm-maturity bond. No-arbitrage implies the existence

of an equivalent-martingale measure, which imposes the restrictions of Duffie and Kan (1996)

on this cross-sectional mapping.

Thus if our goal is to forecast anything other than the factors themselves, the value of

Duffie-Kan restrictions appears obvious: a relatively small number of parameters determines

the entire time-t shape of the yield curve conditional on the time-t factors. If we do not

impose no-arbitrage on the factor model, the mapping from factors to yields is much more

flexible. Put differently, no-arbitrage reduces substantially the number of cross-sectional free

parameters. Standard economic intuition tells us that out-of-sample forecasting accuracy

should improve as long as the Duffie-Kan restrictions are satisfied in the data.

This logic is incorrect. The first major contribution of this paper is to show that Duffie-

Kan restrictions are unnecessary to estimate the cross-sectional mapping. The intuition is

straightforward. If we take literally the assumption that yields are linear functions of some

factors (and a constant), those factors are also linear combinations of yields. For example,

if n factors determine yields, the state vector can be rotated to equal the first n principal

components of the term structure. To determine the cross-sectional mapping from the factors

to an m-maturity yield, simply regress the yield on the factors. There is no estimation error

in the coefficients because the regression R2s are one.

In practice, a low-dimensional factor representation of yields does not exactly hold, hence

R2s are not quite one. Therefore empirical applications of term structure models add mea-

surement error to yields. But with a reasonable choice of the number of factors (three is

sufficient), variances of measurement errors are tiny relative to variances of yields. Typical

cross-sectional R2s are around 0.999. Hence cross-sectional loadings of yields on factors are

estimated with extremely high precision using ordinary least-squares. The largest plausible

deviation between yields fitted to OLS estimates of the loadings and yields fitted to true

1



loadings is only a few basis points.

Some readers have incorrectly interpreted this argument as meaning “no-arbitrage holds

so strongly in the data that it need not be imposed.” Instead, a linear factor model holds so

strongly in the data that no cross-sectional restrictions are necessary to infer cross-sectional

behavior. This does not imply that the Duffie-Kan restrictions are irrelevant. If the restric-

tions are inconsistent with the true cross-sectional patterns in the data, imposing them will

produce different, and presumably worse, estimates of the cross section than those produced

without imposing the restrictions. This conclusion also applies to models that impose cross-

sectional restrictions that are not derived from no-arbitrage, as in the dynamic Nelson-Siegel

model of Diebold and Li (2006). Cross-sectional restrictions bite only if they contradict the

true linear factor model.

The application of this result to forecasting picks up where Joslin, Singleton, and Zhu

(2011) ends. They show that for Gaussian models that impose no-arbitrage but do not

otherwise restrict risk premia dynamics, Duffie-Kan restrictions are irrelevant to estimating

factor dynamics. The results here show that the restrictions do not help estimate cross-

sectional mappings from factors to yields. In combination, these two conclusions imply that

the mere existence of an equivalent-martingale measure contributes nothing to Gaussian

term structure estimation and forecasting.

However, the Joslin et al. (2011) result does not apply to a rapidly growing literature

that uses no-arbitrage as a framework to impose additional restrictions on the factors. In

a Gaussian setting, an equivalent-martingale measure is specified and its properties are

parametrically linked to the properties of the physical measure. The result is a Gaussian

linear factor model of the term structure that has both restrictions on factor dynamics

and Duffie-Kan restrictions on the cross section. The former restrictions are equivalent to

restrictions on the dynamics of risk premia.

The second major contribution of this paper is to show that empirically valuable re-

strictions on Gaussian factor dynamics can be imposed without relying on a researcher’s

ability to intuit the correct functional form of risk compensation. I develop a parsimonious

three-factor dynamic term structure model that does not impose an equivalent-martingale

measure.

The factors are the first three principal components of yields. The model imposes a

random walk on the first principal component, and imposes stationarity on the other two

components. It has unrestricted mappings from factors to yields, in contrast to no-arbitrage

models as well as the dynamic Nelson-Siegel models of Diebold and Li (2006) and Christensen

et al. (2010). The model produces out-of-sample forecasts of yields that dominate those of

many alternative dynamic models.
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The next section evaluates the role of no-arbitrage in estimating cross-sectional relation-

ships among yields. Section 3 applies the conclusions of Section 2 to forecasting future yields.

Dynamic restrictions on term structure models are considered in Section 4. Concluding com-

ments are in the final section.

2 No-arbitrage and the cross section of yields

This section demonstrates that Duffie-Kan restrictions are unecessary to estimate the cross-

sectional properties of Treasury yields. The first subsection describes, in fairly general terms,

the no-arbitrage affine framework and its associated restrictions. The second subsection

nests no-arbitrage models in a broader class of linear factor models. The third subsection

describes the Gaussian special case of the no-arbitrage and linear factor models, which are

used extensively in Section 3. The fourth subsection discusses estimation of no-arbitrage and

linear factor models. It explains why the usefulness of cross-sectional restrictions depends

on the amount of noise (e.g., measurement error) in observed yields. The final subsection

shows that empirically, deviations of Treasury yields from a three-factor linear model are very

small. The implied amount of noise in yields is not big enough to make any cross-sectional

restrictions useful.

2.1 A no-arbitrage affine setting

There are no arbitrage opportunities, hence there is an equivalent-martingale measure. Under

this measure, assume that the risk-free short rate is an affine function of a length-n state

vector xt,

rt = δ0X + δ′1Xxt. (1)

Also adopt standard perfect market assumptions. There are no trading costs, no asymmetric

information, no agents with market power, and no taxes. Hence we rule out a variety of

real-world features of financial markets that will be mentioned in Section 2.2. With perfect

markets, a zero-coupon bond’s price is its payment at maturity discounted by expected short

rates over the life of the bond. The expectations are calculated using equivalent-martingale

dynamics.

Finally, assume that the equivalent-martingale dynamics of xt (including behavior at any

boundaries) are in the set of dynamics that, when combined with the short-rate equation

(1), produces an affine mapping from the state vector to zero-coupon bond yields. Duffie

and Kan (1996), building on the work of Vasicek (1977) and Cox, Ingersoll, and Ross (1985),

describe continuous-time models in this class. Discrete-time models include the Gaussian
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class first explored by Backus and Zin (1994) and a non-Gaussian class characterized by Le,

Singleton, and Dai (2010).

Since xt is a latent vector, normalizations must be imposed to identify the parameters

of the equivalent-martingale dynamics and the short-rate equation. Denote an identified

parameter vector as Φq
X . The makeup of Φq

X depends on the particular model. An example

of the elements of Φq
X is presented in Section 2.3, which lays out the workhorse discrete-time

Gaussian model. In the general affine case, the mapping from factors to yields is

y
(m)
t = α

(m)
X (Φq

X) + β
(m)
X (Φq

X)
′xt, xt ∈ ΩX(Φ

q
X), (2)

where the yield on an m-maturity bond is denoted y
(m)
t . The functions α

(m)
X and β

(m)
X are

model-specific. They are calculated using the differential equations of Duffie and Kan (1996)

or their difference equation counterparts. I refer to the general technique as the Duffie-Kan

recursions. The state vector can take on any value in ΩX , which is a subset of Rn. This

space is determined by the equivalent-martingale dynamics.

To understand the role of no-arbitrage in affine models, it is helpful to transform the

state vector. Define the d-vector Yt, d > n, as a vector of yields on bonds with constant

maturities M = {m1, . . . , md}. Stack each yield’s affine mapping (2) to express the yield

vector as

Yt = AX(M,Φq
X) +BX(M,Φq

X)xt. (3)

Let P be an n× d matrix with rank n. Use this matrix to express n linear combinations of

yields as a function of the state vector,

Pt ≡ PYt = PAX(M,Φq
X) + PBX(M,Φq

X)xt. (4)

To simplify notation, the arguments of the d-vector AX and the d×n matrix BX are hence-

forth suppressed. Outside of knife-edge cases, the matrix PBX is invertible, so Pt contains

the same information as xt. Substitute xt out of (3) using (4), expressing yields as affine

functions of Pt:

Yt = AP (M,Φq
X , P ) +BP (M,Φq

X , P )Pt, Pt ∈ ΩP (M,Φq
X , P ), (5)

AP =
(
Id×d − BX (PBX)

−1 P
)
AX , BP = BX (PBX)

−1 . (6)

In (5), ΩP is the subset of Rn that is the admissible space for Pt. Note that the vector

AP and the matrix BP ensure the internal consistency of (5). Mathematically, this means

premultiplication of AP and BP by P produces a zero vector and an identity matrix respec-
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tively.

2.2 A general linear factor model

There are no arbitrage opportunities. But the absence of arbitrage alone, without the as-

sumption of perfect markets, does not imply (2). The market for Treasury securities is

decidedly imperfect. Both trading costs and institutional features of the Treasury market

affect Treasury yields. For example, owners of on-the-run Treasury bonds usually have the

ability to borrow at below-market interest rates in the repurchase market. Certain Trea-

sury securities trade at a premium because they are the cheapest to deliver in fulfillment of

futures contract obligations. Treasury debt is more liquid than non-Treasury debt, which

is one reason why Treasury bonds are perceived to offer a “convenience yield” to investors

in addition to the yield calculated from price. In a nutshell, returns calculated from bond

yields do not necessarily correspond to returns realized by investors. Evidence suggests that

these market imperfections can have significant effects on observed yields.1

If we are unwilling to assume perfect markets, we can replace (5) with a standard lin-

ear factor framework. Yields are affine functions of the state vector, but no cross-bond

restrictions are applied to

Yt = aP + bPPt, Pt ∈ R
n. (7)

Underlying (7) is the assumption that the effects of market imperfections on yields are affine

functions of the state. We weaken this assumption in Section 2.4. The only constraint on

the coefficients of (7) is that premultiplication of (7) by P must produce Pt on the right side.

Therefore

PaP = 0, P bP = I. (8)

There are d(n+ 1) elements of aP and bP in (7) and n(n+ 1) constraints on these elements

in (8). Therefore there are (d− n)(n+ 1) free cross-sectional parameters.

The mapping (7) describes the cross section of yields Yt. In this sense, it is a term

structure model that nests the no-arbitrage model of Section 2.1, which also describes this

cross section. The cost of not using the Duffie-Kan recursions is that we give up the ability

to determine prices of other fixed-income instruments. The no-arbitrage model is a model

of the cross section of fixed income. It can be used to price all claims contingent on these

yields, such as coupon bonds and bond options. Equation (7) only prices bonds in terms

1The first academic evidence appears to be Park and Reinganum (1986). Early research focused on prices
of securities with remaining maturities of only a few weeks or months. Duffee (1996) contains evidence and
references to earlier work. Evidence of market imperfections at longer maturities is in Krishnamurthy (2002),
Greenwood and Vayanos (2010), and Krishnamurthy and Vissing-Jorgensen (2007).

5



of other bonds. However, this limitation is irrelevant from the perspective of much of the

empirical dynamic term structure literature because of the literature’s exclusive focus on

yield dynamics.

2.3 A discrete-time Gaussian example

Discrete-time Gaussian models are used extensively in Section 3. Using a version of the

identification scheme of Joslin et al. (2011), the state vector’s equivalent-martingale dynamics

are

xt+1 = diag(g)xt + ΣXε
q
t+1, εqt+1 ∼ MV N(0, I). (9)

The notation diag(g) denotes a diagonal matrix with the vector g along the diagonal. This

vector consists of distinct real values, none of which equals one. By construction, they are

the eigenvalues of diag(g). More general specifications of eigenvalues are considered in Joslin

et al. (2011). The matrix ΣX is lower triangular. The short-rate equation (1) is specialized

to the case where the short rate is the sum of a constant and the elements of the state vector,

rt = δ0X + ι′xt, (10)

where ι is an n-vector of ones.

The physical dynamics of xt are not modeled here because they are irrelevant to pricing.

Thus the parameter vector contains only the parameters of (10) and (9),

Φq
X = {δ0X , g, vech(ΣX)}, (11)

which has 1+n+n(n+1)/2 elements. The functional forms of the no-arbitrage yield mapping

(2) are in the appendix.

Contrast the two mappings from the state vector Pt to the yield vector Yt, given by

(5) and (7). The linear factor version has (d − n − 1)(n + 1) − n(n + 1)/2 additional

free parameters. Put differently, the Duffie-Kan recursions of the Gaussian model impose

(d− n− 1)(n+ 1)− n(n+ 1)/2 restrictions on the cross section of d yields.

The intuition behind the number of restrictions is straightforward. In any no-arbitrage

model with n shocks, the prices of n assets determine the compensation for each of the n

shocks, given the magnitude of the shocks and the short rate. The n(n + 1)/2 parameters

of ΣX determine the magnitudes of the n shocks to the term structure. Here we do not

observe the short rate (unless it is included in Yt), therefore we must observe the price of

an additional bond in order to pin it down. Put differently, if we know the parameters of

ΣX and observe prices (yields) of only n + 1 bonds, no-arbitrage has no bite relative to a
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more general linear factor model.2 There is a one-to-one mapping from the linear factor

model parameters to the no-arbitrage model parameters. Each additional bond adds n + 1

overidentifying restrictions because the additional bond must be priced consistently with the

initial n+ 1 bonds.

2.4 Some cross-sectional estimation intuition

Consider a empirical setting where we observe a d-vector of constant-maturity yields Ỹt, t =

1, . . . , T . We want to estimate parameters of both an n-factor no-arbitrage model and an

n-factor linear factor model. We also want to test the null hypothesis that overidentifying

restrictions implied by the Duffie-Kan recursions are consistent with the data. Formally, the

null hypothesis is

H0 : aP = AP (M,Φq
X , P ) ,

bP = Bp (M,Φq
X , P ) ,

Pt ∈ ΩP (M,Φq
X , P ) . (12)

The maintained hypothesis is that the linear factor model (7) holds.

Estimation and testing critically depend on the relation between observed yields Ỹt and

yields in the model, Yt. A standard setting is where observed yields differ from model-implied

yields owing to some idiosyncratic component in yields

Ỹt = Yt + ηt, E(ηt) = 0, E(xtη
′
t+j) = 0 ∀ j. (13)

The observable proxy for the state vector is

P̃t ≡ P Ỹt = Pt + Pηt. (14)

The stochastic component ηt is treated as measurement error when the no-arbitrage frame-

work of Section 2.1 is used. With the more general linear factor framework, ηt may be

interpreted broadly as idiosyncratic components of yields. These may be the product of pre-

ferred habitats, special repurchase rates, or variations in liquidity. The additional structure

placed on this noise determines how the models should be estimated.

To develop intuition for estimation and testing, first consider the case where ηt is identi-

cally zero, or

2This is a slight overgeneralization. No-arbitrage imposes some inequality constraints. For example, in a
one-factor Gaussian model with two observed bond yields, no-arbitrage requires that the relation between
the factor and the yields is the same (positive or negative) for both bonds.
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Noise assumption 1

Ỹt = Yt ∀ t. (15)

There is no measurement error or other idiosyncratic components to yields. With this

assumption, cross-sectional estimation and testing are trivial, as shown by the following

two propositions.

Proposition 1. If the linear factor model cross-sectional mapping (7) is correct and observed

yields satisfy (15), exactly one parameter vector satisfies the mapping.

Proof. With (15), the state vector Pt is observable. The proposition stipulates that

(7) holds. Replacing Yt on the left of (7) with Ỹt produces an affine equation in terms of

observables. The parameters of the equation are estimated without error by OLS regressions

since the R2s of the regressions are all one. Denote these estimates by âOLS
P and b̂OLS

P . Any

alternative choice of aP or bP violates (7) for some pair {Ỹt,Pt} in t = 1, . . . , T .3

If these OLS regressions do not have R2s of one, then either the general linear factor

model or the observation assumption (15) is false. The next proposition states the same

conclusion for the no-arbitrage model.

Proposition 2. If the cross-sectional mapping of the no-arbitrage model is correct and

observed yields satisfy (15), exactly one parameter vector satisfies the mapping.

Proof. Follows Proposition 1. The parameter vector is calculated by replacing Yt with

Ỹt in (5) and numerically solving for Φq
X by minimizing squared errors. Since the parameter

vector is identified by definition, errors are identically zero for a single value of the vector.

Denote this vector by Φ̂q,ML
X , indicating a maximum likelihood (ML) solution. Conditional

on the realized state vectors, the likelihood of observing the time series of Ỹt is one when

Φq
X = Φ̂q,ML

X , and equals zero for any alternative candidate parameter vector. Once the

parameter vector is determined, the admissible space ΩP of Pt can be calculated.

If there is no parameter vector for which errors are identically zero, or if the time se-

ries Pt, t = 1, . . . , T is not in ΩP , then either the no-arbitrage model or the observation

assumption (15) is false.

The combination of these propositions is

3Assume that the length of the time series T is sufficient to identify each set of parameters. For example,
T = 1 does not allow us to identify separately the constant term aP and the factor loadings bP .
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Corollary 1. If the cross-sectional mapping of the no-arbitrage model is correct and ob-

served yields satisfy (15), then the null hypothesis (12) is identically satisfied by

H0 : âOLS
P = AP

(
M, Φ̂q,ML

X , P
)
,

b̂OLS
P = Bp

(
M, Φ̂q,ML

X , P
)
. (16)

The corollary tells us that if the Duffie-Kan overidentifying restrictions are exactly sat-

isfied in the data, imposing them does not improve the estimation accuracy of the cross-

sectional mapping from factors to yields. This is not a statement that the overidentifying

restrictions are weak in some way. Instead, the point is that with a linear factor model,

equivalent-martingale dynamics are unnecessary to estimate cross-sectional mappings.

This strict conclusion relies on the lack of noise in observed yields. With sufficient noise

in observed yields, Duffie-Kan restrictions presumably would be helpful in estimating cross-

sectional mappings. However, the following empirical evidence shows that there simply isn’t

enough noise to appreciably alter this conclusion.

2.5 The cross-sectional behavior of Treasury yields

In practice, how closely do Treasury yields adhere to an exact linear factor model? The

answer to this question presumably depends on the data sample. Empirical research typically

uses month-end observations of zero-coupon bond yields that are interpolated from coupon

bond yields. I therefore focus on these data.

I use yields on eight zero-coupon bonds. The maturities are three months, one through

five years, ten years, and fifteen years. The three-month yield is the T-bill yield. Yields from

one through five years are constructed by Center for Research in Security Prices (CRSP).

Yields on the ten and fifteen years bonds are constructed by staff at the Federal Reserve

Board. The sample is 456 month-end observations from January 1972 through December

2009. Earlier data are available, but long-term bonds were not a prominent component of

the Treasury market until late 1971.

Stack the eight observed yields at month-end t in Ỹt. Following Litterman and Scheinkman

(1991), I examine how well the cross section of yields is explained by three factors. The ma-

trix P is chosen to correspond to the loadings of first three principal components of Ỹt. The

empirical counterpart to (7) is

Ỹt = a + bP̃t + η̂t. (17)

I estimate the eight equations separately with OLS. One of the advantages of OLS estimation
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is that the internal consistency requirements of (8) are automatically satisfied. Results are

in Table 1.

The main message of this table is that the three-factor linear model is an almost exact

fit to these data. The mean R2 across the eight regressions is 0.9993. Residual standard

deviations range from five to twelve basis points of annualized yields. First-order serial

correlations of residuals are high. By lag 19, the serial correlation has effectively disappeared.

Therefore the standard errors are adjusted for generalized heteroskedasticity and 18 lags of

moving-average residuals.

Interpolation of zero-coupon yields from coupon bond yields introduces measurement

error in yields. Bekaert, Hodrick, and Marshall (1997) estimate that, for maturities between

one and five years, standard deviations of such measurement error are in the range of six

to nine basis points. It is worth noting that the standard deviations of residuals for the

artificially-constructed bonds in Table 1 are in the neighborhood of these standard deviations.

However, since linear combinations of any measurement error also appear on the right side

of (17), we cannot jump to the conclusion that this three-factor model holds exactly up to

measurement error induced by interpolation.

Because the residuals are so small, the coefficients of (7) are estimated with extremely

high precision. To put this precision into an economically meaningful context, I look at

worst-case scenarios for differences between fitted yields using OLS estimates of (17) and

yields implied by the unknown true coefficients of (17). For these worst-case scenarios,

assume that the true regression coefficients for bond i are all two standard errors away from

the point estimates reported in Table 1. For example, the true constant term for the three-

year bond is either −7.8 basis points or 0.8 basis points instead of the estimated 3.5 basis

points. The worst-case scenarios all have realizations of the factors P̃t that are two sample

standard deviations away from their means. For bond i, the worst-case scenario produces

an absolute difference between OLS-fitted and “true” yields of

|worst case|i = 2

(
SEi(constant term) + 2

3∑
i=j

SEi(coef on PCi) Std(Pi,t)

)
. (18)

Across the eight bonds, the worst of the worst-case scenarios produces a maximum absolute

difference between OLS-fitted and “true” yields of only seven basis points. Almost all of this

uncertainty is created by sampling error in the regressions’ constant terms.

The strikingly high R2s in Table 1 are at the heart of this conclusion. To ensure that

R2s close to one are the norm, not the exception, I estimate the same regressions over

subsamples. There are 337 overlapping samples of 120 months in the 1972 through 2009

period. For each of these ten-year periods, I construct principal components of the eight
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bond yields, then regress individual yields on thse first three components. This exercise

produces, for each bond, 337 R2s, residual standard deviations, and residual first-order serial

correlations. Table 2 reports the means of these statistics. It also reports the minimum R2s

and the maximum residual standard deviations and residual serial correlations. Because the

numbers do not differ much from one bond to another, results are reported for only five of

the eight simulated bond yields.

The clear conclusion to draw from Table 2 is that the three-factor linear model fits each

of these subsamples almost perfectly. The mean R2s are in the range of 0.997 to 0.999. The

lowest R2 across all subsamples and all bonds is 0.994. Residual standard deviations are in

the range of five to ten basis points; the highest across all subsamples and bonds is twelve

basis points. The serial correlations are around 0.5 to 0.7, although there are subsamples

with particularly high serial correlations for the longest-maturity bonds (in excess of 0.8).

Given these results, it is hard to imagine that no-arbitrage models are much of a help in

fitting the cross-section of yields. Monte Carlo simulations in Section 3.3 confirm the cross-

sectional irrelevance of the Duffie-Kan restrictions, but the simulation evidence does nothing

more than verify an obvious conclusion. It is clear from the extreme case of mismeasurement

in the full sample, as calculated in (18). Imagine that somehow we have discovered the true

functional form of the no-arbitrage model that describes yields over this sample, and our

estimates of this model’s parameters are infinitely precise. Using this no-arbitrage model,

the best improvement in fit relative to cross-sectional regressions is only seven basis points,

an amount that can be lost in the measurement error of zero-coupon bond yields.

3 Forecasting

The Duffie-Kan restrictions, and no-arbitrage restrictions in general, are inherently cross-

sectional. Nonetheless, Duffie-Kan restrictions may be useful in estimating physical dynam-

ics, even when they are unneeded to estimate cross-sectional relationships. The reason is

that physical dynamics share features of equivalent-martingale dynamics. Thus equivalent-

martingale parameters estimated from the cross section can help pin down physical dynam-

ics. The closer the links between these two sets of dynamics, the more informative the cross

section is about the time series.

But as with cross-sectional estimation, whether the restrictions are useful in practice is

ultimately an empirical question. This section asks whether the Duffie-Kan restrictions on

Gaussian models improve out-of-sample forecasts of bond yields. Any dynamic term struc-

ture model can be used for forecasting future yields. However, the literature focuses almost

exclusively on Gaussian models because of their flexibility in fitting observed variations in
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expected excess bond returns.

This section shows that if the true data-generating process is Gaussian and satisfies

the Duffie-Kan restrictions, imposing the restrictions has no effect on forecast accuracy.

According to Monte Carlo simulations, out-of-sample forecasts produced by estimating a

simple linear factor Gaussian model are very close to forecasts produced by estimating an

essentially affine Gaussian model. Differences in root mean squared errors of these forecasts

are measured in hundredths of basis points.

The first subsection describes these two dynamic term structure models. The second

explains how the models are estimated and distinguishes between the contributions of Joslin

et al. (2011) and the current paper. The third subsection presents the Monte Carlo evidence.

The fourth asks a related question: is the cross section of Treasury yields consistent with

a three-factor essentially affine model? It concludes that deviations from this model are

economically very small, but statistically strong.

3.1 Two Gaussian dynamic models

As in the analysis of the cross section, treat the n linear combinations of yields Pt as the

state vector. Since this is the same vector that determines the cross section of yields, hidden

factors that play a role in the models of Duffee (2011) and Joslin, Priebsch, and Singleton

(2010) are ruled out.

We work with two Gaussian models. One is an unrestricted essentially affine model,

which imposes Duffie-Kan restrictions. The other is a linear factor model, which ignores

no-arbitrage and nests the former model. The models have the same physical dynamics of

the state vector, given by

Pt+1 = μP +KPPt + ΣP εt+1. (19)

The matrix ΣP is lower triangular. The linear factor model consists of (19) and the cross-

sectional mapping (7). This combination is a complete dynamic description of the evolution

of the constant-maturity yield vector Yt.

No-arbitrage connects physical dynamics to equivalent-martingale dynamics. The unre-

stricted essentially affine version Gaussian model, introduced in Duffee (2002), has the weak-

est connection. The two measures share only the conditional volatility of shocks. Therefore

μP and KP are free parameters. Restricted essentially affine models impose links between

conditional expectations under the physical and equivalent-martingale measures, producing

restrictions on μP and KP . Restricted models are considered in Section 4.

Following the parameter identification approach in Joslin et al. (2011), the volatility
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matrix ΣP is

ΣP = (PBXΣXΣ
′
XB

′
XP

′)1/2 , (20)

where ΣX is the volatility matrix of the equivalent-martingale dynamics (9). Therefore the

free parameters of the unrestricted essentially affine model are

ΦP = {Φq
X , μP , vec(KP );P,M}. (21)

The parameter vector Φq
X is defined by (11). The parameters μP and KP depend on the

factor rotation, which in turn depends on the exogenously-specified matrix P and maturities

M.

3.2 Forecasting with the two models

Return to the empirical setting of Section 2.4. We want to forecast, as of the end of the

sample T , the bond yield vector as of time T + s. The forecasting tools are the two dynamic

Gaussian models of Section 3.1. The structure placed on the noise ηt in (13) determines

how we should estimate parameters and forecast yields. We follow Joslin et al. (2011) by

adopting the ad-hoc, but particularly convenient assumption

Noise assumption 2

Pηt = 0 ∀ t, Lηt ∼ N(0, σ2
ηI), E

(
ηtη

′
t+s

)
= 0 ∀ s �= 0, (22)

where L is a (d − n) × d matrix with rank d − n that is linearly independent of the ma-

trix P . This assumption implies that the state vector Pt is observed without noise by the

econometrician. The assumption that ηt is independent across time is at odds with the serial

correlations reported in Tables 1 and 2, but for our purposes little is gained with a more

complicated error structure.

Begin with estimation of the unrestricted essentially affine model. The major result

of Joslin et al. (2011) is that in this setting, conditional ML estimates of μP and KP in

(19) correspond to their unrestricted vector-autoregression (VAR) estimates. Therefore the

Duffie-Kan restrictions are irrelevant to forecasting the state vector.

Their result may appear obvious from the representation of the free parameter vector

(21) because μP and KP do not appear in the equivalent-martingale dynamics. However,

although this parameter separation is necessary for their result, it is not sufficient. There are

two other important ingredients. The first is observability of the state vector. When it is not

observable, maximum likelihood uses filtering to infer the state’s physical dynamics. The
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information in a given bond’s yield about these physical dynamics depends on the amount of

noise in the yield, which is estimated using the cross-sectional mapping from the state vector

to yields. The second is Gaussian physical dynamics. If volatilities were state-dependent,

the intuition of weighted least squares would apply, preventing separation of the conditional

mean and conditional variance parameters in ML estimation.

Given the VAR estimates of μP and KP , denote the time-t forecasts of the time-(t + s)

state vector as EV AR(Pt+s|Pt). The unrestricted essentially affine forecast of time-(t + s)

yield vector is then

E (Yt+s|Pt) = AP (M, Φ̂q,ML
X , P ) +BP (M, Φ̂q,ML

X , P )EV AR (Pt+s|Pt) , (23)

where ML estimation of the parameter vector Φq
X follows Joslin et al. (2011).

Estimation of the linear factor model is simpler. When noise in yields is characterized

by (22), conditional ML estimation of the physical dynamics (19) is equivalent to VAR

estimation. Similarly, ML estimation of the cross-sectional parameters aP and bP in (7) is

equivalent to OLS regressions of observed yields on the observed state vector. As noted in

Section 2.5, OLS estimation automatically enforces the internal consistency constraints of

(8). Forecasts produced with the linear factor model have the same form as (23). The only

difference is that AP and BP are replaced with estimates of aP and bP .

Since Pt is a linear combination of yields, it is not obvious from (23) how important the

estimates of AP and BP (or, in the linear factor model case, aP and bP ) are to forecasting.

After all, if we are only interested in forecasting future values of the state vector itself,

these cross-sectional estimates play no role. For example, if our goal is to forecast the first

n principal components of yields, we can simply estimate an unrestricted VAR of these

components. This is the focus of Joslin et al. (2011).

However, practical forecasting problems often involve predicting particular yields or yield

spreads. For these problems, knowledge of the cross-sectional mapping from Pt to Yt is

critical. An example of forecasting with a three-factor unrestricted essentially affine model

illustrates the importance of the mapping. Using full sample of Treasury yields described in

Section 2.5, I estimate a VAR for the first three principal components. The parameters of the

equivalent-martingale measure are estimated with conditional ML. I then pick a particular

value of Pt and generate a twelve-month-ahead forecast of the term structure.4

The role of the cross-sectional mapping in this forecast is shown in Figure 1. The fig-

ure displays three alternative twelve-month-ahead forecasts that differ in the cross-sectional

mapping. All three mappings satisfy the Duffie-Kan restrictions, hence they differ in the

4Each element of Pt is set to one-half of its unconditional standard deviation above its mean.

14



parameters of (11). The solid line uses the actual ML estimates of this mapping, while the

other two lines use alternative parameterizations. The differences in forecasts can be sub-

stantial. For example, forecasts of the ten-year yield disagree by about one percentage point.

Since all of these forecasts are compatible with the VAR model of principal components, the

VAR model alone cannot determine the expected future ten-year yield.

Thus estimates of the cross-sectional mapping are crucial for forecasting. Recall the main

argument of Section 2, which is that unrestricted estimates of the mapping are so accurate

that there is no need to impose any cross-sectional restrictions. The argument carries over

to the case of forecasting with the two Gaussian models here, since they differ only in their

cross-sectional mappings. The Monte Carlo simulations that follow verify this conclusion.

3.3 Monte Carlo analysis

What are the practical effects on estimation and forecasting of imposing the Duffie-Kan

restrictions? Monte Carlo simulations help answer this broad question. The simulations

shed light on three specific issues. First, returning to the question examined in Section 2,

how do the restrictions affect estimates of the cross-sectional mapping from factors to yields?

Second, how do the restrictions affect out-of-sample yield forecasts? Third, does the accuracy

of these forecasts depend on whether the restrictions are imposed?

The message throughout this paper is that Duffie-Kan restrictions are unneeded. To

make this point as convincing as possible, the Monte Carlo simulations are tilted in the

direction of finding a role for the restrictions. The simulated data samples are shorter than

those typically used in empirical work, which reduces the information that can be gleaned

from the data. Similarly, the simulated noise in yields is more volatile and more persistent

than we see in Treasury yields. Finally, various “true” data-generating processes are used to

see if the results are sensitive to this choice.

3.3.1 Comparing cross-sectional fits

The first Monte Carlo exercise looks at estimates of the cross-sectional mapping from factors

to yields. The monthly data-generating process is an unrestricted essentially affine three-

factor Gaussian model. In order to choose sensible parameters for this process, the model

is first estimated with conditional maximum likelihood on the full data sample described in

Section 2.5. Estimation follows the procedure of Section 3.2. The parameters of the “true”

data-generating process are set equal to the parameter estimates.

The data-generating process specifies that yields are contaminated by measurement error.

Measurement error is mean zero, independent across bonds, and serially correlated. The first-

15



order serial correlation is 0.7 and the unconditional standard deviation is 20 annualized basis

points. This is a relatively large amount of noise. Recall from Tables 1 and 2 that deviations

from an exact three-factor mdel of Treasury yields are around 10 basis points with a monthly

serial correlation of about 0.6.

A simulated data sample is 120 monthly observations of eight bond yields. The maturities

are three months, one through five years, ten years, and fifteen years. These are the same

maturities of the yields in the actual Treasury data sample. The two Gaussian term structure

models of Section 3.1 are estimated on each simulated sample. The parameters of the physical

dynamics (19) depend on the matrix P because P determines the state vector Pt. The matrix

is set to the loadings of the first three principal components of observed bond yields in the

120-month simulated sample.

Given a data sample, the two Gaussian models are estimated with the procedure of

Section 3.2, which relies on the specification of noise (22). The matrix L in (22) is set to

the loadings of the final five principal components of the sample’s simulated bond yields.

Note that (22) differs from the specification of noise in the data-generating process. Hence

estimation maximizes a misspecified likelihood. True ML requires Kalman filter estimation.

The computational demands of Kalman filter estimation limit its applicability in Monte

Carlo settings. An earlier version of the paper used Kalman filter estimation, but the time

required for estimation limits the number of robustness checks that can be performed. The

results in the earlier version are very close to those discussed here.

Within a given simulated sample of T time series observations, the accuracy of the no-

arbitrage model’s cross-sectional estimates for bond i is measured by

RMSnoarb
i =

(
1

T

T∑
t=1

(
Yi,t − Ŷ noarb

i,t

)2)1/2

. (24)

This is the root mean squared (RMS) difference between true bond yields, which are not

contaminated by measurement error, and fitted yields. Fitted yields are determined by

the estimated mapping (5).5 A similar equation measures the accuracy of the linear factor

model OLS mapping. Note that (24) can be calculated using simulated yields but not actual

Treasury yields, which are only observed with noise. The disagreement between the two

5The reader may ask why model accuracy is not measured by differences between true and fitted param-
eters of (5). Since the matrix P is simulation-specific, the economic interpretation of these differences is not
constant across simulations.
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models is measured with

RMSdiff
i =

(
1

T

T∑
t=1

(
Ŷ OLS
i,t − Ŷ noarb

i,t

)2)1/2

. (25)

These RMS differences are computed for each simulation.

Table 3 reports means and percentiles of the Monte Carlo distributions of these three

RMS differences, calculated with 1000 simulations. Because the numbers do not differ much

from one bond to another, results are reported for only five of the eight simulated bond

yields. There are two clear conclusions to draw from the table. First, the two models have

almost identical in-sample cross-sectional accuracy. The no-arbitrage model is slightly more

accurate, but on the order of a basis point. Second, the yields implied by the two models’

cross-sectional mappings are very similar. Differences between them are seldom greater than

five basis points.

A brief discussion of results for the five-year bond is sufficient to justify these conclusions.

The interquartile range of the RMS difference between the true yield and the yield fitted by

the no-arbitrage model is six to seven basis points. This difference is is created by sampling

uncertainty in the coefficients of (3) and by the measurement error in the state vector. For the

linear factor model, the corresponding range is seven to nine basis points. Hence imposing

no-arbitrage improves the cross-sectional fit by one to two basis points. The interquartile

range of the difference between the two models’ fitted five-year bond yields is three to five

basis points. Moreover, for any other bond listed in the table, the corresponding numbers

are even smaller.

3.3.2 Comparing out-of-sample forecasts

Because differences between the two cross-sectional mappings are so small, it is not surpring

that the two Gaussian models generate similar forecasts of future yields. The simulations

discussed here focus on out-of-sample forecasts.

Each simulation consists of T time series observations of the same eight bond yields

studied in the simulations of Section 3.3.1. The two Gaussian models are estimated with

conditional maximum likelihood using the first T − 12 observations. As in the previous

simulations, P is the matrix of loadings of the first three principal components of yields in

the sample of T − 12 observations.

The resulting two models are used to forecast, as of month T − 12, the eight yields in

months T − 11 (one month), T − 9 (three months) and T (twelve months). At each horizon

there are two competing out-of-sample forecasts. Table 4 summarizes the root mean squared
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differences between the two forecasts.

For robustness, results in Table 4 are displayed for three data-generating processes, two

sample lengths, and two choices of the standard deviation of measurement error. The first

data-generating process is the one described in Section 3.3.1. The second is also a three-

factor unrestricted essentially affine model, with parameters determined by estimating the

model over the sample October 1980 to September 1989. This sample includes much of

the period when the Federal Reserve conducted its monetarist experiment. Of the rolling

ten-year samples summarized in Table 2, it has among the highest residual standard errors.6

Thus this “true” data-generating process is unusual because has dynamics similar to Treasury

yield dynamics in the 1980s.

The third data-generating process is a five-factor restricted essentially affine Gaussian

model. The functional form is recommended in Duffee (2011). Key features of this model

are discussed in Section 4.3. The parameters are determined by estimating the model over

the full sample 1972 through 2009. This process is included to study the relative performance

of the two estimated models when they are both misspecified.

The most important message of Table 4 is that for all of the reported combinations of

data-generating processes, sample sizes, and standard deviations of measurement error, the

no-arbitrage and linear factor models produce nearly identical forecasts. The largest number

in the entire table is only eight basis points. A couple of other patterns in the table are

consistent with our intuition. Disagreements between the forecasts of the two estimated

models are larger when the standard deviation of measurement error is higher and when the

number of time series observation is smaller. With ten years of data, a standard deviation

of ten basis points produces RMS differences in forecasts in the range of one to two basis

points. Doubling the standard deviation raises the RMS differences to around two to five

basis points. Then cutting the sample in half raises them further to around two to six basis

points.

Another pattern might appear puzzling. Disagreements between the two forecasts are

smaller at longer forecast horizons. Recall the two models have identical estimated dynamics

of the state vector. When the estimated dynamics are stationary (the typical case), forecasts

of yields at longer horizons tend to be closer to their unconditional means than forecasts at

shorter horizons. This damps the effect of disagreements across the two models in estimated

factor loadings.

Finally, consider the role of the data-generating process. Since only three different pro-

cesses are examined, we cannot draw broad conclusions about the results. The simulations

6More precisely, among all of the 337 rolling samples for which the sample physical dynamics (19) are
stationary, this period has the largest standard deviation of the residual to the fit of the ten-year bond yield.

18



suggest that, as long as the number of factors in the estimated models match the number of

factors in the true data-generating process, the specific parameters of that true process do

not matter much. Here, both estimated models have three factors. Holding the sample size

and the standard error of measurement error constant, the two different three-factor data-

generating processes produce RMS differences that are all within a basis point of each other.

When both estimated models are misspecified because the true process has five factors, the

RMS differences are larger. Nonetheless, they remain economically small.

Accuracy of these out-of-sample forecasts is measured by root mean squared forecast

error (RMSE) across 1,000 simulations. Table 5 reports the unrestricted essentially affine

RMSE less the linear factor model RMSE, in basis points. Negative numbers mean that the

no-arbitrage model produces more accurate forecasts. Although the results are important,

it is difficult to say much about them other than what is obvious from the table. Differences

in forecast accuracy across the two models are economically indistinguishable from zero,

regardless of sample size, standard deviation of measurement error, true data-generating

process, or forecast horizon. Differences are typically measured in the hundredths of basis

points. Every number in the table is less than one basis point in absolute value. There are

roughly as many positive values as negative ones.

To summarize, the Monte Carlo evidence shows that when the true data-generating

process is Gaussian and satisfies the Duffie-Kan restrictions, an estimated linear three-factor

model produces out-of-sample forecasts that are as accurate as forecasts produced by an

unrestricted essentially affine three-factor model.

3.4 Do Duffie-Kan restrictions hold in Treasury yields?

The intuition behind the irrelevance of cross-sectional restrictions can help us judge whether

the cross section of Treasury yields satisfies the Duffie-Kan restrictions for a particular affine

model. Here I investigate whether the cross section is consistent with a three-factor unre-

stricted essentially affine Gaussian model. Under the joint null hypothesis that the model

is correct and that we observe yields contaminated by a modest amount of measurement

error, the root mean squared disagreements of (25) should be small. In other words, the

cross-sectional mapping implied by the no-arbitrage model should be close to that implied

by a linear model that does not impose no-arbitrage. Monte Carlo simulations help us judge

what “small” means in this context.

I estimate the three-factor unrestricted essentially affine model and its linear factor model

counterpart using monthly Treasury yields described in Section 2.5. The estimation method-

ology is described in Section 3.2. I also estimate the models over rolling 120-month samples
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that are studied in Section 2.5. The RMS differences of (25) are reported in Table 6. For

the full sample, disagreements in cross-sectional fit range from two to five basis points. The

mean disagreements across the rolling samples are smaller, ranging from one to three basis

points. Even the largest disagreements across the rolling samples do not exceed six basis

points.

From an economic perspective, these disagreements are close to the Monte Carlo results

reported in Table 3, for which the true data-generating process is a three-factor unrestricted

essentially affine model. But from a hypothesis-testing perspective, the disagreements are

too large. I use Monte Carlo simulations to compute distributions of the RMS disagreements

for this sample size when the true data-generating process is the one used in Section 3.3.1 is

correct. With that process, the measurement error in yields has an unconditional standard

deviation of twenty basis points. The table reports, in brackets, 95th percentile values of the

RMS statistics. At the shorter end of the yield curve, these bounds are so small (1.3 and 3.4

basis points for three-month and one-year yields, respectively) that we can reject the null,

even with the unrealistically large amount of measurement error. With a more plausible ten

basis point standard deviation, each of the full-sample RMS disagreements exceed 95 percent

bounds. (These bounds are not reported in any table.)

One interpretation of this statistical rejection is that the linear three-factor model is

correctly specified, but that owing to market imperfections, the Duffie-Kan restrictions do

not hold. This is the argument made in Section 2.2. There is, however, an alternative, equally

plausible interpretation. Duffie-Kan restrictions may hold, but they may be the restrictions

that apply to a higher-dimensional model. In this case, both of the estimated models that

underlie the disagreements in Table 6 are misspecified because there are more than three

factors. One sign that these estimated models have too few factors is disagreement between

the no-arbitrage and linear factor model.

The last two sets of simulation results in Table 4 illustrate the point. The simulations

are generated by a five-factor restricted essentially affine Gaussian model. Yields are con-

taminated by measurement error with unconditional standard deviations of either ten or

twenty basis points. The two three-factor models are then estimated using the simulated

data. Root mean squared disagreements between their out-of-sample forecasts are notice-

ably larger—up to four times as large—as the corresponding disagreements produced by

three-factor data-generating processes with equivalent measurement error.

Monte Carlo simulations indicate that the magnitude of the cross-sectional disagree-

ments reported in Table 6 is consistent with misspecifying the number of factors. The

data-generating process is the five-factor model of Duffee (2011) used to produce the two

sets of simulation results at the bottom of both Table 4 and Table 5. The two three-factor
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models are estimated using the simulated data and the cross-sectional disagreements are

computed. The table reports, in brackets, 95th percentile values of the RMS statistics (25).

The RMS disagreement for the one-year bond is slightly outside of its bound. The other

RMS values are comfortably within their bounds.

4 Dynamic restrictions

Section 2 shows that the cross-sectional mapping from factors to yields can be estimated with

minimal sampling error whether or not Duffie-Kan restrictions are imposed. Therefore when

they are imposed—in other words, when equivalent-martingale dynamics are specified—

these dynamics are estimated with high precision. Section 3 uses the intuition of Joslin et al.

(2011) to explain why this high precision does not help predict future realizations of the

state vector in an unrestricted essentially affine model. The main reason is that the physical

and equivalent-martingale dynamics share only conditional volatilities. Hence there is no

information in the cross section about conditional physical measure expectations.

However, researchers often use the Gaussian essentially affine framework to impose re-

strictions on the dynamics of risk compensation. These additional restrictions affect forecasts

because they link conditional means of the state vector under the two measures. In the con-

text of equation (19), the the vector μP and the matrix KP are partially determined by

the equivalent-martingale parameters (11). As observed by Ball and Torous (1996), such

restrictions (if correct) improve the estimation precision of physical dynamics.

This section argues that restrictions on the dynamics of a term structure model can

improve out-of-sample forecast accuracy. But the restrictions that are most important em-

pirically do not require a no-arbitrage framework. Instead, I advocate a three-factor dynamic

model in which the first principal component of yields follows a random walk, while the sec-

ond and third principal components follow unrestricted stationary processes. Out-of-sample

forecasts of this model dominate those of a wide variety of competing dynamic term structure

models.

The first subsection discusses earlier empirical analysis to put this argument in context.

The second describes the recommended model and the third describes the horserace and its

contestants. Results are in the fourth subsection.

4.1 What we know about restrictions on dynamics

In principle, tightening the links between physical and equivalent-martingale dynamics can

have large effects on yield forecasts. There is not enough information in just the time series
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of Treasury yields to estimate accurately their dynamics. There are two reasons. First,

yield dynamics are close, both economically and statistically, to nonstationary. The survey

of Martin, Hall, and Pagan (1996) concludes that the level of yields appears to have a unit

root, while spreads between yields of different maturities are stationary. Second, researchers

are moving to higher-dimension state vectors—typically four or five factors—in response to

the evidence in Cochrane and Piazzesi (2005) that small variations in some forward rates

can predict large variations in expected excess returns to Treasury bonds. Duffee (2010)

finds that when only information from the time series is used to parameterize the physical

dynamics of such high-dimensional essentially affine Gaussian models, the resulting estimates

wildly overfit in-sample yield behavior.

Unfortunately, it is not clear how to choose a reasonable model of risk compensation

dynamics. One approach uses a researcher’s economic intuition to impose structure on risk

premia. For example, Joslin et al. (2010) assume that the compensation investors require

to face interest-rate risk varies with levels of economic activity and inflation. Duffee (2010)

restricts conditional Sharpe ratios to a “plausible” range. Another approach rules out any

variation in risk premia other than that which is needed to capture what the researcher views

as the most important features of risk premia dynamics. Examples include the models of

Cochrane and Piazzesi (2008) and Duffee (2011). Both models require that a single factor

drive variations in risk premia across all bonds. These views are formed, at least in part, by

prior empirical analysis of yield dynamics. An approach tied more explicitly to in-sample

yield dynamics is to estimate an unrestricted essentially affine model, then set to zero any

parameters for which the estimates are statistically indistinguishable from zero. One example

is Duffee (2002).

Another way to increase estimation precision is to impose restrictions directly on term

structure dynamics, bypassing restrictions on risk compensation. Diebold and Li (2006) build

a dynamic version of the term structure introduced by Nelson and Siegel (1987). Although

Christensen et al. (2010) show that the model can be interpreted as a set of restrictions on

risk premia dynamics, the restrictions are not motivated by beliefs about risk compensation.

Restrictions on dynamics can be evaluated with out-of-sample tests. Duffee (2002) sets

a simple bar for evaluating out-of-sample forecasts from a dynamic term structure model:

can it forecast better than the assumption that yields follow a random walk? He shows

the entire class of completely affine term structure models, as characterized by Dai and

Singleton (2000), fail to clear the bar. He also finds that a three-factor essentially affine

Gaussian model clears the bar. This evidence is based on forecasts for 1995 through 1998.

Diebold and Li (2006) conclude their model not only clears the bar, but is also more accurate

than the three-factor Gaussian model of Duffee (2002). Their out-of-sample forecasts are
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produced for January 1994 through December 2000.

4.2 A simple dynamic model that ignores no-arbitrage

The focus in this section is on forecasts produced by dynamic term structure models. In the

spirit of Duffee (2002), I construct a simple dynamic model that sets a bar for evaluating

out-of-sample forecasts. Following Litterman and Scheinkman (1991), the model has three

factors, which are the first three principal components of yields. Following Martin et al.

(1996), there is a single unit root. Adopting the bar of Duffee (2002), the first principal

component of yields, typically referred to as the level of the term structure, follows a random

walk.

The parameter restrictions on factor dynamics (19) that produce this model are

μP =
(

0 μP2 μP3

)′
, KP =

⎛⎜⎝ 1 0 0

0 k22 k23

0 k32 k33

⎞⎟⎠ . (26)

The first row ofKP implies that the first principal component is a random walk. A somewhat

more general model that is also explored here replaces the zeros in the first row with free

parameters. In this case, the first principal component has a unit root but changes are

partially forecastable. The zeros in the first column of KP are necessary for stationarity of

the second and third principal components. The model is completed with the cross-sectional

mapping (7). Following the results of Section 2, neither Duffie-Kan nor any other restrictions

are placed on the cross-sectional mapping.

The next two subsections determine whether any commonly-used dynamic term structure

model can clear the bar set by this model. It is important to recognize that this simple model

is built to be consistent with the observed behavior of Treasury yields through 1998, which

is the end of the sample used by Duffee (2002). Thus we are especially interested in how

this model performs over a more recent period.

4.3 A broad look at forecast accuracy

We now run a horse race with ten competing dynamic term structure models. Although the

assumption that all yields follow random walks is not a dynamic term structure model, it is

included in the horse race as a useful benchmark. Because the objective of this paper is to

compare alternative dynamic term structure models, no forecasting regressions included in

the horse races. The dynamic models are listed below.
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• General linear factor Gaussian models

Three-, four-, and five-factor versions of the Gaussian linear factor model are estimated.

Denote the models LF3, LF4, and LF5. The relevant equations are (19) and (7) with

the constraint (8). These models, which do not impose no-arbitrage, have 38, 50, and

63 free parameters respectively. The estimation methodology follows Section 3.2, where

the P matrix contains the loadings of the first n principal components of the sample’s

bond yields.

• Unrestricted essentially affine Gaussian models

No-arbitrage versions of LF3, LF4, and LF5 are also estimated. Denote the models

UEA3, UEA4, and UEA5. The relevant equations are (9), (10), and (19), where (20)

links the two measures. The models have 22, 35, and 51 free parameters respectively.

The estimation methodology follows Section 3.2.

• The model of Diebold and Li (2006)

Diebold and Li estimate their model both in unrestricted form, which allows VAR(1)

dynamics for level, slope, and curvature, and in restricted form, imposing AR(1) dy-

namics on each factor. They advocate the latter for out-of-sample forecasting, and I

use this restricted form here. Denote the model DL2006. Following Diebold and Li,

estimation uses the Kalman filter. The model has 13 free parameters, including the

standard deviation of measurement error.

• The five-factor Gaussian model of Duffee (2011)

This model tightly restricts risk premia dynamics. Only the first two principal com-

ponents of shocks to the term structure have nonzero prices of risk. Only the first of

these has a time-varying price of risk. Denote this model DU2011. Following Duffee,

estimation uses the Kalman filter. The model has 29 free parameters, including the

standard deviation of measurement error.

• Restricted linear three-factor Gaussian models

One of these two models is the three-factor Gaussian model with restrictive dynamics

(26). Denote this model by PC-RW, for “principal component random walk.” The

other is the unit-root generalization of (26), where the zeros in the top row of KP

are replaced with free parameters. Denote this model by PC-UR. In both cases, the

P matrix is the loading of the first three principal components of the sample’s bond
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yields. Estimation is with conditional maximum likelihood, assuming that (22) de-

scribes measurement error in yields. The PC-RW model has 32 parameters and the

PC-UR model has 34 parameters.

The Treasury yield data are described in Section 2.5. Each model is estimated on rolling

samples of T months, then used to predict Treasury yields at T + 3 and T + 12 months.

Forecast accuracy is measured by root mean squared forecast errors (RMSE), but not the

RMSE’s of individual bond yields. Yield forecast errors are highly correlated across bonds,

thus there is not much independent information across them. Instead, RMSEs are reported

for the the five-year yield (a proxy for the level of the term structure), the five-year yield less

the three-month yield (slope), and the two-year yield less the average of the three-month

and five-year yields (curvature).

No standard errors are computed. In a data sample mined as extensively as Treasury

yields, hypothesis tests for out-of-sample statistics mean little. Therefore the questions we

ask and the conclusions we draw are qualitative rather than quantitative. In particular, we

want to understand why the simple model of Section 4.2 works relatively well. Is data-mining

the reason? Or do regime shifts wreak havoc with forecasts of the other models? Is the main

problem with the other models the well-known downward bias in estimates of persistence

when persistence is high?

One way to help answer these questions is to compare forecasts produced with models

estimated over different sample sizes. In principle, expanding the sample used to estimate

term structure models has two competing effects on forecast performance. If the model

is specified correctly, expansion raises estimation precision and improves forecast accuracy,

especially if yields are highly persistent. But with parameter instability, including more-

distant data in estimation of a model that does not allow for instability can reduce forecast

accuracy. I therefore use both ten-year (T = 120) and twenty-year (T = 240) samples.

For T = 120, there are 325 overlapping rolling samples. The first is January 1972 through

December 1981, used to predict yields in March 1982 and December 1982. The last is January

1999 through December 2008, used to predict yields in March 2009 and December 2009. For

T = 240, there are 205 overlapping rolling samples, with the first predictions made as of

December 1991.

Based on these two sample sizes, results are reported for two periods. The first is 1982

through 2009 using T = 120. The second is 1992 through 2009, using both T = 120 and

T = 240. Most of the latter sample postdates the sample used by Duffee (2002).7 It also

7An on-line appendix contains a table that reports results for the 1999 through 2009 period, which entirely
postdates Duffee’s sample. Nothing in it alters the conclusions drawn here.

25



excludes the period when the Fed’s monetarist experiment was winding down as inflation

was choked off.

4.4 Results

Table 7 reports results for forecasts from 1982 through 2009. Table 8 reports results for

forecasts from 1992 through 2009. To avoid getting lost in details, I highlight here the three

main conclusions drawn from this exercise. First, the PC-RW model dominates all other

models in out-of-sample forecasts. Second, neither the choice to impose no-arbitrage nor

the choice of the number of factors matters much when choosing among the linear factor

models and the unrestricted essentially affine models. Their forecast accuracies are nearly

indistinguishable. Third, the performances of DL2006 and DU2011 models relative to other

models critically depend on the period studied.

4.4.1 Forecasting the level of the term structure

Begin with the “Level” columns in Table 7, which reports RMSEs for forecasts of the five-

year yield during the 1982–2009 period. The most obvious point to take from the results is

that differences among the models are not large. At the three-month horizon, the largest

difference in RMSEs across all models and is only five basis points. At the twelve-month

horizon it is 18 basis points. The discussion here focuses on the longer horizon. Results for

the shorter horizon are qualitatively the same and quantitatively muted.

At the twelve-month horizon, the RMSEs for the LF3 and LF4 models and their unre-

stricted essentially affine counterparts UEA3 and UEA4 are all 147 basis points. The RMSEs

for the five-factor versions of these models only slightly larger; 149 and 150 basis points re-

spectively. The surprising aspect of these nearly-identical RMSEs is that the number of

factors does not matter much. We know from Duffee (2010) that in-sample, four-factor and

five-factor models substantially overpredict variations in yields. Such overfitting suggests

that these models would perform relatively poorly out of sample. But over the 1982 through

2009 period there is precisely one epsisode of out-of-sample overfitting by the five-factor

models. At the end of October 2008, these five-factor models (which, like all the other

models here, are Gaussian), predicted that the three-month yield in October 2009 would be

about negative nine percent. If the final three months of the sample are excluded, the LF5

and UEA5 models have RMSEs of 146 and 147 basis points respectively. (These results are

not reported in any table.)

All of these models appear to underestimate the persistence in the level of yields. The

first row of Table 7 tells us that the simple random walk forecast of yields has an RMSE
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15 basis points smaller than those ofthe linear factor models and the unrestricted essentially

affine models. Thus not surprisingly, PC-RW has the lowest RMSE among all of the dynamic

models. Its RMSE differs slightly from that of the simple random walk forecast the model

imposes a random walk on the first principal component instead of on the five-year yield.

The more general model PC-UR has a slightly larger RMSE than the simple random walk

forecast.

We can use Table 8 to tell similar stories about forecast accuracy in the 1992 to 2009

period. When ten years of data are used in estimation, the general linear factor models

and the unrestricted factor models have “Level” RMSEs at the twelve-month horizon in the

range of 131 to 136 basis points. The random walk assumption has an RMSE of only 111

basis points. The PC-RW model has an RMSE of 110 basis points.

Do the models other than PC-RW perform poorly because of parameter instability or high

persistence in yields? Table 8 tells us, at least for the models here, that high persistence is

the culprit. When twenty years of data are used to estimate the general linear factor models,

the RMSEs are around 10 basis points smaller than they are when only ten years of data are

used. (Only results for the linear factor models are displayed. Results for the unrestricted

essentially affine models are almost identical.) This reduction suggests that including more

data produces more precise estimates of mean reversion. In the case of the LF5 and UEA5

models, it also eliminates overfitting during the financial crisis. Although using non-yield

data is outside the scope of this paper, Kim and Orphanides (2005) note that integrating

survey data into model estimation can help estimation precision.

The forecast accuracies of the DL2006 and DU2011 models are mixed. Table 7 reports

that over the 1982 through 2009 period, their RMSEs for the five-year yield are close to each

other and slightly below those of the models that do not impose random walk or unit root

constraints. In Table 8, the same statement holds for models estimated using ten years of

data. But when estimating models with twenty years of data, both the DL2006 and DU2011

models have relatively high RMSEs. The only clear result is that neither model outperforms

a random walk.

The superiority of the random walk model documented here runs counter to the evidence

of Duffee (2002) and Diebold and Li (2006). However, the out-of-sample periods studied in

this earlier work are quite short. The data used in the current paper extends their samples

by twelve and ten years respectively. In results not detailed in any table, I confirm that

these data account for the reversed conclusion. I repeated the empirical analysis of both

papers to confirm their results.8 I then extended their sample periods using more recent

8More precisely, I used expanding samples rather than the rolling samples used to construct Tables 7 and
8. I also used the starting points of their data samples, which are 1952 and 1985 respectively.
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data and verified that the random walk assumption produced lower RMSEs than either

model’s forecasts of long-horizon yields.

4.4.2 Forecasting slope and curvature

Now consider the “Slope” and “Curve” columns of Tables 7 and 8. Absolute forecast errors

are smaller for slope and curvature than they are for the level of the term structure, especially

at the twelve-month horizon. The primary reasons are that both the magnitude of the

monthly shocks and the persistence of the shocks are smaller for slope and curvature than

they are for the level of the term structure.

Since the mean reversion in slope and curvature is not captured by the assumption that

yields follow random walks, the random walk forecasts have RMSEs above those of the

dynamic term structure models. For example, in Table 7 the random walk forecasts of the

slope at the twelve-month horizon have an RMSE of 109 basis points. The corresponding

RMSEs for the linear factor models and the essentially affine models are about 10 to 15 basis

points smaller. The curvature RMSEs follow a similar pattern. These results carry over to

shorter period examined in Table 8.

The only other result that holds across both periods and both estimation sample sizes

is that the DL2006 model has slope RMSEs above those of the models with unconstrained

dynamics. The performance of the other models is a little scattershot. For example, the

DU2011 model has a slope RMSE that is either middle of the road (Table 7), very low (Table

8, T = 120), or high relative to other estimated models (Table 8, T = 240). The PC-RW

model has a relatively high slope RMSE over the entire period 1982 through 2009 (Table 7),

but has the lowest slope RMSE over the 1992 through 2009 period (Table 8, both T = 120

and T = 240).

In summary, the PC-RW model is the clearly preferred dynamic term structure model

from the perspective of RMSE. Over the 1992 through 2009 period this model has the lowest

RMSE for level and slope, and its RMSE for curvature is equal to the lowest among the

dynamic models (for T = 240), or only three basis points above the lowest (for T = 120).

Over the entire 1982 through 2009 period, the RMSE for level is between 16 and 21 basis

points lower than the corresponding RMSEs for all other dynamic models. The model’s

level and slope RMSEs are slightly high, but not enough to offset the model’s advantage in

forecasting the level of the term structure.
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5 Conclusion

Dynamic no-arbitrage term structure models have long been recognized as powerful tools

for cross-sectional asset pricing. For example, they allow us to price exotic term structure

instruments given the properties of standard instruments. But they have nothing special to

offer when we are interested in inferring the cross-sectional relation among yields on bonds

of different maturities. The reason is that the Treasury cross section almost exactly fits a

linear factor model. Cross-sectional relations among yields in a linear factor model are easy

to infer from yields without imposing a priori restrictions, whether the restrictions are those

of no-arbitrage or some alternative model.

By contrast, restrictions on dynamics can improve forecast accuracy. But the most

important restriction from an empirical perspective is not one derived from no-arbitrage.

Instead, it is the assumption that the level of the term structure, as measured by the first

principal component of yields, follows a random walk. A Gaussian three-factor model that

satisfies this restriction and is otherwise unconstrained produces out-of-sample forecasts that

are more accurate than forecasts produced by the other dynamic models studied here.
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Appendix: Duffie-Kan formulas for the Gaussian model

General Gaussian equivalent-martingale dynamics of the state can be written as

xt+1 = μq
X +Kq

Xxt + ΣXε
q
t+1

where the short rate is

rt = δ0X + δ′1Xxt.

Denote the log price on an m-maturity zero-coupon bond by p
(m)
t . Applying the intuition of

Duffie and Kan (1996), Ang and Piazzesi (2003) show that log bond prices are affine in the

state vector. Write the log bond price as

p
(m)
t = Am + B′

mxt.

The loading of the log price on the state vector is

B′
m = −δ′1X (I −Kq

X)
−1

(I − (Kq
X)

m
)

and the constant term satisfies the difference equation

A1 = −δ0X , Am+1 = −δ0X + Am +B′
mμ

q
X +

1

2
B′

mΣXΣ
′
XBm.

Bond yields are calculated using

y
(m)
t = − 1

m
p
(m)
t .
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Table 1. Cross-sectional fit of a three-factor description of yields

Principal components of a panel of constant-maturity Treasury zero-coupon bond yields are
constructed using monthly data from January 1972 through December 2009. The maturities
are three months, one through five years, ten years, and fifteen years. Yields on the individ-
ual bonds are then regressed on the first three principal components. Standard errors are
adjusted for generalized heteroskedasticity and serially correlated residuals using 18 Newey-
West lags. The standard deviation of the residuals is σ and the serial correlation of residuals
at lag k is ρ(k). Yields are in annualized percentage points. All but the three-month yield
are constructed by interpolating coupon yields.

Maturity Constant 1st PC 2nd PC 3rd PC R2 σ ρ(1) ρ(19)

3 mon −0.138 0.385 0.584 −0.605 0.9996 0.065 0.65 −0.09
(0.0189) (0.0011) (0.0051) (0.0176)

1 year 0.278 0.389 0.376 0.138 0.9984 0.124 0.60 −0.07
(0.0365) (0.0020) (0.0089) (0.0329)

2 years 0.033 0.381 0.124 0.328 0.9995 0.070 0.49 −0.02
(0.0276) (0.0009) (0.0065) (0.0173)

3 years −0.035 0.367 −0.039 0.337 0.9996 0.060 0.31 −0.06
(0.0215) (0.0008) (0.0038) (0.0084)

4 years −0.114 0.356 −0.152 0.255 0.9991 0.086 0.54 −0.05
(0.0277) (0.0015) (0.0072) (0.0221)

5 years −0.140 0.345 −0.229 0.166 0.9992 0.079 0.66 −0.04
(0.0338) (0.0013) (0.0069) (0.0180)

10 years 0.020 0.304 −0.425 −0.265 0.9996 0.050 0.76 0.05
(0.0237) (0.0009) (0.0041) (0.0126)

15 years 0.126 0.286 −0.495 −0.480 0.9992 0.067 0.68 0.08
(0.0283) (0.0010) (0.0059) (0.0171)

34



Table 2. Rolling samples of a three-factor description of yields

This table summarizes cross-sectional regressions of Treasury yields on the three principal
components of the Treasury yield term structure. The zero-coupon bonds have maturities of
three months, one through five years, ten years, and fifteen years. All but the three-month
yield are constructed by interpolating coupon yields. For a given data sample, principal
components are defined using the sample covariance matrix of the eight yields. Within the
same sample, individual bond yields are then regressed on the first three components. The
data are monthly from January 1972 through December 2009. Regressions are estimated on
337 overlapping, rolling samples of 120 months. This table reports the mean and minimum
of the 337 R2s for five of the bonds. It also reports the mean and maximum of the standard
deviations of the fitted residuals across these regressions. Finally, it reports the mean and
maximum of the serial correlations of residuals.

Panel A. R2s

Three One Five Ten Fifteen
months year years years years

Mean of rolling samples 0.9996 0.9978 0.9981 0.9991 0.9968

Min of rolling samples 0.9985 0.9942 0.9966 0.9936 0.9937

Panel B. Standard deviation of residuals (annualized b.p.)

Three One Five Ten Fifteen
months year years years years

Mean of rolling samples 3.70 8.78 6.78 3.78 6.98

Max of rolling samples 5.41 12.31 10.90 6.07 11.23

Panel C. Serial correlation of residuals

Three One Five Ten Fifteen
months year years years years

Mean of rolling samples 0.59 0.54 0.60 0.62 0.70

Max of rolling samples 0.76 0.72 0.74 0.84 0.81

35



Table 3. Monte Carlo simulations of cross-sectional mappings from factors to yields

A single Monte Carlo simulation randomly generates ten years of month-end yields on eight
zero-coupon bonds. The data-generating process is a three-factor Gaussian model that satis-
fies no-arbitrage, with parameters given by maximum likelihood estimation over the sample
1972:1 through 2009:12. Observed yields are contaminated by serially correlated measure-
ment error (ρ = 0.7) with unconditional standard deviations of 20 annualized basis points.

Two models are estimated using the simulated data. One imposes no-arbitrage. The other
uses unrestricted regressions to estimate the cross section. The accuracy of the cross-sectional
fits is evaluated using the in-sample root mean squared (RMS) differences between true yields
(uncontaminated by measurement error) and model-implied yields. Disagreements between
the two models are measured using the in-sample root mean squared differences between the
implied yields of the two models.

The table reports means and percentiles of the distributions of these root mean squared
statistics across 1000 Monte Carlo simulations. All values are measured in annualized basis
points.

Bond maturity
Statistic 3 mo 1 yr 5 yr 10 yr 15 yr

True minus no-arbitrage Mean 13.6 8.1 6.7 8.9 10.9
25th 12.6 7.4 6.1 8.1 9.9
50th 13.5 8.1 6.6 8.8 10.8
75th 14.9 8.8 7.2 9.5 11.8
95th 16.2 9.9 8.1 10.7 13.5

True minus regression Mean 13.6 9.1 8.0 9.7 11.1
25th 12.5 8.1 7.0 8.7 10.0
50th 13.5 9.0 7.8 9.6 11.0
75th 14.5 10.0 8.9 10.5 12.0
95th 16.1 11.7 10.8 12.1 13.8

No-arbitrage minus Mean 1.6 3.8 4.3 3.9 2.5
regression 25th 1.1 2.8 3.1 2.9 1.7

50th 1.5 3.8 4.2 3.8 2.4
75th 2.0 4.8 5.4 4.8 3.1
95th 2.8 6.2 7.2 6.4 4.4
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Table 4. Monte Carlo simulation comparisons of out-of-sample forecasts

Length-T panels of month-end yields on eight bonds are randomly generated from Gaussian
no-arbitrage term structure models. The initial T − 12 observations are used to estimate
two three-factor Gaussian term structure models. The first model imposes no-arbitrage
restrictions and the second imposes only a linear factor structure. Each model is then used
to forecast the eight bond yields in months T − 11, . . . , T . The table reports root mean
squared differences between the two sets of out-of-sample forecasts. All values are in basis
points of annualized yields.

The Gaussian no-arbitrage data-generating processes are (I) a three-factor model esti-
mated over the sample 1972:1 through 2009:12; (II) a three-factor model estimated over the
sample 1980:10 through 1989:9; (III) a five-factor model estimated over the sample 1972:1
through 2009:12. Observed yields are contaminated by serially correlated measurement error
(ρ = 0.7) with unconditional standard deviation SD(noise).

True DGP SD(noise), Months Bond maturity
process ann. b.p. T ahead 3 mon 1 year 5 years 10 years 15 years

[I] 10 132 1 0.8 2.2 2.4 2.0 1.3
3 0.8 2.0 2.2 1.9 1.1
12 0.7 1.7 1.9 1.6 0.9

[I] 20 132 1 1.9 4.4 4.8 4.2 2.7
3 1.7 4.1 4.5 3.9 2.3
12 1.5 3.6 3.9 3.3 1.8

[I] 20 72 1 2.7 6.0 6.3 6.0 4.1
3 2.5 5.5 5.9 5.6 3.6
12 2.2 5.2 5.5 5.0 3.0

[II] 20 132 1 1.2 3.5 4.6 4.2 3.0
3 1.0 3.2 4.1 3.8 2.6
12 0.8 2.7 3.5 3.2 1.9

[III] 10 132 1 3.9 6.5 4.7 4.8 3.8
3 3.7 6.2 4.6 4.7 3.7
12 3.5 5.9 4.4 4.7 3.6

[III] 20 132 1 4.6 8.0 6.7 6.6 4.9
3 4.4 7.6 6.5 6.4 4.7
12 4.1 7.2 6.2 6.2 4.4
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Table 5. Monte Carlo simulation comparisons of forecast accuracy

Length-T panels of month-end yields on eight bonds are randomly generated from Gaussian
no-arbitrage term structure models. The initial T − 12 observations are used to estimate
two three-factor Gaussian term structure models. The first model imposes no-arbitrage
restrictions and the second imposes only a linear factor structure. Each model is then used
to forecast the eight bond yields in months T−11, . . . , T . For each model, root mean squared
yield forecast errors, across 1000 simulations, are calculated. This table reports the RMSE
forecast error of the no-arbitrage model less the RMS forecast error of the general linear
model. All values are in basis points of annualized yields.

The Gaussian no-arbitrage data-generating processes, labeled [I], [II], and [III], are de-
scribed in Table 4. Observed yields are contaminated by serially correlated measurement
error (ρ = 0.7) with unconditional standard deviation SD(noise).

True DGP SD(noise), Months Bond maturity
process ann. b.p. T ahead 3 mon 1 year 5 years 10 years 15 years

[I] 10 132 1 −0.01 0.02 −0.02 −0.04 0.04
3 −0.03 0.05 0.06 −0.06 0.01
12 −0.04 0.10 0.00 −0.06 0.01

[I] 20 132 1 0.02 −0.05 −0.01 −0.12 0.07
3 −0.03 0.04 0.10 −0.18 0.02
12 −0.09 0.17 −0.05 −0.16 0.02

[I] 20 72 1 −0.03 0.04 −0.11 0.24 −0.24
3 −0.04 0.01 −0.50 0.04 −0.06
12 0.08 0.01 −0.23 0.16 −0.09

[II] 20 132 1 0.04 −0.12 −0.09 −0.22 0.19
3 0.00 −0.04 0.02 −0.28 0.11
12 0.01 0.00 −0.11 −0.18 0.09

[III] 10 132 1 0.19 −0.54 −0.01 0.14 0.24
3 0.14 −0.46 −0.02 0.09 0.04
12 0.33 −0.50 0.28 −0.24 0.05

[III] 20 132 1 0.23 −0.62 −0.02 0.01 0.18
3 0.09 −0.57 −0.20 −0.08 0.06
12 0.37 −0.62 0.15 −0.37 0.15
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Table 6. Cross-sectional mappings from factors to yields, 1972 through 2009

This table summarizes differences in cross-sectional mappings from factors to Treasury yields
implied by two three-factor Gaussian models. Two term structure models are estimated
using monthly data from January 1972 through December 2009. The same models are also
estimated on rolling 120-month subsamples of this period.
One model imposes no-arbitrage. The other uses unrestricted regressions to estimate the
cross section. Disagreements between the two models are measured using the in-sample root
mean squared differences between the implied yields of the two models. The table reports
the root mean squared differences for the full sample, as well as means and maximums across
the 337 rolling samples. For the full sample, brackets display upper 95th percentiles of the
statistics, computed assuming that the no-arbitrage model is correct. Braces display the
same percentiles, computed assuming the true model is a five-factor model described in the
text. The percentiles are computed using Monte Carlo simulations. All values are measured
in annualized basis points.

Three One Five Ten Fifteen
months year years years years

Full sample 1.7 4.5 2.2 3.3 1.8
[1.3] [3.4] [3.7] [3.4] [2.1]
{3.1} {4.4} {4.2} {3.5} {3.1}

Mean of rolling samples 1.0 2.9 2.8 3.2 2.1

Max of rolling samples 2.7 5.6 4.2 5.4 3.9
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Table 7. Root mean squared errors of monthly out-of-sample forecasts, 1982 to 2009

Term structure models are estimated on rolling panels of Treasury yields with 120 monthly
observations. The models are defined in the text. The results are used to forecast the level,
slope, and curvature of the term structure three and twelve months ahead. The baseline
forecast is the assumption that yields at all maturities follow a random walk. This table
reports root mean squared forecast errors in basis points of annualized yields. Forecasts are
constructed at month-ends 1981:12 through 2008:12, for a total of 325 observations.

RMSE (b.p.) RMSE (b.p.)
Three months ahead Twelve months ahead

Model Level Slope Curve Level Slope Curve

Random walk 67 62 24 132 109 34

General linear factor models

3 factors 68 59 24 147 98 29
4 factors 69 58 23 147 96 28
5 factors 69 59 23 149 98 29

Unrestricted essentially affine models

3 factors 69 59 24 147 99 30
4 factors 69 58 23 147 96 28
5 factors 70 59 24 150 99 30

Models with constrained dynamics

Diebold-Li 70 58 24 143 101 26
Duffee 5-factor 70 59 24 144 99 29
3-factor random walk 65 60 23 129 103 30
3-factor unit root 65 61 24 135 99 29

40



Table 8. Root mean squared errors of monthly out-of-sample forecasts, 1992 to 2009

Term structure models are estimated on rolling panels of Treasury yields with either 120
or 240 monthly observations. The models are defined in the text. The results are used
to forecast the level, slope, and curvature of the term structure three and twelve months
ahead. The baseline forecast is the assumption that yields at all maturities follow a random
walk. This table reports root mean squared forecast errors in basis points of annualized
yields. Forecasts are constructed at month-ends 1991:12 through 2008:12, for a total of 205
observations.

RMSE (b.p.) RMSE (b.p.)
Three months ahead Twelve months ahead

Model Level Slope Curve Level Slope Curve

Random walk 57 52 20 111 111 32

General linear factor models, T = 240

3 factors 61 45 21 131 92 31
4 factors 62 45 21 131 91 30
5 factors 62 46 21 135 93 30

Unrestricted essentially affine models, T = 120

3 factors 61 46 22 132 94 31
4 factors 62 46 21 132 91 30
5 factors 62 46 23 136 95 32

Models with constrained dynamics, T = 120

Diebold-Li 61 48 22 123 100 26
Duffee 5-factor 61 49 24 121 85 30
3-factor random walk 56 45 21 110 85 29
3-factor unit root 57 46 22 112 89 32

General linear factor models, T = 240

3 factors 59 43 20 118 85 26
4 factors 60 43 20 120 85 26
5 factors 59 44 19 119 85 26

Models with constrained dynamics, T = 240

Diebold-Li 64 49 21 133 97 26
Duffee 5-factor 67 44 20 138 89 27
3-factor random walk 56 42 20 108 83 26
3-factor unit root 56 43 21 108 89 27

41



0 5 10 15
3

3.5

4

4.5

5

5.5

6

6.5

7

Maturity (years)

A
nn

ua
liz

ed
 y

ie
ld

 (
pe

rc
en

t)

Fig. 1. Hypothetical examples of twelve-month-ahead forecasts produced by no-arbitrage
term structure models. Three term structure models have identical specifications of fac-
tors, factor dynamics, and forecasts of these factors. The models differ in the no-arbitrage
parameters that link bond yields to the factors.
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Appendix Table. Root mean squared errors of monthly out-of-sample forecasts, 2001 to 2009

Term structure models are estimated on rolling panels of Treasury yields with either 120
or 240 monthly observations. The models are defined in the text. The results are used
to forecast the level, slope, and curvature of the term structure three and twelve months
ahead. The baseline forecast is the assumption that yields at all maturities follow a random
walk. This table reports root mean squared forecast errors in basis points of annualized
yields. Forecasts are constructed at month-ends 2000:12 through 2008:12, for a total of 97
observations.

RMSE (b.p.) RMSE (b.p.)
Three months ahead Twelve months ahead

Model Level Slope Curve Level Slope Curve

Random walk 57 59 20 96 120 28

General linear factor models, T = 240

3 factors 63 50 22 132 103 32
4 factors 64 50 21 131 103 31
5 factors 62 52 22 136 109 32

Unrestricted essentially affine models, T = 120

3 factors 63 52 23 133 105 32
4 factors 65 51 21 132 103 31
5 factors 63 53 22 136 110 32

Models with constrained dynamics, T = 120

Diebold-Li 63 55 20 122 110 25
Duffee 5-factor 61 58 27 121 95 32
3-factor random walk 56 50 21 100 90 26
3-factor unit root 57 53 22 95 99 32

General linear factor models, T = 240

3 factors 58 49 20 107 95 24
4 factors 61 49 19 113 95 23
5 factors 58 49 20 110 95 24

Models with constrained dynamics, T = 240

Diebold-Li 66 55 20 133 111 24
Duffee 5-factor 64 50 21 116 94 27
3-factor random walk 56 47 20 97 86 24
3-factor unit root 56 47 20 95 85 25
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