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1 Introduction

Viability theory is interested in the study of state constrained problems for controlled systems or differential games.
The terminology has been introduced by J.-P. Aubin [6] for controlled systems, but the story of the problem goes
back to Poincaré, who introduced the notion of the “shadow of a set” for differential equations. The investigation of
such questions for differential games has started with the pioneering works of Aubin [1], [2], [5], and has attracted
since then an increasing interest. We have tried here to explain the main achievements of the theory, and to give
some ideas of its new developments during the last years. We also provide a large—although not exhaustive—list
of references.

For a two player differential game, the viability problem in a set K, with target C, consists, for the evader, to
ensure that the state of the system reaches the target C before leaving the set of constraints K. On the contrary the
pursuer tries to make the state of the system leave the set of constraints before it reaches the target. Such a problem
is a typical “game of kind” in Isaacs’ terminology. It is also closely connected with Krassovski and Subbotin’s stable
bridges [45], [68].

A first achievement of viability theory is the complete characterization of the solution of the viability game,
as well as the numerical approximation of the solution ([23], [22]). It can be shown, in particular, that there is a
partition of the set K\C starting from which one, and only one, of the players wins. The common boundary of the
partition turn out to be a “semi-permeable barrier” in some Isaacs’ sense [50], [24].

The second important result of viability theory is the fact that many zero-sum differential games can be expressed
in terms of viability problems. These ideas are strongly inspired by Frankowska’s works (see [37] for instance). As
a consequence, such games have a value, and this value can be characterized in terms of minimal solution of some
Hamilton-Jacobi equation (in the viscosity sense [16]). Furthermore, this value can be numerically approximated.
For instance, the minimal time problem, in which the pursuer tries to capture the evader in a minimal time, can
be treated in that way, without any controllability assumption on the dynamics, and even in problems with hard
state constraints for the pursuer [25].

Application of these techniques are manifold. Without trying to be exhaustive, let us first cite the applications
in the economic domains, in particular for dynamical economic models [9] and in finance [12], [13]. In engineering
science, such a modelization has been used for the study of worst case design [33], [65], [66].

Recent extensions of the viability techniques for differential games have been obtained in several directions.
The case of games with separate dynamics and hard state constraints for both players has been solved in [27] and
[19] (see also [28] for the numerical approximation). This concerns typically the famous “Lion and Man” game, for
which one can prove that there is a value, discontinuous in general.

Viability for stochastic control problems has attracted a lot of attention lately (see [8], [10], [11], [21], [32], [39],
[43], [44], [70]). The generalization to differential game, which is not completely understood, has been investigated
in [17].

Another very active research field is the domain of uncertain systems that one wants to optimize against the
unknown disturbance. This leads to a Min-Max problem, which can naturally be interpreted as a differential game.
The viability techniques for solving this problem have been investigated in [35], [47], [57] and [55].
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Finally, one of the most challenging problems in the domain is the study of viability problems for hybrid dif-
ferential games. Substantial contributions have appeared very recently (see [7], [15], [29], [30], [31], [61], [64]). In
particular, the worst-case design for these games is now well understood. Note however that the question of the
existence of a value in only partially solved. This very new theory has already appeared to be an extremely useful
tool for modelization (see for instance [7], [20], [59], [63]).

The paper is organized in two parts. In the first part, we recall the basic theory of viability theory for differential
games: the definitions of the discriminating domains and kernels, the alternative theorem, the barrier phenomenon,
and the application to the minimal time problem. In the second part, we give an overview of the recent advances
in the theory: games with hard state constraints, stochastic viability problems, worst case design and hybrid or
impulsive games. We complete the paper by the presentation of several applications.

2 Basic viability theory for differential games

In this section, we present the main basic achievements of viability theory. The starting point is the viability game,
in which one player wants that the state of the system remains in a given set, while the other player wants that
the state of the system remains in that set forever. The solution of this game is clearly a set, or, more precisely,
a partition of the set of constraints: in one part of this set one of the player wins, while his opponent obtains the
victory in the other part.

The geometric characterization of this partition is the first goal of viability theory. It has been developed in
[23, 24]. Then its numerical approximation has been the aim of intensive work: since this has been described and
explained in details in the paper [25], we do not recall this subject here. Instead, we briefly show how to apply the
main results on the viability game to treat a typical game of kind: the minimal time problem.

2.1 Statement of the viability problem

We investigate a differential game with dynamic described by the differential equation{
x′(t) = f(x(t), u(t), v(t)),
u(t) ∈ U, v(t) ∈ V (1)

where f : IRN × U × V → IRN , U and V being the control sets of the players. Throughout this section, we study
the viability game. Beside the dynamics, this game has two data: K ⊂ IRN which is a closed set of constraints, and
E ⊂ IRN which is a closed evasion set. The first player—Ursula, playing with u—wants that the state of the system
leaves K in finite time while avoiding E . The goal of the second player—Victor, playing with v—is that the state
of the system remains in K until reaching the evasion set E .

In this game the main objects of investigation are the victory domains of the players, i.e., the set of initial
positions starting from which a player can find a strategy which leads him or her to the victory.

We work here in the framework of the nonanticipative strategies (also called Varaiya-Roxin-Elliot-Kalton strate-
gies). Let {

U = {u(·) : [0,+∞[→ U, measurable function }
V = {v(·) : [0,+∞[→ V, measurable function } (2)

be the sets of time-measurable controls of respectively the first (Ursula) and the second (Victor) player.

Definition 1 (Nonanticipative strategies) A map α : V → U is a nonanticipative strategy (for Ursula) if it
satisfies the following condition: For any s ≥ 0, for any v1(·) and v2(·) belonging to V such that v1(·) and v2(·)
coincide almost everywhere on [0, s], the image α(v1(·)) and α(v2(·)) coincide almost everywhere on [0, s].
Nonanticipative strategies β : U → V (for Victor) are defined in the symmetric way.

Assume now that f is continuous and Lipschitz with respect to x. Then, for any u(·) ∈ U and v(·) ∈ V, for any
initial position x0, there exists only one solution to (1). We denote this solution by x[x0, u(·), v(·)]. In order to define
the victory domains of the players, we introduce the following notation: if C ⊂ IRN is closed and ε > 0, we denote
by C + εB the set

C + εB = {x ∈ IRN | dC(x) ≤ ε} ,

where dC(x) denotes the distance from x to C.
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Definition 2 (Victory domains)
- Victor’s victory domain is the set of initial positions x0 ∈ K for which Victor can find a nonanticipative strategy
β : U → V such that for any time-measurable control u(·) ∈ U played by Ursula, the solution x[x0, u(·), β(u(·))]
remains in K until it reaches E, or remains in K forever if it does not reach E. Namely:

∃τ ∈ [0,+∞], ∀t ∈ [0, τ), x[x0, u(·), β(u(·))](t) ∈ K
and, if τ < +∞, then x[x0, u(·), β(u(·))](τ) ∈ E .

- Ursula’s victory domain is the set of initial positions x0 ∈ K for which Ursula can find a nonanticipative strategy
α : V → U , positive ε and T such that, for any v(·) ∈ V played by Victor, the solution x[x0, α(v(·)), v(·)] leaves
K + εB before reaching the set E + εB and before T .
Namely

∃τ ≤ T, dK(x[x0, α(v(·)), v(·)](τ)) ≥ ε
and ∀t ∈ [0, τ ], x[x0, α(v(·)), v(·)](t) /∈ E + εB.

In the definition of Victor’s victory domain, the solution has to remain in the constraint until reaching the evasion
set.
In the definition of Ursula’s victory domain, the solution has not only to leave the constraint while avoiding the
evasion set, but also to leave it “sufficiently” (say to leave K + εB) while remaining “sufficiently far” from the
evasion set (say at a distance not smaller than ε), and in a finite time (say not larger than T ). Both ε and T have
to be independent on Victor’s response v(·).

Assumptions on f : In the sequel, we need the following assumptions
i) U and V are compact
ii) f : IRN × U × V → IRN is continuous,
iii) f is `−Lipschitz w.r.t. x,
iv) ∀x ∈ IRN , ∀u ∈ U, the set

⋃
v∈V

{f(x, u, v)} is convex.
(3)

A sufficient condition for assumption (3-iv) to be satisfied is that V is convex and f is affine with respect to v. We
also assume that Isaacs’ condition holds:

∀(x, p) ∈ IR2N , sup
u∈U

inf
v∈V

< f(x, u, v), p >= inf
v∈V

sup
u∈U

< f(x, u, v), p > (4)

2.2 Discriminating domains

We introduce in this part a class of sets defined by geometric conditions and justify this definition by characterizing
it in terms of trajectories.

Definition 3 (Proximal normal) Let D be a closed subset of IRN and x ∈ D. A vector p ∈ IRN is a proximal
normal to D at x if dD(x+ p) = |p|.

We denote by NPD(x) the set of proximal normals to D at x.

This definition means that the ball centered at x + p and of radius |p| is tangent to D at x. Note also that
NPD(x) is nonempty because 0 ∈ NPD(x).

Definition 4 (Discriminating Domains) Let H : IRN × IRN → IR. A closed set D ⊂ X is a discriminating
domain for H if:

∀x ∈ D, ∀p ∈ NPD(x), H(x, p) ≤ 0 .

We are mainly interested here in the following H:

H(x, p) :=
{

supu infv < f(x, u, v), p > if x /∈ E
min{supu infv < f(x, u, v), p >; 0} otherwise (5)

Theorem 5 (Interpretation of discriminating domains) We assume that f satisfies (3) and that Isaacs’condition
(4) holds. Let D ⊂ IRN be a closed set . The following statements are equivalent:

• D is a discriminating domain for H defined by (5),
• for any initial position x0 ∈ D, there is a nonanticipative strategy β : U → V such that the solution x[x0, u, β(u)]

remains in D as long as it has not reached E,
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• for any initial position x0 ∈ D, for any positive ε and T , for any nonanticipative strategy α : V → U , there
is some control v ∈ V such that the solution x[x0, u, v] remains in K + εB on the time interval [0, T ] until it
reaches E + εB.

Remark : If we go back to our viability game, with constraints K and target E , and if a discriminating domain
D is contained in K, then D lies in Victor’s victory domain, and has an empty intersection with Ursula’s victory
domain. Indeed, starting from D, Victor can ensure the state of the system to remain in D, hence in K.

2.3 The alternative theorem and the characterization of the victory domains

We now characterize the victory domains of the game. For this we have to introduce the notion of discriminating
kernel of the constraint set K:

Theorem 6 (Discriminating kernel) Let H : IRN ×IRN → IR be a lower semicontinuous map. Any closed subset
K of IRN contains a largest (closed) discriminating domain for H. This set is called the discriminating kernel of
K for H and is denoted by DiscH(K).

Remarks :

• Any discriminating domain for H contained in a closed K is contained in DiscH(K). Moreover, DiscH(K) is
itself a discriminating domain for H, and DiscH(K) may be empty if K does not contain any discriminating
domain for H.

• One of the most interesting aspect of discriminating kernels consists in the fact that there exists algorithms for
approximating these sets. We refer the reader to [25] for a survey of numerical methods.

The main achievement of viability theory for differential games is the following characterization of the victory
domains:

Theorem 7 (Characterization of the victory domains) Assume that f satisfies (3) and that Isaacs’ condi-
tion (4) holds. Let the constraint set K be closed and let E be the evasion set. Recall that the hamiltonian H of the
system is defined by (5). Then

• Victor’s victory domain is equal to DiscH(K),
• Ursula’s victory domain is equal to K\DiscH(K).

In particular, the victory domains of the two players form a partition of K. A similar Alternative Theorem have
been obtained by Krasovskii & Subbotin in the framework of the positional strategies [45]. In fact, the discrimi-
nating domains are very close to Krasovskii & Subjoin’s stable bridges, while the discriminating kernel is related
with the maximal stable bridges. What singularizes the viability approach is the place taken by the geometric
characterization of the victory domains, which plays an important role in the sequel.

Isaacs’ semipermeable barriers

Under the assumption that the common boundary of the victory domains is smooth, Isaacs proved that it satisfies
the geometric equation, now known as Isaacs’ equation:

H(x, νx) = 0 for any x on the boundary of the victory domain. (6)

where νx stands for the outward normal at x to Victor’s victory domain. As a consequence, each player can prevent
the state of the system to cross the boundary in one direction. Such a boundary is called a semipermeable barrier.

The boundary ∂DiscH(K) of the discriminating domain DiscH(K) actually enjoys this property in a weak
sense. This phenomenon was first noticed in [50] for control problems and then extended to differential games in
[24].

For simplicity we assume here that there is no evasion set: E = ∅.

Proposition 8 (Geometric point of view) Let x belong to ∂DiscH(K)\∂K. Then,

(i) H(x, p) ≤ 0, ∀p ∈ NPDiscH(K)(x) and (ii) H(x,−p) ≥ 0 ∀p ∈ NP
K\DiscH(K)

(x) .

Remark : Since proximal normals are in fact outward normals, a proximal normal to K\DiscH(K) is in fact an
inward normal to DiscH(K). Hence putting (i) and (ii) together is a weak formulation of Isaacs’equation (6).
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Proposition 9 (Dynamic point of view) Let x0 belong to ∂DiscH(K) but not to ∂K. Then

• there is a nonanticipative strategy β : U → V for Victor such that

x[x0, u, β(u)](t) ∈ DiscH(K) ∀t ≥ 0, ∀u ∈ U ,

• there is a nonanticipative strategy α : V → U for Ursula and a time T > 0 such that

x[x0, α(v), v](t) ∈ K\DiscH(K) ∀t ∈ [0, T ], ∀v ∈ V ,

Remark 10 Roughly speaking, the “solution” x[x0, α, β] remains on ∂DiscH(K) on [0, T ].

Although viability for differential games are now quite well understood, there remains several important and
interesting open questions on the subject:

• What kind of regularity can be expected for the boundary of DiscH(K) ?
• There is a natural way to define the solution x[x0, α, β] in Remark 10. Is there a maximum principle satisfied

by this solution, even in a weak sense ?
• In general, DiscH(K) is not the unique set satisfying Isaacs equation. When is there uniqueness ?

2.4 Application to the minimal time problem

Most zero-sum differential games can be expressed in terms of viability game. We just show how this principle
applies for the minimal time problem.

In the minimal time problem, the dynamics of the game is still given by (1). Victor—playing with v—is now
the pursuer: he aims at reaching a given target C as fast as possible. Ursula—playing with u—is now the evader:
she wants to avoid the target C as long as possible. We assume here that the target C ⊂ IRN is closed. If x(·) :
[0,+∞) → IRN is a continuous trajectory, the first time x(·) reaches C is

ϑC(x(·)) = inf{t ≥ 0 | x(t) ∈ C } ,

with convention inf(∅) = +∞.
The value functions of the game are defined as follows: the lower value function is given by

ϑ[(x0) = inf
β

sup
u∈U

ϑC(x[x0, u, β(u)]) ∀x0 /∈ C ,

while the upper value function is

ϑ](x0) = lim
ε→0+

(
sup

α
inf
v∈V

ϑC+εB(x[x0, α(v), v])
)

∀x0 /∈ C .

Remarks :

1. In general the value functions are discontinuous.
2. The definition of the upper value is slightly more complicated than the lower one. Unfortunately, this formulation

is in general necessary for the game to have a value—unless some controllability condition at the boundary of
the target holds.

We now explain how to transform the minimal time problem into a viability game in IRN+1. For this we define
the extended dynamics f̃ : IRN+1 × U × V → IRN+1 by

f̃(ρ, x, u, v) = {−1} × {f(x, u, v)}

and
K̃ = IR+ × IRN and C̃ = {0} × C .

For an initial data x̃0 = (ρ0, x0), we denote by x̃[x̃0, u, v] the solution to{
x̃′ = f̃(x̃, u, v)
x̃(0) = x̃0

Remark : ρ(t) = ρ0 − t, the first component of x̃(t), is the running cost of the problem.

The viability game associated to the minimal time problem is the following:
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• Victor becomes the evader: he wants that x̃(t) reaches the target C̃ before leaving the constraints K̃ := IR+×IRN .
• Ursula becomes the pursuer: she wants that x̃(t) leaves K̃ before reaching the target C̃.

As seen in the previous parts, there is an alternative theorem for this game, and we shall use it to prove the
existence of a value for the minimal time problem. The link between the minimal time and the viability game is
the following:

Proposition 11 Let H̃ : IRN+1 × IRN+1 → IR be defined by

H̃(x̃, px, pρ) =
{

infv∈V supu∈U < f(x, u, v), px > −pρ if x̃ /∈ C̃
min{0, infv∈V supu∈U < f(x, u, v), px > −pρ} otherwise

Then we have
Epi(ϑ]) = DiscH̃(K̃) = Epi(ϑ[)

where Epi(φ) = {(x, ρ) ∈ IRN+1 → IR | ρ ≥ φ(x)} denote the epigraph of a function φ.

Idea of the proof : Let x̃ = x̃[x̃0, u, v] = (ρ(t), x(t)) some solution. We note that ρ(t) = ρ0 − t because
f̃ = {−1} × {f}. Hence x̃(t) belongs to K̃ := IR+ × IRN if and only if ρ(t) = ρ0 − t ≥ 0.

If (ρ0, x0) belongs to Victor’s victory domain, then Victor can ensure that x̃(·) reaches C̃ before leaving K̃. This
means that x(·) reaches C before ρ0. Hence

ρ0 ≥ ϑC(x(·)) ≥ ϑ](x0) .

This shows that Victor’s victory domain is contained in the epigraph of ϑ]. The other inclusions can be proved
similarly, by using the different characterizations of Victor’s and Ursula’s victory domains. Q.E.D.

As a consequence, we have the following result of existence of a value for the game

Theorem 12 If assumption (3) and Isaacs condition (4) hold, we have

ϑ[(x0) = ϑ](x0) ∀x0 /∈ C .

Furthermore, both functions are the minimal nonnegative viscosity supersolutions to

sup
u

inf
v
< f(x, u, v), Dϑ >= 1 in IRN\C .

Remark : The last statement is just a way to rewrite the fact that the epigraph of ϑ[ = ϑ] is the largest
discriminating domain contained in IRN × IR+. An introduction to viscosity solutions with a link to differential
games can be found in [16].

3 Recent results on viability theory for differential games

3.1 Differential games with state constraints

Viability theory for differential games can be extended to differential games with separate dynamics and state
constraints on for both players. A typical example of such a game is the famous “Lion and Man” game, in which
both lion and man have to remain in the arena. The results of this part can be found in [19, 27]. The numerical
approximations of state constrained problems is the aim of the note [28].

We assume throughout this part that the game has separate dynamics: the first player, Ursula, playing with u,
controls a first system {

y′(t) = g(y(t), u(t)), u(t) ∈ U
y(0) = y0 ∈ KU

(7)

and has to ensure the state constraint y(t) ∈ KU to be fulfilled for any t ≥ 0, where KU is a closed subset of IRl.
On the other hand the second player, playing with v, controls a second system{

z′(t) = h(z(t), v(t)), v(t) ∈ V
z(0) = z0 ∈ KV

(8)
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and has to ensure the state constraint z(t) ∈ KV for any t ≥ 0, where KV is a closed subset of IRm. We denote by
y[y0, u] the solution to (7), by z[z0, v] the solution to (8). We set N = l +m.

We study again the viability game: Let K ⊂ KU × KV be a closed set of constrained and E ⊂ KU × KV be
a closed evasion set. Ursula wants that the state of the system (y, z) leaves K before reaching E , while, on the
contrary, Victor wants that (y, z) remains in K as long as it has not reached E . Our aim is again to characterize
the victory domains of the players.

For doing so, let us set x = (y, z), f = (g, h). Throughout this part, we assume that f , KU and KV satisfy the
following regularity conditions

(i) U and V are compact subsets of some finite
dimensional spaces

(ii) f : IRN × U × V → IRN is continuous and
Lipschitz continuous (with Lipschitz constant M)
with respect to x ∈ IRN ;

(iii)
⋃

u f(x, u, v) and
⋃

v f(x, u, v) are convex for any x.
(iv) KU = {y ∈ IRl, φU (y) ≤ 0} with φU ∈ C2(IRl; IR),

∇φU (y) 6= 0 if φU (y) = 0
(v) KV = {z ∈ IRm, φV (z) ≤ 0} with φV ∈ C2(IRm; IR),

∇φV (z) 6= 0 if φV (z) = 0
(vi) ∀y ∈ ∂KU , ∃u ∈ U such that < ∇φU (y), g(y, u) > < 0
(viii) ∀z ∈ ∂KV , ∃v ∈ V such that < ∇φV (z), h(z, v) > < 0

(9)

We note that Isaacs’assumption (4) always holds.
We now introduce the notion of admissible controls and strategies. For an initial position (y0, z0) ∈ KU ×KV ,

U(y0) = {u(·) : [0,+∞) → U measurable | y[y0, u(·)](t) ∈ KU ∀t ≥ 0}

and
V(z0) = {v(·) : [0,+∞) → V measurable | z[z0, v(·)](t) ∈ KV ∀t ≥ 0} .

Under the assumptions (9), it is well known that there are admissible controls for any initial position: namely,

U(y0) 6= ∅ and V(z0) 6= ∅ ∀x0 = (y0, z0) ∈ KU ×KV .

For any y ∈ KU , we set

U(y) = U if y ∈ Int(KU ) , U(y) = {u ∈ U | g(y, u) ∈ TKU
(y)} if y ∈ ∂KU ,

where TKU
(y) is the tangent half-space to the set KU at y ∈ ∂KU .

Remark 13 We note for later use that, under assumptions (9), the set-valued map y  g(y, U(y)) is lower
semicontinuous with convex compact values (for definitions and properties, see [3]).

Both players now play admissible non-anticipative strategies: A nonanticipative strategy α for Ursula is admis-
sible at the point x0 = (y0, z0) ∈ KU ×KV if α : V(z0) → U(y0). Admissible nonanticipative strategies β for the
second player Victor are symmetrically defined. For any point x0 ∈ KU ×KV we denote by SU (x0) and by SV (x0)
the sets of the non-anticipative strategies for Ursula and Victor respectively.

The victory domains of the players are defined as in Definition 2, but the players now play admissible controls
and nonanticipative strategies.

As before the characterization of the victory domains uses the notion of discriminating domains and kernels.
However, because of the state constraints, the definition of the hamiltonian has to be adapted: for x = (y, z) ∈
KU ×KV and p ∈ IRN ,

H(x, p) :=
{

supu∈U(y) infv∈V < f(x, u, v), p > if x /∈ E
min{supu∈U(y) infv∈V < f(x, u, v), p > , 0} otherwise (10)

We note that H is lower semicontinuous, because of assumption (9) and Remark 13. Therefore the notion of
discriminating kernel of K is well-defined.

As before, our main result is the characterization of the victory domains:
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Theorem 14 (Characterization of the victory domains) Assume that f = (g, h), KU and KV satisfy (9).
Let K ⊂ KU ×KV be the closed constraint and E ⊂ KU ×KV be the closed evasion set. Let H be defined by (10).
Then

• Victor’s victory domain is equal to DiscH(K),
• Ursula’s victory domain is equal to K\DiscH(K).

The main difficulty for proving the above theorem is the presence of state-constraints for both players. To
overcome this difficulty, we use repetitively a technical lemma that we state here because of its usefulness for games
with state constraints:

Lemma 15 ([19]) Assume that conditions (9) are satisfied. For any R > 0 there exists C0 = C0(R) > 0 such that,
for any y0, y1 ∈ KU with |y0|, |y1| ≤ R, there is a nonanticipative strategy σ : U(y0) −→ U(y1) with the following
property: for any u0(·) ∈ U(y0)

|y0(t)− y1(t)|+
∫ t

t0

|u0(s)− σ(u0(·))(s)| ds ≤ C0|y0 − y1|eC0(t−t0)

where we have set for simplicity y0 = y[y0, u0(·)] and y1 = y[y1, σ(u0(·))](t).

In other words, any admissible control u0 for y0 can be approximated by an admissible control u1 = σ(u0(·))
for y1, in a nonanticipative way.

As in the standard viability for differential games described in the first part, the alternative result for games
with state constraints has several counterparts: we have applied it in [28] to prove that the minimal time problem
with state constraints has a value, while [19] deals with the case of Bolza problem. Numerical approximation of
such games is studied in [27].

3.2 Viability for stochastic differential games

There are some extensions of viability theory to stochastic controlled systems. For differential games, the main
question is the following: let (Xt) be a controlled stochastic process driven by a s.d.e

dXt = f(Xt, ut, vt)dt+ σ(Xt, ut, vt)dWt (11)

and let K be a closed set of constraints. The viability game consists in finding the set of initial position x0 ∈ K
from which Victor can ensure that Xt ∈ K almost surely for any t ≥ 0.

For controlled problems, the pioneering works are: Gautier & Thibault [39], Aubin & Da Prato [4], Buckdahn,
Peng, Quincampoix & Rainer [21] and Aubin, Da Prato & Frankowska [11], to cite only few. Viability has not been
thoroughly investigated for differential games. Some partial characterization results have been obtained by Bardi
and Jensen in [17]. This is what we describe now.

Let (Ω,F , P, (Ft)) be a complete stochastic basis endowed with a k−dimensional standard (Ft)−Brownian
motion (Wt). An admissible control for Ursula is an (Ft)−progressively measurable process u : [0,+∞) → U . We
denote by U the set of admissible controls. In the same way, we denote by V the set of admissible controls for Victor.

Throughout this part, we assume that f : IRN × U × V → IRN and σ : IRN × U × V → IRN×k are continuous,
Lipschitz continuous w.r.t. the x-variable and that U and V are compact subsets of some finite dimensional space.
Under this assumption, for any initial position x0 ∈ IRN and any admissible controls u ∈ U and v ∈ V, equation
(11) has a unique solution denoted by Xx0,u,v

t .
Following [36], we define admissible strategies for Victor as follows: an admissible strategy for Victor is a map-

ping β : U → V such that, if u1 ≡ u2 a.s. on some time interval [0, t], then β(u1) ≡ β(u2) a.s. on [0, t]. We denote
by SV the strategies for Victor.

We now introduce the notion for second order proximal set: if x ∈ ∂D, a pair (p,X) ∈ IRN × IRN×N

belongs to the second order proximal set NP2
D(x) to D at x if X is symmetric and if, for any y ∈ D,

p.(y − x) + 1
2 (y − x).Y (y − x) ≤ o(|y − x|2). We note that, if (p,X) ∈ NP2

D(x), then p is a proximal normal
to D at x.

Recall that BUC(IRN ) is the set of bounded uniformly continuous maps on IRN .
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Theorem 16 Let D ⊂ IRN be a closed set. The following statement are equivalent:

• for all ` ∈ BUC(IRN ), ` ≥ 0, ` ≡ 0 in D, and for all λ > 0,

inf
β∈SV

sup
u∈U

E

∫ +∞

0

e−λt`(Xx0,u,β(u)
t )dt = 0 ∀x0 ∈ D

• ∀x ∈ ∂D, ∀(p,X) ∈ NP2
D(x),

inf
v∈V

sup
u∈U

{
< f(x, u, v), p > +

1
2
Tr

(
σ(x, u, v)σT (x, u, v)X

)}
≤ 0 . (12)

The first condition can be understood as a condition of approximate viability for the differential game. The
second condition is purely of geometric nature.

Using the ideas of [17] it is not difficult to define the notion of discriminating kernel of a closed set K as the
largest closed subset of K satisfying the geometric condition (12), and to characterize it as Victor’s victory domain
for an approximate viability problem.

One should also expect that the two above equivalent conditions in the Theorem are equivalent to the following
third one (under suitable convexity assumption):

• for all x0 ∈ D, there exists some β ∈ SV such that, for any admissible control u, we have Xx0,u,β(u)
t ∈ D a.s. for

any t ≥ 0.

However this has not been proved up to now.

4 Worst case design

Viability theory can also be used to control systems with imperfectly known uncertainty [55].
We consider the system

x′(t) = f(x(t), u(t), y(t), v(t)), x(0) = e ∈ E0, (13)

where x ∈ IRn is the state, u ∈ U is the control, y ∈ Y and v ∈ V (y) are disturbances (U , Y and V (y) are given
subsets of finite dimensional spaces, E0 ⊂ IRn). The main concern of the section is the optimal control problem
where the controller wants to minimize (by choosing u) the cost

g(T, x(T )) (14)

against the worst case of disturbances y and v and initial state e ∈ E0. We distinguish two types of disturbance:
– observable uncertainty y, for which the current realization y(t) ∈ Y becomes known to the controller;
– unobservable uncertainty v ∈ V (y), for which the realization of v(t) ∈ V (y(t)) remains unknown;
Thus we consider a Min-Max problem or a differential game where the second player wants to maximize (by

choosing e, y and v) the cost (14) while the first player—the controller—wants to minimize it (by choosing u). This
specific aspect of the information available to the controller implies that the control u should be considered in a
feedback form which may depend on the current and the past values of y, but not on v.

For every given control u(·) and observable uncertainty y(·), the unobservable uncertainty v(·) gives rise to a
differential inclusion

x′(t) ∈ f(x, u(t), y(t), V (y(t))), x(0) ∈ E0, (15)

whose solution is a time depending tube providing the deterministic estimation of the trajectory. Notice that a
(set-valued) tube starting from E0 is involved even in the case of precisely known initial state x(0), if unobservable
uncertainty is present.

Let us formulate the problem in a more precise way. Let U[t,θ] be the set of admissible control functions on the
interval [t, θ], that is, the measurable functions with values in U . Similarly, Y[t,θ] denotes the set of all measurable
selections of Y on [t, θ], and V[t,θ](y(·)) denotes the set of all measurable selections of the mapping V (y(·)) (for a
given y(·)) on the same interval. The following suppositions holds true

Condition C.
C.1. U , Y and V̄ are compact subsets of finite dimensional vector spaces, U is convex, the mapping y −→ V (y) ⊂ V̄
is compact valued and Lipschitz continuous.
C.2. The function f : IRn × U × Y × V̄ 7→ IRn has the form
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f(x, u, y, v) = f0(x, y, v) +B(x, y)u,

where f0 and B are continuous, locally Lipschitz in x uniformly with respect to the other variables. The sets
f0(x, y, V (y)) are convex. f has linear growth with respect to x, uniformly in u, y, v.

These assumptions will imply that for every t ∈ [0, T ), e ∈ IRn, u ∈ U[t,T ], y ∈ Y[t,T ], and v ∈ V[t,T ](y) system
(13) has a unique solution on [t, T ] starting from e, denoted by x[t, e;u, y, v](·).

The optimal control for initial time t and initial compact set E is sought as a nonanticipative strategy, α :
Y[t,T ] 7→ U[t,T ]. The guaranteed result obtained by using the strategy α for initial data (t, E) is

I(t, E;α) := sup{g(T, x[t, e;α(y), y, v](T )), e ∈ E, y ∈ Y[t,T ], v ∈ V[t,T ](y)}.

Then
I(t, E) := inf

α
I(t, E;α) (16)

is the minimal guaranteed (lower) value that can be achieved starting from the set E at time t.
We denote by Xu,y[t, E](·) the reachable set, namely the set of all solutions to (15) evaluated at time t for all

possible initial condition x0 ∈ E. This is called the solution tube of (15) in the set comp(IRn) of all compact subsets
of Rn. Moreover, for a compact set Z ⊂ IRn we define G : comp(IRn) 7→ IR as

G(T,Z) = sup
z∈Z

g(T, z).

Then obviously definition (16) is equivalent to

I(t, E) = inf
α∈A[t,T ]

sup
y∈Y[t,T ]

G(T,Xα(y),y[t, E](T )). (17)

In this formulation of the original problem there is no unobservable uncertainty. We passed to a problem with
complete information (here y is an observable disturbance), but over the solution tubes to differential inclusion
(15).

Because of the complexity of the so obtained problem we can restrict the consideration to the solution tubes
of (15) in a given collection of sets E instead of the whole comp(IRn). Namely we are interested by tubes which
gives an outer estimation of the unknown set of evolutions in a specific class of subsets (boxes ellipsoids, polyhedral
sets...). By doing so we avoid to deal with the geometry of the reachable sets, which could be rather complicated.
Thus we come up with the more general problem, formulated below in the case of a target that determines the
termination time. We suppose in addition

C.3. The collection E satisfies conditions:
Condition B.1. The collection E consists of nonempty compact sets and is closed in the Hausdorff metric. For

every compact Z there is some E ∈ E containing Z.
Condition B.2. There exists a constant LE such that for each ε > 0 and each E ∈ E there exists E′ ∈ E for

which E + εB ⊂ E′ ⊂ E + εLEB.
Condition B.3. For every Z ∈ comp(IRn) there is a unique minimal element of E containing Z.
The following dynamic programming principle adapts standard arguments

Proposition 17 Under conditions C.1–C.3, for every E ∈ E, t ∈ [0, T ) and s ∈ (t, T ]

IE(t, E) = inf
α∈A[t,s]

sup
y∈Y[t,s]

IE(s,E(s)),

where E(·) := Xα(y),y[t, E](·).

One can characterize the value function using Hamilton Jacobi equations based on Dini Epiderivatives which
are dual version of proximal normals defined in section 2.2.

Definition 18 Let E be a closed collection of nonempty compact sets in IRn and J : E −→ IR will be a lower
semicontinuous function. Let E ∈ E be fixed and let F : E 7→ comp(IRn) be a set-valued field on E.

We define the lower Dini derivative of J at E in the direction of the field F as

D−
E J(E;F ) := liminf

h,δ→0+
inf{J(E′)− J(E)

h
, E′ ∈ E , (I + 〈F)(E) ⊂ E ′ + 〈δB}.
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For E and J as above we define as usually

epi J := {(E, ν), E ∈ E , ν ∈ IR : J (E) ≤ ν} ⊂ E × IR,

which is also a closed collection of sets.
Define the extended closed collection of compact sets Ê in IR× IRn as

Ê := {(t, E), t ≥ 0, E ∈ E}.

Theorem 19 Under conditions C.1-C.3, the value function IE is the unique minimal l.s.c. solution of the differ-
ential inequality

sup
y∈Y

min
u∈U

D−
ÊJ(t, E; (1, f(·, u, y, V (y)))) ≤ 0 ∀ (t, E) ∈ Ê, (18)

with the condition
J(t, E) ≥ G(t, E), ∀ (t, E) ∈ Ê. (19)

That is,
IE(t, E) = min{J(t, E), J − l.s.c. solution of (18), (19)}.

The proof of this theorem is based on a generalization of Theorem 5 but in the context of tubes with values in
collections of sets [53] and to results on the regularity of such tubes [54]. In [57], the above worst case design method
is applied to the case of a pursuit games with uncomplete information of the pursuer: the pursuer knows only the
state of the evader at finitely many times given in advance.

5 The viability for games with impulsive dynamics

We consider a two-player differential game with separated impulsive dynamics where jumps are allowed. The first
controller acts on the system {

y′ = g(y, u)
y+ = p(y−, µ) (20)

where u and µ are respectively a continuous and a discrete control chosen by Ursula. The solution of (20) is a
discontinuous trajectory t 7→ y(t).

Similarly, the second player , using controls v and ν, controls a system{
z′ = h(z, v)
z+ = q(z−, ν) (21)

The outcome of the game is defined in the following way:

• The first player goal consists in driving the state x := (y, z) into an open set Ω, while keeping it outside a closed
set T .

• The second player aim consists in driving the state in T while keeping it outside Ω.

We associate with a trajectory (y(·), z(·)) of (20)-(21) a payoff

θK
T (y(·), z(·)) := inf {t : (y(t), z(t)) ∈ T and ∀s ≤ t, (y(s), z(s)) ∈ K} ,

where K := IRn \Ω.
This kind of games, in the control case has been studied in [15], [29].
We assume that

Assumption 1
i) U and M are compact convex subsets of some finite dimensional spaces;
ii) g : IRl × U 7→ IRl, and p : AU ×M 7→ IRl are Lipschitz-continuous with respect

to their first variable, and continuous with respect to their second variable;
iii) g has linear growth with respect to the first variable;
iv) AU is compact and for all y ∈ AU , p(y,M) ∩AU = ∅.
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The last assumption ensures that after a jump, the trajectory is continuous for some time.

Ursula’s system can be characterized by a pair of set-valued functions (G,P ), by changing (20) into{
y′ ∈ G(y) := {g(y, u) : u ∈ U}
y+ ∈ P (y−) := {p(y−, µ) : µ ∈M} (22)

The reset map P is defined only on AU , so that the set from which jumps are allowed coincides with the domain
of P , denoted by Dom (P ).

Similarly Victor’s system can be characterized by a pair of set-valued functions (H,Q), by changing (21) into{
z′ ∈ H(y) := {h(z, v) : v ∈ V }
z+ ∈ Q(y−) := {q(z−, ν) : ν ∈ N} (23)

The assumptions on g and on h ensure the existence of absolutely continuous solutions defined on [0,+∞) to
the differential inclusions y′ ∈ G(y) and z′ ∈ H(z). Let us denote by SG(y0) and respectively SH(z0) the set of such
solutions.

Definition 20 (Runs and trajectories) We call run of impulse system (G,P ) (resp. (H,Q)) with initial condi-
tion y0 (resp. z0) a finite or infinite sequence {τi, yi, yi(·)}i∈I (resp. {τi, zi, zi(·)}i∈I ) of (IR+ × IRl × SG(IRl)) such
that for all i ∈ I {

y′i(t) ∈ G(yi(t))
yi(0) = yi

and
{
yi(τi) ∈ Dom (P )
yi+1 ∈ P (yi(τi))

(resp. {
z′i(t) ∈ H(zi(t))
zi(0) = zi

and
{
zi(τi) ∈ Dom (Q)
zi+1 ∈ Q(zi(τi))

)

A trajectory of impulse system (G,P ) is a function y : IR 7→ IRl associated with a run in the following way:

y(t) =
{
y0 if t < 0
yi(t− ti) if t ∈ [ti, ti + τi)

(24)

where ti =
∑

j<i τi. We denote by SG,P (y0) the set of trajectories with initial condition y0.

We also assume that the impulse system controlled by Victor satisfies Assumption 1 and can be described simi-
larly by a pair of set valued maps (H,Q) and we denote by SH,Q(z0) the set of trajectories with initial condition z0.

We are know in position to define strategies

Definition 21 We call Varaiya-Roxin strategy (VR-strategy) for Ursula at initial condition x0 = (y0, z0) a map

A : SH,Q(z0) −→ SG,P (y0)

such that for any θ > 0, and for any trajectories z(·) and z̃(·) of SH,Q(z0) which coincide on [0, θ], the trajectories
y(·) = A(z(·)) and ỹ(·) = A(z̃(·)) coincide on [0, θ].
We denote by A(x0) the set of VR-strategies for Ursula at x0.

A VR-strategy for Victor at initial condition x0 = (y0, z0) is defined symmetrically as a map

B : SG,P (y0) −→ SH,Q(z0)

such that for any θ > 0, and for any trajectories y(·) and ỹ(·) of SG,P (y0) which coincide on [0, θ], the trajectories
z(·) = B(y(·)) and z̃(·) = B(ỹ(·)) coincide on [0, θ].
We denote by B(x0) the set of VR-strategies for Victor at x0.

We define, for all x = (y, z) ∈ IRn and all D ⊂ IRn closed, the functions

H(x,D) := sup
π∈NPD(x)

{
sup
u∈U

inf
v∈V

< f(x, u, v), π >
}
, (25)

LV (x,D) := inf
ν∈N

χD(y, q(z, ν)), (26)

LUV (x,D) := sup
µ∈M

inf
{
χD(p(y, µ), z) , inf

ν∈N
χD(p(y, µ), q(z, ν))

}
, (27)

where f(x, u, v) = f((y, z), u, v) = (g(y, u), h(z, v)), χD(·) denotes the characteristic function of the set D:

χD(x) =
{

0 if x ∈ D
+∞ otherwise.
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Definition 22 (Impulse Discriminating Domains) A closed subset D of IRn is an impulse discriminating do-
main with target T if

∀x ∈ (D \ T ), max {min {H(x,D) , LV (x,D ∪ T )} , LUV (x,D ∪ T )} ≤ 0. (28)

We obtain the following generalization of Theorem 5 in the impulsive case

Theorem 23 Assume that

Assumption 2 For all time θ > 0, there exist a neighborhood NU of Dom (P ) and a neighborhood NV of Dom (Q)
such that

(i) ∀y0 ∈ NU , ∃y(·) ∈ SG(y0) such that ∃ t0 ≤ θ, y(t0) ∈ Dom (P )
(ii) ∀z0 ∈ NV , ∃z(·) ∈ SH(z0) such that ∃ t0 ≤ θ, z(t0) ∈ Dom (Q) .

Let D and T be closed subsets of IRn. Under Assumptions 1 and 2, D is an impulse discriminating domain with
target T if and only if for all x0 = (y0, z0) ∈ D, there exists a VR-strategy B such that for any y(·) ∈ SG,P (y0), the
trajectory (y(·),B(y(·))) stays in D as long as T as not been reached, namely:

∀t ≤ inf{s : (y(s),B(y(·))(s)) ∈ T }, (y(t),B(y(·))(t)) ∈ D.

As in section 2.4, the above theorem can be applied to the characterization and the existence of a value associated
with the payoff θK

T (y(·), z(·)) (cf [30]).

Remark 24 Differential games with impulsive dynamics is a very new field and there are several important and
interesting open questions on the subject:

• What are the conditions for existence of the value for hybrid differential games: the players can not only jumps
but also they can ”switch” between several dynamics.

• What are the natural hypothesis allowing to consider games with many instantaneous jumps (which are forbidden
here by assumption 1)?

6 Examples

In this section we illustrate the different results presented in the previous section through several examples taken
from recent studies in ecology, in economics and in finance. The first one deals with the management of renewable
resources in the case when we don’t really know what are the precise dynamic which governs the evolution of the
resource. The second one is related to the evaluation of a call in the presence of barriers. Such problem can be
formalized in the frame of hybrid differential games theory.

6.1 Application I: Management of Renewable resources

A full discussion of this application can be found in [14].

Verhulst and Graham

The simplest ecological model for managing resources was originated by Graham and taken up by Schaeffer, where
it is assumed that the exploitation rate of the resource is proportional to the biomass and the economic activity.

Let x ∈ R+ denote the biomass of the renewable resource and v ∈ R+ the economic effort for exploiting it.

The constraints are of different types and written as follows:

1. Ecological constraints : ∀ t ≥ 0, 0 ≤ x(t) ≤ b where b is the carrying capacity of the resource.
2. Economic constraints : ∀ t ≥ 0, cv(t) + C ≤ γv(t) x(t) where C ≥ 0 is a fixed cost, c ≥ 0 the unit cost of

economic activity and γ ≥ 0 the price of the resource with γb > c.
3. Production constraints : ∀ t ≥ 0, 0 ≤ v(t) ≤ v, where v is maximal exploitation effort satisfying C

γb−c ≤ v.
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Setting a :=
C + cv

γv
, the economic constraints implies that ∀t ≥ 0, x(t) ∈ [a, b] and v ∈ V (x) :=

[
C

γx−c , v
]
.

The Verhulst logistic dynamics and the Schaeffer proposal are summed up as follows:
x′(t) = rx(t)

(
1− x(t)

b

)
− v(t)x(t)

v(t) ∈ V (x(t)) :=
[

C

γx(t)− c
, v

]
.

(29)

where the admissible economic effort depends on the very level of the resource. The viability kernel of the interval
[a, b] is clearly an interval of the form [x−, x+].

The rigidity of the economic behavior is expressed through a constraint on the velocity of the economic effort
v′ :

∀ t ≥ 0, −d ≤ v′(t) ≤ +d .

Taking into account the rigidity of the economic efforts leads to study what is so called the metasystem governing
the state x and the regulon v which comes with the differential inclusion system i) x′(t) = rx(t)

(
1− x(t)

b

)
− v(t)x(t)

ii) v′(t) ∈ [−d,+d]
(30)

and the meta-constrained set which is the graph of the set valued map V :

K := (Graph(V )) = {(x, v)|v ∈ V (x)} . (31)

One can prove that the viability kernel of K, Viab(Graph(V )), is of the form {(x, v) ∈ Graph(V )|x ≥ ρ](v)}, where
ρ] is the solution to the differential equation

−ddρ
]

dv
= r

(
1− ρ](v)

b

)
− uρ](v)

satisfying the initial condition ρ](v−) = x−.

Fig. 1. Regulation Maps and heavy solutions under Verhulst-Schaeffer Verhulst-Schaeffer metasystems:

x′(t) = rx(t)
(
1− x(t)

b

)
− v(t)x(t), v′(t) ∈ [−d, +d] on left side and the Verhulst-Inert metasystems:

x′(t) =
√

α x(t)

√
2 log

(
b

x(t)

)
− v(t)x(t), v′(t) ∈ [−d, +d] on right side. The equilibrium sets are respectively the graphs

r
(
1− x

b

)
and

√
α
√

2 log
(

b
x

)
. Starting from A, heavy solutions minimize |v′| as long as the evolution remains in the viability

kernel. The velocity of the economic effort first is null then changes when it reaches the boundary of the viability kernel, at
a suitable time for maintaining viability. Here this is occurs as soon as it reaches the equilibria set.
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6.2 Towards Dynamical Meta Games

In fact we do not really know what are the dynamical equations governing the evolution of the resource. We could
fix Malthusian feedbacks ũ in a given class Ũ of continuous feedbacks as parameters and study the viability kernel
Viabũ([a, b]) of the interval [a, b] under the system (i) x′(t) = (ũ(x(t))− v(t))x(t)

(ii) v(t) ∈ V (x(t)) :=
[

C

γx(t)− c
, v

]
(32)

where the control parameter is v, but, instead of fixing feedbacks, we can study “meta-games” by setting bounds c
and d on the velocities of the growth rate u(t) and the exploitation effort v(t), regarded as meta-controls, whereas
the meta-states of the meta-game are the triples (x, u, v): (i) x′(t) = (u(t)− v(t))x(t)

(ii) u′(t) ∈ B(0, c)
(iii) v′(t) ∈ B(0, d)

(33)

subjected to the viability constraints u(t) ∈ R and C
γx(t)−c ≤ v(t) ≤ v.

Then computing the discriminating kernel of meta game we get the following result as shown in Figure2 where
the meta-controls are the velocities |v′(t)| ≤ d of economic activity bounded by a constant d and the “meta-tyches”
corresponding to uncertainty are the velocities of the growth rates of the renewable resources.

Fig. 2. Discriminating Kernel of meta game (35). The constrained set {(x, v, u) ∈ [a, b]× [0, v]× [−c, +c] | v ≥ C
γx−c

}
translates economic constraints.

The Palikinesis Function

Considering that the velocities of the growth rate u(t) are unknown, we now aim at measuring the maximal norm
of this velocity for which a given position (x, u, v) belongs to the Discriminating kernel. This can be considered
as an inverse problem: If the state initial position is (x0, v0), what is the maximal level of the velocities of the
growth rate in any future time that the system might face if the velocity of the economic activity is “well chosen”.
The palikinesis value is connected to the “range of environmental tolerance over which an organism can persist”
introduced by Joel Brown when defining the Hutchinsonian Niche in his T2.

The Palikinesis function which indicates the maximal level of risk under which viability can be maintained is
defined by:

ψ(x, u, v) := inf
β

sup
u(·)∈U

esssupt>0‖v′(t)‖ (34)

where the infimum is over the strategies β ensuring the viability.

Proposition 25 The hypograph of the Palikinesis function is the discriminating kernel associated with the following
system:
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(i) x′(t) = (u(t)− v(t))x(t)
(ii) u′(t) ∈ B(0, |z|)
(iii) v′(t) ∈ B(0, d)
(iv) z′(t) = 0

(35)

subjected to the viability constraints u(t) ∈ R and C
γx(t)−|z| ≤ v(t) ≤ v

6.3 Application II: Evaluation of Barrier Options

This application is an extension to hybrid games of the Guaranteed Capture Basin method developed in [49, 62, 63].
A put or a call is a contract giving the right to buy (call) or to sell (put) a quantity of an asset of price S at a

given date or at any date t before a fixed date T (American put or call). The point is to determine the value W of
the contract at the start. Facing the risks inherent, the seller builds up a theoretical portfolio in investing into the
underlying asset by self-financing yielding the same losses and profits as the put or call.

Constraints, Payoff and “Target”

1) ∀(t, S) ∈ R+ × R2
+, W ≥ b(t, S) ≥ 0 describes the “floor” constraints where b : (t, S) 7→ b(t, S) = U(S0, S1)

for American puts and calls, and b = 0 for European puts and calls.
2) t = 0, W ≥ c(0, S) describes the targets at maturity,
3) The payoff function is U(S0, S1) = (S1 −K)+.

Objective

We aim at determining the set of portfolio strategies S → π̃(S) such that, whatever the variations of capital S(·)
are, the following conditions hold true:

i) ∀t ∈ [0, T ], Wπ̃(·)(t)) ≥ b(T − t, S(t))
ii) Wπ̃(·)(T ) ≥ c(0, S(T ))

and, amongst them, selecting the portfolio strategy such that, for all predictable variations, the initial value of the
portfolio corresponds to the cheapest capital V (T, S(0)) which we identify as the evaluation function of the put or
call.

The Dynamical Game describing the Replicating Process

Consider a riskiness asset and an underlying risky asset of respective prices S0 and S1. Let S = (S0, S1) ∈ R2

and π = (π0, π1)R2 the array of which each component is the total number of assets in a portfolio of value:
Wπ = π0S0 + π1S1 The riskiness and the risky assets are governed by a deterministic and a non deterministic
differential equation {

S′0(t) = S0(t)γ0(S0(t))
S′1(t) = S1(t)γ1(S1(t), v(t))

The variations of price S(t) of assets at date t help find the variations Wπ(·)(t) of capital as a function of a
strategy π(·) of the replicating portfolio. Indeed, the value of the replicating portfolio is given by Wπ(t) :=
π0(t)S0(t) + π1(t)S1(t).

The self-financing principle of the portfolio reads
∀ t ≥ 0, 〈π′(t), S(t)〉 = π′0(t)S0(t) + π′1(t)S1(t) = 0
so that the value of the portfolio satisfies

W ′(t) = 〈π(t), S′(t)〉 = π0(t)S0(t)γ0(S(t)) + π1(t)S1(t)γ1(S1(t), v(t))

which is
W ′(t) = W (t)γ0(S(t))− π1(t)S1(t)(γ0(S0(t))− γ1(S1(t), v(t))).

Let τ(t) := T − t, then S(t) and W (t) change according to:
τ ′(t) = −1
S′0(t) = S0(t)γ0(S0(t))
S′1(t) = S1(t)γ1(S1(t), v(t))
W ′(t) = W (t)γ0(S(t))− π1(t)S1(t)(γ0(S0(t))− γ1(S1(t), v(t)))
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Fig. 3. Evaluating a call can be expressed as a guaranteed capture basin problem where the target is the epigraph of the
payoff function at T = 0 and the constraint is the epigraph of the “floor” function b (which appear when evaluating American
calls.

where π(t) ∈ Π(S(t)) and v(t) ∈ Q(S(t)).
It is out of the scope of this section to develop the numerical point of view allowing to evaluate calls or puts as

shown in figure (4). Let us just point out that the discretisation process allows to recover as well the values obtained
by the Cox, Ross and Rubinstein’s binomial approach as the evaluation of contract in more general cases. Let us
also quote some recent results linking the approach using stochastic approach and that using differential game that
can be found in a forthcoming paper of Aubin & Doss.

Fig. 4. Evaluation Function of an European call with uncertainty of Cox, Ross and Rubinstein type and the optimal
portfolio: π1

value of S1 Value of the Call π0 π1

80 4.53 -22.10 0.3332
90 8.61 -34.94 0.4844
100 14.24 -48.17 0.6240
110 21.04 -59.94 0.7363
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The Barrier Mechanism

Barriers complicate the evaluation of the replicating portfolio. A barrier is a particular value S∗ for the price S(t)
beyond which the contract changes. There are four types of options with barriers:

“up and in”: the contract becomes effective at the first time t∗ when S(t) < S∗, ∀t < t∗, S(t∗) = S∗

“down and in”: the contract becomes effective at the first time t∗ when S(t) > S∗, ∀t < t∗, S(t∗) = S∗

“up and out”: the contract ceases at the first time t∗ when S(t) < S∗, ∀t < t∗, S(t∗) = S∗

“down and out”: the contract ceases at the first time t∗ when S(t) > S∗, ∀t < t∗, S(t∗) = S∗.

The challenge is to evaluate today a contract which will vanish at some unknown future date.
Consider an “up and in” call and introduce a discrete variable L ∈ {0, 1} which “labels ” the state of the

contract: effective for L = 1 or non effective for L = 0. The label L increases because we study “in” options. We
consider the hybrid dynamical system

τ ′(t) = −1
S′0(t) = S0(t)γ0(S0(t))
S′1(t) = S1(t)γ1(S1(t), v(t))
L′(t) = 0

W ′(t) =

W (t)γ0(S(t))− π1(t)S1(t)(γ0(S0(t))− γ1(S1(t), v(t)))
if L(t) = 1

0 if L(t) = 0

τ+ = τ−

S+
0 = S−0
S+

1 = S−1

L+ =
{

1 if S−1 ≥ S∗

L− if S−1 < S∗

W+ = W−

Then applying the Discriminating Kernel Algorithm extended to hybrid systems allows to compute evaluation
function of contracts embedding impulse events as presented in figure 5.
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