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Abstract

In the paper the fractionally integrated heteroskedastic factor vec-
tor autoregressive (FI-HF-VAR) model is introduced. The proposed
approach is characterized by minimal pretesting requirements and sim-
plicity of implementation also in very large systems, performing well
independently of integration properties and sources of persistence,
i.e. deterministic or stochastic, accounting for common features of
di¤erent kinds, i.e. common integrated (of the fractional or inte-
ger type) or non integrated stochastic factors, also featuring condi-
tional heteroskedasticity, and common deterministic break processes.
The proposed approach allows for accurate investigation of economic
time series, from persistence and copersistence analysis to impulse
responses and forecast error variance decomposition. Monte Carlo
results strongly support the proposed methodology.
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1 Introduction

Recent developments in econometrics have dealt with the modelling of large
systems of equations in the framework of factor vector autoregressive (FVAR)
models. Following the lead of dynamic factor model (DFM) analysis proposed
in Geweke (1977), it is assumed that a small number of structural shocks be
responsible for the observed comovement in economic data; as the common
factors are unobserved, accurate estimation may fail in the framework of
small scale vector autoregressive (VAR) models, but succeed when cross-
sectional information is employed to disentangle common and idiosyncratic
features in economic time series.
Large VAR models are however subject to the curse of dimensionality:

the FVAR approach can then be seen as a solution to the problem of over-
parameterization, allowing for parsimonious modelling of large systems of
dynamic equations in the framework of a (factor) augmented VAR model,
where few common features account for the commonalities in a large set of
economic time series.
Di¤erent approaches have been proposed in the literature so far, featuring

both similarities and di¤erences. For instance, most of the approaches rely
on two-stage estimation, where the common features are estimated �rst, and
then included in an augmented VAR, or VAR-X, model, estimated by OLS
(Bernanke and Boivin, 2003; Bernanke et al., 2005; Favero et al., 2005).
One-stage Maximum Likelihood (ML) estimation, implemented in the

Bayesian framework, through likelihood-based Gibbs sampling (Bernanke et
al., 2005; Kose, Otrok and Whiteman, 2003), or in the classical framework,
through the EM algorithm and Kalman �ltering (Engle and Watson, 1981;
Quah and Sargent, 1992; Doz et al., 2006, 2007), has also been proposed;
yet, one-stage asymptotic e¢ ciency could also be ensured through two-stage
iterated estimation (Stock and Watson, 2005), bearing the interpretation of
Quasi-ML estimation performed via the EM algorithm (Doz et al., 2007).
Di¤erences also concern the estimation of the common factors, imple-

mented either by means of principal components analysis (PCA) in the time
domain (Stock and Watson, 1998) or in the frequency domain (Forni et al.
2000, 2002, 2004; Morana 2004; Beltratti and Morana, 2006), or by means
of weighted averages of observed variables (Pesaran, 2006).
For instance, (unweighted) time domain PCA estimation is performed by

Bernanke and Boivin (2003), Bernanke et al. (2005), Favero et al. (2005),
Stock and Watson (2005), Morana (2009), Bagliano and Morana (2008),
Banerjee and Marcellino (2009); weighted time domain PCA estimation is
performed in Boivin and Ng (2004), with weights set equal to the inverse of
the standard deviation of the estimated idiosyncratic components, featuring
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Kalman �ltering of the estimated factors in Doz et al. (2007) as well. More-
over, applications of frequency domain PCA can be found in Giannone et al.
(2002, 2004) and Alessi et al. (2009), while the weighted average approach
has so far been implemented in the Global VAR (GVAR) literature (Pesaran
et al., 2004; Dees et al., 2010).
Estimation of common unobserved features by means of time domain

PCA is promising, as recent asymptotic results, i.e. Bai (2003, 2004) and Bai
and Ng (2004), have proved consistency and asymptotic normality under var-
ious conditions, covering the exact and approximate factor model case, with
weakly stationary (short memory) or I(1) integrated processes, also featuring
conditional heteroskedasticity; the validity of PCA for the intermediate case
of long-memory processes has also been conjectured, and supporting Monte
Carlo results are provided in Morana (2007).
Moreover, consistency for the Kalman �ltering augmented PCA approach

has been established by Doz et al. (2007), also showing that PCA is asymp-
totically equivalent to Quasi-ML estimation of the unobserved factors, when
the approximating model is assumed to be static and the idiosyncratic com-
ponents to be spherical.
Finally, di¤erences can be found concerning the identi�cation of the struc-

tural shocks; methods for the identi�cation of selected shocks only are pro-
posed and implemented in Stock and Watson (2005) and Dees et al. (2010),
while a strategy for the identi�cation of all the structural shocks, both com-
mon and idiosyncratic, is proposed in Morana (2009).
The paper, building on Morana (2009), contributes to the literature on

FVAR modelling by introducing a new approach, the fractionally integrated
heteroskedastic factor vector autoregressive (FI-HF-VAR) model, with min-
imal pretesting requirements for implementation, performing well indepen-
dently of the integration properties of the data and of the sources of persis-
tence, i.e. deterministic or stochastic, and therefore accounting for common
features of di¤erent kinds, i.e. common integrated (of the fractional or in-
teger type) or non integrated stochastic factors, also featuring conditional
heteroskedasticity, and common deterministic break processes.
As data are modelled in deviations from the common features, accurate

(and asymptotically normal and e¢ cient) estimation can be achieved within
the two-step iterated approach of Stock and Watson (2005), featuring there-
fore simplicity of implementation also in the case of large systems of dynamic
equations. The two-step estimation procedure can also be implemented fol-
lowing the Granger and Jeon (2004) thick modelling strategy, providing me-
dian estimates of the parameters of interest and robust standard errors.
The proposed approach allows for an accurate investigation of the prop-

erties of the data, from persistence and copersistence analysis to impulse
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responses and forecast error variance decomposition for both common and
idiosyncratic shocks, structuralized according to a double Choleski identi�-
cation strategy of the type proposed in Morana (2009). Monte Carlo results
strongly support the proposed methodology.
After this introduction, the paper is organized as follows. In section two

the econometric methodology is presented, while in section three Monte Carlo
analysis is performed; an empirical application is provided in section four,
while conclusions are drawn in section �ve.

2 The FI-HF-VAR model

Consider the following fractionally integrated heteroskedastic factor vector
autoregressive (FI-HF-VAR) model

xt = ���t + �fft + C(L)(xt�1 � ���t�1 � �fft�1) + vt(1)

vt � iid(0;�v)

P (L)D(L)ft = �t =
p
ht
0
 t; (2)

 t � iid(0;� )

M(L)
�
�2t � wt

�
= N(L)(�2t � ht) (3)

where xt is a n-variate vector of real valued integrated processes subject
to structural breaks, t = 1; :::; T , L is the lag operator, ft is a r-variate
vector of heteroskedastic integrated, of order d in mean, and b in variance,
common factors, with 0 � di � 1, 0 � bi � 1; i = 1; :::; r, �t is an m-
variate vector of common break processes, vt is a n-variate vector of zero
mean idiosyncratic i.i.d. shocks, with contemporaneous covariance matrix
�v, assumed consistent with the condition of weak cross-sectional correlation
of the idiosyncratic components (Assumption E) stated in Bai (2003, p.143),
 t is a r-variate vector of common zero mean i.i.d. shocks, with covariance
matrix � = Ir, E [ itvjs] = 0 all i; j; t; s, �f and �� are n � r and n �m,
respectively, matrices of loadings, C(L) is a �nite order stationary matrix
of polynomials in the lag operator, i.e. C(L) � C1L + C2L

2 + ::: + CsL
s,

Cj j = 1; ::; s is a square matrix of coe¢ cients of order n, P (L) is a �nite
order stationary matrix of polynomials in the lag operator, i.e. P (L) �
Ir+P1L+P2L

2+ :::+PuL
u, Pj, j = 1; ::; u, is a square matrix of coe¢ cients

of order r.
D(L),M(L), and N(L) are diagonal polynomial matrices in the lag oper-

ator of order r, speci�ed according to the integration order of the mean and
variance components of the common stochastic factors.
For the vector conditional mean process it is assumed:
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i) for the case of fractional integration (long memory) (0 < di < 1)1 and
the case of integration (di = 1)

D(L) � diag
�
(1� L)d1 ; (1� L)d2 ; :::; (1� L)dr

	
;

where (1 � L)di is the di¤erencing operator of fractional or integer order;
the fractional di¤erencing operator has a binomial expansion, which can be
compactly written in terms of the Hypergeometric function, i.e.

(1� L)di = F (�di; 1; 1;L)

=
1P
k=0

� (k � di) � (k + 1)
�1 � (�di)�1 Lk

=
1P
k=0

�kL
k; (4)

where � (�) is the Gamma function;
ii) for the case of no integration (short memory) (di = 0)

D(L) � Ir:

For the vector conditional variance process it is assumed that the common
factors ft are also conditionally orthogonal, i.e. qf;t = Cov(fi;t; fj;sj
t�1) = 0
all i; j; t; s; moreover:

M(L) � diag f�1(L); �2(L); :::; �r(L)g

N(L) � diag f�1(L); �2(L); :::; �r(L)g ;
then,
i) for the case of fractional integration (long memory) (0 < bi < 1) and

the case of integration (bi = 1)

�i(L) � (1� �i(L)� �i(L))(1� L)bi

�i(L) � (1� �i(L));

ii) for the case of no integration (short memory) (bi = 0)

1See Baillie (1996) for an introduction to long memory processes.
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�i(L) � (1� �i(L)� �i(L))

�i(L) � (1� �i(L));

in both cases �i(L) � �i;1L + �i;2L
2 + ::: + �i;nL

n, �i(L) � �i;1L +
�i;2L

2 + ::: + �i;mL
m, with all the roots of the �i(L) and �i(L) polynomials

in the lag operator outside the unit circle; the conditional variance process
hi;t� V ar(fi;tj
i;t�1) is therefore of the FIGARCH (m; bi; n) type (Bail-
lie et al., 1996) or the IGARCH (m;n) type (Engle and Bollerslev, 1986)
for the fractionally integrated and integrated case, respectively, and of the
GARCH (m;n) type (Bollerslev, 1986) for the non integrated case.2

Finally, wt is the long-term conditional variance process, or the time-
varying unconditional variance process, or simply the break in variance process.
Di¤erent speci�cations have been suggested in the literature for wt , i.e. a
quadratic or cubic spline function (Engle and Rangel, 2008), a Gallant (1984)
�exible functional form (Baillie and Morana, 2009), a general smooth tran-
sition logistic function (Amado and Terasvirta, 2008), a Markov switching
mechanism (Hamilton and Susmel, 2004); in all cases alternating regimes,
recurrent or not recurrent, are allowed in the conditional variance equations.
The advantage of the above break modelling approaches lies in the fact that
the selection of the break process does not require pre-testing and the esti-
mation of the break points; smooth transition across regimes, according to
actual data properties, is also allowed for. The above mentioned mechanisms,
may also be implemented for endogenous modelling of the break process in
the mean of the series (�t).

2.1 The reduced fractional VAR form

Depending on persistence properties of the data, the vector autoregressive
representation (VAR) for the factors ft and the series xt can be written as
follows:

i) for the case of fractional integration (long memory) (0 < di < 1), by
taking into account the binomial expansion in (4), it follows P (L)D(L) �
I��(L), �(L) = �1L1+�2L2+ :::; where �i, i = 1; 2; :::, is a square matrix
of coe¢ cients of dimension r; by substituting (2) into (1), the in�nite order

2This is just for convenience of presentation, as any combination of conditional mean
and variance speci�cation could be employed.
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vector autoregressive representation for the factors ft and the series xt can
then be written as�

ft
xt � ���t

�
=

�
��f (L) 0
��(L) C(L)

� �
ft�1

xt�1 � ���t�1

�
(5)

+

�
�
t

"t

�
;�

�
t

"t

�
=

�
I
�f

�
[
p
ht
0
 t] +

�
0
vt

�
;

where ��f (L) = �(L)L�1 and ��(L) = [In � C(L)L] �f�(L)L
�1; since the

in�nite order representation cannot be handled in estimation, a truncation
to a suitable large lag for the polynomial matrix �(L) is required.3 Hence,

�(L) =

pX
j=1

�jL
j;

ii) for the case of integration (di = 1), it should be �rstly recalled that

P (L)D(L) � P (L)(1� L)

� (Ir � �L)� (P1L+ P2L
2 + :::+ PuL

u)(1� L)

with � = Ir.
The latter may be rewritten in the equivalent polynomial matrix form

Ir � �1L� �2L2 � :::� �u+1Lu+1)
where �i, i = 1; :::; u + 1; is a square matrix of coe¢ cients of dimension r,
and

�1 + �2 + :::+ �u+1 = � = Ir

Pi = � (�i+1 + �i+2 + :::+ �u+1) i = 1; 2; :::; u:

Then, the (�nite order) vector autoregressive representation for the fac-
tors ft and the series xt can be written as in (5), with ��f (L) = �(L)L

�1 and
��(L) = [In � C(L)L] �f�(L)L

�1;

3Monte Carlo evidence reported in Chan and Palma (1998) suggests that the truncation
lag should increase with the sample size and the complexity of the ARFIMA representation
of the long memory process, still remaining very small relatively to the sample size. For
instance, for the covariance stationary fractional white noise case and a sample of 100
observations truncation can be set as low as 6 lags, while for a sample of 10,000 observations
it should be increased to 14 lags; for the case of a covariance stationary ARFIMA (1,d,1)
process and a sample of 1,000 observations truncation should be set to 30 lags.
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iii) for the case of no integration (short memory) (di = 0), the (�nite
order) vector autoregressive representation for the factors ft and the series
xt can still be written as in (5), but recalling that D(L) � Ir, and therefore
P (L)D(L) = P (L), then, ��f (L) = P (L)L�1 and��(L) = [In � C(L)L] �fP (L)L

�1.

2.2 Estimation

Estimation of the model can be implemented following a two-stage iterative
procedure, similar to Stock and Watson (2005), consisting of the following
steps.
� Step 1: persistence analysis. Long memory and structural break

tests are carried out on the series of interest in order to determine their
persistence properties. Several approaches are available in the literature for
structural break testing and estimation, as well as for fractional di¤erencing
parameter estimation.4

� Step 2: initialization. Conditional on the presence of structural
breaks and long memory in the series investigated, an initial estimate of the
unobserved deterministic (break processes bt) and stochastic features (lt) can
be obtained by decomposing the series as xt = bt + lt.

�� Then, the common break processes are estimated by means of
Principal Components Analysis (PCA) implemented using the estimated
break process b̂t, yielding an estimate of the m � 1 vector of the standard-
ized (�̂�̂ = Im) principal components or common break processes H��̂t =

�̂
�1=2
b Â

0
b̂t, where �̂b is the diagonal matrix of the estimated non zero eigenval-

ues of the reduced rank variance-covariance matrix of the (estimated) break
processes �̂b̂ (rank m < n), Â is the matrix of the associated orthogonal
eigenvectors, and H� ia an invertible square matrix of order m.

�� Next, the common long memory factors can be obtained by means
of PCA implemented using the estimated break-free series l̂t = xt�b̂t; yielding
the estimate of the r common long memory factors f̂t = Hbf �̂

�1=2
bf B̂0l̂t, where

B̂ is the matrix of the estimated orthogonal eigenvectors associated with the
r non-zero eigenvalues of the reduced rank variance-covariance matrix of the
(estimated) break-free processes �̂bf (rank r < n), and Hbf is an invertible
square matrix of order r.
� Step 3: starting the iterative procedure. Conditional on the

estimate of the deterministic and stochastic factors, the iterative procedure
is started by computing a preliminary estimate of the polynomial matrix

4This literature is too vast to provide details in the current paper. See the empirical
application for hints on some well known approaches.
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C(L) and the �f factor loading matrix, by means of OLS estimation of the
equation system in (1).

�� Then, a new estimate of the m deterministic factors and their
factor loading matrix can be obtained by the application of PCA to the long
memory-free series xt �

h
I � Ĉ(L)L

i
�̂f f̂t.

�� Next, conditional on the new common break processes and their
factor loading matrix, the new common long memory factors can be obtained
as the �rst r principal components of the set of break-free processes xt��̂��̂t,
and new estimates for the C(L) polynomial matrix and the �f factor loading
matrix can also be obtained by means of OLS estimation of the equation
system in (1).

�� The procedure described in step 3 is then iterated to improve
e¢ ciency.
� Step 4: restricted estimation of the full model. Once the �nal

estimates of ft and �t are available, for the non integration and integration
case (di = 0 and di = 1), the polynomial matrix ��f (L) in (5) can be consis-
tently estimated by OLS; for the fractionally integrated case (0 < di < 1), the
fractional di¤erencing parameter is estimated �rst, for each common factor,
by means of a consistent semiparametric estimator, and the associated trun-
cated in�nite order VAR representation obtained by means of the binomial
expansion in (4); then, P (L) is estimated by OLS applied to the fractionally
di¤erenced series5; hence, the �nal estimate of the ��f (L) matrix polynomial
is obtained through the product of the P̂ (L) and �̂(L) polynomials.6

By then employing the �nal estimate of the ��f (L) and C(L) matrices,
the restricted VAR in (5) can be estimated.
Also, following the thick modelling strategy of Granger and Jeon (2004),

median estimates of the parameters of interest, impulse responses and fore-
cast error variance decomposition, as well as of their con�dence intervals,
robust to model misspeci�cation, can be obtained by means of simulation
methods. The identi�cation of the common and idiosyncratic shocks can be
performed by means of a (double) Choleski approach, as discussed in the
following section.
� Step 5: conditional variance analysis. Median factor estimated

residuals can be �rstly computed using the estimated median (me) parame-

5Alternatively, Non-Linear Least Squares estimation can be performed on the actual
series, conditional to the estimated fractional di¤erencing parameter.

6Alternatively, for the covariance stationary long memory case only, consistent estima-
tion of the VARFIMA structure for the common long memory factors could be obtained
by means of Conditional-Sum-of-Squares (Robinson, 2006), exact Maximum Likelihood
(Sowell, 1992), or Indirect (Martin and Wilkins, 1999) estimation.
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ters7, i.e.
�̂t = f̂t � �̂�(L)(me)f̂t�1;

then, a modi�ed version of the O-GARCH model of Alexander (2002), in or-
der to take into account either long memory or structural breaks in variance,
or both, is implemented. The latter consists of the following steps:

i) �rstly, conditional variance estimation is carried out factor by factor,
yielding ĥi;t, i = 1; 2; :::; r;

ii) secondly, consistent with the assumptions of conditional and uncondi-
tional orthogonality of the factors, the conditional variance (Hx;t) and corre-
lation (Rx;t) matrices for the actual series may be computed as

Hx;t = �fHt�
0
f ;

where Ht = diag fh1;t; h2;t; :::; hr;tg, and

Rx;t = H
��1=2
x;t Hx;tH

��1=2
x;t ;

where H�
x;t = diag fhx1;t; hx2;t; :::; hxn;tg, respectively.

2.2.1 Reduced form and structural vector moving average repre-
sentation of the FI-HF-VAR model

In the presence of unconditional heteroskedasticity, the computation of the
impulse response functions and the forecast error variance decomposition
(FEVD) should be made dependent on the estimated unconditional variance
for each regime. In the case of (continuously) time-varying unconditional
variance, policy analysis may then be computed at each point in time. For
some of the conditional variance models considered in the paper, i.e. the
FIGARCH and IGARCH processes, the population unconditional variance
does not actually exist; in the latter cases the wt component just bears the
interpretation of long term level for the conditional variance; computation
of policy analysis would still be feasible, yet subject to a di¤erent interpre-
tation, FEVD referring, for instance, not to the proportion of forecast error
(unconditional) variance accounted for by each structural shock, but to the
proportion of forecast error (conditional) long term variance accounted for
by each structural shock. With this caveat in mind, the actual computation
of the above quantities is achieved in the same way as in the case of well
de�ned population unconditional variance.

7This assumes that the Granger and Jeon (2004) procedure is inplemented; yet this is
not necessary, and O-GARCH modelling can be carried out using the residuals obtained
from the point, and not the median, estimated parameters.
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Hence, the computation of the vector moving average (VMA) representa-
tion for the FI-HF-VAR model depends on the persistence properties of the
standardized data (xi;t=ĥ

1=2
xi;t). The following distinctions should therefore be

made.
For the short memory case, i.e. the zero integration order case (di = 0),

the VMA representation for the xt � ���t process can be written as

xt � ���t = G(L)�t + F (L)vt; (6)

where G(L) � �fD(L)�1 and F (L) � [I � C(L)L]�1.
For the long memory case (0 < di < 1) and the case of I(1) non stationar-

ity (di = 1), the VMA representation should be computed for the di¤erenced
process (1� L) (xt � ���t) yielding

(1� L) (xt � ���t) = G(L)+�t + F (L)+vt; (7)

whereG(L)+ � �f (1� L)D(L)�1 = (1� L)G(L) and F (L)+ � (1� L) [I � C(L)L]�1 =
(1� L)F (L).
Moreover, for the long memory case, the generic lag polynomial element

in G(L)+, i.e. gi (L)
+ can be written in terms of the Hypergeometric function

gi (L)
+ = F (di � 1; 1; 1;L)

=
1P
k=0

� (k + di) � (k + 1)
�1 � (di)

�1 Lk

=
1P
k=0

�kL
k:

Impulse responses for the xt����t process can then be �nally computed

as I +
kP
j=1

G+j and I +
kP
j=1

F+j k = 1; 2; :::

Identi�cation of structural shocks The identi�cation of the structural
shocks in the FI-HF-VAR model can be carried out by means of a Choleski
decomposition procedure, noting that, in the case of unconditionally hortog-
onal factor, factor residuals would already be structural (exactly identi�ed),
as E [�t�

0
t] = Ir; only the idiosyncratic shocks require to be identi�ed.

The identi�cation of the idiosyncratic shocks can then be achieved through
the Choleski decomposition of the matrix �v: By denoting  t the n struc-
tural idiosyncratic shocks, the relation between reduced form and structural
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form idiosyncratic shocks can be written as  t = �vt, where � is square and
invertible. Hence, the identi�cation of the structural idiosyncratic shocks
amounts to the estimation of the elements of the � matrix. It is assumed
that E [ t 

0
t] = In, and hence ��v� = In:

The estimation of the lower triangular � matrix can then be carried out
as follows:
1) regress "̂x;t on �̂t by OLS and obtain v̂t as the residuals;
2) then from  t = �vt it follows E [ t 

0
t] = ��v� = I: Hence, �̂ =

chol(�̂v̂).
The identi�cation scheme performed allows for exact identi�cation of the

n structural idiosyncratic shocks, imposing n(n � 1)=2 zero restrictions on
the contemporaneous impact matrix �̂�1.
In the case the common stochastic factors were not unconditionally hor-

togonal, as for instance when the common stochastic factors are extracted by
means of PCA implemented on sub sets of variables (Bernanke et al., 2005;
Bagliano and Morana, 2008), rather than on the whole set of variables, also
factors�residuals would require structuralization. Denoting by �t the vector
of the r structural common shocks, the relation between reduced form and
structural form common shocks can be written as �t = H�t; where H is
square and invertible. Therefore, the identi�cation of the structural common
shocks amounts to the estimation of the elements of the H matrix. It is
assumed that E [�t�

0
t] = Ir, and hence H��H 0 = Ir:

The lower triangular H matrix can then be estimated by the Choleski
decomposition of the matrix �̂�; i.e. from �t = H�t we have E [�t�

0
t] =

H��H
0 = I; and hence, Ĥ = chol(�̂�). The identi�cation scheme performed

allows for exact identi�cation of the r structural common shocks, imposing
r(r � 1)=2 zero restrictions on the contemporaneous impact matrix Ĥ�1.
The structural VMA representation can then be written as

xt � ���t = G�(L)�t + F �(L) t; (8)

where G�(L) = G(L)H�1, F �(L) = F (L)��1, or

(1� L) (xt � ���t) = G
�
(L)�t + F

�
(L) t; (9)

where G
�
(L) = G+(L)H�1, F

�
(L) = F (L)+��1, according to persistence

properties, and E
�
 i;t�

0
j;t

�
= 0 any i; j, noting that, in the unconditionally

hortogonal factor case, H = Ir and �t = �t.

2.2.2 Asymptotic properties

The estimation procedure is multi-step, relying on PCA, OLS, and semipara-
metric/parametric estimation of the fractional di¤erencing parameter for the
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fractionally integrated case, and iterated to improve e¢ ciency. In the light of
the arguments in Doz et al. (2007), the iterative procedure of Stock and Wat-
son (2005) can be interpreted in terms Quasi-ML estimation, performed via
the EM algorithm. Kalman �ltering could also be added as additional step
in the estimation of the common stochastic factors; yet, in the light of the
Monte Carlo results provided in this study (see next section), it may be not
necessary, particularly for the covariance stationary case, as the small sample
performance of PCA is already highly satisfactory under many circumstances
of empirical relevance.
Concerning the asymptotic properties of the proposed approach, consis-

tency and asymptotic e¢ ciency and normality can be conjectured on the
ground of the following arguments.
Firstly, recent theoretical results validate the use of PCA in the case of

both weakly (Bai, 2003) and strongly (Bai, 2004; Bai and Ng, 2004) de-
pendent processes. In particular, under some general conditions, Bai (2003),
given the invertible matrix �; establishes

p
n consistency and asymptotic nor-

mality of PCA for �ft, at each point in time, for n; T !1 and
p
n=T ! 0,

when both the unobserved factors and the idiosyncratic components show
limited serial correlation, and the latter also display limited heteroskedastic-
ity in both their time-series and cross-sectional dimensions; under the same
conditions he also establishes

p
T consistency and asymptotic normality of

PCA for �f��1, as well as min
np

n;
p
T
o
consistency and asymptotic nor-

mality of PCA for the unobserved common components �fft, at each point
in time (without requiring

p
n=T ! 0).

In Bai (2004) the above results are extended to the case of I(1) (non cointe-
grated) unobserved factors and I(0) idiosyncratic components, also featuring
limited heteroskedasticity in both the time-series and cross-sectional dimen-
sions for the latter components. In particular, under some general conditions,p
n consistency and asymptotic normality of PCA for �ft is established, at

each point in time, for n; T ! 1 and n=T 3 ! 0;
p
T consistency and as-

ymptotic normality of PCA for �f��1, as well asmin
np

n;
p
T
o
consistency

and asymptotic normality for the unobserved common components �fft, at
each point in time, is established for n; T ! 1. It is worthwile remarking
that the above results assume that PCA is conducted using the level of the
series, rather than their �rst di¤erences.
While there are no asymptotic results for the application of PCA to frac-

tionally integrated processes, supporting Monte Carlo evidence, on the valid-
ity of PCA in both the stationary and non stationary case, has however been
provided by Morana (2007). Moreover, the use of PCA for the estimation
of common deterministic trends has previously been advocated by Bierens
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(2000).8

The estimation of the polynomial matrix C(L) is conditional to the esti-
mated common components which, as pointed out above, can be consistently
estimated (stochastic component). Hence, also (xt � ���t � �fft) is consis-
tently estimated, for n; T !1, at the min

np
n;
p
T
o
rate; proceding then

as it were observed, as (xt����t��fft) � I(0), independent of the integra-
tion order of the actual series xt,

p
T consistent and asymptotically normal

and e¢ cient estimation of the polynomial matrix C(L) can be obtained by
the application of OLS on the estimated (xt����t��fft) series (Hamilton,
1994; ch.3).
Similarly for the estimation of the polynomial matrix ��f (L) for the non

integrated (di = 0) and integrated (di = 1) case, relying on the consistent
estimates of �ft, and therefore proceeding as the common stochastic factors
were actually observed (Hamilton, 1994; ch.3 for the non integrated case;
ch.17 for the integrated case).
Similarly also for the fractionally integrated cases (0 < di < 1), as the

consistently estimated common factors, following the Box-Jenkins strategy,
would be fractionally di¤erenced, using a consistent (and asymptotically nor-
mal) semiparametric estimate of the long memory parameter, previous to the
application of OLS for the estimation of the short memory dynamics.
Finally, Quasi-ML estimation of the conditional variance equations can

be implemented, using the estimated residuals; the latter estimator has been
shown, or conjectured, to yield consistent and asymptotically normal esti-
mates in the framework considered (see Bollerslev, 1986; Baillie et al., 1996;
Baillie and Morana, 2009).
Recent results of Pesaran and Chudik (2010) are also supportive of the

conjecture made concerning the asymptotic properties of the proposed method-
ology, as consistent and asymptotically Normal estimation of the dynamic
e¤ects of the dominant unit (common dynamic factor), as well as those of
the neighborood units, is shown for an augmented least square regression
including a �nite number of lagged values for the dominat unit, despite the
theoretical relationship involves an in�nite order distribute lag relationship.

3 Monte Carlo results

Consider the following data generation process (DGP) for the series xt
8Yet, details cannot be found in the published version of his paper.
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xt = �t + ft + C(xt�1 � �t�1 � ft�1) + vt (10)

vt � iid(0;�v) �v = diag
�
�2
�
:

Then, for the fractionally integrated and integrated cases it is assumed

(1� �L)(1� L)dft = �t =
p
ht
0
 t  t � iid(0; 1)

[1� �L� �L](1� L)b
�
�2t � �2�

�
= [1� �L]

�
�2t � ht

�
; (11)

while for the non integrated case

(1� �L)ft = �t =
p
ht
0
 t  t � iid(0; 1)

[1� �L� �L]
�
�2t � �2�

�
= [1� �L]

�
�2t � ht

�
(12)

Di¤erent values for the autoregressive idiosyncratic parameter �, com-
mon across the n cross-sectional units (C = diag (�)), have been considered,
i.e. � = f0; 0:2; 0:4; 0:6; 0:8g, as well as for the fractionally di¤erencing pa-
rameter d = f0; 0:2; 0:4; 0:6; 0:8; 1g and the common factor autoregressive
parameter �, setting � = f0:2; 0:4; 0:6; 0:8g for the non integrated case and
� = f0; d=2g for the fractionally integrated and integrated cases; � > � is
always assumed in the experiments. For the conditional variance equation it
is assumed � = 0:05 and � = 0:90 for the short memory case, and � = 0:05,
� = 0:30 and b = 0:45 for the long memory case. The inverse signal to noise
ratio is given by �2=�2�, taking values �

2=�2� = f4; 2; 1; 0:5; 0:25g.
Moreover, in addition to structural stability case, i.e. �t = � = 0, two

break process structures have been considered for the component �t; i.e.
i) the single step change in the intercept at the midpoint of the sample

case, i.e.

�t =

�
0 t = 1; :::; T=2
4 t = T=2 + 1; :::; T

;

ii) the two step changes equally spaced throughout the sample case, with
the intercept increasing at one third of the way through the sample and then
decreasing at a point two thirds of the length of the sample, i.e.

�t =

8<:
0 t = 1; :::; T=3
4 t = T=3 + 1; :::; 2T=3
2 t = 2T=3 + 1; :::; T

:

The sample size investigated is T = 100; 500, and the number of cross-
sectional units is N = 30. The number of replications has been set to 2,000
for each case.
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The ability of the proposed approach in estimating the unknown common
factor and break process, and the autoregressive parameters in the mean
equation, has then been assessed. As the factor loadings and common fac-
tors are not separately identi�ed when estimated using PCA, the evaluation
neglects the estimation of the factor loading parameters, which are set to
unity in the present exercise. For the common factors the Theil inequality
coe¢ cient (IC) and the correlation coe¢ cient (�) have been employed in the
evaluation:

IC = RMSFE=(

vuut 1

T

TX
t=1

x�2t +

vuut 1

T

TX
t=1

x̂2t );

RMSFE =

vuut 1

T

TX
t=1

(x�t � x̂t)
2

Corr = Cov(x�t ; x̂t)=
p
V ar(x�t )V ar(x̂t);

where x�t is the true unobserved component and x̂t is its estimated coun-
terpart. The above statistics have been computed for each Monte Carlo
replication and then averaged.
In particular, the following experiments have been carried out:
1) observed common stochastic factor and break process (or no break

process) case: the ability of the model in estimating the autoregressive para-
meters � and � is then assessed, and the cross-sectional dimension is set to
the minimum possible value, i.e. N = 2;
2) unobserved common stochastic factors and known break points and

fractional di¤erencing parameter d case: the ability of the model in estimating
the autoregressive parameters � and �, as in 1), is assessed, as well as in
estimating the unobserved common stochastic and deterministic features;
for this case N = 30; the performance of the approach has also been assessed
using di¤erent cross-sectional dimensions, i.e. N = 5; 10; 15; 50;
3) the above experiments have been carried out assuming a constant con-

ditional variance in a �rst case and a time-varying conditional variance, as
detailed in the DGP, in the second case.

3.1 Results

The results for the non integration case are reported in Tables 1-9, while
Tables 10-18 refer to the fractionally integrated and integrated cases (sim-
ply referred as the integrated case, independent of the type of integration,
thereafter). In all cases results refer to the estimated parameters for the
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�rst equation in the model. Since the results are virtually una¤ected by the
presence of conditional heteroskedasticity, for reasons of space, in the Tables
only the heteroskedastic case is considered. Moreover, only the results for
the � = d=2 case are reported for the integrated case, as similar results have
been obtained for the � = 0 case.9

3.1.1 The observed common factor and break process case

Tables 1 and 10 refer to the observed common stochastic factor case, assum-
ing a constant unconditional mean (i.e. no structural breaks in the mean),
or, equivalently, an observed common break process in mean.
As shown in the Tables, for both the non integrated and integrated case,

there is evidence of a small downward bias in the autoregressive parameters
� and �, increasing with the persistence of the common factor, i.e. � (non
integrated case) or d (integrated case), yet decreasing as the sample size T
increases. For � the bias also decreases as the serial correlation spread, ��
� (non integrated case) or d� � (integrated case), increases.
The average bias is however negligible already for a sample size of 100

observations: -0.02 (�) and -0.03 (�) for the non integrated case, and -0.02
(�) and -0.04 (�) for the integrated case (-0.003 (�) and -0.006 (�), and -
0.004 (� and �), for the non integrated and integrated case, respectively, and
T = 500).
Hence, in the observed common features case, the approach delivers un-

biased estimates of all the parameters, independently of the sample size,
number of cross-sectional units (N = 2 in the experiment), degree of serial
correlation of the common (�) and idiosyncratic (�) components, integration
order (d), and (inverse) signal to noise ratio s=n�1. As can be expected,
precision increases with the sample size.

3.1.2 The unobserved common factor, with observed common
break process, case

Tables 2 and 3 refer to the unobserved common factor case, under the as-
sumption of observed common break process, or, equivalently, no structural
breaks in the mean, for the non integrated case; results for the corresponding
integrated case are reported in Tables 11 and 12.
As is shown in Tables 2 and 11, for both cases, there is again evidence of

a downward bias in � and �, which is always negligible for the � parameter
(-0.02 and -0.03, on average, for the non integrated and integrated case,

9A full set of results is available upon request from the author.
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respectively, and T = 100; -0.01 and -0.006, respectively, and T = 500), yet
not always negligible for the � parameter.
In particular, the bias in � is increasing with the degree of persistence of

the common factor d, the (inverse) signal to noise ratio s=n�1, and the serial
correlation spread, �� � or d� �, yet decreasing with the sample size T .
For the selected cross-sectional sample dimension N = 30, it can be

noted that, for the non integrated case, there are only few cases (�� � =
0:4; 0:6; 0:8) when a 10%, or larger, bias is found, occurring when the series
are particularly noisy (s=n�1 = 4); for the stationary long memory case a
10%, or smaller, bias is found for s=n�1 � 2, while for the non stationary long
memory case it is required s=n�1 � 1 and a (relatively) large sample (T =
500). Increasing the cross-sectional dimension N leads to better �ndings (see
the next section).
On the other hand, for the � parameter the bias is decreasing as the

serial correlation spread, �� � or d� �, or the sample size T , increase, being
insensitive to the (inverse) signal to noise ratio. In all cases the bias for � is
smaller than for �.
Concerning the estimation of the unobserved common stochastic factor,

from Tables 3 and 12 it can be concluded that a cross-sectional dimension
of 30 units would lead to a satisfactory outcome, as the Theil statistic is
always below 0.2 (0.14 (0.10), on average, for T = 100 (T = 500) for the
non integrated case; 0.06 (0.03), on average, for T = 100 (T = 500) for the
integrated case). Moreover, the correlation coe¢ cient between the actual
and estimated common factors is always very high, 0.98 and 0.99, on average,
respectively, for both sample sizes.

Results for smaller and larger cross-sectional samples PCA is ap
N consistent estimator of the unobserved common factors, for N; T !1;

as T and N increase, the performance of the feasible case should therefore
approach the one found for the unfeasible (observed factor) case.
In Tables 4-5 and 13-14 a summary of results for di¤erent cross-sectional

dimensions, i.e. N = 5; 10; 15; 50, for the unobserved common factor and no
structural breaks or, equivalently, observed break process case, is reported.
In the Tables only the bias for the � parameter, as well as the correlation
coe¢ cient between the actual and estimated common factor, is reported, for
reasons of space; statistics for the � parameter are not reported as well, as
the latter is always unbiasedly estimated, independently of the cross-sectional
dimension.10

10Detailed results for all cases are available upon request from the author.
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As is shown in the Tables, the performance of the estimator crucially
depends on T , N , and s=n�1.
For the non integrated case, when the (inverse) signal to noise ratio is

low, i.e. s=n�1 � 0:5, the downward bias is already mitigated by using
a cross-sectional sample size as small as N = 5; for the case of T = 100
observations; as N increases similar results are obtained for higher s=n�1, i.e.
N = 10; 15 and s=n�1 � 1, or N = 50 and s=n�1 � 4. For a larger sample
size, i.e. T = 500, similar conclusions hold, albeit, for the N = 5 case, the
(inverse) signal to noise ratio can be higher, i.e. s=n�1 � 1; similarly for the
N = 10; 15 case with s=n�1 � 2 (Table 4).
For the integrated case conditions are slightly more restrictive; in partic-

ular, for the stationary long memory case, when the (inverse) signal to noise
ratio is low, i.e. s=n�1 � 0:5, the downward bias is already mitigated by
setting N = 5 and T = 100; similar results are obtained for higher s=n�1

and N , i.e. N = 10; 15 and s=n�1 � 1; 2, or N = 50 and s=n�1 � 4. Similar
conclusions can be drawn for T = 500, albeit, holding N constant, accurate
estimation is obtained also for higher s=n�1. Also Similarly for the non sta-
tionary long memory or the integrated cases; yet, holding T constant, either
larger N; or lower s=n�1, would be required to attain accurate estimation
(Table 13).
The above �ndings are corroborated by the correlation coe¢ cients be-

tween the actual and estimated common factors (Tables 5 and 14), which
do show that satisfactory estimation of the unobserved common factor (a
correlation coe¢ cient higher than 0.9) can indeed be obtained also in the
case of a small cross-sectional sample, provided tha the (inverse) signal to
noise ratio is not too high, and/or the cross-sectional dimension is not too
low (s=n�1 � 1 and N = 5; s=n�1 � 2 and N = 10; s=n�1 � 4 and N = 15).

3.1.3 The unobserved common factor, with known break points,
case

Tables 6-9 and 15-18 refer to the unobserved common factor case, under the
assumption of known break points, requiring therefore the estimation of the
common break process as well.
As is shown in Tables 6-7 and 15-16, when the common break process

needs to be estimated, the bias in the � parameter increases slightly, but
for the small sample case only (the average bias is -0.04, independent of the
break process design and integration properties; T = 100), as for the large
sample case the performance is virtually unchanged (the average bias is -0.01
in all the cases; T = 500). As for the no break process, or observed break
process, case, the bias is decreasing as the serial correlation spread, �� � or
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d� �, or the sample size T; increase, being una¤ected by the (inverse) signal
to noise ratio, and always very small.
Concerning the estimation of the � parameter, similar to the case of no

break process, or observed common break process, the bias is increasing with
the degree of persistence of the common factor d, the (inverse) signal to noise
ratio s=n�1, and the serial correlation spread, �� � or d� �, yet decreasing
with the sample size T . Also, the downward bias is always more sizable for
� than for �.
Moreover, also the complexity of the break process may a¤ect the estima-

tion of the � parameter, worsening as the number of break points increases,
particularly when the sample is small (T = 100); yet, for the no integration
case (Tables 6-7), already for T = 500 the performance is very satisfactory,
independently of the complexity of the break process and the (inverse) signal
to noise ratio s=n�1; on the other hand, for T = 100 the performance is still
satisfactory when the series are not too noisy (s=n�1 � 1), yielding at most
a 10% bias.
Figures reported in Tables 8-9 con�rm the above conclusions, pointing

to a satisfactory estimation of the unobserved common factor and break
process: the Theil statistic is always below 0.2 for the T = 500 case (0.11
and 0.13, on average, for the single break point and two-break points case,
respectively) and below 0.3 for the T = 100 case (0.17 and 0.20, on average),
while the actual and estimated common factors are strongly correlated: on
average, the correlation coe¢ cient is 0.96 (0.98) for the single break point
case, and 0.93 (0.97) for the two-break point case, with T = 100 (T =
500). The almost perfect recovery of the common break process is not too
surprising, as the series are generated as stationary stochastic �uctuations
about a deterministic step function and the break points are known.
Concerning the integrated case, some di¤erences can be noted relatively

to the non integrated case; in fact, as shown in Table 18, albeit the recovery
of the common break process is always very satisfactory across the various
designs, independent of the sample size, performance worsens, not only as the
complexity of the break process increases, but also as d increases: the average
correlation coe¢ cient between the estimated and actual break process falls
from 1 when d = 0:2 (single break point case) to 0.93 when d = 1 (two-break
point case).
Moreover, concerning the estimation of the common stochastic factor (Ta-

ble 17), while for the covariance stationary case (d < 0:5), the results are very
close to what obtained for the non integrated case, i.e. a Theil statistic al-
ways below 0.2 for the T = 500 case (0.12 and 0.14, on average, for the
single break point and two-break points case, respectively) and below 0.3
for the T = 100 case (0.21 and 0.24, on average, respectively), and a very
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high correlation coe¢ cient (0.94 and 0.91, on average, T = 100; 0.97 and
0.96, on average, T = 500), for the non stationary case performance is worse,
featuring average Theil statistics of 0.32 (0.32) and 0.42 (0.44), respectively,
for the single and two-break point case and T = 100 (T = 500); similarly
the average correlation coe¢ cient is 0.79 (0.78) and 0.68 (0.66), respectively.
Consistent with the above results is also the �nding of inaccurate estimation
of the common factor autoregressive parameter �; for the d = 0:8 and d = 1
case, reported in Tables 15-16.
Overall, the above �ndings are not surprising, as the di¢ culty in discrim-

inating between long memory and structural breaks is a well known issue
in the literature (see, for instance, Diebold and Inoue, 2001); the �ndings,
however, provide some additional interesting insights, as the discrimination
between the two sources of persistence, does appear to be feasible in the
case of stationary long memory, becoming more di¢ cult as the degree of sto-
chastic persistence and the complexity of the break process increase. The
counterintuitive �nding of performance worsening as the (temporal) sample
size increases, i.e. smaller bias and Theil statistics and larger correlation
coe¢ cients for T = 100 than T = 500, is also not surprising, as the latter is
determined by the non stationary wandering of the stochastic process about
the step function constituting the break process, and the larger is the sample,
the wider the wandering can be expected.

4 Empirical application: the US �nancial cri-
sis

The data investigated refer to the whole term structure for the US dollar
LIBOR-OIS spreads, i.e. the one-week and two-week maturities and the one-
month through the one-year maturities, for a total of 14 time series. The
data frequency is daily and the sample runs from 20 June 2005 through 7
April 2009, for a total of 992 working days. The data source is REUTERS.
OIS-LIBOR spreads contain interesting information concerning counter-

party risk, liquidity risk and investors�sentiments; the proposed methodology
is then employed in order to gauge insights on their statistical features and
on how the crisis has a¤ected their statistical properties.

4.1 Persistence analysis

Structural break analysis has been performed by means of the Dolado et al.
(2004) structural break test (DGM test), modi�ed to account for a general
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and unknown structural break process (Morana, 2009) and the Bai and Per-
ron (BP, 1998) test; fractional integration analysis has also been performed,
by means of the Moulines and Soulier (1999) broad band log periodogram
(BBLP) estimator.
As shown in Table 19, OIS spreads are strongly persistent, featuring an

average fractional di¤erencing parameter, across maturities, of about 0.93.
Signi�cant break points, for the level of the 1-week OIS spread, can also

be detected, i.e. August 9 2007 (observation 558), September 16 2008 (obser-
vation 844), and November 19 2008 (observation 893).11 Moreover, August
9 2007 and September 16 2008 are also break points for the variance of the
1-week OIS spread. Similar �ndings hold for all the other maturities, with
close (not always coincident) location of the break points, suggesting a de-
layed adjustment in the spreads, particularly for the longest maturities. For
all the maturities the shifts in the mean level were rapid, yet only gradual.
A smooth transition mechanism across regimes, rather than an abrupt step
function process, would therefore seem to be appropriate for describing the
break process in the OIS spreads: a dummy model, with break points set ac-
cording to the BP test, featuring cubic spline transition across regimes, has
therefore been employed. The latter speci�cation is validated by the DGM
test.
Persistence in the OIS spreads is however not only due to the break

process, as strong evidence of long memory in the break-free series can also
be found. The average �gure across maturities is 0.49, with shorter maturities
featuring stronger persistence than longer ones.

4.2 Copersistence analysis

The evidence of breaks and long memory in mean and variance for the OIS
spreads has been taken into account in the estimation of the FI-HF-VAR
model, also allowing for a change in persistence in the mean of the process.
As shown in Table 20, a single common break process accounts for almost

100% of total variance for the break process components across maturities
(Figure 1, top plot); the latter factor accounts for over 90% of total variance
for each spread with maturity beyond two months; for maturities within one
month the percentage of explained variance is in the range 65% to 78%; the
common break process might therefore bear the interpretation of level factor.

11The �rst two estimated break points are uncontroversial: in fact, August 9 2007 is
the day the French bank BNP Paribas revealed its inability to value structured products
for three of its investment funds, triggering the �rst panic wave in the US money market;
September 16 2008 is the day after of Lehman Brothers bankruptcy, triggering the second
panic wave. We remind to Brunnermaier (2009) for institutional details on the crisis.
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The crisis did induce major changes in the level of the spreads, i.e. an average
nine fold increase after August 9 2007, followed by another two fold increase
after September 16 2008; then a 30% average contraction took place between
November 19 2008 and April 7 2009 (the last day of the investigated sample).
Moreover, two common long memory factors account for almost 100% of

total variance (Figure 1 middle plots); the �rst factor a¤ects all the maturi-
ties, with impact weakest at the very short end of the term structure (below
55% within the 1-month maturity) and strongest for medium- long term ma-
turities (over 80%), a kind of curvature e¤ect; the second long memory factor
is strictly related to the shortest end of the term structure (about 45% on
average within the 1-month maturity), a kind of slope e¤ect. The crisis has
determined a signi�cant increase in the persistence of the two common long
memory factors, i.e. from 0.38 to 0.70 and from 0.51 to 0.73, for the �rst and
second factor, respectively.
The two common long memory factors also feature long memory and

structural breaks in their conditional variance: the estimated fractional dif-
ferencing parameters are about 0.17 and 0.63 for the �rst and second factor,
respectively.12 As is shown in Figure 1 (bottom plots), the change in the
level and range of variation of the conditional standard deviation process,
after August 2007, was remarkable, i.e. a three fold and two fold increase,
on average, respectively.

4.3 Impulse responses and forecast error variance de-
composition

As shown in Table 24, as a consequence of the crisis, �uctuations at the
very short end of the term structure (up to the 3-month maturity) have
become more idiosyncratic in the short-term; in fact, while the common long
memory factor shocks jointly accounted, on average, for about 96% (95%)
of �uctuation at the 1-day (20-day) horizon for the pre-crisis period, for
the crisis period the average �gure falls to 68% (95%); also, the forecast
variance decomposition supports the interpretation of the stochastic factors
as curvature and slope factors, the former accounting for a larger proportion
of variance for intermediate maturities (86% to 96%; 3- to 8-month maturity),
the latter accounting for the bulk of �uctuations at the very short end of the
OIS spread term structure (69% to 80%; up to the 1-month maturity).
Finally, as shown in Figure 2, major di¤erences can be noted between the

12Adaptive FIGARCH(1,d,1) models, with cubic spline dummy intercept component
for the conditional variance equation have been estimated for both (�nal) common long
memory factors, using factor residuals computed from median estimated parameters.
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pre-crisis and crisis periods, both in terms of magnitude and persistence of
common factor shocks, as well as of response pro�les. Di¤erences can also be
noted, within each period, across maturities, as displayed by the comparison
between the 1-week and 1-year maturities.
Concerning curvature shocks (top four plots), both the persistence and

magnitude of the impact increase, in general, with the maturity of the OIS
spreads, also being larger for the crisis than the pre-crisis period; concerning
the slope shocks (bottom four plots), a similar impact, in absolute terms,
can be found across maturities for the pre-crisis and crisis period; in both
cases, for the crisis period, shock dissipation occurs well beyond twenty days,
taking longer than for the pre-crisis period; �nally, concerning the e¤ects
of idiosyncratic shocks (not reported), a similar monotonic decay can be
noted in the impulse response functions computed for the crisis and pre-
crisis period, yet, with a much larger contemporaneous impact of shocks
during the crisis; moreover, stronger persistence can be detected for shorter
than longer maturities, with full dissipation occurring within eight and two
days, respectively.

5 Conclusions

In the paper the fractionally integrated heteroskedastic factor vector au-
toregressive (FI-HF-VAR) model is introduced. Relatively to other FVAR
models, the proposed approach singles out for its minimal pretesting require-
ments for implementation, performing well independently of the integration
properties of the data and of the sources of persistence, i.e. determinis-
tic or stochastic, and therefore accounting for common features of di¤erent
kinds, i.e. common integrated (of the fractional or integer type) or non in-
tegrated stochastic factors, also featuring conditional heteroskedasticity, and
common deterministic break processes. As data are modelled in deviations
from the common features, accurate (and asymptotically normal and e¢ -
cient) estimation can be achieved within the two-step iterated approach of
Stock and Watson (2005), featuring therefore simplicity of implementation
also in the case of large systems of dynamic equations. The two-step esti-
mation procedure can also be implemented following the Granger and Jeon
(2004) thick modelling strategy, providing median estimates of the parame-
ters of interest and robust standard errors. An empirical application to US
LIBOR-OIS spreads, over the period June 2005-April 2009, is also proposed,
showing how the proposed methodology allows for accurate investigation of
the properties of the data, from persistence and copersistence analysis to im-
pulse responses and forecast error variance decomposition, for both common
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and idiosyncratic shocks. Monte Carlo results strongly support the proposed
methodology.
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Figure 1: US LIBOR-OIS spreads; normalized common break process
(CBP), common long memory factors (CLMF 1 and CLMF 2), and

conditional standard deviations of the common long memory factors (CSD
1 and CSD 2).
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Figure 2: Impulse responses, with 90% con�dence interval, to a unitary
curvature factor (CLMF1) shock and slope factor (CLMF2) shock, for the
pre-crisis (left hand side plots) and crisis (right hand side plots) periods, for

the 1-week (1w) and 1-year (1y) maturities.
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                 Table 1: Observed common stochastic factor and break process, heteroskedastic case,  N=2: bias and RMSE of parameters. 
common factor autoregressive parameter ϕ 

bias 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 
any -0.017 -0.022 -0.022 -0.026 -0.026 -0.026 -0.035 -0.035 -0.035 -0.035 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 
any 0.104 0.100 0.100 0.092 0.092 0.092 0.085 0.085 0.085 0.085 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.008 -0.012 -0.020 -0.013 -0.016 -0.022 -0.010 -0.022 -0.025 -0.028 
2 -0.011 -0.003 -0.018 -0.009 -0.022 -0.020 -0.014 -0.016 -0.022 -0.029 
1 -0.010 -0.012 -0.012 -0.014 -0.019 -0.021 -0.010 -0.014 -0.022 -0.025 

0.5 -0.009 -0.010 -0.017 -0.011 -0.019 -0.022 -0.010 -0.014 -0.024 -0.032 
0.25 -0.010 -0.012 -0.017 -0.012 -0.014 -0.022 -0.013 -0.019 -0.024 -0.029 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.101 0.103 0.103 0.103 0.100 0.100 0.101 0.105 0.100 0.093 
2 0.103 0.100 0.102 0.104 0.102 0.097 0.102 0.101 0.099 0.095 
1 0.102 0.099 0.101 0.100 0.101 0.098 0.098 0.099 0.098 0.091 

0.5 0.099 0.102 0.103 0.101 0.100 0.098 0.103 0.102 0.101 0.096 
0.25 0.104 0.102 0.102 0.099 0.101 0.097 0.104 0.104 0.100 0.094 

common factor autoregressive parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 
any -0.003 -0.004 -0.004 -0.007 -0.007 -0.007 -0.006 -0.006 -0.006 -0.006 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 
any 0.045 0.044 0.044 0.040 0.040 0.040 0.030 0.030 0.030 0.030 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.001 -0.002 -0.002 -0.003 -0.004 -0.004 0.000 -0.004 -0.004 -0.007 
2 -0.003 -0.002 -0.002 -0.002 -0.004 -0.005 -0.003 -0.003 -0.003 -0.006 
1 -0.004 -0.003 -0.003 -0.002 -0.004 -0.005 0.000 -0.004 -0.002 -0.005 

0.5 -0.003 -0.003 -0.002 -0.002 -0.004 -0.004 -0.002 -0.003 -0.004 -0.005 
0.25 -0.002 -0.003 -0.004 -0.003 -0.002 -0.003 -0.003 -0.003 -0.003 -0.006 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.046 0.046 0.043 0.045 0.044 0.042 0.044 0.045 0.041 0.038 
2 0.045 0.044 0.043 0.045 0.044 0.041 0.045 0.044 0.042 0.037 
1 0.044 0.045 0.044 0.045 0.045 0.042 0.045 0.045 0.042 0.037 

0.5 0.044 0.045 0.045 0.045 0.043 0.044 0.046 0.043 0.042 0.037 
0.25 0.046 0.046 0.044 0.045 0.045 0.040 0.044 0.043 0.043 0.037 

 
 

The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the common factor (ϕ) and idiosyncratic autoregressive parameter (ρ). Results are reported for various 
values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 2, and the number of replications for each case 
is 2,000. The experiment refers to the case of observed autoregressive factor and common break process, or, equivalently, constant unconditional mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



               Table 2: Unobserved common stochastic  factor, no structural break, heteroskedastic case,  N=30: bias and RMSE of parameters. 
N=30 

autoregressive common factor parameter ϕ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.037 -0.063 -0.035 -0.078 -0.060 -0.037 -0.075 -0.064 -0.054 -0.038 
2 -0.028 -0.044 -0.030 -0.055 -0.047 -0.038 -0.055 -0.050 -0.047 -0.039 
1 -0.021 -0.033 -0.027 -0.044 -0.040 -0.036 -0.045 -0.042 -0.041 -0.039 

0.5 -0.019 -0.027 -0.025 -0.037 -0.035 -0.034 -0.039 -0.039 -0.037 -0.037 
0.25 -0.017 -0.025 -0.023 -0.033 -0.032 -0.032 -0.036 -0.036 -0.036 -0.036 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.116 0.133 0.106 0.144 0.123 0.099 0.132 0.118 0.104 0.083 
2 0.110 0.115 0.105 0.119 0.110 0.102 0.107 0.101 0.097 0.088 
1 0.108 0.107 0.103 0.108 0.103 0.100 0.096 0.093 0.091 0.088 

0.5 0.107 0.103 0.102 0.102 0.100 0.099 0.090 0.089 0.088 0.087 
0.25 0.107 0.102 0.101 0.099 0.098 0.098 0.087 0.086 0.086 0.086 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.010 -0.011 -0.021 -0.017 -0.024 -0.034 -0.018 -0.026 -0.033 -0.040 
2 -0.012 -0.014 -0.020 -0.014 -0.022 -0.034 -0.019 -0.025 -0.036 -0.046 
1 -0.010 -0.016 -0.025 -0.016 -0.026 -0.034 -0.021 -0.028 -0.040 -0.042 

0.5 -0.011 -0.013 -0.022 -0.017 -0.024 -0.035 -0.016 -0.026 -0.036 -0.044 
0.25 -0.012 -0.019 -0.022 -0.018 -0.023 -0.031 -0.018 -0.021 -0.035 -0.047 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.098 0.100 0.105 0.101 0.105 0.107 0.103 0.106 0.103 0.102 
2 0.103 0.100 0.103 0.098 0.107 0.106 0.103 0.105 0.108 0.109 
1 0.101 0.105 0.107 0.104 0.107 0.107 0.105 0.104 0.107 0.104 

0.5 0.102 0.101 0.103 0.104 0.104 0.107 0.102 0.104 0.107 0.105 
0.25 0.100 0.102 0.104 0.102 0.104 0.106 0.100 0.104 0.106 0.110 

autoregressive common factor parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.027 -0.045 -0.024 -0.054 -0.038 -0.023 -0.044 -0.036 -0.028 -0.020 
2 -0.016 -0.026 -0.015 -0.031 -0.023 -0.015 -0.026 -0.022 -0.018 -0.014 
1 -0.010 -0.016 -0.010 -0.019 -0.015 -0.011 -0.017 -0.014 -0.013 -0.011 

0.5 -0.006 -0.010 -0.007 -0.012 -0.011 -0.009 -0.012 -0.011 -0.010 -0.009 
0.25 -0.005 -0.007 -0.006 -0.009 -0.009 -0.008 -0.009 -0.009 -0.008 -0.008 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.059 0.078 0.056 0.086 0.066 0.050 0.071 0.060 0.051 0.041 
2 0.050 0.058 0.049 0.058 0.050 0.044 0.049 0.044 0.040 0.036 
1 0.047 0.049 0.046 0.046 0.043 0.040 0.039 0.037 0.035 0.034 

0.5 0.047 0.046 0.045 0.042 0.040 0.039 0.034 0.034 0.033 0.033 
0.25 0.046 0.045 0.044 0.040 0.039 0.039 0.033 0.032 0.032 0.032 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.002 -0.002 -0.005 -0.005 -0.004 -0.007 -0.002 -0.004 -0.007 -0.011 
2 0.000 -0.002 -0.005 -0.002 -0.005 -0.007 -0.001 -0.005 -0.006 -0.011 
1 -0.002 -0.004 -0.004 -0.004 -0.006 -0.008 -0.005 -0.005 -0.008 -0.009 

0.5 -0.003 -0.002 -0.002 -0.003 -0.006 -0.009 -0.004 -0.006 -0.007 -0.009 
0.25 -0.002 -0.002 -0.003 -0.006 -0.006 -0.005 -0.005 -0.004 -0.007 -0.010 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.045 0.046 0.045 0.046 0.044 0.042 0.045 0.046 0.042 0.039 
2 0.045 0.044 0.044 0.045 0.044 0.041 0.045 0.044 0.042 0.040 
1 0.045 0.045 0.043 0.045 0.045 0.043 0.044 0.043 0.043 0.038 

0.5 0.045 0.045 0.045 0.044 0.045 0.044 0.045 0.045 0.042 0.039 
0.25 0.045 0.045 0.044 0.045 0.045 0.041 0.044 0.046 0.043 0.040 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the common factor (ϕ) and idiosyncratic (ρ) autoregressive parameters. Results are reported for various 
values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500  observations, the number of cross-sectional units N is 30, and the number of replications for each case 
is 2,000. The experiment refers to the case of unobserved autoregressive factor and no breaks. 
 

 
 



Table 3: Unobserved common stochastic factor, no structural break, heteroskedastic case, N=30: Monte Carlo Theil and correlation  statistics. 
N=30 

autoregressive common factor 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.187 0.183 0.185 0.174 0.176 0.185 0.175 0.177 0.182 0.195 
2 0.140 0.140 0.142 0.139 0.141 0.146 0.153 0.154 0.158 0.165 
1 0.108 0.111 0.112 0.116 0.117 0.121 0.140 0.141 0.143 0.147 

0.5 0.086 0.092 0.093 0.102 0.102 0.105 0.132 0.132 0.133 0.136 
0.25 0.072 0.081 0.081 0.093 0.093 0.095 0.127 0.127 0.128 0.130 

correlation coefficient  
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.938 0.944 0.943 0.956 0.955 0.949 0.973 0.972 0.968 0.959 
2 0.968 0.972 0.971 0.978 0.977 0.974 0.986 0.986 0.984 0.979 
1 0.984 0.986 0.985 0.989 0.988 0.987 0.993 0.993 0.992 0.990 

0.5 0.992 0.993 0.993 0.994 0.994 0.993 0.997 0.996 0.996 0.995 
0.25 0.996 0.996 0.996 0.997 0.997 0.997 0.998 0.998 0.998 0.997 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.176 0.167 0.170 0.150 0.152 0.162 0.126 0.128 0.135 0.150 
2 0.127 0.121 0.124 0.111 0.113 0.119 0.099 0.100 0.105 0.115 
1 0.093 0.089 0.091 0.084 0.085 0.090 0.081 0.082 0.085 0.092 

0.5 0.068 0.067 0.068 0.066 0.067 0.070 0.070 0.071 0.073 0.077 
0.25 0.052 0.052 0.053 0.054 0.054 0.056 0.063 0.064 0.065 0.067 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.941 0.948 0.946 0.959 0.958 0.952 0.976 0.975 0.972 0.964 
2 0.969 0.973 0.972 0.979 0.978 0.975 0.988 0.987 0.986 0.981 
1 0.984 0.986 0.986 0.989 0.989 0.988 0.994 0.994 0.993 0.991 

0.5 0.992 0.993 0.993 0.995 0.994 0.994 0.997 0.997 0.996 0.995 
0.25 0.996 0.997 0.996 0.997 0.997 0.997 0.999 0.998 0.998 0.998 

 
 

The Table reports Monte Carlo Theil index and correlation coefficient  statistics, concerning the estimation of the unobserved common factor component. Results are reported for various values of 
the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the 
(inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 
2,000. The experiment refers to the case of unobserved autoregressive factor and no breaks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 



 
               Table 4: Unobserved common stochastic factor, no structural break, heteroskedastic case, N = 5, 10, 15, 50: bias of  parameter ϕ.  

autoregressive common factor parameter ϕ 
bias    N = 5 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.101 -0.185 -0.101 -0.238 -0.170 -0.099 -0.230 -0.182 -0.142 -0.094 
2 -0.073 -0.125 -0.075 -0.154 -0.115 -0.076 -0.146 -0.122 -0.100 -0.075 
1 -0.049 -0.081 -0.055 -0.098 -0.078 -0.058 -0.096 -0.083 -0.073 -0.058 

0.5 -0.035 -0.055 -0.041 -0.067 -0.056 -0.044 -0.067 -0.060 -0.054 -0.050 
0.25 -0.029 -0.041 -0.033 -0.049 -0.043 -0.037 -0.052 -0.049 -0.046 -0.043 

bias    N = 10 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.072 -0.126 -0.072 -0.155 -0.113 -0.069 -0.150 -0.122 -0.098 -0.066 
2 -0.046 -0.083 -0.053 -0.099 -0.079 -0.057 -0.098 -0.085 -0.071 -0.057 
1 -0.032 -0.055 -0.042 -0.067 -0.056 -0.045 -0.070 -0.063 -0.057 -0.051 

0.5 -0.025 -0.041 -0.034 -0.050 -0.045 -0.039 -0.054 -0.051 -0.048 -0.045 
0.25 -0.018 -0.033 -0.029 -0.041 -0.038 -0.036 -0.046 -0.045 -0.043 -0.042 

bias    N = 15 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.058 -0.098 -0.056 -0.117 -0.086 -0.050 -0.118 -0.099 -0.081 -0.056 
2 -0.037 -0.063 -0.042 -0.077 -0.060 -0.044 -0.082 -0.071 -0.064 -0.052 
1 -0.030 -0.046 -0.037 -0.051 -0.045 -0.038 -0.061 -0.057 -0.053 -0.048 

0.5 -0.023 -0.035 -0.030 -0.040 -0.036 -0.033 -0.051 -0.048 -0.047 -0.045 
0.25 -0.019 -0.030 -0.028 -0.033 -0.032 -0.030 -0.045 -0.044 -0.044 -0.043 

bias    N = 50 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.027 -0.046 -0.027 -0.058 -0.045 -0.028 -0.062 -0.054 -0.047 -0.035 
2 -0.023 -0.034 -0.026 -0.043 -0.037 -0.031 -0.049 -0.047 -0.043 -0.039 
1 -0.019 -0.027 -0.024 -0.035 -0.033 -0.031 -0.043 -0.042 -0.042 -0.040 

0.5 -0.017 -0.024 -0.023 -0.032 -0.031 -0.030 -0.040 -0.039 -0.039 -0.039 
0.25 -0.016 -0.023 -0.022 -0.029 -0.029 -0.029 -0.038 -0.038 -0.038 -0.038 

bias    N = 5 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.091 -0.165 -0.087 -0.208 -0.144 -0.080 -0.190 -0.149 -0.112 -0.070 
2 -0.058 -0.104 -0.057 -0.127 -0.089 -0.052 -0.110 -0.088 -0.067 -0.045 
1 -0.036 -0.062 -0.034 -0.074 -0.052 -0.031 -0.063 -0.050 -0.040 -0.028 

0.5 -0.021 -0.035 -0.021 -0.042 -0.031 -0.019 -0.036 -0.030 -0.024 -0.018 
0.25 -0.014 -0.020 -0.012 -0.024 -0.018 -0.013 -0.022 -0.019 -0.016 -0.013 

bias    N =10 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.058 -0.104 -0.055 -0.129 -0.090 -0.052 -0.110 -0.087 -0.066 -0.043 
2 -0.034 -0.061 -0.034 -0.075 -0.053 -0.032 -0.062 -0.050 -0.040 -0.028 
1 -0.019 -0.035 -0.020 -0.042 -0.031 -0.020 -0.036 -0.030 -0.024 -0.018 

0.5 -0.011 -0.020 -0.013 -0.025 -0.019 -0.014 -0.022 -0.019 -0.016 -0.013 
0.25 -0.007 -0.012 -0.008 -0.015 -0.013 -0.010 -0.015 -0.013 -0.012 -0.010 

bias    N = 15 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.045 -0.078 -0.041 -0.094 -0.066 -0.038 -0.079 -0.063 -0.049 -0.032 
2 -0.027 -0.046 -0.026 -0.054 -0.039 -0.024 -0.045 -0.037 -0.029 -0.022 
1 -0.016 -0.026 -0.016 -0.031 -0.023 -0.016 -0.027 -0.023 -0.019 -0.015 

0.5 -0.010 -0.015 -0.011 -0.018 -0.015 -0.011 -0.017 -0.015 -0.013 -0.011 
0.25 -0.007 -0.010 -0.007 -0.013 -0.011 -0.009 -0.012 -0.011 -0.010 -0.009 

bias    N = 50 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.019 -0.028 -0.015 -0.036 -0.026 -0.016 -0.031 -0.026 -0.021 -0.015 
2 -0.012 -0.016 -0.010 -0.021 -0.016 -0.011 -0.019 -0.017 -0.015 -0.012 
1 -0.009 -0.010 -0.007 -0.014 -0.011 -0.009 -0.014 -0.012 -0.011 -0.010 

0.5 -0.007 -0.006 -0.005 -0.010 -0.009 -0.008 -0.011 -0.010 -0.010 -0.009 
0.25 -0.006 -0.005 -0.004 -0.008 -0.007 -0.007 -0.009 -0.009 -0.009 -0.008 

 
The Table reports Monte Carlo bias statistics, concerning the estimation of the common factor (ϕ) autoregressive parameter. Results are reported for various values of the common factor 
autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the (inverse) signal to noise 
ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. The 
experiment refers to the case of unobserved autoregressive factor and no breaks. 
 
 
 
 
 
 



 
               Table 5: Unobserved common stochastic factor, no structural break, heteroskedastic case, , N = 5, 10, 15, 50, bias of  parameter ϕ. 

autoregressive common factor 
correlation coefficient    N = 5 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.742 0.764 0.756 0.801 0.795 0.774 0.863 0.861 0.845 0.809 
2 0.846 0.859 0.856 0.885 0.882 0.870 0.925 0.923 0.913 0.892 
1 0.914 0.922 0.920 0.937 0.936 0.928 0.960 0.959 0.953 0.942 

0.5 0.954 0.959 0.957 0.967 0.966 0.962 0.979 0.979 0.976 0.970 
0.25 0.976 0.979 0.978 0.983 0.983 0.980 0.990 0.989 0.988 0.985 

correlation coefficient    N = 10 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.843 0.857 0.853 0.884 0.881 0.867 0.924 0.921 0.913 0.889 
2 0.913 0.921 0.919 0.937 0.935 0.928 0.959 0.958 0.953 0.941 
1 0.954 0.959 0.957 0.967 0.966 0.962 0.979 0.978 0.976 0.969 

0.5 0.976 0.979 0.978 0.983 0.983 0.980 0.990 0.989 0.988 0.984 
0.25 0.988 0.989 0.989 0.992 0.991 0.990 0.995 0.995 0.994 0.992 

correlation coefficient    N = 15 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.886 0.898 0.894 0.918 0.916 0.906 0.947 0.945 0.939 0.922 
2 0.939 0.946 0.944 0.957 0.956 0.950 0.972 0.972 0.968 0.959 
1 0.968 0.972 0.971 0.978 0.977 0.974 0.986 0.985 0.984 0.979 

0.5 0.984 0.986 0.985 0.989 0.988 0.987 0.993 0.993 0.992 0.989 
0.25 0.992 0.993 0.993 0.994 0.994 0.993 0.996 0.996 0.996 0.995 

correlation coefficient    N = 50 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.962 0.966 0.965 0.973 0.972 0.969 0.983 0.983 0.981 0.975 
2 0.981 0.983 0.982 0.986 0.986 0.984 0.992 0.991 0.990 0.988 
1 0.990 0.991 0.991 0.993 0.993 0.992 0.996 0.996 0.995 0.994 

0.5 0.995 0.996 0.996 0.997 0.996 0.996 0.998 0.998 0.998 0.997 
0.25 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.998 

correlation coefficient    N = 5 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.750 0.772 0.765 0.811 0.806 0.786 0.877 0.873 0.859 0.827 
2 0.849 0.864 0.860 0.891 0.888 0.875 0.933 0.930 0.922 0.901 
1 0.916 0.925 0.922 0.941 0.939 0.931 0.965 0.963 0.958 0.947 

0.5 0.955 0.960 0.959 0.969 0.968 0.964 0.982 0.981 0.979 0.972 
0.25 0.977 0.979 0.979 0.984 0.984 0.981 0.991 0.990 0.989 0.986 

correlation coefficient    N =10 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.849 0.864 0.860 0.891 0.887 0.874 0.933 0.930 0.922 0.901 
2 0.916 0.925 0.922 0.941 0.939 0.931 0.965 0.963 0.959 0.947 
1 0.955 0.960 0.959 0.969 0.968 0.964 0.982 0.981 0.979 0.972 

0.5 0.977 0.979 0.979 0.984 0.984 0.981 0.991 0.990 0.989 0.986 
0.25 0.988 0.990 0.989 0.992 0.992 0.991 0.995 0.995 0.995 0.993 

correlation coefficient    N =1 5 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.891 0.903 0.899 0.923 0.920 0.911 0.954 0.952 0.946 0.931 
2 0.941 0.948 0.946 0.959 0.958 0.952 0.976 0.975 0.972 0.964 
1 0.969 0.973 0.972 0.979 0.978 0.975 0.988 0.987 0.986 0.981 

0.5 0.984 0.986 0.986 0.989 0.989 0.987 0.994 0.994 0.993 0.991 
0.25 0.992 0.993 0.993 0.995 0.994 0.994 0.997 0.997 0.996 0.995 

correlation coefficient    N = 50 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.963 0.968 0.966 0.975 0.974 0.970 0.985 0.985 0.983 0.978 
2 0.981 0.983 0.983 0.987 0.987 0.985 0.993 0.992 0.991 0.989 
1 0.991 0.992 0.991 0.994 0.993 0.992 0.996 0.996 0.996 0.994 

0.5 0.995 0.996 0.996 0.997 0.997 0.996 0.998 0.998 0.998 0.997 
0.25 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999 

 
The Table reports Monte Carlo correlation coefficients between actual and estimated common factors. Results are reported for various values of the common factor autoregressive parameter ϕ 
(0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 
0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. The experiment refers to the case 
of unobserved autoregressive factor and no breaks. 
 
 
 
 
 
 



 
                 Table 6: Unobserved common stochastic factor, single break point, heteroskedastic case,  N=30: bias and RMSE of parameters. 

N=30 
autoregressive common factor parameter ϕ 

bias 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.050 -0.078 -0.051 -0.099 -0.078 -0.057 -0.101 -0.091 -0.079 -0.062 
2 -0.038 -0.058 -0.045 -0.076 -0.066 -0.057 -0.080 -0.076 -0.071 -0.064 
1 -0.031 -0.047 -0.042 -0.062 -0.060 -0.055 -0.070 -0.068 -0.066 -0.064 

0.5 -0.028 -0.042 -0.039 -0.056 -0.054 -0.053 -0.064 -0.064 -0.063 -0.062 
0.25 -0.027 -0.039 -0.038 -0.053 -0.052 -0.052 -0.062 -0.061 -0.061 -0.061 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.125 0.151 0.123 0.170 0.143 0.119 0.166 0.151 0.135 0.111 
2 0.118 0.130 0.118 0.142 0.130 0.120 0.138 0.132 0.125 0.116 
1 0.113 0.120 0.117 0.127 0.124 0.120 0.125 0.122 0.119 0.117 

0.5 0.111 0.116 0.115 0.121 0.119 0.118 0.118 0.117 0.116 0.115 
0.25 0.111 0.115 0.114 0.117 0.117 0.116 0.114 0.115 0.114 0.114 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.021 -0.023 -0.036 -0.027 -0.035 -0.048 -0.031 -0.040 -0.050 -0.064 
2 -0.021 -0.029 -0.033 -0.026 -0.038 -0.049 -0.034 -0.041 -0.051 -0.062 
1 -0.023 -0.023 -0.038 -0.028 -0.031 -0.048 -0.022 -0.035 -0.051 -0.065 

0.5 -0.025 -0.025 -0.034 -0.028 -0.038 -0.049 -0.034 -0.035 -0.049 -0.063 
0.25 -0.020 -0.026 -0.035 -0.027 -0.033 -0.051 -0.027 -0.035 -0.048 -0.063 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.104 0.108 0.112 0.106 0.110 0.117 0.110 0.115 0.121 0.126 
2 0.106 0.108 0.109 0.106 0.113 0.117 0.110 0.114 0.120 0.126 
1 0.103 0.106 0.112 0.107 0.107 0.118 0.106 0.113 0.120 0.129 

0.5 0.105 0.108 0.111 0.106 0.111 0.118 0.111 0.111 0.116 0.126 
0.25 0.106 0.105 0.112 0.108 0.111 0.121 0.108 0.111 0.118 0.126 

autoregressive common factor parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.028 -0.048 -0.027 -0.057 -0.042 -0.026 -0.049 -0.040 -0.033 -0.024 
2 -0.018 -0.029 -0.019 -0.034 -0.027 -0.019 -0.030 -0.026 -0.022 -0.018 
1 -0.012 -0.018 -0.013 -0.022 -0.019 -0.015 -0.021 -0.018 -0.017 -0.015 

0.5 -0.009 -0.013 -0.011 -0.016 -0.014 -0.012 -0.016 -0.015 -0.014 -0.013 
0.25 -0.007 -0.010 -0.009 -0.013 -0.012 -0.011 -0.013 -0.013 -0.013 -0.012 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.060 0.081 0.059 0.091 0.072 0.054 0.076 0.065 0.055 0.044 
2 0.053 0.060 0.052 0.063 0.055 0.047 0.053 0.048 0.043 0.038 
1 0.049 0.051 0.048 0.051 0.047 0.044 0.042 0.039 0.038 0.036 

0.5 0.048 0.048 0.046 0.045 0.044 0.043 0.037 0.036 0.035 0.034 
0.25 0.047 0.046 0.046 0.043 0.042 0.042 0.034 0.034 0.034 0.033 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.002 -0.005 -0.006 -0.004 -0.007 -0.010 -0.005 -0.010 -0.010 -0.013 
2 -0.003 -0.003 -0.009 -0.005 -0.008 -0.009 -0.006 -0.010 -0.008 -0.013 
1 -0.004 -0.005 -0.005 -0.006 -0.008 -0.007 -0.007 -0.008 -0.010 -0.011 

0.5 -0.006 -0.005 -0.007 -0.005 -0.008 -0.011 -0.007 -0.007 -0.009 -0.011 
0.25 -0.004 -0.006 -0.005 -0.006 -0.007 -0.009 -0.006 -0.006 -0.009 -0.012 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.044 0.046 0.045 0.045 0.045 0.044 0.044 0.046 0.044 0.041 
2 0.045 0.044 0.045 0.045 0.045 0.043 0.045 0.046 0.043 0.042 
1 0.045 0.045 0.045 0.046 0.045 0.042 0.046 0.046 0.043 0.039 

0.5 0.046 0.043 0.046 0.045 0.046 0.044 0.046 0.044 0.043 0.041 
0.25 0.044 0.045 0.044 0.045 0.044 0.043 0.045 0.045 0.044 0.040 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the common factor (ϕ) and idiosyncratic autoregressive parameter (ρ). Results are reported for various 
values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, and the number of replications for each case is 2,000. The experiment refers to the case 
of unobserved autoregressive factor and known single break point. 
 
 



 
                Table 7: Unobserved common stochastic factor, two break points, heteroskedastic case,  N=30: bias and RMSE of parameters. 

N=30 
autoregressive common factor parameter ϕ 

bias 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 -0.065 -0.096 -0.068 -0.115 -0.094 -0.070 -0.128 -0.116 -0.102 -0.082 
2 -0.054 -0.076 -0.064 -0.092 -0.081 -0.072 -0.106 -0.100 -0.095 -0.088 
1 -0.048 -0.066 -0.061 -0.078 -0.075 -0.071 -0.094 -0.092 -0.090 -0.087 

0.5 -0.046 -0.061 -0.059 -0.072 -0.070 -0.069 -0.089 -0.088 -0.087 -0.087 
0.25 -0.044 -0.058 -0.057 -0.069 -0.068 -0.068 -0.086 -0.085 -0.085 -0.085 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 0.138 0.168 0.137 0.191 0.162 0.133 0.201 0.184 0.163 0.136 
2 0.127 0.146 0.132 0.161 0.148 0.136 0.171 0.162 0.155 0.145 
1 0.122 0.135 0.130 0.145 0.141 0.136 0.154 0.152 0.149 0.144 

0.5 0.121 0.131 0.128 0.138 0.136 0.134 0.147 0.146 0.145 0.145 
0.25 0.119 0.127 0.127 0.134 0.133 0.133 0.143 0.143 0.142 0.142 

autoregressive parameter ρ 
bias 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 -0.020 -0.024 -0.032 -0.026 -0.035 -0.049 -0.029 -0.038 -0.050 -0.062 
2 -0.021 -0.025 -0.035 -0.027 -0.036 -0.047 -0.027 -0.037 -0.051 -0.062 
1 -0.020 -0.022 -0.038 -0.024 -0.037 -0.051 -0.028 -0.039 -0.048 -0.064 

0.5 -0.021 -0.020 -0.033 -0.027 -0.039 -0.048 -0.030 -0.037 -0.053 -0.059 
0.25 -0.020 -0.022 -0.035 -0.026 -0.037 -0.048 -0.025 -0.042 -0.052 -0.061 

root mean square error 
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0 

4 0.105 0.105 0.107 0.107 0.110 0.116 0.107 0.113 0.119 0.124 
2 0.104 0.105 0.109 0.107 0.113 0.116 0.105 0.114 0.119 0.124 
1 0.104 0.103 0.114 0.107 0.115 0.118 0.110 0.114 0.118 0.127 

0.5 0.103 0.105 0.111 0.108 0.115 0.117 0.108 0.113 0.121 0.122 
0.25 0.103 0.105 0.111 0.107 0.111 0.117 0.105 0.114 0.122 0.122 

autoregressive common factor parameter ϕ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.032 -0.052 -0.030 -0.064 -0.048 -0.032 -0.054 -0.045 -0.038 -0.028 
2 -0.022 -0.032 -0.022 -0.041 -0.033 -0.025 -0.036 -0.031 -0.027 -0.023 
1 -0.016 -0.022 -0.017 -0.029 -0.025 -0.021 -0.026 -0.024 -0.022 -0.020 

0.5 -0.014 -0.017 -0.014 -0.023 -0.021 -0.019 -0.021 -0.020 -0.019 -0.018 
0.25 -0.012 -0.014 -0.013 -0.019 -0.019 -0.018 -0.019 -0.018 -0.018 -0.017 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.065 0.086 0.061 0.100 0.079 0.060 0.084 0.072 0.063 0.050 
2 0.057 0.063 0.053 0.071 0.061 0.052 0.060 0.054 0.050 0.044 
1 0.052 0.053 0.050 0.057 0.053 0.049 0.048 0.046 0.044 0.041 

0.5 0.050 0.049 0.047 0.051 0.049 0.047 0.043 0.041 0.041 0.039 
0.25 0.050 0.047 0.047 0.048 0.047 0.046 0.040 0.039 0.039 0.038 

autoregressive parameter ρ 
bias 

T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 -0.006 -0.004 -0.007 -0.005 -0.007 -0.009 -0.005 -0.009 -0.010 -0.012 
2 -0.003 -0.005 -0.006 -0.004 -0.008 -0.009 -0.005 -0.008 -0.008 -0.012 
1 -0.004 -0.006 -0.008 -0.006 -0.007 -0.009 -0.009 -0.009 -0.011 -0.011 

0.5 -0.006 -0.003 -0.007 -0.005 -0.007 -0.011 -0.006 -0.007 -0.011 -0.013 
0.25 -0.005 -0.004 -0.007 -0.006 -0.008 -0.011 -0.006 -0.008 -0.010 -0.011 

root mean square error 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.046 0.046 0.043 0.044 0.046 0.044 0.046 0.044 0.044 0.040 
2 0.044 0.045 0.045 0.046 0.045 0.043 0.046 0.046 0.042 0.042 
1 0.045 0.045 0.045 0.047 0.045 0.043 0.047 0.044 0.044 0.039 

0.5 0.046 0.044 0.046 0.045 0.045 0.044 0.046 0.045 0.044 0.041 
0.25 0.046 0.045 0.045 0.046 0.045 0.044 0.045 0.046 0.043 0.040 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the common factor (ϕ) and idiosyncratic autoregressive parameter (ρ). Results are reported for various 
values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, and the number of replications for each case is 2,000. The experiment refers to the case 
of unobserved autoregressive factor and known break points. 

 
 



 
Table 8: Unobserved common stochastic  factor, known break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation  statistics. 

N=30 
common autoregressive factor 

1-break point case 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.195 0.195 0.197 0.199 0.201 0.208 0.224 0.225 0.229 0.239 
2 0.151 0.156 0.157 0.169 0.170 0.174 0.208 0.208 0.211 0.216 
1 0.122 0.131 0.132 0.151 0.151 0.154 0.198 0.199 0.200 0.203 

0.5 0.103 0.115 0.116 0.140 0.140 0.142 0.193 0.193 0.194 0.195 
0.25 0.092 0.106 0.107 0.134 0.134 0.135 0.190 0.190 0.190 0.191 

correlation coefficient  
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.932 0.934 0.933 0.936 0.935 0.929 0.932 0.931 0.928 0.919 
2 0.961 0.961 0.960 0.957 0.957 0.954 0.945 0.945 0.943 0.939 
1 0.977 0.975 0.974 0.968 0.968 0.967 0.952 0.952 0.951 0.949 

0.5 0.984 0.982 0.982 0.974 0.974 0.973 0.956 0.956 0.956 0.954 
0.25 0.988 0.985 0.985 0.977 0.977 0.977 0.958 0.958 0.958 0.957 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.178 0.170 0.173 0.157 0.160 0.168 0.141 0.142 0.148 0.162 
2 0.130 0.126 0.128 0.120 0.122 0.128 0.117 0.118 0.122 0.131 
1 0.097 0.096 0.097 0.095 0.097 0.100 0.102 0.103 0.105 0.111 

0.5 0.074 0.075 0.076 0.080 0.080 0.083 0.093 0.094 0.095 0.098 
0.25 0.058 0.062 0.062 0.070 0.070 0.072 0.088 0.089 0.089 0.091 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.940 0.945 0.944 0.955 0.953 0.948 0.968 0.967 0.963 0.956 
2 0.968 0.971 0.969 0.975 0.974 0.971 0.980 0.979 0.977 0.973 
1 0.983 0.984 0.983 0.985 0.985 0.983 0.986 0.985 0.984 0.982 

0.5 0.991 0.991 0.990 0.991 0.990 0.990 0.989 0.989 0.988 0.987 
0.25 0.994 0.994 0.994 0.993 0.993 0.993 0.990 0.990 0.990 0.989 

2-break point case 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.204 0.209 0.211 0.221 0.223 0.229 0.267 0.268 0.270 0.278 
2 0.162 0.173 0.174 0.195 0.196 0.199 0.254 0.254 0.256 0.260 
1 0.136 0.151 0.152 0.180 0.180 0.182 0.246 0.246 0.247 0.249 

0.5 0.119 0.138 0.139 0.171 0.171 0.172 0.242 0.242 0.243 0.244 
0.25 0.110 0.131 0.131 0.166 0.166 0.167 0.240 0.240 0.241 0.241 

correlation coefficient  
T =100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.923 0.922 0.920 0.916 0.915 0.909 0.890 0.889 0.886 0.877 
2 0.953 0.949 0.948 0.938 0.937 0.935 0.904 0.904 0.902 0.898 
1 0.968 0.963 0.962 0.949 0.948 0.947 0.911 0.911 0.910 0.908 

0.5 0.976 0.970 0.970 0.954 0.954 0.954 0.915 0.915 0.914 0.913 
0.25 0.980 0.974 0.973 0.957 0.957 0.957 0.917 0.917 0.917 0.916 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.185 0.178 0.180 0.166 0.168 0.176 0.157 0.158 0.164 0.176 
2 0.139 0.136 0.138 0.132 0.133 0.139 0.136 0.137 0.140 0.148 
1 0.109 0.109 0.110 0.110 0.111 0.114 0.124 0.124 0.126 0.131 

0.5 0.089 0.092 0.093 0.097 0.097 0.099 0.117 0.117 0.118 0.121 
0.25 0.077 0.082 0.082 0.089 0.090 0.091 0.113 0.114 0.114 0.115 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.935 0.940 0.939 0.949 0.948 0.942 0.958 0.957 0.954 0.945 
2 0.963 0.965 0.964 0.969 0.968 0.965 0.970 0.969 0.967 0.963 
1 0.978 0.979 0.978 0.979 0.979 0.977 0.976 0.975 0.975 0.972 

0.5 0.986 0.985 0.985 0.984 0.984 0.983 0.979 0.979 0.978 0.977 
0.25 0.989 0.989 0.989 0.987 0.987 0.986 0.980 0.980 0.980 0.979 

 
The Table reports Monte Carlo Theil index and correlation coefficient  statistics, concerning the estimation of the unobserved common factor component. Results are reported for various values of 
the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of the 
(inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case is 
2,000. The experiment refers to the case of unobserved autoregressive factor and known break points. 

 
 
 



 
Table 9: Unobserved common stochastic factor, known break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation  statistics. 

N=30 
common break process 

1-break point case 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.029 0.037 0.037 0.055 0.055 0.056 0.105 0.105 0.106 0.107 
2 0.028 0.036 0.037 0.055 0.055 0.056 0.105 0.105 0.105 0.106 
1 0.028 0.036 0.036 0.055 0.055 0.055 0.105 0.105 0.105 0.105 

0.5 0.028 0.036 0.036 0.055 0.055 0.055 0.105 0.105 0.105 0.105 
0.25 0.028 0.036 0.036 0.055 0.055 0.055 0.105 0.105 0.105 0.105 

correlation coefficient  
T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.013 0.017 0.017 0.025 0.025 0.026 0.048 0.048 0.049 0.049 
2 0.013 0.017 0.017 0.025 0.025 0.026 0.048 0.048 0.048 0.048 
1 0.013 0.016 0.017 0.025 0.025 0.025 0.048 0.048 0.048 0.048 

0.5 0.013 0.017 0.017 0.025 0.025 0.025 0.048 0.048 0.048 0.048 
0.25 0.013 0.016 0.017 0.025 0.025 0.025 0.048 0.048 0.048 0.048 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2-break point case 
Theil index 

T = 100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.040 0.052 0.052 0.076 0.077 0.078 0.141 0.141 0.142 0.144 
2 0.039 0.051 0.052 0.076 0.076 0.076 0.141 0.141 0.141 0.142 
1 0.039 0.051 0.051 0.075 0.075 0.076 0.141 0.141 0.141 0.141 

0.5 0.038 0.051 0.051 0.075 0.075 0.075 0.141 0.141 0.141 0.141 
0.25 0.038 0.051 0.051 0.075 0.075 0.075 0.141 0.141 0.141 0.141 

correlation coefficient  
T =100 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.997 0.995 0.995 0.988 0.988 0.987 0.957 0.958 0.957 0.955 
2 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.957 0.958 0.957 
1 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.958 0.957 0.958 

0.5 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.957 0.958 0.958 
0.25 0.997 0.995 0.995 0.988 0.988 0.988 0.958 0.958 0.958 0.958 

Theil index 
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.025 0.030 0.030 0.039 0.039 0.040 0.070 0.070 0.070 0.071 
2 0.025 0.030 0.030 0.039 0.039 0.040 0.070 0.070 0.070 0.070 
1 0.025 0.029 0.030 0.039 0.039 0.039 0.070 0.070 0.070 0.070 

0.5 0.025 0.029 0.029 0.039 0.039 0.039 0.070 0.070 0.070 0.070 
0.25 0.025 0.029 0.029 0.039 0.039 0.039 0.070 0.070 0.070 0.070 

correlation coefficient  
T = 500 ϕ = 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 

4 0.998 0.997 0.997 0.996 0.996 0.996 0.990 0.990 0.990 0.990 
2 0.998 0.998 0.997 0.996 0.996 0.996 0.990 0.990 0.990 0.990 
1 0.998 0.998 0.998 0.996 0.996 0.996 0.990 0.990 0.990 0.990 

0.5 0.998 0.998 0.998 0.996 0.996 0.996 0.990 0.990 0.990 0.990 
0.25 0.998 0.998 0.998 0.996 0.996 0.996 0.990 0.990 0.990 0.990 

 
The Table reports Monte Carlo Theil index and correlation coefficient  statistics, concerning the estimation of the unobserved common break process component. Results are reported for various 
values of the common factor autoregressive parameter ϕ (0.2, 0.4, 0.6, 0.8), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6), assuming ϕ > ρ, and various values of 
the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of replications for each case 
is 2,000. The experiment refers to the case of unobserved autoregressive factor and known break points. 
                
                
 



                    
                  Table 10: Observed common stochastic factor and break processes, heteroskedastic case,  N=2: bias and RMSE of parameters. 

autoregressive common factor parameter ϕ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 
any -0.012 -0.013 -0.013 -0.024 -0.024 -0.024 -0.064 -0.064 -0.064 -0.064 -0.040 -0.040 -0.040 -0.040 -0.040 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 
any 0.138 0.135 0.135 0.130 0.130 0.130 0.145 0.145 0.145 0.145 0.129 0.129 0.129 0.129 0.129 

autoregressive parameter ρ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.013 -0.012 -0.019 -0.007 -0.018 -0.021 -0.011 -0.018 -0.025 -0.029 -0.010 -0.013 -0.023 -0.028 -0.036 
2 -0.013 -0.010 -0.016 -0.011 -0.015 -0.024 -0.009 -0.017 -0.021 -0.030 -0.010 -0.016 -0.026 -0.029 -0.036 
1 -0.009 -0.009 -0.017 -0.009 -0.016 -0.023 -0.012 -0.010 -0.022 -0.027 -0.009 -0.015 -0.021 -0.032 -0.035 

0.5 -0.008 -0.013 -0.014 -0.009 -0.017 -0.024 -0.015 -0.019 -0.023 -0.030 -0.009 -0.018 -0.022 -0.030 -0.038 
0.25 -0.011 -0.009 -0.016 -0.010 -0.019 -0.023 -0.010 -0.018 -0.020 -0.031 -0.009 -0.015 -0.025 -0.029 -0.039 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.102 0.104 0.102 0.101 0.102 0.098 0.101 0.099 0.100 0.094 0.100 0.098 0.097 0.095 0.086 
2 0.100 0.099 0.103 0.102 0.100 0.100 0.102 0.101 0.100 0.095 0.102 0.101 0.101 0.095 0.088 
1 0.103 0.103 0.102 0.102 0.103 0.098 0.102 0.097 0.099 0.092 0.099 0.101 0.097 0.096 0.082 

0.5 0.102 0.100 0.100 0.103 0.100 0.099 0.101 0.103 0.100 0.096 0.102 0.102 0.096 0.095 0.087 
0.25 0.100 0.102 0.101 0.102 0.103 0.099 0.102 0.102 0.096 0.096 0.100 0.099 0.101 0.095 0.088 

autoregressive common factor parameter ϕ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 
any 0.000 0.008 0.008 0.029 0.029 0.029 -0.032 -0.032 -0.032 -0.032 -0.008 -0.008 -0.008 -0.008 -0.008 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 
any 0.064 0.063 0.063 0.077 0.077 0.077 0.073 0.073 0.073 0.073 0.055 0.055 0.055 0.055 0.055 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.004 -0.002 -0.004 -0.001 -0.002 -0.003 -0.001 -0.004 -0.004 -0.005 -0.003 -0.003 -0.006 -0.005 -0.007 
2 -0.003 -0.003 -0.003 -0.001 -0.002 -0.005 -0.003 -0.003 -0.005 -0.005 -0.003 -0.004 -0.005 -0.006 -0.006 
1 -0.001 -0.001 -0.001 -0.004 -0.004 -0.005 -0.002 -0.003 -0.006 -0.004 -0.002 -0.005 -0.005 -0.003 -0.008 

0.5 -0.002 -0.003 -0.002 -0.001 -0.003 -0.005 -0.002 -0.004 -0.005 -0.005 -0.003 -0.003 -0.004 -0.006 -0.006 
0.25 0.000 -0.002 -0.004 -0.002 -0.002 -0.005 -0.002 -0.003 -0.005 -0.005 0.000 -0.003 -0.003 -0.006 -0.008 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.045 0.046 0.044 0.044 0.043 0.042 0.045 0.045 0.042 0.037 0.045 0.045 0.041 0.036 0.029 
2 0.044 0.046 0.046 0.043 0.043 0.042 0.045 0.044 0.043 0.038 0.045 0.044 0.042 0.037 0.028 
1 0.045 0.045 0.044 0.045 0.043 0.041 0.045 0.044 0.042 0.037 0.045 0.045 0.042 0.036 0.029 

0.5 0.045 0.046 0.043 0.046 0.044 0.041 0.045 0.043 0.042 0.036 0.045 0.043 0.043 0.038 0.030 
0.25 0.046 0.046 0.043 0.045 0.045 0.042 0.045 0.045 0.043 0.036 0.046 0.045 0.042 0.037 0.030 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the idiosyncratic (ρ) and common (ϕ) autoregressive parameters. Results are reported for various values of 
the common factor fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ and  ϕ = d/2, and 
various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 2, and the number of 
replications for each case is 2,000. The experiment refers to the case of observed long memory factor and common break process, or, equivalently, constant unconditional mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 Table 11: Unobserved common stochastic factor, no structural break, heteroskedastic case,  N=30: bias and RMSE of parameters. 

autoregressive common factor parameter ϕ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.042 -0.066 -0.038 -0.102 -0.075 -0.054 -0.172 -0.146 -0.125 -0.108 -0.195 -0.157 -0.130 -0.109 -0.094 
2 -0.025 -0.036 -0.022 -0.061 -0.049 -0.038 -0.123 -0.109 -0.100 -0.091 -0.121 -0.100 -0.087 -0.073 -0.066 
1 -0.017 -0.020 -0.013 -0.038 -0.033 -0.028 -0.097 -0.090 -0.085 -0.080 -0.081 -0.069 -0.061 -0.055 -0.051 

0.5 -0.013 -0.011 -0.008 -0.027 -0.024 -0.022 -0.083 -0.079 -0.076 -0.075 -0.058 -0.053 -0.048 -0.044 -0.043 
0.25 -0.011 -0.006 -0.005 -0.022 -0.020 -0.019 -0.076 -0.074 -0.073 -0.072 -0.046 -0.043 -0.041 -0.039 -0.038 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.141 0.162 0.138 0.190 0.161 0.143 0.268 0.235 0.208 0.189 0.305 0.254 0.221 0.194 0.178 
2 0.137 0.141 0.134 0.153 0.141 0.135 0.208 0.192 0.182 0.172 0.210 0.188 0.173 0.159 0.152 
1 0.137 0.136 0.134 0.137 0.133 0.131 0.178 0.170 0.165 0.161 0.167 0.156 0.147 0.142 0.138 

0.5 0.137 0.135 0.135 0.131 0.130 0.130 0.164 0.159 0.156 0.155 0.146 0.141 0.137 0.134 0.133 
0.25 0.138 0.135 0.135 0.129 0.128 0.128 0.156 0.154 0.153 0.152 0.136 0.134 0.132 0.131 0.131 

autoregressive parameter ρ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.014 -0.018 -0.027 -0.018 -0.025 -0.038 -0.022 -0.027 -0.039 -0.048 -0.023 -0.028 -0.037 -0.045 -0.057 
2 -0.016 -0.013 -0.026 -0.022 -0.028 -0.038 -0.021 -0.029 -0.037 -0.047 -0.019 -0.028 -0.037 -0.048 -0.056 
1 -0.012 -0.018 -0.026 -0.018 -0.026 -0.036 -0.019 -0.030 -0.037 -0.050 -0.023 -0.025 -0.034 -0.046 -0.056 

0.5 -0.014 -0.016 -0.026 -0.019 -0.026 -0.037 -0.022 -0.029 -0.041 -0.043 -0.024 -0.029 -0.040 -0.050 -0.055 
0.25 -0.012 -0.013 -0.024 -0.024 -0.028 -0.035 -0.024 -0.027 -0.038 -0.049 -0.019 -0.028 -0.037 -0.044 -0.056 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.102 0.101 0.105 0.102 0.106 0.109 0.103 0.105 0.111 0.110 0.105 0.105 0.110 0.105 0.110 
2 0.102 0.100 0.104 0.105 0.108 0.109 0.105 0.106 0.109 0.111 0.106 0.105 0.108 0.110 0.109 
1 0.101 0.105 0.107 0.104 0.103 0.107 0.103 0.108 0.111 0.112 0.103 0.104 0.104 0.106 0.108 

0.5 0.102 0.102 0.104 0.103 0.107 0.110 0.104 0.108 0.110 0.105 0.106 0.107 0.111 0.111 0.107 
0.25 0.101 0.103 0.107 0.105 0.107 0.106 0.106 0.106 0.109 0.110 0.106 0.108 0.109 0.104 0.107 

autoregressive common factor parameter ϕ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.032 -0.061 -0.036 -0.063 -0.037 -0.018 -0.141 -0.114 -0.092 -0.077 -0.173 -0.135 -0.107 -0.084 -0.067 
2 -0.016 -0.031 -0.017 -0.020 -0.006 0.005 -0.092 -0.076 -0.065 -0.056 -0.097 -0.076 -0.060 -0.048 -0.039 
1 -0.008 -0.014 -0.007 0.004 0.011 0.017 -0.063 -0.055 -0.049 -0.045 -0.055 -0.044 -0.035 -0.029 -0.024 

0.5 -0.003 -0.006 -0.002 0.016 0.020 0.023 -0.049 -0.045 -0.042 -0.039 -0.032 -0.026 -0.022 -0.018 -0.016 
0.25 -0.001 -0.001 0.001 0.023 0.025 0.026 -0.041 -0.039 -0.037 -0.036 -0.020 -0.017 -0.015 -0.013 -0.012 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.074 0.105 0.078 0.112 0.085 0.071 0.206 0.170 0.141 0.121 0.251 0.199 0.161 0.131 0.110 
2 0.065 0.075 0.065 0.074 0.068 0.067 0.140 0.120 0.107 0.096 0.149 0.121 0.101 0.087 0.077 
1 0.063 0.065 0.063 0.068 0.069 0.071 0.105 0.096 0.089 0.085 0.095 0.082 0.073 0.067 0.063 

0.5 0.062 0.062 0.062 0.072 0.073 0.075 0.089 0.084 0.081 0.079 0.070 0.065 0.062 0.059 0.057 
0.25 0.063 0.062 0.062 0.075 0.076 0.077 0.081 0.078 0.077 0.076 0.060 0.058 0.057 0.056 0.055 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.003 -0.004 -0.004 -0.003 -0.006 -0.008 -0.004 -0.006 -0.007 -0.009 -0.004 -0.005 -0.006 -0.009 -0.011 
2 -0.001 -0.002 -0.006 -0.004 -0.006 -0.007 -0.003 -0.007 -0.008 -0.009 -0.001 -0.005 -0.007 -0.009 -0.009 
1 -0.004 -0.003 -0.006 -0.004 -0.005 -0.005 -0.004 -0.005 -0.009 -0.011 -0.005 -0.006 -0.007 -0.009 -0.011 

0.5 -0.002 -0.004 -0.004 -0.001 -0.005 -0.008 -0.005 -0.006 -0.007 -0.008 -0.006 -0.006 -0.007 -0.009 -0.010 
0.25 -0.002 -0.005 -0.007 -0.005 -0.006 -0.008 -0.004 -0.007 -0.006 -0.011 -0.002 -0.006 -0.008 -0.010 -0.010 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.046 0.044 0.043 0.046 0.046 0.044 0.045 0.045 0.042 0.038 0.045 0.044 0.042 0.038 0.032 
2 0.045 0.045 0.045 0.044 0.045 0.042 0.045 0.046 0.043 0.039 0.045 0.044 0.043 0.039 0.030 
1 0.046 0.045 0.044 0.045 0.044 0.042 0.045 0.046 0.043 0.040 0.046 0.045 0.042 0.039 0.032 

0.5 0.046 0.046 0.044 0.045 0.045 0.042 0.046 0.045 0.041 0.039 0.045 0.045 0.042 0.038 0.032 
0.25 0.045 0.046 0.046 0.044 0.045 0.042 0.046 0.046 0.044 0.039 0.045 0.046 0.042 0.040 0.031 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the idiosyncratic (ρ) and common (ϕ) autoregressive parameters. Results are reported for various values of 
the common factor fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ and  ϕ = d/2, and 
various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of 
replications for each case is 2,000. The experiment refers to the case of unobserved long memory factor and no breaks, and known fractional differencing parameter. 
 
 



 
Table 12: Unobserved common stochastic factor, no structural break, heteroskedastic case,  N=30:  Theil and correlation  statistics. 

common long memory factor 
Theil index 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.194 0.202 0.203 0.090 0.092 0.097 0.054 0.055 0.059 0.067 0.029 0.030 0.032 0.036 0.046 
2 0.151 0.175 0.176 0.064 0.065 0.069 0.039 0.039 0.042 0.047 0.021 0.021 0.022 0.025 0.033 
1 0.123 0.158 0.158 0.045 0.046 0.049 0.027 0.028 0.029 0.033 0.015 0.015 0.016 0.018 0.023 

0.5 0.105 0.147 0.148 0.032 0.033 0.035 0.019 0.020 0.021 0.024 0.010 0.010 0.011 0.013 0.016 
0.25 0.094 0.141 0.142 0.023 0.023 0.025 0.014 0.014 0.015 0.017 0.007 0.007 0.008 0.009 0.011 

correlation coefficient 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.941 0.960 0.959 0.983 0.982 0.980 0.994 0.993 0.992 0.990 0.998 0.998 0.998 0.997 0.995 
2 0.970 0.980 0.979 0.991 0.991 0.990 0.997 0.997 0.996 0.995 0.999 0.999 0.999 0.999 0.998 
1 0.984 0.990 0.989 0.996 0.996 0.995 0.998 0.998 0.998 0.998 1.000 1.000 0.999 0.999 0.999 

0.5 0.992 0.995 0.995 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 
0.25 0.996 0.997 0.997 0.999 0.999 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

Theil index 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.172 0.149 0.152 0.049 0.050 0.053 0.026 0.027 0.029 0.033 0.013 0.013 0.014 0.016 0.021 
2 0.127 0.117 0.118 0.035 0.035 0.038 0.019 0.019 0.020 0.023 0.009 0.009 0.010 0.011 0.015 
1 0.095 0.095 0.096 0.025 0.025 0.027 0.013 0.013 0.014 0.016 0.006 0.006 0.007 0.008 0.010 

0.5 0.073 0.082 0.082 0.017 0.018 0.019 0.009 0.010 0.010 0.012 0.004 0.005 0.005 0.006 0.007 
0.25 0.058 0.073 0.073 0.012 0.013 0.013 0.007 0.007 0.007 0.008 0.003 0.003 0.003 0.004 0.005 

correlation coefficient 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.945 0.966 0.964 0.995 0.995 0.994 0.998 0.998 0.998 0.998 1.000 1.000 1.000 0.999 0.999 
2 0.972 0.982 0.982 0.997 0.997 0.997 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
1 0.986 0.991 0.991 0.999 0.999 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

0.5 0.993 0.996 0.995 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.996 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
The Table reports Monte Carlo Theil index and correlation coefficient  statistics, concerning the estimation of the unobserved common long memory factor component. Results are reported for 
various values of the common factor fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ 
ρ and ϕ = d/2, and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500  observations, the number of cross-sectional units N is 30, and the 
number of replications for each case is 2,000. The experiment refers to the case of unobserved long memory factor and no breaks, and known fractional differencing parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                
 
Table 13: Unobserved common stochastic factor, no structural break, heteroskedastic case, N = 5, 10, 15, 50: bias of parameter ϕ. 

autoregressive common factor parameter ϕ 
bias   N = 5 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.127 -0.235 -0.151 -0.325 -0.244 -0.177 -0.429 -0.354 -0.284 -0.229 -0.554 -0.462 -0.382 -0.321 -0.264 
2 -0.084 -0.157 -0.103 -0.219 -0.165 -0.119 -0.305 -0.248 -0.204 -0.163 -0.392 -0.317 -0.260 -0.212 -0.174 
1 -0.054 -0.098 -0.064 -0.139 -0.105 -0.078 -0.206 -0.171 -0.144 -0.121 -0.251 -0.205 -0.167 -0.136 -0.114 

0.5 -0.034 -0.055 -0.041 -0.085 -0.065 -0.050 -0.140 -0.120 -0.105 -0.093 -0.157 -0.128 -0.105 -0.089 -0.076 
0.25 -0.021 -0.033 -0.025 -0.053 -0.043 -0.035 -0.104 -0.092 -0.084 -0.078 -0.099 -0.083 -0.071 -0.062 -0.055 

bias   N = 10 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.088 -0.156 -0.099 -0.218 -0.161 -0.115 -0.304 -0.246 -0.203 -0.166 -0.392 -0.318 -0.264 -0.215 -0.179 
2 -0.055 -0.096 -0.062 -0.134 -0.103 -0.074 -0.207 -0.170 -0.145 -0.120 -0.255 -0.207 -0.169 -0.138 -0.117 
1 -0.032 -0.056 -0.038 -0.079 -0.063 -0.048 -0.140 -0.121 -0.106 -0.094 -0.161 -0.129 -0.108 -0.091 -0.080 

0.5 -0.020 -0.033 -0.024 -0.050 -0.039 -0.033 -0.104 -0.092 -0.084 -0.078 -0.100 -0.084 -0.072 -0.063 -0.057 
0.25 -0.015 -0.020 -0.015 -0.033 -0.027 -0.025 -0.083 -0.077 -0.073 -0.069 -0.070 -0.061 -0.054 -0.050 -0.046 

bias   N = 15 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 Ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.065 -0.117 -0.071 -0.166 -0.124 -0.089 -0.245 -0.201 -0.165 -0.138 -0.307 -0.248 -0.200 -0.168 -0.138 
2 -0.041 -0.067 -0.043 -0.101 -0.077 -0.059 -0.167 -0.140 -0.121 -0.106 -0.192 -0.155 -0.128 -0.108 -0.091 
1 -0.024 -0.038 -0.025 -0.062 -0.047 -0.038 -0.119 -0.103 -0.094 -0.085 -0.117 -0.098 -0.083 -0.072 -0.064 

0.5 -0.016 -0.021 -0.015 -0.041 -0.033 -0.028 -0.092 -0.085 -0.079 -0.075 -0.079 -0.067 -0.059 -0.053 -0.048 
0.25 -0.011 -0.012 -0.009 -0.028 -0.024 -0.022 -0.078 -0.074 -0.071 -0.069 -0.056 -0.051 -0.046 -0.043 -0.042 

bias   N = 50 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.028 -0.045 -0.025 -0.073 -0.056 -0.043 -0.132 -0.115 -0.104 -0.094 -0.132 -0.106 -0.090 -0.075 -0.067 
2 -0.018 -0.026 -0.017 -0.046 -0.038 -0.033 -0.101 -0.093 -0.087 -0.082 -0.082 -0.068 -0.060 -0.052 -0.048 
1 -0.013 -0.015 -0.012 -0.034 -0.029 -0.027 -0.085 -0.081 -0.077 -0.076 -0.055 -0.049 -0.044 -0.041 -0.039 

0.5 -0.010 -0.011 -0.009 -0.025 -0.024 -0.022 -0.076 -0.075 -0.073 -0.072 -0.042 -0.039 -0.037 -0.035 -0.034 
0.25 -0.009 -0.007 -0.007 -0.022 -0.021 -0.020 -0.072 -0.072 -0.070 -0.070 -0.035 -0.033 -0.032 -0.031 -0.031 

bias   N = 5 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.121 -0.227 -0.148 -0.305 -0.223 -0.152 -0.420 -0.338 -0.267 -0.208 -0.546 -0.452 -0.373 -0.303 -0.243 
2 -0.080 -0.148 -0.094 -0.191 -0.134 -0.086 -0.288 -0.229 -0.181 -0.140 -0.379 -0.304 -0.245 -0.196 -0.156 
1 -0.045 -0.085 -0.054 -0.101 -0.066 -0.037 -0.184 -0.147 -0.118 -0.093 -0.236 -0.187 -0.148 -0.117 -0.093 

0.5 -0.025 -0.045 -0.029 -0.043 -0.023 -0.007 -0.116 -0.094 -0.078 -0.065 -0.137 -0.107 -0.084 -0.067 -0.053 
0.25 -0.013 -0.023 -0.013 -0.009 0.002 0.010 -0.076 -0.065 -0.056 -0.049 -0.077 -0.060 -0.048 -0.038 -0.032 

bias   N = 10 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.080 -0.149 -0.095 -0.189 -0.133 -0.085 -0.288 -0.230 -0.182 -0.143 -0.377 -0.303 -0.244 -0.195 -0.156 
2 -0.047 -0.087 -0.053 -0.102 -0.064 -0.037 -0.186 -0.149 -0.120 -0.097 -0.234 -0.185 -0.145 -0.115 -0.091 
1 -0.027 -0.047 -0.028 -0.042 -0.022 -0.007 -0.119 -0.097 -0.080 -0.068 -0.136 -0.106 -0.083 -0.066 -0.052 

0.5 -0.014 -0.023 -0.013 -0.009 0.002 0.011 -0.078 -0.067 -0.058 -0.052 -0.076 -0.058 -0.047 -0.037 -0.030 
0.25 -0.008 -0.010 -0.006 0.010 0.015 0.020 -0.057 -0.051 -0.047 -0.043 -0.042 -0.033 -0.027 -0.022 -0.018 

bias   N =1 5 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.058 -0.110 -0.068 -0.134 -0.090 -0.054 -0.223 -0.177 -0.141 -0.112 -0.290 -0.230 -0.183 -0.146 -0.114 
2 -0.032 -0.061 -0.036 -0.062 -0.037 -0.017 -0.141 -0.114 -0.092 -0.076 -0.172 -0.135 -0.106 -0.084 -0.066 
1 -0.018 -0.031 -0.018 -0.020 -0.006 0.005 -0.090 -0.075 -0.064 -0.055 -0.098 -0.075 -0.060 -0.048 -0.038 

0.5 -0.009 -0.014 -0.007 0.004 0.012 0.017 -0.062 -0.054 -0.049 -0.044 -0.054 -0.043 -0.034 -0.028 -0.023 
0.25 -0.004 -0.005 -0.002 0.017 0.021 0.024 -0.048 -0.044 -0.041 -0.038 -0.032 -0.025 -0.021 -0.018 -0.015 

bias   N = 50 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.021 -0.034 -0.019 -0.034 -0.018 -0.005 -0.103 -0.084 -0.071 -0.060 -0.112 -0.087 -0.069 -0.054 -0.043 
2 -0.011 -0.014 -0.006 -0.006 0.003 0.009 -0.069 -0.060 -0.052 -0.047 -0.062 -0.048 -0.038 -0.031 -0.025 
1 -0.006 -0.004 0.000 0.009 0.013 0.016 -0.051 -0.046 -0.043 -0.040 -0.035 -0.028 -0.022 -0.019 -0.016 

0.5 -0.003 0.001 0.004 0.016 0.019 0.020 -0.042 -0.040 -0.037 -0.036 -0.021 -0.017 -0.014 -0.012 -0.011 
0.25 -0.002 0.004 0.005 0.020 0.021 0.022 -0.037 -0.036 -0.035 -0.034 -0.013 -0.012 -0.010 -0.009 -0.008 

 
The Table reports Monte Carlo bias statistics, concerning the estimation of the common factors autoregressive parameter (ϕ). Results are reported for various values of the fractional differencing 
parameter d  (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ  and ϕ = d/2, and various values of the (inverse) signal to 
noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. 
The experiment refers to the case of unobserved long memory factor, no breaks, and known fractional differencing parameter. 
 

 
 
 



 
 
Table 14: Unobserved common stochastic factor, no structural break, heteroskedastic case: Monte Carlo correlation coefficient  statistics. 

common long memory factor 
correlation coefficient   N = 5 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.751 0.815 0.811 0.912 0.910 0.900 0.963 0.962 0.958 0.948 0.988 0.988 0.986 0.983 0.972 
2 0.851 0.894 0.890 0.953 0.951 0.946 0.981 0.980 0.978 0.972 0.994 0.994 0.993 0.991 0.986 
1 0.917 0.942 0.940 0.975 0.975 0.971 0.990 0.990 0.989 0.986 0.997 0.997 0.997 0.996 0.993 

0.5 0.955 0.970 0.969 0.987 0.987 0.986 0.995 0.995 0.994 0.993 0.999 0.998 0.998 0.998 0.996 
0.25 0.977 0.984 0.984 0.994 0.993 0.993 0.998 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.998 

correlation coefficient   N = 10 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.850 0.892 0.889 0.952 0.951 0.945 0.981 0.980 0.978 0.972 0.994 0.994 0.993 0.992 0.986 
2 0.917 0.942 0.940 0.975 0.974 0.971 0.990 0.990 0.989 0.986 0.997 0.997 0.997 0.996 0.993 
1 0.956 0.970 0.968 0.987 0.987 0.985 0.995 0.995 0.994 0.993 0.999 0.999 0.998 0.998 0.997 

0.5 0.977 0.984 0.984 0.994 0.993 0.993 0.998 0.998 0.997 0.996 0.999 0.999 0.999 0.999 0.998 
0.25 0.988 0.992 0.992 0.997 0.997 0.996 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 0.999 

correlation coefficient   N = 15 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.891 0.924 0.921 0.967 0.966 0.961 0.987 0.987 0.985 0.981 0.996 0.996 0.996 0.994 0.991 
2 0.942 0.960 0.959 0.983 0.982 0.980 0.993 0.993 0.992 0.990 0.998 0.998 0.998 0.997 0.995 
1 0.970 0.979 0.979 0.991 0.991 0.990 0.997 0.997 0.996 0.995 0.999 0.999 0.999 0.999 0.998 

0.5 0.985 0.990 0.989 0.996 0.996 0.995 0.998 0.998 0.998 0.998 1.000 1.000 0.999 0.999 0.999 
0.25 0.992 0.995 0.995 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

correlation coefficient   N = 50 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.963 0.975 0.974 0.990 0.989 0.988 0.996 0.996 0.995 0.994 0.999 0.999 0.999 0.998 0.997 
2 0.981 0.988 0.987 0.995 0.995 0.994 0.998 0.998 0.998 0.997 0.999 0.999 0.999 0.999 0.999 
1 0.991 0.994 0.994 0.997 0.997 0.997 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 

0.5 0.995 0.997 0.997 0.999 0.999 0.999 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
0.25 0.998 0.998 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

correlation coefficient   N = 5 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.765 0.836 0.832 0.969 0.968 0.964 0.991 0.991 0.990 0.987 0.998 0.998 0.997 0.997 0.994 
2 0.860 0.907 0.904 0.984 0.984 0.981 0.996 0.995 0.995 0.993 0.999 0.999 0.999 0.998 0.997 
1 0.922 0.950 0.948 0.992 0.992 0.991 0.998 0.998 0.997 0.997 1.000 0.999 0.999 0.999 0.999 

0.5 0.959 0.974 0.973 0.996 0.996 0.995 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 0.999 
0.25 0.979 0.987 0.986 0.998 0.998 0.998 0.999 0.999 0.999 0.999 0.9999 0.9999 0.9998 0.9998 0.9996 

correlation coefficient   N = 10 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.859 0.907 0.903 0.985 0.984 0.982 0.995 0.995 0.995 0.993 0.999 0.999 0.999 0.998 0.997 
2 0.921 0.950 0.948 0.992 0.992 0.991 0.998 0.998 0.997 0.997 1.000 0.999 0.999 0.999 0.999 
1 0.958 0.974 0.973 0.996 0.996 0.995 0.999 0.999 0.999 0.998 1.000 1.000 1.000 1.000 0.999 

0.5 0.979 0.987 0.986 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
0.25 0.989 0.993 0.993 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

correlation coefficient   N =1 5 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.899 0.935 0.932 0.990 0.989 0.988 0.997 0.997 0.996 0.995 0.999 0.999 0.999 0.999 0.998 
2 0.946 0.966 0.964 0.995 0.995 0.994 0.998 0.998 0.998 0.998 1.000 1.000 1.000 0.999 0.999 
1 0.972 0.982 0.982 0.997 0.997 0.997 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 

0.5 0.986 0.991 0.991 0.999 0.999 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
0.25 0.993 0.996 0.995 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

correlation coefficient   N = 50 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.966 0.979 0.978 0.997 0.997 0.996 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 
2 0.983 0.989 0.989 0.998 0.998 0.998 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 
1 0.991 0.995 0.995 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 0.996 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 0.998 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
The Table reports Monte Carlo correlation coefficients between actual and estimated common factors. Results are reported for various values of the fractional differencing parameter d  (0.2, 0.4, 
0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ  and ϕ = d/2, and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 
1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 5, 10, 15, 50, and the number of replications for each case is 2,000. The experiment refers to 
the case of unobserved long memory factor, no breaks, and known fractional differencing parameter. 
 
 
 
 



   
Table 15: Unobserved common stochastic factor, single break point, heteroskedastic case,  N=30: bias and RMSE of parameters. 

autoregressive common factor parameter ϕ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.049 -0.083 -0.054 -0.122 -0.098 -0.074 -0.190 -0.168 -0.149 -0.131 -0.304 -0.281 -0.264 -0.251 -0.243 
2 -0.035 -0.054 -0.040 -0.082 -0.071 -0.061 -0.148 -0.134 -0.124 -0.118 -0.260 -0.248 -0.238 -0.232 -0.227 
1 -0.028 -0.036 -0.031 -0.063 -0.056 -0.051 -0.123 -0.117 -0.112 -0.110 -0.236 -0.229 -0.225 -0.222 -0.219 

0.5 -0.023 -0.029 -0.026 -0.051 -0.048 -0.045 -0.111 -0.107 -0.105 -0.103 -0.223 -0.220 -0.218 -0.216 -0.215 
0.25 -0.021 -0.025 -0.023 -0.045 -0.044 -0.043 -0.104 -0.102 -0.101 -0.100 -0.216 -0.215 -0.214 -0.213 -0.212 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.149 0.176 0.150 0.213 0.185 0.158 0.293 0.263 0.239 0.217 0.451 0.422 0.400 0.386 0.376 
2 0.143 0.155 0.144 0.170 0.158 0.151 0.240 0.221 0.209 0.202 0.397 0.382 0.371 0.364 0.359 
1 0.143 0.144 0.143 0.153 0.148 0.143 0.209 0.203 0.196 0.193 0.369 0.361 0.356 0.353 0.350 

0.5 0.142 0.142 0.141 0.144 0.141 0.139 0.195 0.191 0.188 0.186 0.355 0.351 0.349 0.347 0.346 
0.25 0.141 0.141 0.140 0.140 0.139 0.139 0.188 0.186 0.185 0.183 0.348 0.346 0.345 0.343 0.343 

autoregressive parameter ρ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.023 -0.026 -0.039 -0.026 -0.037 -0.053 -0.026 -0.042 -0.055 -0.065 -0.029 -0.041 -0.051 -0.067 -0.082 
2 -0.023 -0.029 -0.036 -0.027 -0.040 -0.050 -0.029 -0.039 -0.051 -0.067 -0.033 -0.041 -0.051 -0.064 -0.078 
1 -0.022 -0.030 -0.038 -0.032 -0.041 -0.048 -0.033 -0.040 -0.052 -0.066 -0.028 -0.044 -0.053 -0.066 -0.077 

0.5 -0.027 -0.024 -0.040 -0.032 -0.040 -0.054 -0.029 -0.042 -0.048 -0.063 -0.028 -0.040 -0.050 -0.065 -0.078 
0.25 -0.022 -0.029 -0.039 -0.033 -0.042 -0.049 -0.031 -0.042 -0.053 -0.065 -0.030 -0.037 -0.054 -0.065 -0.081 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.106 0.108 0.113 0.107 0.112 0.121 0.108 0.116 0.124 0.129 0.108 0.118 0.119 0.131 0.139 
2 0.103 0.108 0.112 0.107 0.115 0.118 0.108 0.113 0.121 0.131 0.111 0.113 0.120 0.127 0.134 
1 0.103 0.109 0.113 0.110 0.116 0.116 0.108 0.112 0.120 0.129 0.106 0.116 0.123 0.129 0.133 

0.5 0.104 0.106 0.115 0.112 0.116 0.124 0.108 0.116 0.120 0.126 0.108 0.115 0.120 0.127 0.134 
0.25 0.104 0.107 0.113 0.112 0.115 0.122 0.108 0.117 0.123 0.129 0.109 0.112 0.123 0.129 0.139 

autoregressive common factor parameter ϕ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.034 -0.060 -0.037 -0.071 -0.045 -0.025 -0.150 -0.125 -0.106 -0.090 -0.277 -0.252 -0.234 -0.219 -0.209 
2 -0.019 -0.030 -0.017 -0.028 -0.015 -0.004 -0.105 -0.090 -0.080 -0.072 -0.229 -0.217 -0.207 -0.199 -0.193 
1 -0.010 -0.014 -0.007 -0.006 0.002 0.008 -0.079 -0.072 -0.066 -0.062 -0.204 -0.197 -0.192 -0.188 -0.185 

0.5 -0.006 -0.005 -0.002 0.007 0.011 0.014 -0.066 -0.062 -0.059 -0.057 -0.191 -0.186 -0.184 -0.182 -0.181 
0.25 -0.004 0.000 0.001 0.014 0.016 0.017 -0.058 -0.056 -0.055 -0.054 -0.184 -0.181 -0.180 -0.179 -0.178 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.078 0.104 0.080 0.119 0.090 0.071 0.219 0.184 0.159 0.139 0.404 0.371 0.349 0.332 0.319 
2 0.067 0.075 0.066 0.076 0.067 0.063 0.158 0.139 0.125 0.116 0.344 0.329 0.317 0.309 0.302 
1 0.065 0.066 0.064 0.065 0.063 0.064 0.125 0.116 0.109 0.104 0.315 0.307 0.301 0.297 0.294 

0.5 0.064 0.064 0.063 0.065 0.066 0.066 0.109 0.104 0.101 0.098 0.301 0.296 0.293 0.291 0.290 
0.25 0.064 0.064 0.064 0.067 0.067 0.068 0.101 0.098 0.097 0.096 0.293 0.291 0.289 0.288 0.287 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.004 -0.006 -0.007 -0.006 -0.007 -0.011 -0.008 -0.009 -0.011 -0.012 -0.007 -0.007 -0.009 -0.013 -0.016 
2 -0.004 -0.007 -0.009 -0.007 -0.008 -0.009 -0.006 -0.009 -0.009 -0.012 -0.004 -0.007 -0.011 -0.012 -0.015 
1 -0.004 -0.006 -0.007 -0.006 -0.008 -0.010 -0.006 -0.008 -0.010 -0.011 -0.006 -0.009 -0.010 -0.013 -0.016 

0.5 -0.006 -0.005 -0.009 -0.007 -0.007 -0.010 -0.005 -0.008 -0.011 -0.012 -0.007 -0.010 -0.009 -0.013 -0.014 
0.25 -0.004 -0.006 -0.010 -0.006 -0.008 -0.009 -0.005 -0.008 -0.011 -0.012 -0.005 -0.009 -0.011 -0.012 -0.015 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.045 0.045 0.045 0.045 0.043 0.044 0.047 0.046 0.045 0.041 0.046 0.045 0.043 0.041 0.036 
2 0.046 0.045 0.046 0.046 0.046 0.043 0.046 0.045 0.043 0.040 0.046 0.045 0.044 0.040 0.036 
1 0.045 0.046 0.045 0.046 0.044 0.043 0.045 0.046 0.045 0.040 0.047 0.047 0.043 0.041 0.037 

0.5 0.046 0.044 0.047 0.047 0.046 0.045 0.045 0.045 0.043 0.041 0.046 0.047 0.043 0.042 0.034 
0.25 0.045 0.044 0.046 0.045 0.046 0.043 0.045 0.046 0.044 0.042 0.045 0.046 0.043 0.040 0.035 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the idiosyncratic (ρ) and common (ϕ) autoregressive parameters. Results are reported for various values of 
the common factor fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ and  ϕ = d/2, and 
various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of 
replications for each case is 2,000. The experiment refers to the case of unobserved long memory factor, and known fractional differencing parameter and single break point. 

 
 



 
Table 16: Unobserved common stochastic factor, two break points, heteroskedastic case,  N=30: bias and RMSE of parameters. 

autoregressive common factor parameter ϕ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.059 -0.095 -0.062 -0.141 -0.114 -0.093 -0.214 -0.191 -0.174 -0.159 -0.355 -0.333 -0.322 -0.311 -0.303 
2 -0.045 -0.064 -0.051 -0.102 -0.090 -0.079 -0.174 -0.162 -0.153 -0.144 -0.320 -0.311 -0.302 -0.297 -0.294 
1 -0.036 -0.048 -0.042 -0.082 -0.077 -0.071 -0.152 -0.145 -0.140 -0.137 -0.300 -0.296 -0.291 -0.287 -0.288 

0.5 -0.032 -0.041 -0.038 -0.071 -0.069 -0.066 -0.139 -0.136 -0.134 -0.132 -0.290 -0.288 -0.287 -0.285 -0.284 
0.25 -0.029 -0.036 -0.034 -0.066 -0.064 -0.063 -0.133 -0.131 -0.130 -0.130 -0.285 -0.284 -0.283 -0.282 -0.282 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.152 0.186 0.153 0.236 0.202 0.179 0.323 0.295 0.271 0.251 0.518 0.489 0.474 0.460 0.450 
2 0.146 0.158 0.148 0.192 0.178 0.166 0.273 0.257 0.246 0.235 0.473 0.461 0.449 0.444 0.440 
1 0.143 0.148 0.144 0.171 0.165 0.160 0.245 0.236 0.231 0.226 0.447 0.442 0.437 0.432 0.432 

0.5 0.142 0.145 0.143 0.160 0.158 0.156 0.229 0.225 0.223 0.221 0.435 0.432 0.431 0.428 0.427 
0.25 0.142 0.142 0.141 0.156 0.154 0.153 0.223 0.220 0.219 0.218 0.429 0.427 0.426 0.425 0.425 

autoregressive parameter ρ 
bias 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.021 -0.020 -0.038 -0.028 -0.039 -0.047 -0.031 -0.039 -0.050 -0.064 -0.026 -0.044 -0.052 -0.066 -0.074 
2 -0.020 -0.033 -0.037 -0.028 -0.039 -0.049 -0.029 -0.042 -0.054 -0.066 -0.030 -0.038 -0.048 -0.060 -0.076 
1 -0.024 -0.029 -0.033 -0.028 -0.038 -0.048 -0.028 -0.040 -0.051 -0.065 -0.026 -0.040 -0.054 -0.065 -0.078 

0.5 -0.024 -0.024 -0.039 -0.031 -0.038 -0.050 -0.030 -0.039 -0.051 -0.062 -0.032 -0.040 -0.052 -0.062 -0.076 
0.25 -0.025 -0.028 -0.038 -0.026 -0.037 -0.048 -0.031 -0.043 -0.049 -0.061 -0.032 -0.041 -0.052 -0.064 -0.078 

root mean square error 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.105 0.103 0.112 0.107 0.116 0.116 0.111 0.112 0.119 0.128 0.107 0.117 0.119 0.130 0.131 
2 0.106 0.111 0.113 0.107 0.113 0.117 0.111 0.117 0.125 0.128 0.107 0.114 0.116 0.122 0.131 
1 0.107 0.106 0.113 0.108 0.113 0.118 0.106 0.115 0.120 0.129 0.107 0.116 0.123 0.128 0.134 

0.5 0.107 0.105 0.116 0.109 0.112 0.119 0.106 0.114 0.120 0.124 0.111 0.113 0.121 0.124 0.133 
0.25 0.105 0.106 0.111 0.108 0.112 0.116 0.109 0.116 0.118 0.122 0.111 0.117 0.119 0.126 0.135 

autoregressive common factor parameter ϕ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.037 -0.063 -0.040 -0.148 -0.128 -0.110 -0.349 -0.333 -0.320 -0.312 -0.665 -0.657 -0.651 -0.647 -0.644 
2 -0.023 -0.034 -0.021 -0.116 -0.104 -0.095 -0.324 -0.316 -0.310 -0.305 -0.654 -0.650 -0.647 -0.645 -0.644 
1 -0.014 -0.017 -0.011 -0.098 -0.092 -0.088 -0.311 -0.307 -0.304 -0.301 -0.648 -0.647 -0.645 -0.644 -0.643 

0.5 -0.010 -0.009 -0.006 -0.088 -0.086 -0.083 -0.304 -0.302 -0.300 -0.299 -0.646 -0.645 -0.644 -0.644 -0.643 
0.25 -0.008 -0.005 -0.003 -0.084 -0.082 -0.081 -0.301 -0.300 -0.299 -0.298 -0.644 -0.644 -0.643 -0.643 -0.643 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.080 0.109 0.083 0.221 0.194 0.172 0.507 0.487 0.470 0.459 0.950 0.940 0.933 0.928 0.924 
2 0.071 0.079 0.069 0.181 0.165 0.154 0.475 0.465 0.458 0.451 0.936 0.932 0.928 0.926 0.924 
1 0.067 0.068 0.065 0.158 0.151 0.146 0.459 0.454 0.450 0.447 0.930 0.928 0.926 0.924 0.923 

0.5 0.066 0.065 0.064 0.147 0.144 0.141 0.451 0.448 0.446 0.445 0.926 0.925 0.924 0.924 0.923 
0.25 0.065 0.064 0.064 0.142 0.140 0.139 0.447 0.446 0.445 0.444 0.925 0.924 0.924 0.923 0.923 

autoregressive parameter ρ 
bias 

T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 -0.004 -0.003 -0.008 -0.006 -0.007 -0.010 -0.006 -0.008 -0.010 -0.012 -0.005 -0.009 -0.011 -0.011 -0.015 
2 -0.005 -0.007 -0.009 -0.005 -0.009 -0.010 -0.005 -0.008 -0.010 -0.012 -0.007 -0.007 -0.009 -0.012 -0.015 
1 -0.004 -0.003 -0.008 -0.006 -0.007 -0.010 -0.003 -0.008 -0.011 -0.011 -0.006 -0.007 -0.011 -0.013 -0.015 

0.5 -0.004 -0.007 -0.007 -0.005 -0.008 -0.009 -0.004 -0.007 -0.009 -0.014 -0.007 -0.007 -0.011 -0.013 -0.016 
0.25 -0.006 -0.003 -0.007 -0.007 -0.008 -0.010 -0.007 -0.009 -0.010 -0.011 -0.005 -0.009 -0.010 -0.011 -0.016 

root mean square error 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.046 0.044 0.045 0.047 0.046 0.045 0.045 0.045 0.044 0.040 0.044 0.045 0.044 0.040 0.035 
2 0.046 0.046 0.046 0.046 0.046 0.044 0.045 0.046 0.044 0.039 0.046 0.044 0.044 0.041 0.036 
1 0.045 0.044 0.045 0.047 0.045 0.043 0.044 0.045 0.044 0.040 0.045 0.045 0.044 0.041 0.036 

0.5 0.047 0.045 0.045 0.044 0.047 0.044 0.046 0.044 0.044 0.041 0.044 0.046 0.044 0.041 0.037 
0.25 0.046 0.045 0.046 0.046 0.046 0.043 0.046 0.045 0.043 0.040 0.045 0.045 0.044 0.039 0.037 

 
The Table reports Monte Carlo bias and RMSE statistics, concerning the estimation of the idiosyncratic (ρ) and common (ϕ) autoregressive parameters. Results are reported for various values of 
the common factor fractional differencing parameter d (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ and  ϕ = d/2, and 
various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of 
replications for each case is 2,000. The experiment refers to the case of unobserved long memory factor, and known fractional differencing parameter and break points. 
 

. 



 
Table 17: Unobserved common stochastic factor, known break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation  statistics. 

N=30 
common long memory factor 

1-break point case 
Theil index 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.213 0.256 0.258 0.294 0.295 0.297 0.318 0.318 0.319 0.322 0.344 0.344 0.345 0.345 0.348 
2 0.176 0.236 0.237 0.283 0.283 0.285 0.313 0.313 0.314 0.316 0.343 0.343 0.343 0.343 0.345 
1 0.152 0.224 0.224 0.276 0.277 0.278 0.311 0.311 0.311 0.312 0.342 0.342 0.342 0.342 0.343 

0.5 0.138 0.217 0.217 0.273 0.273 0.273 0.309 0.309 0.309 0.310 0.341 0.341 0.342 0.342 0.342 
0.25 0.129 0.213 0.213 0.271 0.271 0.271 0.308 0.308 0.308 0.309 0.341 0.341 0.341 0.341 0.342 

correlation coefficient 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.924 0.910 0.909 0.816 0.816 0.813 0.788 0.788 0.787 0.784 0.758 0.758 0.758 0.757 0.755 
2 0.953 0.930 0.929 0.826 0.826 0.824 0.792 0.791 0.791 0.790 0.759 0.759 0.759 0.759 0.758 
1 0.968 0.941 0.941 0.831 0.831 0.830 0.793 0.793 0.793 0.793 0.760 0.760 0.760 0.760 0.759 

0.5 0.975 0.946 0.946 0.833 0.833 0.833 0.794 0.794 0.794 0.794 0.760 0.760 0.760 0.760 0.760 
0.25 0.979 0.949 0.949 0.834 0.834 0.834 0.795 0.795 0.795 0.795 0.760 0.760 0.760 0.760 0.760 

Theil index 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.178 0.167 0.168 0.310 0.311 0.312 0.326 0.326 0.327 0.327 0.326 0.326 0.326 0.326 0.327 
2 0.134 0.138 0.139 0.306 0.306 0.307 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.326 
1 0.104 0.120 0.121 0.304 0.304 0.304 0.324 0.324 0.324 0.324 0.325 0.325 0.325 0.325 0.325 

0.5 0.084 0.109 0.110 0.303 0.303 0.303 0.324 0.324 0.324 0.324 0.325 0.325 0.325 0.325 0.325 
0.25 0.071 0.103 0.104 0.302 0.302 0.302 0.323 0.323 0.323 0.323 0.325 0.325 0.325 0.325 0.325 

correlation coefficient 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.942 0.954 0.953 0.794 0.794 0.793 0.778 0.778 0.778 0.777 0.776 0.776 0.776 0.775 0.775 
2 0.968 0.971 0.970 0.798 0.797 0.797 0.779 0.779 0.779 0.779 0.776 0.776 0.776 0.776 0.776 
1 0.982 0.980 0.979 0.799 0.799 0.799 0.780 0.780 0.780 0.779 0.776 0.776 0.776 0.776 0.776 

0.5 0.989 0.984 0.984 0.800 0.800 0.800 0.780 0.780 0.780 0.780 0.776 0.776 0.776 0.776 0.776 
0.25 0.993 0.986 0.986 0.800 0.800 0.800 0.780 0.780 0.780 0.780 0.776 0.776 0.776 0.776 0.776 

2-break point case 
Theil index 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.231 0.296 0.296 0.375 0.375 0.377 0.423 0.424 0.424 0.425 0.464 0.464 0.464 0.464 0.466 
2 0.197 0.278 0.279 0.368 0.368 0.369 0.421 0.421 0.421 0.422 0.463 0.463 0.463 0.464 0.464 
1 0.176 0.268 0.269 0.364 0.364 0.364 0.420 0.420 0.420 0.420 0.463 0.463 0.463 0.463 0.464 

0.5 0.164 0.263 0.263 0.362 0.362 0.362 0.419 0.419 0.419 0.419 0.463 0.463 0.463 0.463 0.463 
0.25 0.157 0.260 0.261 0.360 0.360 0.361 0.418 0.418 0.419 0.419 0.463 0.463 0.463 0.463 0.463 

correlation coefficient 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.907 0.870 0.870 0.731 0.730 0.728 0.677 0.677 0.676 0.674 0.632 0.632 0.631 0.631 0.629 
2 0.937 0.891 0.891 0.741 0.741 0.740 0.681 0.681 0.681 0.680 0.633 0.633 0.633 0.632 0.631 
1 0.952 0.902 0.902 0.747 0.746 0.746 0.684 0.684 0.683 0.683 0.634 0.634 0.634 0.633 0.633 

0.5 0.960 0.908 0.908 0.749 0.749 0.749 0.685 0.685 0.685 0.684 0.634 0.634 0.634 0.634 0.633 
0.25 0.964 0.911 0.910 0.751 0.751 0.750 0.685 0.685 0.685 0.685 0.634 0.634 0.634 0.634 0.634 

Theil index 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.186 0.185 0.186 0.423 0.423 0.424 0.445 0.445 0.445 0.446 0.443 0.443 0.443 0.443 0.443 
2 0.146 0.160 0.161 0.421 0.421 0.421 0.445 0.445 0.445 0.445 0.443 0.443 0.443 0.443 0.443 
1 0.119 0.145 0.146 0.420 0.420 0.420 0.444 0.444 0.444 0.444 0.443 0.443 0.443 0.443 0.443 

0.5 0.102 0.137 0.137 0.419 0.419 0.419 0.444 0.444 0.444 0.444 0.443 0.443 0.443 0.443 0.443 
0.25 0.093 0.132 0.132 0.419 0.419 0.419 0.444 0.444 0.444 0.444 0.443 0.443 0.443 0.443 0.443 

correlation coefficient 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.935 0.941 0.940 0.675 0.674 0.674 0.651 0.651 0.651 0.650 0.652 0.652 0.652 0.652 0.651 
2 0.961 0.958 0.957 0.678 0.678 0.678 0.652 0.652 0.652 0.651 0.653 0.653 0.652 0.652 0.652 
1 0.975 0.966 0.966 0.680 0.680 0.680 0.652 0.652 0.652 0.652 0.653 0.653 0.653 0.653 0.652 

0.5 0.982 0.971 0.971 0.681 0.681 0.681 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 
0.25 0.985 0.973 0.973 0.681 0.681 0.681 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 

 
The Table reports Monte Carlo Theil index and correlation coefficient statistics, concerning the estimation of the unobserved common long memory factor component. Results are reported for 
various values of the fractional differencing parameter d  (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ and  ϕ = d/2, 
and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of 
replications for each case is 2,000. The experiment refers to the case of unobserved long memory factor and known fractional differencing parameter and break points. 

 
 



 
Table 18: Unobserved common stochastic factor, known break points, heteroskedastic case, N=30: Monte Carlo Theil and correlation  statistics. 

N=30 
common break process 

1-break point case 
Theil index 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.045 0.097 0.097 0.083 0.083 0.083 0.092 0.092 0.092 0.093 0.100 0.100 0.100 0.100 0.100 
2 0.044 0.097 0.097 0.083 0.083 0.083 0.092 0.092 0.092 0.092 0.100 0.100 0.100 0.100 0.100 
1 0.044 0.097 0.097 0.083 0.083 0.083 0.092 0.092 0.092 0.092 0.100 0.100 0.100 0.100 0.100 

0.5 0.044 0.097 0.097 0.083 0.083 0.083 0.092 0.092 0.092 0.092 0.100 0.100 0.100 0.100 0.100 
0.25 0.044 0.097 0.097 0.083 0.083 0.083 0.092 0.092 0.092 0.092 0.100 0.100 0.100 0.100 0.100 

correlation coefficient 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Theil index 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.021 0.047 0.047 0.091 0.091 0.091 0.096 0.097 0.096 0.097 0.097 0.097 0.097 0.097 0.097 
2 0.020 0.047 0.047 0.091 0.091 0.091 0.096 0.096 0.097 0.096 0.097 0.097 0.097 0.097 0.097 
1 0.020 0.047 0.047 0.091 0.091 0.091 0.096 0.096 0.096 0.096 0.097 0.097 0.097 0.097 0.097 

0.5 0.020 0.047 0.047 0.091 0.091 0.091 0.096 0.096 0.096 0.096 0.097 0.097 0.097 0.097 0.097 
0.25 0.020 0.047 0.047 0.091 0.091 0.091 0.096 0.096 0.096 0.096 0.097 0.097 0.097 0.097 0.097 

correlation coefficient 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2-break point case 
Theil index 

T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.061 0.129 0.129 0.116 0.116 0.116 0.129 0.129 0.129 0.129 0.139 0.139 0.138 0.139 0.139 
2 0.060 0.128 0.128 0.116 0.116 0.116 0.129 0.129 0.129 0.129 0.138 0.138 0.138 0.138 0.139 
1 0.060 0.128 0.128 0.116 0.116 0.116 0.129 0.129 0.129 0.129 0.138 0.138 0.138 0.138 0.139 

0.5 0.060 0.128 0.128 0.116 0.116 0.116 0.129 0.129 0.129 0.129 0.138 0.138 0.139 0.138 0.139 
0.25 0.060 0.128 0.128 0.116 0.116 0.116 0.129 0.129 0.129 0.129 0.138 0.138 0.138 0.139 0.139 

correlation coefficient 
T = 100 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.992 0.967 0.968 0.950 0.950 0.950 0.940 0.940 0.940 0.940 0.931 0.931 0.931 0.931 0.930 
2 0.993 0.967 0.968 0.950 0.950 0.950 0.940 0.940 0.940 0.940 0.931 0.931 0.931 0.931 0.931 
1 0.993 0.968 0.968 0.950 0.950 0.950 0.940 0.940 0.940 0.940 0.931 0.931 0.931 0.931 0.931 

0.5 0.993 0.968 0.968 0.950 0.950 0.950 0.940 0.940 0.940 0.940 0.931 0.931 0.931 0.931 0.931 
0.25 0.993 0.968 0.968 0.950 0.950 0.950 0.940 0.940 0.940 0.940 0.931 0.931 0.931 0.931 0.931 

Theil index 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.034 0.067 0.068 0.130 0.130 0.130 0.136 0.136 0.136 0.136 0.135 0.135 0.135 0.135 0.135 
2 0.034 0.067 0.067 0.130 0.130 0.130 0.136 0.136 0.136 0.136 0.135 0.135 0.135 0.135 0.135 
1 0.034 0.067 0.067 0.130 0.130 0.130 0.136 0.136 0.136 0.136 0.135 0.135 0.135 0.135 0.135 

0.5 0.034 0.067 0.067 0.130 0.130 0.130 0.136 0.136 0.136 0.136 0.135 0.135 0.135 0.135 0.135 
0.25 0.034 0.067 0.067 0.130 0.130 0.130 0.136 0.136 0.136 0.136 0.135 0.135 0.135 0.135 0.135 

correlation coefficient 
T = 500 d = 0.2  ϕ = 0.1 d = 0.4  ϕ = 0.2 d = 0.6  ϕ = 0.3 d = 0.8  ϕ = 0.4 d = 1.0  ϕ = 0.5 
(s/n)-1 ρ = 0 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 

4 0.997 0.990 0.990 0.939 0.939 0.939 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935 
2 0.997 0.990 0.990 0.939 0.939 0.939 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935 
1 0.997 0.990 0.990 0.939 0.939 0.939 0.935 0.935 0.935 0.935 0.9353 0.9353 0.935 0.935 0.935 

0.5 0.997 0.990 0.990 0.939 0.939 0.939 0.935 0.935 0.935 0.935 0.9353 0.9353 0.935 0.935 0.935 
0.25 0.997 0.990 0.990 0.939 0.939 0.939 0.935 0.935 0.935 0.935 0.9353 0.9353 0.935 0.935 0.935 

 
The Table reports Monte Carlo Theil index and correlation coefficient statistics, concerning the estimation of the unobserved common long memory factor component. Results are reported for 
various values of the fractional differencing parameter d  (0.2, 0.4, 0.6, 0.8, 1), various values of the idiosyncratic autoregressive parameter ρ  (0, 0.2, 0.4, 0.6, 0.8), assuming d > ρ and  ϕ = d/2, 
and various values of the (inverse) signal to noise ratio (s/n)-1 (4, 2, 1, 05, 0.25). The sample size T is 100 and 500 observations, the number of cross-sectional units N is 30, and the number of 
replications for each case is 2,000. The experiment refers to the case of unobserved long memory factor and known fractional differencing parameter and break points. 
 

 


