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ABSTRACT
The geographical distribution and persistence of regional/local unemployment rates in heterogeneous economies

(such as Germany) have been, in recent years, the subject of various theoretical and empirical studies. Several

researchers have shown an interest in analysing the dynamic adjustment processes of unemployment and the

average degree of dependence of the current unemployment rates or gross domestic product from the ones

observed in the past. In this paper, we present a new econometric approach to the study of regional

unemployment persistence, in order to account for spatial heterogeneity and/or spatial autocorrelation in both the

levels and the dynamics of unemployment. First, we propose an econometric procedure suggesting the use of

spatial filtering techniques as a substitute for fixed effects in a panel estimation framework. The spatial filter

computed here is a proxy for spatially distributed region-specific information (e.g., the endowment of natural

resources, or the size of the ‘home market’) that is usually incorporated in the fixed effects coefficients. The

advantages of our proposed procedure are that the spatial filter, by incorporating region-specific information that

generates spatial autocorrelation, frees up degrees of freedom, simultaneously corrects for time-stable spatial

autocorrelation in the residuals, and provides insights about the spatial patterns in regional adjustment processes.

We present several experiments in order to investigate the spatial pattern of the heterogeneous autoregressive

coefficients estimated for unemployment data for German NUTS-3 regions. We find widely heterogeneous but

generally high persistence in regional unemployment rates.

Keywords: unemployment persistence, dynamic panel, hysteresis, spatial filtering, fixed effects

JEL codes: C21, C23, R12
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1. Introduction

Regional labour market developments mirror the spatial socio-economic dynamics of the

economy. Therefore, timely information on the functioning of these markets is of critical

importance for regional policy. In particular, panel-type information on labour market

indicators may be an important sign post for effective policy, as the spatio-temporal evolution

of these markets is critical for understanding the emergence and persistence of disparities

among regions. Disparities in economic development and welfare within countries (at the

regional level) are often bigger than between countries (Elhorst 1995; Taylor and Bradley

1997; Ertur and Le Gallo 2003; Patuelli 2007; see, for example, the cases of Germany and

Italy). Consequently, spatial disparities have for decades been a source of policy concern and

applied research (for a recent overview, see Kochendörfer-Lucius and Pleskovic 2009). They

occur in both developed and developing countries, their genesis may date back far in history,

while their removal may take generations.

For example, Germany faced, in the first semi-decade after reunification, an increase in

unemployment, from 2.6 million people in 1991 to 4.3 million people in 1997 – or, including

the hidden reserve, from 3 millions to 5.6 millions (Fuchs et al. 2010). Unemployment

remained, with only slight movements, at the same level for roughly 10 years, until the rapid

decline after the 2005 reforms. In the period from 2006 to 2010 unemployment dropped again

to the level of the early 1990s, despite the credit crunch. Throughout the high-unemployment

period from 1995 to 2005, the unemployment rate in East Germany was 9 to 11 percentage

points higher than the unemployment rate in West Germany; however, as we show later in the

paper, there were large disparities within West German unemployment rates as well. In

particular, in the two most recent years, East-West disparities in the unemployment rates have

diminished.

With regard to regional unemployment disparities, policy makers need, in order to correctly

target their actions and policies, to understand two aspects of such disparities: (a) the

determinants of ‘equilibrium’ unemployment and of its variation; and, (b) the region-specific

and cross-regional dynamics of unemployment. The former have been studied extensively in

the economic literature (Taylor and Bradley 1997; Badinger and Url 2002; Aragon et al. 2003;

Elhorst 2003; Niebuhr 2003; Basile and De Benedictis 2008; Nijkamp 2009; Zenou 2009;

Moretti 2011; Oud et al. Forthcoming). Some attention has been devoted to the internal

dynamics of regional unemployment as well, and to each region’s sensitivity to shocks,

seasonal factors, and unemployment persistence. The literature has mostly focused on a

macroeconomic setting, such as in a ‘non-accelerating inflation rate of unemployment
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(NAIRU)’ or in a (conditional/unconditional) ‘convergence towards a natural rate of

unemployment’ perspective (following the approach of Blanchard and Summers 1986; see,

for example, Decressin and Fatás 1995; Song and Wu 1997; Bayer and Juessen 2007; Garcia-

del-Barrio and Gil-Alana 2009; Tyrowicz and Wójcik 2010a, b, 2011). From a

methodological perspective, these studies generally test for unit roots in the unemployment

series.1 However, they suffer from the major drawbacks of treating regions as homogeneous

and/or cross-sectionally independent: they consider neither spatial correlation of shocks nor

spatially structured heterogeneity in the adjustment process (a notable exception being Nappi-

Choulet and Maury 2011).

Similarly, the correlation of unemployment rates in space has been studied both in an

exploratory/descriptive fashion (Molho 1995; López-Bazo, del Barrio, and Artis 2002;

Cracolici, Cuffaro, and Nijkamp 2007; Mayor and López 2008; Patuelli et al. 2011), and with

regard to the determinants of unemployment (Elhorst 1995; Mitchell and Bill 2004; Kosfeld

and Dreger 2006; Patacchini and Zenou 2007; Aldashev 2009), using spatial econometric

techniques. Little effort has been made, aside from in a time series/forecasting context

(Schanne, Wapler, and Weyh 2009), to decompose the spatial dynamics of unemployment.

However, several arguments – commuting and internal migration, spatial diffusion of

information on vacancies, (limited) search radius of unemployed persons, which affect the

duration (and persistence) of individual unemployment – exist for spatially structured regional

interdependence in the development of unemployment. Regions are expected to differ in their

degree of persistence, and this heterogeneity is likely to show a spatial pattern.

Policy makers who understand the specific characteristics of a region and of interregional

dependencies are able to tackle problems more effectively and to anticipate more accurately

the necessary responses to aggregate and local shocks (e.g., a prolonged spell of higher

unemployment resulting from a recession). Likewise, a group of (contiguous) regions that

share common characteristics has the opportunity to develop common strategies. We stress

the need to investigate (break down) the components of region-specific dynamics, from an

autoregressive/reaction-to-shocks viewpoint, so as to identify spatial patterns of common

characteristics. A similar view was recently expressed by Partridge and Rickman (2010) in

their review and discussion of (desirable) developments in CGE modelling.

1 Stationarity implies that a series has a distribution with finite variance and that it converges towards its long-
run expectation. Convergence between the regions arises only if the regional series have the same long-run
expectation. In contrast, non-stationary regional series imply that shocks persist and that in the long-run the
cross-regional distribution depends completely on accumulated (random) events.
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Our study addresses the development of regional labour markets in Germany. This country

offers a unique natural experiment for our purposes, as – in addition to the regular spatial

dynamics of an advanced industrial economy – the post-reunification effects appear to play a

prominent role in the initial distribution of unemployment and the subsequent evolution of

spatial disparities in the country. We develop a number of autoregressive models for

analysing regional unemployment between 1996 and 2004, that is, the period after the direct

effect of reunification has fully realized, and before the major labour market reforms, in the

439 German NUTS-3 regions (kreise). These administrative regions can be considered an

ideal unit of analysis, because they directly relate to local policy-making choices, for example

in public welfare,2 in terms of attracting capital- or labour-intensive industries through the

provision of a productive environment, infrastructure, enterprise zones, or by subsidizing

desired economic activities. 3 We estimate autoregressive effects specific to both each

administrative region and different urbanization and agglomeration degrees of regions. In

addition to a standard fixed effects (FE)/individual slopes estimation, we propose an

econometric procedure exploiting spatial filtering (SF) techniques. The spatial filter is a proxy

for spatially distributed region-specific information (e.g., the endowment of natural resources

or the size of the ‘home market’) that is usually incorporated in the FE or in region-specific

slope coefficients. The approach presented here allows considerable savings in terms of

degrees of freedom. Most importantly, the spatial filter provides a straightforward

interpretation – as the linear combination of orthogonal spatial patterns – of the FE

components surrogate, and provides new insights on the spatial patterns that make it

interesting to adopt the approach also for the analysis of other spatiotemporal processes, such

as GDP growth/convergence, house price diffusion, and spread of diseases.

We present several experiments investigating the spatial patterns of autoregressive

coefficients estimated for the unemployment rates of German NUTS-3 regions. Our findings

show that – on average – unemployment rates are rather persistent and that the levels of

persistence have an identifiable spatial structure. Additionally, we propose a model based on

spatial regimes, which allows to decompose the dynamic processes of regional unemployment

rates according to agglomeration/urbanization criteria, rather than to the well-known – but

oversimplifying – East-West Germany division.

2 Until 2004, two parallel benefit systems for long-term unemployed coexisted. The ‘Arbeitslosenhilfe’ was
administered by the local departments of the Federal Employment Agency, while the ‘Sozialhilfe’ was under
the responsibility of the NUTS-3 authorities (kreise).

3 Although the major part of subsidies is distributed by the federal states, the national government or the
European Union, many programmes require co-funding from the local authorities, and availability depends on
criteria often calculated at the NUTS-3 level.
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The remaining part of the paper is structured as follows. Section 2 describes the analytical

design of the model used in our study. Sections 3 and 4 present the dataset used and the

results obtained, respectively. Finally, Section 5 provides a rejoinder and conclusive remarks.

2. Analytical Design of the Model

2.1. The Traditional Approach

The current standard approach to analyse the persistence of unemployment or, in a multi-

region context, its convergence speed (see, for a recent overview, Lee and Chang 2008) is to

estimate a system of AR(1) processes, and to test each single equation, as well as the entire

system of equations, for unit roots. Here, the basic equation for unemployment u in region i at

time t is given by Equation (1):

(1) , , 1 , , ,i t i i t i i t i tu u s     

where μi denotes the average unemployment,4 si,t its seasonal component, and εi,t an i.i.d. zero-

mean random disturbance. Stacked over all regions, this set can be written as the following

system of equations:

(2) 1 ,t n t n n t t     U U A M S

where 1 ,( ),n
t i i tdiag uU is the n × n diagonal matrix of unemployment rates at time t, An =

(α1, …, αN)' and Mn = (μ1, …, μN)' are n × 1 column vectors of coefficients, St = (S1,t, …, SN,t)'

is an n × 1 column vector (generated from the n × 3 matrix of coefficients corresponding to

the seasonal dummies, multiplied by the 3 × 1 matrix containing the seasonal dummies), ιn =

(1, …, 1)' is a unit vector of length n, and εt = (ε1,t, …, εN,t)' is the n × 1 vector of residuals.

The subscript n in An and Mn denotes the length of the coefficient vectors. Vectors and

matrices with subscript t always have length n. Mn is equivalent to FE in a panel framework.5

4 We assume that unemployment does not have a deterministic trend.
5 For small time dimensions, the estimates of the autoregressive coefficients are typically downward biased.

With individual coefficients, the Hurwicz bias is (1 3 ) .i i Ti       The Nickell bias,

(1 ) ( 1),T      for a common coefficient across the regions α1 = … = αn = α has a smaller size than the
Hurwicz bias (Nickell 1981). However, it can be seen that both converge towards zero when T goes to infinity.
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If the autoregressive coefficient αi is smaller than 1 in absolute value, the impact of a

“shock” εi,t will vanish over time, and the series will converge to its long-run expectiation. In

contrast, if αi equals one, the process in region i has a unit root. A single equation is tested for

stationarity by augmented Dickey-Fuller (ADF) tests, or by Phillips-Perron (PP) tests;

likewise, various tests derived for panels or systems that rely as well on subtracting lagged

unemployment from both sides of Equation (2) require the following form of Equation (2):

(3) 1 1( ) ( ) ,t t n t n n n t t         U U U A M S

Next, we may test if the elements of (An – ιn) are, individually or jointly, significantly less

than zero.6 Some procedures test the entire set of coefficients directly (for example, Sarno and

Taylor 1998), whereas others combine the individual t-statistics to form a joint test statistic

(see Maddala and Wu 1999 or Im, Pesaran, and Shin 2003). As an alternative, restrictions

may be imposed on the coefficient, enabling a test only for stationarity of the average

autoregressive process, as in Levin et al. (2002), or for the stationarity of a limited number of

regime-specific processes (also referred to as the ‘convergence clubs’ hypothesis).

Regarding the validity of panel unit-root tests, most of these procedures require the time

dimension to be sufficiently large in order to converge and not to be plagued by the so-called

Nickell bias arising in panels with a small time dimension (Nickell 1981) or by the Hurvicz

bias in short times series. Moreover, Equations (2) and (3) are only estimable in a seemingly

unrelated regression (SURE) form (that is, in a specification that allows for simultaneously

correlated errors) when the number of regions is small. Else one has to assume independence

of the regions, resulting in equation-wise unit-root tests with low efficiency/power.

Nonetheless, cross-sectional correlation seems rather plausible, in particular when considering

small spatial units, and therefore taking this structure into account in the error term εt is

preferable.

Cross-sectional (spatial) correlation arises not only in contemporaneous shocks, but also in

levels and trends (as shown in TABLE 1), in seasonal patterns, or in the adjustment speed.

These spatial patterns or correlations could likewise be utilized to get better – more efficient,

more powerful, less demanding in terms of degrees of freedom, and large-N, small-T

consistent – estimates of the average convergence speed.

6 The coefficients αi – 1 follow, under the null hypothesis of a non-stationary process, a non-normal degenerate
distribution, typically a Wiener process (also denoted as Brownian motion).
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TABLE 1: Descriptive statistics of regional unemployment, 1996–2004

Region Mean St. dev. 1st quartile Median 3rd quartile MI

Unemployment rates (levels, in %)

Germany 11.8 5.5 7.6 10.1 15.4 0.903

East 19.4 3.5 17.0 19.3 21.8

North 11.1 2.8 9.0 10.7 13.0

South 8.1 2.5 6.2 7.7 9.5

First differences (in %)

Germany 0.01 1.21 –0.43 0.11 0.59 0.623

East 0.06 1.76 –0.88 0.30 1.22

North –0.01 0.89 –0.34 0.06 0.40

South –0.06 0.88 –0.72 –0.07 0.60

In the following subsection, we propose an alternative approach to estimating Equation (2),

which decomposes the autoregressive processes according to exogenous spatial patterns that

are representative of accessibility/contiguity relations between the regions studied.7

2.2. Spatial Filtering

A wide array of methods, as well as several dedicated ‘spatial’ econometric procedures, for

the statistical analysis of georeferenced data is available in the literature. Most commonly

employed, spatial autoregressive techniques (see, for example, Anselin 1988) model

interregional dependence explicitly by means of spatial weights matrices that provide

measures of the spatial linkages between values of georeferenced variables, with a structure

similar to serial correlation in time-series econometrics (see Corrado and Fingleton

Forthcoming for a discussion of the economic interpretation of spatial models).

An alternative approach to spatial autoregression, modelling spatial autocorrelation in the

mean response rather than in the variance, is the use of spatial filtering (SF) techniques (Getis

and Griffith 2002). Their advantage is that the studied variables (which are initially spatially

7 This claim clearly needs to be further explored by simulation evidence showing that SF is a suitable
substitute/approximation of the fixed effects. Preliminary simulation results by the authors suggest that the SF
and SFGWR are fully competitive – unless N or T tend to infinite – with mainstream econometrics methods
such as bias-corrected LSDV (Bun and Carree 2005) and Blundell and Bond (1998), in terms of coefficient
estimate bias.
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correlated) are split into spatial and non-spatial components. Then these components can be

employed in a linear regression framework. This conversion procedure requires the

computation of a ‘spatial filter’.

The SF technique introduced by Griffith (2003) is based on the computational formula of

Moran’s I (MI) statistic.8 This eigenvector decomposition technique extracts n orthogonal, as

well as uncorrelated, numerical components from the n × n modified spatial weights matrix:

(4) ( '/ ) ( '/ ),n nn n    W I C I

where In is an identity matrix of dimension n, ι is an n × 1 unit vector, and C is a spatial

weights matrix9 representing the spatial relation between each pair of regions; here we use a

binary first-order contiguity (C-coding rook) matrix where element ijc equals 1 if regions i

and j have a common border, and 0 otherwise. Matrix ( '/ )n n I  is the standard projection

matrix found in the multivariate statistics and regression literature. Because matrix C is pre-

and post-multiplied by the projection matrix [see Equation (4)], these eigenvectors are centred

at zero. The eigenvectors extracted are in a decreasing order of spatial autocorrelation, and the

first corresponds to the largest eigenvalue of W. Thus, the first two eigenvectors computed

(E1 and E2) often identify map patterns along the cardinal points (that is, some rotated version

of the major North-South and East-West patterns). Eigenvectors with intermediate values of

MI display regional map patterns, whereas eigenvectors with smaller values of MI display

local map patterns. The set of relevant eigenvectors – those explaining the spatial pattern in

the variable of interest – can be found by regressing the dependent variable on the

eigenvectors in a stepwise fashion, retaining the significant eigenvectors (or eliminating the

8 Moran’s I is calculated as follows:

2

( )( )
,

( ) ( )
ij i ji j

ij ii j i

N w x x x x
I

w x x

 



 
  

where, in the case of a set of n regions, xi is the value of the generic variable x in region i, and wij is the cell (i,
j) of a spatial weights matrix W, indicating the proximity of each pair of regions i and j.

9 For a discussion of coding schemes and proximity definitions, see, with regard to the German NUTS-3 case,
Patuelli et al. (Forthcoming), and more generally Griffith and Peres-Neto (2006). However, across most
definitions for spatial weights matrices, the weights corresponding to element (i,j) are highly positively
correlated. The results in spatial filtering hardly depend on the matrix from which the eigenvectors are
extracted, thus the choice of the weights matrix is of little importance (see Griffith 2000; Getis and Griffith
2002). This is due to the fact that eigenvectors extracted from one (geographical) matrix can almost surely be
generated by a linear combination of eigenvectors extracted from any other (geographical) matrix. For
example, the matrix '( )N N N I W W and its inverse ' 1[ ( )]N N N

 I W W  have the same eigenvectors,
although the first may represent just a weighted average across the direct neighbours, whereas the latter
represents an (infinite) distance-decay scheme.



8

insignificant ones). The linear combination of selected eigenvectors and their corresponding

coefficient estimates defines the spatial filter for the variable of interest. In an autoregressive

setting (where no covariates are employed), residuals obtained with stepwise regression

constitute the spatially filtered component of the georeferenced variable examined (see

Griffith 2000). The eigenvectors can be seen as independent map patterns that coincide with

the latent spatial autocorrelation of a given georeferenced variable, according to a given

spatial weights matrix. Moreover, they can work as proxies for omitted variables that show a

certain coincidence or similarity regarding their spatial distribution.

Differently from mainstream spatial econometric models, such as spatial lag or spatial error

models, which are developed mostly in a linear estimation framework, the SF approach can be

applied to any functional form. Additionally, the tools necessary for implementing the

technique – eigenvector decomposition and stepwise regression – are available in all

statistical software packages.

Griffith (2008) shows that SF not only refers to the unobserved spatial correlation of a

variable, but also contributes to the explanation of spatial heterogeneity in the coefficients. An

equivalent to the coefficients of a geographically weighted regression (GWR, Brunsdon,

Fotheringham, and Charlton 1998) can be computed by introducing interaction terms between

the exogenous variables of an equation and the eigenvectors extracted from a spatial weights

matrix into a model specification. The possibility to combine the SF approach with a panel

estimation framework and with geographically heterogeneous regression coefficients

(SFGWR) constitutes an additional advantage over existing methods. The next section details

the functioning of the SFGWR approach.

2.3. An Adjustment-Process Spatial Filter

The coefficients αi and μi in Equations (2) and (3) can be expected to show spatial

heterogeneity,10 that is, a pattern in space that may be related to the structure of a spatial

weights matrix, and for which they could be tested, for example, by computing these

coefficients’ MI. These spatial patterns can be and preferably should be considered explicitly

10 By the term spatial heterogeneity we refer to spatial structure in the coefficients (i.e., the effects of variables),
and by the term spatial correlation to spatial structure in variables. However, these terms are insofar related, as
on the one hand, spatial correlation (e.g., in a spatial lag or spatial Durbin model) results in spatially
heterogeneous marginal  impacts (e.g., see LeSage and Pace 2009, Chapter 2.7), and on the other hand,
regression coefficients can be considered as moments of (multivariate) distributions (in our case, the
coefficients μi represent the region-specific in-sample expectations of the unemployment rate) which may
themselves be used as variables.
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instead of in the parameter-intensive formulation of heterogeneity given in Equations (2) and

(3). We introduce spatial patterns by decomposing the terms An and/or Mn into a spatial and a

non-spatial part, setting n k n  A A  and ,n k n   M M where ω is an n × k matrix of

eigenvectors Ek extracted from the normalized spatial weights matrix given in Equation (4)

(Griffith 2003). ω collects the constant (that is, ιn) as well, because n n is also an

eigenvector of matrix W. ηn and νn contain only non-spatial patterns within the individual

coefficients – hence they have zero mean and are orthogonal to the spatial process – and can

thus move to the residuals. As we can substitute both the level and the dynamic adjustment in

a process by their spatial counterparts, three alternative specifications to Equation (2) yield:

(5) 1 ;t n t n k n t t       U U A M S

(6) 1 1( ) ;t n t k t n n t tA         U U U M S  and,

(7) 1 1( ) .t n t k t n k n t tA           U U U M S 

Equation (5) is the SF equivalent to the FE panel estimation [see Equation (2)]. In contrast,

Equations (6) and (7) show similarities with the SF representation of GWR (Griffith 2008).

1, the first element of the coefficients vector ,kA and the one linked to the constant,

estimates the average adjustment speed. The further autoregressive coefficients specify

regional patterns in the adjustment speed: for example, the coefficients for the interaction

terms between lagged unemployment and eigenvectors E1 and E2 reflect regional deviations

from the average adjustment speed along the cardinal coordinates, similarly to the patterns

that the eigenvectors themselves represent for the levels. Similarly, the coefficients for the

subsequent eigenvector interactions reflect how the above deviations can be attributed to more

composite spatial patterns: first global, then regional, and finally local.

The new residuals vector – for example, defined as 1t t n n t      U in Equation (7) –

may exhibit either a panel-specific mean-zero component (a random effect, when 2 0),   or

panel-specific serial correlation in the residuals (when 2 0).  Nonetheless, the

orthogonality between the spatial eigenvectors and the non-spatial time-constant component

suffices to guarantee orthogonality between the regressors 1( , )t  U  and ζt; that is,

consistency of the estimation of Equations (5), (6) and (7). However, the overall variance of

these equations is inflated by the variance of νn and/or Ut–1ηt with respect to Equation (2).
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2.4. Spatial Regimes

An alternative approach to studying spatial heterogeneity in coefficients is the introduction of

explicit spatial regimes that, for example, distinguish between urban and rural economies, or

to have one regime for each federal state (covering all districts within a single state). Because

discrete schemes – in contrast to continuous coefficient heterogeneity – allow results to be

interpreted as a structural break (Anselin 1990), a common choice in applied work is to use

just two regimes: typically, North versus South for Europe (Ertur, Le Gallo, and Baumont

2006), or East versus West for Germany. We apply a classification of regions by the German

Federal Institute for Research on Building, Urban Affairs and Regional Development

(Bundesinstitut für Bau-, Stadt- und Raumforschung, BBSR), which identifies nine different

degrees of urbanization and agglomeration.11 The number of spatial regimes to use is rather

heuristic, since the classification of districts is due to population density, and is not directly

linked to labour market considerations. The intuition is that cities or agglomerations – which

have a different industrial and firm structure, different information channels, and populations

with different preferences than rural areas – adjust to shocks differently.

We differentiate the (serial) autoregressive coefficients (and seasonal effects) according to r

= 9 discrete spatial regimes, and follow the previous estimation approaches for the region-

specific levels (by FE or SF). Thus, let Dclass denote the n × r matrix that assigns a certain

urbanization/agglomeration class to each region. In order to avoid perfect multicollinearity,

there is no average autoregressive effect included in the equation system. ξn is the part of

spatial heterogeneity in the autoregressive process that is not covered by the regimes, and that

is considered unobservable. Then, the two spatial-regimes specifications are given by:

(8) 1 class 1( ) ;t n t r n t n t t        U U D A M U S


 and

(9) 1 class 1( ) .t n t r k t n n t t          U U D A M U S
 

11 The nine classes are: (1) central cities in regions with urban agglomerations; (2) highly-urbanized districts in
regions with urban agglomerations; (3) urbanized districts in regions with urban agglomerations; (4) rural
districts in regions with urban agglomerations; (5) central cities in regions with tendencies towards
agglomeration; (6) highly-urbanized districts in regions with tendencies towards agglomeration; (7) rural
districts in regions with tendencies towards agglomeration; (8) urbanized districts in regions with rural
features; and (9) rural districts in regions with rural features.
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In summary, we present three different approaches to model spatially heterogeneous

autoregressive processes: by individual, spatial-filtering, and spatial-regimes coefficients. In

addition, we can estimate a homogeneous coefficient as well, as in a standard dynamic panel.

The length of the coefficient vector kA in the SF autoregressive model is 1 < k ≤ n; that is,

more coefficients need to be estimated than in the homogeneous model (with )i   and,

typically, much less than in the heterogeneous model of Equation (2). Likewise, the number

of spatial-regimes autoregressive coefficients is 1 < r ≤ n. Thus, both the SF and the spatial-

regimes autoregressive models are more parsimonious than the individual model.

In theory, it is possible to modulate all other model components – deterministic mean and

seasonal effects – according to the same four schemes. Instead of considering all 64 possible

models, in this paper we analyse only specifications where the deterministic mean is

represented by FE or the spatial filter, and with homogeneous versus individual (region-

specific) autoregressive and seasonal effects.

3. Data

Germany has shown in the past two decades the emergence of interesting dynamics on its

regional labour markets and is therefore, for our purposes, a good case study. Analyses in this

paper employ data about German regional unemployment rates, at the NUTS-3 level of

geographical aggregation (kreise, denominated ‘districts’ hereforth). The data are available

for all 439 districts, on a quarterly basis, for the years 1996 to 2004.12

Summary statistics for the data at hand are presented in TABLE 1. The table results confirm

that high and low (regional) unemployment rates are not randomly distributed across

Germany. A first examination of the data suggests an asymmetric distribution, which is

skewed toward high unemployment rates (the difference between the median and the third

quartile is almost one standard deviation). When inspected spatially, the data show marked

spatial autocorrelation (Moran’s I (MI) for the districts’ average unemployment is 0.878),

12 The recently formed East German district of Eisenach (ID 16056) belonged to the Wartburgkreis district (ID

16063) until the end of 1997. Thus, unemployment rates for Eisenach before 1998 are not available, and we

set them equal to the ones of Wartburgkreis. Also, in the first quarter of 1996, labour force figures are not

available for five East German regions. In order to compute unemployment rates, we set the labour force (the

denominator of the rate) equal to the labour force reported in the subsequent four quarters (as it is determined

only once per year by micro-census data).
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which is further confirmed by descriptive statistics calculated for macro-regional subsets, and

by the map in FIGURE 1a. While the former East Germany shows persistently high

unemployment rates (averaging 19.4 per cent) with (apparently) little variation (the first

quartile is 17 per cent), the former West Germany shows low-to-moderate rates in the North

(Northrhine-Westfalia, Lower Saxony, Schleswig-Holstein, and the city-states of Bremen and

Hamburg) and in the South (Bavaria, Baden-Wurttemberg, Hesse, Rhineland-Palatinate, and

the Saarland). When differencing the data, one can note that a certain amount of spatial

autocorrelation remains (MI = 0.531), suggesting that not only the levels of unemployment,

but also the dynamics, are spatially correlated. Again, this feature is evident in FIGURE 1b.

This first finding implies that, when estimating a simple AR(1) panel model, one should

expect spatial autocorrelation, as well as group-specific serial correlation, in the residuals.

(a) (b)

FIGURE 1: Quantile maps of average unemployment rates: in levels (a) and in one-year

differences (b).

4. Empirical Application

4.1. Fixed Effects and Spatial Filter Estimation

In the preceding discussion, we presented a class of dynamic panel models, ranging from

standard FE estimation [Equation (2)] to an alternative approach based on surrogating the FE

by means of a spatial filter [Equation (5)], to GWR-type spatial filter and spatial regimes

models. This subsection presents and compares results obtained for the first (FE and SF)
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approaches mentioned for a class of models with homogeneous and/or heterogeneous

estimates of AR(1) coefficients and seasonal effects. In particular, in TABLE 2, we compare

summary results such as measures of fit (R2 and RMSE), (average) autoregressive coefficients

estimated by the two approaches, and spatial autocorrelation in regression residuals.

TABLE 2: Selected results for the homogeneous and heterogeneous AR process models13

Level Homogeneous seasonality Heterogeneous seasonal effects
FE SF FE SF

Homogeneous AR(1) process: 
AR(1) coeff. 0.766 0.945 0.901 0.957
Av. residuals MI 0.489 0.482 0.357 0.317
Min. residuals MI 0.195 0.204 0.142 0.038
Max residuals MI 0.775 0.734 0.754 0.767
R2 0.977 0.975 0.992 0.991
RMSE 0.827 0.872 0.504 0.530
Res. Dfs 14,922 15,321 13,608 13,979

Heterogeneous AR(1) process:
ii nA 

Av. AR(1) coeff. 0.833 0.823 0.906 0.914
Min. AR(1) coeff. 0.135 (3462) 0.113 (9271) 0.485 (14181) 0.594 (14188)
Max. AR(1) coeff. 1.120 (5382) 1.275 (5162) 1.035 (5711) 1.137 (9677)
No. of AR(1) ≥ 1 72/439 79/439 6/439 48/439
No. of AR(1) < 1
(ADF, 5% sign.)

156/439 284/439 97/439 264/439

Av. residuals MI 0.486 0.478 0.369 0.365
Min. residuals MI 0.169 0.094 0.143 0.128
Max residuals MI 0.787 0.804 0.782 0.805
R2 0.981 0.980 0.992 0.992
RMSE 0.753 0.777 0.493 0.500
Res. Dfs 14,484 14,865 13,170 13,564

The top left panel of TABLE 2 compares the most basic model specifications in terms of

autoregressive coefficients, in which just one (homogeneous) AR(1) coefficient is estimated,

assuming α1 = α2 = … = αN. The FE and SF approaches are then compared. We find that the

computed AR(1) coefficients differ between the two approaches. The FE estimation with

common seasonal dummies yields a homogeneous AR(1) coefficient of 0.766, and with

13 The (upward biased) autoregressive coefficient estimated with a pooled OLS and homogeneous
seasonaldummies is 0.993 (with a regionally clustered standard error of 0.0014), the asymptotically consistent
Blundell-Bond estimator with homogeneous seasonaldummies is 0.902 (with a standard error of 0.0028).
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region-specific seasonal dummies an AR(1) coefficient of 0.901. The corresponding (not

reported) bias-adjusted coefficients – obtained applying a correction according to the formula

for the Nickell bias (see Footnote 5) – would be approximately 0.815 (and 0.955 in case of

heterogeneous seasonality). The SF estimations give slightly higher coefficients of 0.945 and

0.957, respectively. In anticipation of our further results, the two (corrected) coefficient

estimates from the FE specifications with homogeneous AR terms are insofar interesting, that

they define (approximately) the range in which all other estimates for the average AR

coefficient fall, that is, the interval running from 0.81 to 0.96. The difference between the

coefficients does not seem to be high at first glance. However, the degree of persistence –

measured as the half-life of a shock given by ln 0.5 / ln i – varies from 3.25 quarters

(corresponding to an AR coefficient of 0.81) to approximately 17 quarters for an AR

coefficient of 0.96.

In terms of model fit, the SF estimate provides a fit to the data – in terms of R2 – very

similar to the one for the FE estimate (0.975 versus 0.977), while saving about 400 degrees of

freedom. The aspect of interest here is, of course, comparability in terms of R2, and not its

absolute value, which is high by construction. Further comparison is given in terms of RMSE.

As stated in Section 2.3, the variance of the SF estimation is deemed to be (slightly) inflated

with respect to the FE variance, which is also suggested by the computation of the RMSE

(this is true for all estimations presented in TABLE 2). Meanwhile, in FIGURE 2 we can see

how the SF computed (as the linear combination of the 39 eigenvectors selected)

approximates the spatial patterns shown in the FE coefficients. The spatial patterns shown in

the two maps may be expected to include both region-specific variations from the average

(homogeneous) AR(1) coefficient and seasonal effects, as well as unobserved variables (such

as, for example, other lags of the unemployment rate). Not surprisingly, the eigenvector

contributing most to the SF is E2, which shows a clear NE-SW pattern, although it should be

kept in mind that the amount of variance explained by this top eigenvector, in this dynamic

panel framework, is less than 0.7 per cent of the one explained, for example, by the seasonal

dummies. Subsequent eigenvectors are at least three times less informative than E2.

Finally, the levels of residual spatial autocorrelation appear to be similar for the FE and SF

approaches, with a tendency to slightly lower correlation for the SF approach. The time-

averaged residual per region is zero or very close to zero, and spatial autocorrelation is absent.

Consequently, quarter-specific spatial autocorrelation can be related directly to each quarter’s
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specific shocks or unobserved characteristics (beyond direct seasonal effects, which are

included in the model), and no recurring pattern exists over time.

(a) (b)

FIGURE 2: Quantile maps of the FE (a) and SF (b) computed for the homogeneous AR(1)

process.

Subsequently, the bottom left panel of TABLE 2 provides summary results for estimation of

the models presented in Equations (2) and (5), estimating heterogeneous AR(1) coefficients

according to the FE and SF approaches, respectively. In contrast with the homogeneous case,

where the estimated AR(1) coefficient differed markedly between the two models, the

estimates obtained here are rather similar on average, although the number of estimated

coefficients greater than or equal to 1 is slightly different: 72 and 79 for the FE and SF

approaches, respectively. However, tests on the Dickey-Fuller transformation of the system

suggest that unit roots can be excluded (at the 95 per cent critical value of a Student t-

distribution) for 156 districts in the FE approach and for 284 districts in the SF approach.

Once again, eigenvector E2 is the most informative one, but in this occasion also

eigenvector E1 emerges amongst the main ones. The quantity of variance explained by the top

eigenvector (E2) is now greater in relative terms, for example if compared to the one of the

seasonal dummies (4 per cent rather than the previous 0.7 per cent).

A certain level of numerical differences may be expected between the two vectors of AR(1)

coefficients (given in FIGURE 3).14 The extent of these differences depends on each specific

14 Indeed, the number of eigenvectors selected is distinct between a direct extraction of the SF (the procedure
followed in this paper) and an indirect procedure, where FE are computed first, and an SF is extracted from the
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case, and their direction remains to be fully inspected with a simulation experiment. With

regard to the present analysis, clear differences appear to be mostly in the extremes, as shown

by the similar quantiles and geographical patterns. Both maps indicate higher first-quarter

autoregressive effects in the western urbanized areas going (South to North) from Munich to

the Stuttgart and Mannheim areas, to the Ruhr and Rhine areas, to Bremen, patterns that

generally resemble the spatial distribution of population density in Germany.

(a) (b)

FIGURE 3: Quantile maps of estimated heterogeneous AR(1) coefficients: FE (a) and SF (b)

approaches [coefficients αi according to Equations (2) and (5)].

Conceivably, once we let the autoregressive coefficient vary over the cross-section of

districts, the measures of fit of the models (R2 and RMSE) improve, while 438 (that is, n – 1)

additional degrees of freedom are consumed. Again, the SF estimation allows us to save about

420 degrees of freedom. Finally, residual spatial autocorrelation is the same – on average – in

both the homogeneous and heterogeneous AR(1) coefficient estimates, with the SF exhibiting

lower minima in this regard.

Finally, the right-hand panels of TABLE 2 provide additional empirical results, as the above

models are extended to include individual (heterogeneous) seasonal effects. This extension

implies computing (439 * 3 =) 1,317 regression coefficients rather than the three previously

FE coefficients vector. In the former case, fewer eigenvectors are selected, most likely because of the error
component εt [see Equation (2)] not being considered in the indirect procedure. In contrast, a number of
eigenvectors are selected only in the direct procedure, suggesting a correlation between these eigenvectors and
the covariates (for example, 1tU  is not assumed to be orthogonal to the eigenvectors). Consequently, possible
differences exist between the AR(1) vectors of coefficients for Equations (2) and (5).
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computed seasonal coefficients (for spring, summer and fall, while winter is used as the

reference category). In the case in which both the autoregressive and seasonal effects are

computed for each district, which we use as our example in the following discussion, (439 * 4

+ 1 =) 1,757 coefficients are computed, which increase to (439 * 5 =) 2,195 in the FE case. As

a result, an improved fit (higher R2 and lower RMSE) as well as a diminished spatial

autocorrelation in the residuals may be expected, which is confirmed by the summary

statistics reported in TABLE 2. In addition, higher average AR(1) coefficients are found,

though with comparable results in terms of unit roots. Noteworthy are the changes in the

spatial distribution of the AR(1) coefficients and of the FE estimates, as shown in FIGURE 4.

FIGURE 4a, referring to the AR(1) coefficients, portrays patterns appearing in FIGURE 3 that

are more sparse, as the result of individual seasonal effects having been filtered out.

(a) (b)

FIGURE 4: Quantile maps of the AR(1) (a) and FE (b) coefficients computed for the

heterogeneous AR(1) and seasonal process (FE estimation).

The analyses presented above suggest that SF may be used to approximate the standard FE

estimation for the study of unemployment persistence. Each of the two approaches appears to

have specific advantages, allowing a researcher to choose freely between them on the basis of

his/her needs. However, further approaches to decomposing region-specific autoregressive

effects can be employed, as suggested in Sections 2.3 and 2.4. Results obtained for these

additional classes of models are presented next.



18

4.2. Spatial Filter/Fixed Effects in the Autoregressive Component

The maps of the AR(1) coefficients appearing in FIGURE 3 and the related MI scores

highlight that autoregressive coefficients are indeed strongly spatially correlated. As proposed

in Section 2.3, the spatial patterns obtained according to Equation (5), by computing n

autoregressive coefficients, may be approximated by coefficient expansion in a spatial-filter

GWR-fashion. Equations (6) and (7) give the FE and SF specifications, respectively, implying

that, for the latter, two spatial filters are computed (or, more generally, one for each SFGWR-

type regressor, plus the SF substituting the FE). In our specific case, substituting An by its SF

representation implies saving 392 degrees of freedom (47 versus 439 AR-related regressors),

while extending the SFGWR-type approach to seasonal effects allows us to save 1,602

degrees of freedom (154 versus 1,756 = 439 * 4), although at the (opportunity) cost of

running extensive stepwise regression in order to select the relevant eigenvectors. 15  The

relevance of such a huge saving in terms of degrees of freedom becomes evident when

considering panels with large N and small T. In addition, the computational intensity of the

spatial filter construction only applies to the first estimation of the model, while subsequent

estimations – for example, for forecasting purposes – are faster than in the respective cases of

Equations (2) and (5), because the relevant eigenvectors already have been selected.

TABLE 3 reports summary statistics for the aforementioned model specifications. The

mean, minimum and maximum AR(1) coefficients reported for the SFGWR model (left panel)

appear to provide a picture similar to the one found in TABLE 2 for the case of the

heterogeneous AR(1) process, with the exception of a higher average coefficient in the SF

case. The inferential advantage with regard to unit root testing becomes evident: while above

the SF model with heterogeneous AR(1) process allows to reject – at a 5 per cent  significance

level – 264 to 284 unit roots and the FE model with heterogeneous seasonality and AR(1)

process has a unit-root rejection rate of less than one quarter of the regions, the SFGWR

model leads to a further increase of the rejection rate, reaching 337 unit root rejections for the

SFGWR model with heterogeneous seasonality and fixed effects (third column of TABLE

3).16 Additionally, we can observe that the GWR models using FEs have roughly the same

15 Given our starting set of 98 candidate eigenvectors, a backward stepwise regression identifying a SFGWR
representation of both the AR(1) coefficients and the seasonal effects evaluates, in the first step, (98 * 4 =) 392
models in the FE case, and (98 * 5 =) 490 models in the SF case.

16 For the GWR-type models, the vector of AR(1) coefficients is obtained as the linear combination of the related
eigenvectors, using as weights the regression coefficients computed for the interactions terms between the
lagged unemployment rates and the eigenvectors themselves ( ).i i k   A  Seasonal coefficients for each
season, when included, are computed in a similar fashion. Because of this construction, unit root tests are
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rejection frequency as the models using SF for the levels (274 vs 270, 337 vs 317) although

the estimated average adjustment coefficients are smaller in value – that is, the models using

SF for the levels seem to be more efficient.

TABLE 3: Selected results for the spatial-filter-GWR (SFGWR) AR process models

Level Heterogeneous AR(1) process Heterogeneous AR(1) process
& seasonal effects

FE SF FE SF

Spatial filter AR(1) process: i i k   A

Av. AR(1) coeff. 0.853 0.935 0.882 0.961
Min. AR(1) coeff. 0.162 (9276) 0.276 (9271) 0.530 (14188) 0.697 (9271)
Max. AR(1) coeff. 1.238 (7338) 1.211 (5374) 1.163 (9274) 1.140 (5374)
No. of AR(1) > 1 94/439 136/439 44/439 94/439
No. of AR(1) < 1
(ADF, 5% sign.)

274/439 270/439 337/439 317/439

Av. residuals MI 0.481 0.440 0.333   0.176
Min. residuals MI 0.139 0.129 0.012 –0.016
Max residuals MI 0.817 0.730 0.803   0.704
R2 0.980 0.978 0.985 0.986
RMSE 0.776 0.824 0.666 0.650
Res. Dfs 14,876 15,227 14,772 15,064
Selected eigenvecs
for SFGWR-AR(1)

46 64 27 46

Once again, the levels of spatial autocorrelation in the residuals vary greatly, depending on

quarter-specific noise, and are comparable but slightly lower than the earlier ones. RMSE

increases moderately, as expected, but is being balanced out by the aforementioned huge

savings in terms of degrees of freedom. These results are confirmed by extending the SFGWR

specification to seasonal effects (right panel).

In terms of the spatial autocorrelation observed in the AR(1) coefficients resulting from

Equations (6) and (7), FIGURE 5 confirms the similarities with the spatial distribution of

population density. The spatial distribution of the estimated FE and SF (plotted in FIGURE 6)

computed as t-tests, where the variance of each region’s autoregressive coefficient αi is computed as
2 2var( ) ,i ki kk

     and 2
k  is the kth diagonal element of the variance-covariance (sub)matrix of the K

eigenvectors selected.
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again is consistent pairwise, showing higher unexplained variation in the levels for East

German districts. Not surprisingly, the light-shaded areas of FIGURE 5 appear to match the

dark-shaded areas of FIGURE 6, as greater relative stability in the East German

unemployment rates due to time-constant unobserved regional characteristics (or just lower

dependence from their one-quarter lag) is reflected in the FE or in the SF. Similar

observations can be made by comparing FIGURE 3 and 6, or the two maps in FIGURE 4.

(a) (b)

FIGURE 5: Quantile maps of estimated spatial-filter-GWR (SFGWR) AR(1) coefficients: FE

(a) and SF (b) approaches.

(a) (b)

FIGURE 6: Quantile maps of the FE (a) and SF (b) computed for the spatial filter AR(1)

process.
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As we already noted, the spatial-filter GWR surrogate for the region-specific autoregressive

coefficients allows identification of the spatial structure underlying the heterogeneity of the

dynamic labour market process. Amongst the selected eigenvectors in the SFGWR

specification with a spatial filter for the level component and homogeneous seasonal figures

(FIGURE 5b and FIGURE 6b), there are four (of the five) eigenvectors associated with global

patterns – that is, eigenvectors which, when the values are plotted into a map, show one or

two large ‘peaks’ and one or two big ‘valleys’ spreading out over a large areas. 40 selected

eigenvectors can be associated with regional, and 20 with local patterns. 17 Since all

eigenvectors have the same scale (their values have identical standard deviation), the partial

contribution of each eigenvector to the overall autoregressive process is sized proportionately

to the absolute value of the corresponding coefficient. However, amongst the 15 eigenvectors

with the highest coefficient in absolute value, only two are global. In the other specifications,

we find a similar selection of eigenvectors (including the same four global). However, in the

corresponding SFGWR estimation using fixed effects (i.e., when the levels are forced to show

maximum heterogeneity), all four global eigenvectors are amongst the 15 most influential

eigenvectors.

More interestingly, there is a negative relation between the coefficients associated with the

(common) eigenvectors selected for modelling serial dependence and for the levels, as

suggested by FIGURE 7. Additionally, eigenvectors which are selected only in one case (for

which we include a value of zero in case of non-selection) have coefficient values closer to

zero even when significant, showing that the common eigenvectors are the ones with the

greatest importance in both filters. On the other hand, the negative Pearson correlation of –

0.89 (–0.93 for the common subset) between the two sets of coefficients suggests that the SF

in the levels behaves in the opposite way than the SF for the AR(1) coefficients.18 This

indicates a trade-off between the level of persistence (i.e., serial dependence) and the

influence of the (deterministic) level showing the spatial pattern modelled by the filter:

unemployment is then represented as a weighted average of (more or less) persistent random

elements (with a set of weight a) and deterministic elements [with weights (1 – a)]. The more

unemployment in a certain number of contingent regions (described by the mapping pattern of

17 The classification of global, regional and local eigenvectors is according to the table for 98 candidate
eigenvectors extracted from a rook C-coding matrix given by Patuelli et al. (Forthcoming). Eigenvectors 1 to 5
are considered global, 6 to 66 regional and 67 to 98 local.

18 A similar finding is obtained when both the AR(1) and the seasonal coefficients are computed by means of the
GWR-SF approximation. A Pearson correlation of –0.83 is obtained the two sets, and –0.91 is found for the
common sets.
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the eigenvectors) is driven by persistent shocks, the less important are the deterministic

components in these regions – and vice versa, the lower the persistence, the faster regions

adjust towards their initial (or natural) levels which become more important. This finding

calls for further analytical investigation, which goes beyond this paper’s objective.

FIGURE 7: Correlation between the coefficients of the eigenvectors selected for the SFGWR

AR interpolation and for the levels (with homogeneous seasonal effects).

Finally, the residual variance and the number of coefficients of the models presented above

can be combined to compute various information criteria (see TABLE 5, in the Annex). The

Akaike information criterion (AIC) suggests that the SFGWR specification for the

autoregressive process uses the information best, when compared to other model

specifications, and that FE in the levels are superior to the SF. However, the AIC is often
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considered not adequate (or weak) for finite samples, and other criteria may be more reliable.

The Schwartz Bayesian information criterion (BIC), which is often found to be over-selective,

indicates superiority of the SF in the levels compared to the FE, and superiority of the SF AR

process as well, because of the greater importance given to the degrees of freedom saved. The

advantage of spatial filters in modelling both levels and autoregressive processes is confirmed

by the Hannan-Quinn information criterion (HQ).

4.3 Adjustment to Shocks According to the Spatial Regimes

In our final analysis, we present, in TABLE 4, summary statistics for the spatial regimes

specification introduced in Equations (8) and (9). In these specifications, heterogeneity of the

autoregressive coefficients is introduced by distinguishing between districts with different

levels of agglomeration and urbanization. Consequently, instead of n AR(1) coefficients, only

nine are computed, corresponding to the classes introduced in Section 2.4. This approach

makes identification of (average) autoregressive (and seasonal) effects possible for classes

such as city-districts in agglomerated areas, or rural districts belonging to rural areas. The

results obtained by applying the spatial regimes decomposition to the AR(1) process alone are

shown in the left panel of TABLE 4. We obtain nine AR(1) coefficients ranging from 0.613 to

0.984 in the FE case, and from 0.927 to 0.949 in the SF case. These results are consistent with

our previous findings (see TABLE 2). It turns out that the average AR coefficients are higher

for the SF approach, but when employing ADF tests only the FE case presents a unit root.

This single unit root (which is not confirmed when decomposing seasonal effects as well) is

found for districts of type 1 (that is, ‘central cities in regions with urban agglomerations’).

Our findings confirm the tendency of the AR(1) coefficients to resemble the spatial

distribution of population density, and of the central business districts (CBDs) of dense

regions to show the highest coefficients. FIGURE 8 maps the values found for the spatial

regimes AR(1) coefficients (SF estimation with homogeneous seasonal effects), and clearly

shows that this approach provides a rough approximation of the coefficient estimates obtained

above, while showing – within a general picture of high persistence – some core-periphery

patterns between the ‘central cities’ (type 1 and 5 districts, with higher persistence) and their

surroundings; equality of all nine AR coefficients is rejected both in the FE estimations and in

the SF estimations. However, the regimes approach associates also a high degree of

persistence to agglomerated areas in Eastern Germany (e.g., Dresden, Berlin or Chemnitz)

which has not been found when using individual coefficients (see FIGURE 3), that is, this
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rough approximation may indeed be missing some pattern. There are pros and cons to using

spatial regimes, and this preliminary finding may deserve further investigation in the future

research.

TABLE 4: Selected results for the spatial-regimes AR(1) process models

Level Heterogeneous AR(1) process Heterogeneous AR(1) process &
seasonal effects

FE SF FE SF

Spatial-regimes AR(1) process: i i r  D A


Av. AR(1) coeff. 0.808 0.937 0.812 0.946
Min. AR(1) coeff. 0.613 (type 9) 0.927 (type 9) 0.670 (type 3) 0.916 (type 2)
Max. AR(1) coeff. 0.984 (type 1) 0.949 (type 5) 0.934 (type 1) 0.960 (type 9)
No. of AR(1) ≥ 1 0/9 0/9 0/9 0/9
No. of AR(1) < 1
(ADF, 5% sign.)

8/9 9/9 9/9 9/9

Av. residuals MI 0.485 0.476 0.425 0.417
Min. residuals MI 0.195 0.198 0.167 0.178
Max residuals MI 0.769 0.746 0.747 0.729
R2 0.978 0.975 0.981 0.979
RMSE 0.810 0.869 0.754 0.798
Res. Dfs 14,914 15,306 14,890 15,291

FIGURE 8: Map of estimated spatial-regimes AR(1) coefficients: SF approach [coefficients

αr according to Equation (9)].
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4.4 Concluding Remarks: Persistence of Unemployment

The empirical findings presented in this section give a clear picture of unemployment

persistence in Germany. We find the adjustment speed of regional unemployment to shocks to

be extremely heterogeneous, which makes estimation of a single AR-coefficient look

unreasonable and supports our call for regionally disaggregated estimations. Modelling the

heterogeneity by SF-GWR seems to capture most of this heterogeneity, but spatial regimes do

surprisingly well too. The averages over the AR coefficients – and the majority of them –

throughout the various specifications lie between 0.76 and 0.96, that is, close to 1. Thus,

shocks to unemployment may be expected to be persistent, or at least to have a long half-life

in most regions. For example, an AR coefficient of 0.8 is equivalent to a half-life of more than

three quarters, or the effect of the shock vanishing after eight years (10 times the half-life); an

AR coefficient of 0.9 corresponds to a half-life of 6.6 quarters, and a coefficient of 0.95 to a

half-life of 13.5 quarters. When using Dickey-Fuller equivalent transformations of the models,

we can reject the hypothesis that the difference of the average autoregressive coefficient

minus one – between –0.24 and –0.04 – is greater than or equal to zero. At least on average,

unemployment is stationary – a necessary condition for the existence of (conditional)

convergence – although non-stationarity can hardly be rejected for the time frame analysed,

for a large fraction of regions. Thus, unemployment adjusts very slowly – if ever – toward a

kind of natural rate; it behaves (in particular in the agglomerated districts along the river

Rhine) more like a random walk. Saying that there is clear evidence of (cross-sectional)

convergence among the rates would be an excessive statement.

Our findings are particularly significant with regard to exogenous shocks: positive, in the

case of active labour market policy interventions; negative, as in the case of the recent global

economic crisis. Strong persistence of the regional unemployment rates suggests that a

negative shock, due for example to a sudden increase in labour supply, to not-anticipated

deflation, or to economic catastrophes, would take a rather long time to be absorbed. We can

think, for example, of new labour regulations for foreign workers (the enlargement of the

European Union from EU-15 to EU-25), of the collapse of the states/markets belonging to the

socialist Council for Mutual Economic Aid (Comecon) in the late 1980s/early 1990s

(affecting the former German Democratic Republic), or of political events as in Card (1990).

In this regard, there is potential in expanding the above analyses to relative unemployment,

which appears to have different persistence dynamics than the absolute levels [see, e.g.,
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Jimeno and Bentolila (1998), where the determinants of unemployment persistence are also

discussed].

5. Conclusions

Studies about the convergence or persistence of unemployment typically employ univariate

autoregressive equations and test them for stationarity. This procedure is straightforward and

computationally simple, but can hardly account for cross-sectional heterogeneity and

dependence – thus, in the best case, it is statistically inefficient (imprecise) or, in the worst

case, mispecified. Derived conclusions may then be misleading.

In this paper, we have focused on two questions. First, starting with a system of AR(1)

equations, we aimed to show the substitutability of fixed effects (FE) and spatial filters and,

analogously for autoregressive processes, the one between individual autoregressive

coefficients and SF GWR-type estimation. The SF surrogates [which allow to decompose the

FE into a spatially structured and a spatially unstructured (random) part] are more

parsimonious with regard to the number of parameters, and use, instead of region-specific

coefficients, a set of coefficients defined and computed over all regions.

Second, we applied SF methods when analysing the dynamics of quarterly regional

unemployment rates for Germany from 1996 to 2004. Because the eigenvectors employed in

an SF represent map patterns, one advantage of this approach is that the heterogeneous

autoregressive adjustment coefficients of the GWR-type models have a geographical

interpretation. For comparison, we also provided estimates of a homogeneous autoregressive

process, and of one approach differentiated according to nine urbanization/agglomeration

regimes.

Indeed, when comparing pairwise the individual and SF specifications for the process

component (AR or level), keeping everything else equal, we found that the SF approach

provides a gain in residual degrees of freedom, without losing much estimation accuracy,

measured, for example, in terms of goodness-of-fit (R²) or root mean squared error (RMSE).

We found, for the SF AR specification, some gain in precision when compared with the

homogeneous and spatial regime specifications. Summary diagnostics for all models, based

on information criteria, provided a confirmation of the potential of the proposed SF-based

models. The residuals from individually-specified models and of their corresponding SF

equivalents are highly correlated, and the error distributions are quite similar pairwise. The

estimates for the average autoregressive coefficient vary, in particular, between the FE
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estimation with homogeneous seasonal effects (0.76–0.85) and the remaining

level/seasonality combinations (0.90–0.96). Consequently, a potential bias in the

autoregressive coefficient does not seem to depend on the way in which the autoregressive

process is specified. However, obtaining exact evidence about the consistency of the AR

estimates is only possible by means of Monte Carlo simulation. This aspect will be the subject

of future research, since here we limit ourselves to showcasing the practical relevance of the

proposed approaches. A further aspect that may be expected to be investigated in future

research is the extension of the proposed models to the estimation of nonlinear regression

models (e.g., in the case of unemployment rates, the logistic regression), for which panel

models are generally less popular in the econometric literature and competition with other

applied statistics fields is stronger (e.g., generalized linear mixed models).
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Annex

TABLE 5: Information criteria results

AR process Levels Seasonality Av._AR R² RMSE Res. Dfs. K AIC BIC HQ

Homogenous FE Homogenous 0.766 0.996 0.827 14922   443 –0.321 –0.095 –0.246

Homogenous SF Homogenous 0.945 0.975 0.872 15321     44 –0.268 –0.246 –0.261

Homogenous FE Heterogeneous 0.901 0.992 0.504 13608 1757 –1.112 –0.141 –0.789

Homogenous SF Heterogeneous 0.957 0.991 0.530 13979 1386 –1.071 –0.323 –0.822

Heterogeneous FE Homogenous 0.833 0.981 0.753 14484   881 –0.446   0.015 –0.292

Heterogeneous SF Homogenous 0.823 0.980 0.777 14865   500 –0.437 –0.181 –0.352

Heterogeneous FE Heterogeneous 0.906 0.992 0.493 13170 2195 –1.081   0.166 –0.665

Heterogeneous SF Heterogeneous 0.914 0.992 0.500 13564 1801 –1.121 –0.123 –0.788

SFGWR FE Homogenous 0.853 0.980 0.849 14876   489 –0.262 –0.012 –0.179

SFGWR SF Homogenous 0.935 0.978 0.824 15227   138 –0.369 –0.300 –0.346

SFGWR FE Heterogeneous 0.882 0.985 0.666 14772   593 –0.733 –0.428 –0.631

SFGWR SF Heterogeneous 0.961 0.986 0.650 15064   301 –0.822 –0.669 –0.771

Spatial regimes FE Homogenous 0.808 0.978 0.810 14914   451 –0.361 –0.131 –0.285

Spatial regimes SF Homogenous 0.937 0.975 0.869 15306     59 –0.273 –0.244 –0.263

Spatial regimes FE Heterogeneous 0.812 0.714 0.754 14890   475 –0.501 –0.258 –0.420

Spatial regimes SF Heterogeneous 0.946 0.979 0.798 15291     74 –0.442 –0.405 –0.429


