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ABSTRACT

This paper considers the instrumental variable regression model when
there is uncertainty about the set of instruments, exogeneity restrictions,
the validity of identifying restrictions and the set of exogenous regressors.
This uncertainty can result in a huge number of models. To avoid statistical
problems associated with standard model selection procedures, we develop a
reversible jump Markov chain Monte Carlo algorithm that allows us to do
Bayesian model averaging. The algorithm is very �exible and can be easily
adapted to analyze any of the di¤erent priors that have been proposed in
the Bayesian instrumental variables literature. We show how to calculate
the probability of any relevant restriction (e.g. the posterior probability that
over-identifying restrictions hold) and discuss diagnostic checking using the
posterior distribution of discrepancy vectors. We illustrate our methods in a
returns-to-schooling application.

Keywords: Bayesian, endogeneity, simultaneous equations, reversible
jump Markov chain Monte Carlo.
JEL Classi�cation: C11, C30
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1 Introduction

For the regression model where all potential regressors are exogenous, a large
literature1 has arisen to address the problems caused by a huge model space.
That is, the number of models under consideration is typically 2K where K is
the number of potential regressors. With such a huge model space, there are
many problems with conventional model selection procedures (e.g. sequential
hypothesis testing procedures run into pre-test problems). Bayesian model
averaging (BMA) can be used to avoid some of these problems. However,
the size of the model space means that carrying out BMA by estimating
every model is typically computationally infeasible. Accordingly, an algo-
rithm which simulates from the model space (e.g. the Markov chain Monte
Carlo model composition algorithm of Madigan and York, 1995) must be
used. In the case of the regression model with exogenous regressors, such
methods are well-developed, well-understood and are increasingly making
their way into empirical work. However, to our knowledge, there are no
comparable papers for the empirically important case where regressors are
potentially endogenous and, thus, instrumental variable (IV) methods are
required.2 The purpose of the present paper is to �ll this gap.
Inference about structural parameters in the IV regression model requires

the formulation of assumptions whose validity is often uncertain. A useful
representation of the model is the incomplete simultaneous equations model
(see, for example, Hausman, 1983). Within this representation, the most cru-
cial assumptions relate to the set of instruments and the rank condition for
identi�cation (Greene, 2003, p. 392). In addition to these, one has to decide
how many regressors to include, and which of these are potentially endoge-
nous. This can lead to a huge model space and, thus, similar issues arise as
for the regression model with exogenous regressors. In practice, researchers
typically try di¤erent speci�cations until a set of restrictions (i.e. a particular
choice of instruments, exogenous and endogenous regressors) passes a battery
of misspeci�cation tests (e.g. Anderson and Rubin, 1949, 1950, Hausman,

1See, among many others, Fernandez, Ley and Steel, 2001 and the references cited
therein.

2Two related papers are Cohen-Cole, Durlauf, Fagan, and Nagin (2009) and Eicher,
Lenkoski and Raftery (2009) but the model space in these papers is small and, hence,
simulation methods from the model space are not required. Furthermore, the approach
of these papers (averaging of two-staged least squares estimates using BIC-based weights)
does not have a formal Bayesian justi�cation.
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1983, Sargan, 1958). Given the large number of possible models, the re-
peated application of diagnostic tests will result in similar distorted size and
power properties as arise in the regression model with exogenous regressors.
Since estimates of structural estimates that rely on incorrect identi�cation
restrictions can result in large biases, the consequences of these problems
can be substantive. BMA can be used to mitigate such problems. But the
size of the model space often precludes estimation of all models. This leads
to a need for computational methods which simulate from the model space.
A contribution of the present paper is to design a reversible jump Markov
chain Monte Carlo algorithm (RJMCMC, see Green, 1995 or Waagepetersen
and Sorensen, 2001) that explores the joint posterior distribution of para-
meters and models and thus allows us to do BMA. This allows us to carry
out inference on the structural parameters that, conditional on identi�cation
holding, accounts for model uncertainty. Furthermore, our algorithm allows
for immediate calculation of the posterior probability associated with any
restriction, model or set of models. Thus, we can easily check the validity
of identifying restrictions (or exogeneity restrictions, etc.) by calculating the
posterior probability of these restrictions. Alternatively, we can use the BMA
posterior distribution of discrepancy vectors and functions (Zellner, Bauwens
and van Dijk, 1988) in order to shed light on the validity of instruments.
In our applications, we �nd that standard versions of RJMCMC algo-

rithms (e.g. adapting the RJMCMC methods for seemingly related regres-
sion, SUR, models developed by Holmes, Denison and Mallick, 2002, to the
IV case) can perform poorly, remaining stuck for long periods in models with
low posterior probability. To improve the performance of our RJMCMC al-
gorithms, we borrow an idea from the simulated tempering literature and
augment our model space with so-called cold models. The cold models are
similar to the models of interest (called hot models) but are simpli�ed in
such a way that the RJMCMC algorithm makes very rapid transitions be-
tween cold models. As suggested by the simulated tempering literature, we
�nd that this strategy helps the algorithm escape from local modes in the
posterior.
The RJMCMC algorithm we propose is very �exible and can be easily

adapted to handle any of the popular approaches to Bayesian inference in IV
models. To illustrate this, we describe in detail how the algorithm works in
the context of three popular Bayesian approaches to instrumental variables
and reduced rank regression. These are the classic approach of Drèze (1976)
as well as the modern approaches of Kleibergen and van Dijk (1998) and
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Strachan and Inder (2004)3. We also show how, if desired, the RJMCMC
algorithm can be easily coded to produce results for all three (or more) priors
by running the algorithm just once.
Section 2 describes the model space we consider. Section 3 describes

the algorithm with complete details being included in a Technical Appendix.
Section 4 explains how to obtain the BMA posterior distribution of discrep-
ancy measures for model diagnostics proposed by Zellner, Bauwens and van
Dijk (1988). Section 5 applies our methods to a returns-to-schooling example
based on Card (1995) and Section 6 concludes.

2 Modelling Choices in the Incomplete Si-
multaneous Equations Model

We will work with the incomplete simultaneous equations model, which takes
the form:

y1i = 
0y2i + �
0xi + u1i (1)

y2i = �2xxi +�2zzi + v2i

where y1i : 1� 1, y2i : m� 1, xi : k1j � 1, zi : k2j � 1, i = 1; :::; N . The errors
are normal with zero means and are uncorrelated over i. We assume

E

�
xi

�
u1i
v2i

�0�
= 0 and E

�
zi

�
u1i
v2i

�0�
= 0:

The reduced form version of this model can be written as:

yi = �xxi +�zzi + vi (2)

3We use a proper prior version of the improper prior used by Drèze (1976), as in
the subsequent papers of Drèze and Richard (1983) and Zellner, Bauwens and van Dijk
(1988). With respect to the prior by Strachan and Inder (2004), we will use a parameter-
augmented version of it similar to that used by Koop, Leon-Gonzalez and Strachan (2010).
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where yi = (y1i; y02i)
0, vi = (v1i; v02i)

0 and:

�x =

�
�1x
�2x

�
=

�

0�2x + �

0

�2x

�
; �z =

�
�1z
�2z

�
=

�

0

Im

�
�2z


 = E(viv
0
i) � = E

��
u1i
v2i

��
u1i v02i

��
=

�
�11 �12
�21 �22

�

 =

�
!11 !12
!21 
22

�
=

�
1 
0

0 Im

�
�

�
1 0

 Im

�
�x : (m+ 1)� k1j �z : (m+ 1)� k2j

The subindex j stands for the jth model, and j varies from 1 to Nmod, where
Nmod is the total number of models. To avoid notational clutter, we will
not attach j subindices to parameter matrices although, of course, these will
vary over models.
When using this model, there are many sources of uncertainty over iden-

ti�cation that arise. Assuming �12 6= 0; we can solve for the parameters
(�0; 
0) from the reduced form matrix

e� = [�x �z]

through the relations

�1x � 
0�2x = �0 and (3)

�1z � 
0�2z = 0: (4)

If we are able to solve (4) for 
; we can subsequently solve for � using (3).
Solving for 
 depends upon the rank of the matrix �z: If k2j = m and
rank (�z) = m then there is a unique solution 
0 = �1z��12z and the equation
is just identi�ed. If k2j > m and rank (�z) = m then there are many
solutions such as 
0 = �1z��02z (�

�
2z�

�0
2z)

�1 where ��2z is constructed from any
set of k� � m linearly independent columns of �2z: In this case, the equation
is over-identi�ed. If k2j < m then rank (�z) < m, so there are no solutions
and the equation is under-identi�ed.
Uncertainty over identi�cation can also result from uncertainty over what

variables in y2i are endogenous and what variables in zi are not valid in-
struments. If we relax the earlier assumption on �12 to allow for �12 = 0;
which implies y2i is exogenous, then we have additional solutions for 
 from

0 = !12�

�1
22 and the condition �12 = 0 needs to be taken into account when
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determining whether (�0; 
0) is just or over-identi�ed. A further complication
arises if elements of 
 or �12 are zero as these restrictions imply elements of
y2i are exogenous. This e¤ectively changes the value of m, increasing the
number of identifying restrictions in (4) and, hence, the conditions for un-
der, just and over identi�cation. Note also that, if k2i > m and rows of the
k2i � m matrix �2z are zero, or, more generally, if rank (�2z) = mi < m,
then not all elements of zi may be regarded as valid instruments. In this case,
we can then represent �2z as the product of two lower dimensional matrices,
�2z = �2z% where �2z is m�mi and % is mi � k2i both full rank. The valid
instruments are then %zi:
Furthermore, if elements of � are zero, then this gives us more equa-

tions of the type (4) and few equations of the type (3), again a¤ecting the
identi�cation status of (�0; 
0).
In this paper, we consider a model space which includes all the over-

identi�ed and just-identi�ed models (see below for a discussion of non-identi�ed
models). These are the models in which k2j � m and �2z has full rank. Mod-
els in this category di¤er according to the following aspects:

� Set of instruments: The variables in zi are a subset of a larger group of
potential instruments denoted by Z�. There is uncertainty as to which
subset of Z� should enter in the model and hence uncertainty about
the column dimension of the matrix �2z.

� Variables in xi: xi is a subset of Z� [ X�, where X� is the set of all
potential regressors that are not allowed to be instruments. Uncertainty
about what variables enter xi implies uncertainty over the elements of
�:

� Restrictions on the coe¢ cients of endogenous regressors: some coe¢ -
cients in 
 might be restricted to be zero.

� Exogeneity: some of the covariances between u1i and v2i might be zero;
that is, there is uncertainty about the elements of �12.

Note that researchers typically have some exogenous variables that they
are certain cannot be instruments (and thus, we introduce X� as above).
However, they are typically interested in checking the validity of all exclusion
restrictions (i.e. restrictions that instruments do not enter the structural
equation) and, for this reason, our set of potential exogenous regressors in
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our equation of interest will include all the potential instruments (i.e. we
have xi � Z� [X�).
Note that just-identi�ed models are observationally equivalent to (non-

identi�ed) full rank models (i.e. models where �z has full rank) in which all
exclusion restrictions fail. In this sense we are also including non-identi�ed
full rank models in our analysis. A problem arises in that di¤erent just-
identi�ed models will all yield the same full rank model and, thus, are obser-
vationally equivalent. That is, full rank models take the form of unrestricted
SUR models. But di¤erent just-identi�ed models will always have the same
unrestricted SUR reduced form (and, thus, yield the same marginal likeli-
hood and be observationally equivalent). Over-identi�ed models will impose
restrictions on the coe¢ cients in the reduced form SUR and break this obser-
vational equivalence problem. But the observational equivalence of di¤erent
just-identi�ed models raises the question of how they should be included in
a BMA exercise. As an example, consider a reduced form unrestricted SUR
model with two equations and two explanatory variables, z1 and z2. This
reduced form is consistent with a just-identi�ed model where z1 is the sin-
gle valid instrument for the �rst equation. But it is also consistent with a
just-identi�ed model where z2 is the single valid instrument. Should we treat
these as two di¤erent models weighted equally when doing model averag-
ing? This is a possible strategy that could be done. Or one might prefer to
simply treat the two models as one model. Furthermore, as the identifying
assumption cannot be tested in the just-identi�ed case, one might decide not
to use just-identi�ed models when constructing BMA estimates of structural
parameters. But of course just-identi�ed models could be included if desired,
and this is what we do in our empirical analysis.
If some elements in 
 (and/or �) are restricted to be zero then this

increases the degree of over-identi�cation such that some models with k2j �
m may, by these restrictions, become over-identi�ed. However, all of our
over-identi�ed models have k2j > m. This condition is necessary because a
model with some zero restrictions on 
 and with fewer than m instruments
(even though its parameters are identi�ed) is observationally equivalent to a
model in which all elements of 
 are di¤erent from zero but �2z has reduced
rank. Thus, we consider over-identi�ed models to be those with k2j > m,
regardless of the restrictions on 
 or �.
In a subsequent section, we present empirical work based on the classic

returns-to-schooling paper of Card (1995) and associated data set. Details
are provided in the Data Appendix. However, to make concrete our modelling
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framework it is convenient to begin introducing the empirical example here.
This cross-sectional data set has 13 potential instruments (this is the set Z�),
4 endogenous variables (hence m = 3), and 27 exogenous regressors (X�).
The structural equation of interest has the log of the wage as the dependent
variable (y1i). The key structural parameter of interest is the return to
schooling which is an element of 
 since years of education is treated as
endogenous (i.e. it is an element of y2i).
Consider �rst over-identi�ed models. Our model space involves4 C13j for

j = 3; ::; 13 combinations for each number of instruments. There are 40
potential explanatory variables in Z�[X�, but if a model includes an element
of Z� as an instrument then this element cannot also be in X�. Hence, we
obtain

NA =
13X
j=3

240�jC13j

over-identi�ed models if we ignore exogeneity restrictions and restrictions
on 
. But there are 2m of each of these resulting in 64NA over-identi�ed
models. Adding all these models together yields more than 1016 models.
This calculation is presented to clarify our class of models and reinforce the
point that in common empirical problems it is easy to have a model space
which is huge.

3 RJMCMC Algorithms in the Incomplete
Simultaneous Equations Model

If the number of models is small (e.g. if the researcher is clear on which vari-
ables are potential instruments and their number is small), then conventional
methods of Bayesian analysis can be used. That is, the researcher can sim-
ply carry out a posterior analysis of every single model. However, in many
cases (such as the one used in our empirical work), the number of potential
instruments or other modelling choices implies that the model space is huge.
In this case, the conventional strategy of carrying out posterior analysis will
be computationally infeasible. Such considerations motivate why we wish to

4Cbc denotes �b choose c�: the number of sets of c elements chosen without replacement
from a set of b elements.
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develop an RJMCMC algorithm to sample from the joint posterior de�ned
over the parameter and the model spaces. In this section, we will o¤er an in-
formal and intuitive explanation of our RJMCMC algorithms with complete
details being given in the Technical Appendix.
In this informal section, we will adopt notation where the data is denoted

by Y , we have Mj for j = 1; ::; Nmod models and each model depends on
parameters �j which determine the conditional mean of the incomplete si-
multaneous equations model (i.e. �j = (�

0; 
0; vec(�2x)
0; vec(�2z)

0)0) and �j
is the error covariance matrix. As above, we will suppress the j subscripts and
refer to our algorithm as taking draws from the posterior of (�;�;M). We
will denote the rth draw from this posterior as (�(r);�(r);M (r)) for r = 1; ::; R.
Given draws from this posterior we can do BMA for any posterior feature
of interest (e.g. conditional on identi�cation holding, the structural form
parameters are a function of � and we can derive their BMA posterior) or
calculate the posterior probability of any subset of the models (e.g. we can
calculate the posterior probability associated with over-identi�ed models).

3.1 An RJMCMC Algorithm for the SUR Model

To explain our algorithm, we begin by describing the algorithm of Holmes,
Denison and Mallick (2002), hereafter HDM, for doing BMA in the SUR
model. If we restricted our model space to over-identi�ed models and adopt
the prior of Drèze (1976), we can use this algorithm. However, for reasons
explained below, in general this will not result in a good algorithm for IV
models. Nevertheless, it is the base on which we build, so we explain this
approach here.
HDM motivate their algorithm as an MCMC algorithm providing a sam-

ple from p (�;�;M jY ) by sequentially drawing from:

1. p (M jY;�)

2. p (�jY;�;M)

3. p (�jY;�;M)

HDM assume that, in any model, the prior p (�;�) = p (�j�) p (�) is
such that p (�j�) is normal and p (�) is inverted-Wishart. Under these as-
sumptions, p (�jY;�;M) and p (�jY;�;M) can be obtained using textbook
results for the SUR model (see, e.g., Koop, 2003, pp. 137-142). Thus, steps
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2 and 3 in their algorithm are straightforward. Step 1 proceeds by drawing
a candidate model M� and accepting it with probability:

min

�
p(Y;�jM�)

p(Y;�jM (r�1))

p(M�)

p(M (r�1))
; 1

�
(5)

where:

p(Y;�jM) =
Z
p(�;�jM)p(Y j�;�;M)d�: (6)

Note that the densities in the acceptance probability are evaluated at the
observed data, Y , and �(r�1). HDM draw models conditionally on � in
the SUR model because, while p(Y jM) does not have an analytical form,
for HDM�s choice of prior, p(Y;�jM) can be evaluated analytically. This
explains why our algorithms also draw models conditional on �. As we
shall see, it is this inability to analytically integrate � out of p(Y;�jM)
which causes problems with the HDM algorithm and motivates our more
sophisticated algorithm based on simulated tempering.
The HDM algorithm can also be interpreted as an RJMCMC algorithm

which draws from p (�;M jY;�) and p (�jY;�;M). To sample from p (�;M jY;�)
an RJMCMC algorithm would proceed by specifying a density for generat-
ing candidate models, M�. In general, this candidate density would take
the form q(M�j�;M (r�1)). Then a candidate draw �� would be taken from
q(��j�;M�). An RJMCMC algorithm would then accept the candidate draw�
�(�);M (�)� with an appropriate acceptance probability. If accepted, we have�
�(r);M (r)

�
=
�
�(�);M (�)�. If not, then ��(r);M (r)

�
=
�
�(r�1);M (r�1)�.

For the SURmodel, it can be shown that choosing q(��j�;M�) = p (��jY;�;M�)
leads to the most e¢ cient RJMCMC algorithm. As we have seen, since HDM
use a normal prior for �, p (��jY;�;M�) has a textbook analytical form.
Choosing a type of symmetric random walk for q(M�j�;M (r�1)), the RJM-
CMC acceptance probability turns out to be precisely (5). Thus, HDM�s
algorithm is an RJMCMC algorithm, an interpretation we build on below.
There are two problems with directly using HDM�s approach in the in-

complete simultaneous equations model. First, the priors used by Bayesians
in IV problems rarely involve a normal prior for � and thus, the analytical
results used by HDM are not available. The second problem is more subtle
and relates to the fact that the algorithm draws models conditionally on �.
This problem is worth explaining as it helps to motivate our algorithm.
The problem arises since (5) depends on p(Y;�(r�1)jM�) and p(Y;�(r�1)jM (r�1)),

but �(r�1) is drawn conditionally on M (r�1). In practice, this can mean
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p(Y;�(r�1)jM�) is much lower than p(Y;�(r�1)jM (r�1)) even if M� is a much
better model than M (r�1). Speaking informally, even if M (r�1) is a �bad�
model and M� is a �good�model, �(r�1) is typically drawn in an area of
high posterior probability under M (r�1). So �(r�1) is �good� for M (r�1)

(and, thus, p(Y;�(r�1)jM (r�1)) is large) but may be very �bad�forM� (and,
thus, p(Y;�(r�1)jM�) may be low). If enough draws are taken from the al-
gorithm it will eventually escape from such local modes, but in practice we
have found it can remain stuck for long periods. Put another way, in the
IV case, the model can be highly correlated with � and this can lead to very
slow convergence.

3.2 An RJMCMCAlgorithm for the IVModel of Drèze
(1976)

Drèze�s (1976) seminal paper on the Bayesian analysis of simultaneous equa-
tions models provides the starting point for developing an algorithm for doing
BMA in our modelling framework. Drèze (1976) does not consider as exten-
sive a model space as we do, so some extensions of his prior are required (see
Technical Appendix for details). But the main element of his approach is the
use of a normal prior for � = (�0; 
0; vec(�2x)

0; vec(�2z)
0). Thus, the prior

setup is the same as in HDM and, thus, in theory the HDM algorithm could
be used with the Drèze prior. However, the preceding sub-section showed
how the HDM algorithm for SUR models can work poorly.
We stressed the role of � in the breakdown of the HDM approach. The

strategy we propose to surmount this problem is similar in spirit to the
method of simulated tempering (ST) developed by Marinari and Parisi (1992)
and Geyer and Thompson (1995). This method was designed to improve
the performance of an MCMC algorithm that samples from the posterior
distribution of a single model, but we use it in our multiple model case. As
in the ST method, we expand the model space with so-called �cold models�.
These cold models are of no intrinsic interest to the researcher, whereas the
models that are of interest which we have de�ned in Section 2 are called �hot
models�. Only the draws from the hot models are included in calculating
posterior features of interest (e.g. posterior probabilities for each model,
posteriors for structural parameters, etc.). But, if the set of cold models
is carefully chosen, their addition can greatly facilitate movement between
di¤erent hot models. We choose our set of cold models to over-come the
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problem noted above, which arises sinceM and � can be so highly correlated.
Complete details are provided in the Technical Appendix. But the key

insight is that, if we can �nd cold models where p (Y jM) can be calcu-
lated analytically then, the algorithm will tend to switch easily between
cold models since the RJMCMC acceptance probability will no longer de-
pend on p(Y;�jM) as in (5), but rather on p (Y jM). The problems noted
above caused by the conditioning on � will be removed. Furthermore, if
each cold model is similar to a hot model then the algorithm should switch
easily between hot and cold models as well. Our cold models satisfy these
requirements.
To be precise, each of our hot models is de�ned by a likelihood func-

tion, a normal prior for � and an inverted Wishart prior for �. Each of
our cold models is based on an approximation to the posterior. Formally,
we approximate the marginal posterior p(�2zjY ) with a multivariate Student
density centered at the maximum likelihood estimate.5 We combine this with
p(�; 
;�2x;�j�2z; Y ), which is known analytically, to obtain an approxima-
tion of the posterior of all unknown parameters and of p(Y jM). See the
Technical Appendix for details of our approximation.
As shown below, we have found this algorithm to work well and avoid the

problems associated with the algorithm of HDM. There are several minor
complications (e.g. treating models with exogeneity restrictions or restric-
tions on 
) that must be dealt with. Full details of this algorithm, including
a treatment of such complications, is provided in the Technical Appendix.

3.3 An RJMCMC Algorithm for the IV Model with
Other Priors

In recent years, there have been several alternative priors proposed for the
incomplete simultaneous equations model. Two prominent approaches are
outlined in Kleibergen and van Dijk (1998) and Strachan and Inder (2004).6

We will not explain these approaches here (see Technical Appendix for pre-
cise formulae), nor motivate their advantages over Drèze (1976). Rather we
outline a MCMC strategy for use when we have a prior p� (�;�) which is

5Note that because �2z is a reduced form matrix, the asymptotic approximation we
use is not a¤ected by the problem of weak instruments.

6This latter paper is for the error correction model, but the structure of that model is
identical to the incomplete simultaneous equations model.
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di¤erent from the prior used in Drèze (1976) which we denote by pD (�;�).
A problem with the use of more general priors is that neither p(Y jM) nor
p(Y;�jM) will be available in closed form. Recall that these are crucial in-
gredients in our RJMCMC acceptance probabilities. However, it is possible
to extend our previous ST algorithm with an extra layer of hot models (let
us call these �super-hot models�to distinguish them from our previous hot
models which are based on Drèze�s prior).
Our algorithm begins with the cold and hot models exactly as in the

preceding sub-section. Corresponding to each hot model, we will add a super-
hot model which is identical to the hot model, except that it uses p� (�;�)
instead of pD (�;�) as a prior. In other words, the posterior for each super-
hot model equals the posterior for a hot model times p�(�;�)

pD(�;�)
and this ratio

of priors is the important factor in the acceptance probability. Because of
this, in our algorithm, transitions between hot and super-hot models are
conditional on both � and �, but in practice we have found this not to be a
problem since the hot and super-hot models tend to be very similar to one
another.
Note that this algorithm produces draws from cold, hot and super-hot

models. In this sense, it is an algorithm that can be used to handle several
priors in one RJMCMC run. That is, if we just retain the draws from the
super-hot models, then we are doing BMA using one of the alternative priors.
If we just retain draws from the hot models, then we are doing BMA using the
prior of Drèze (1976). If we just retain the draws from the cold models, then
we are doing BMA using an approximation to p(Y jM) and to the posterior
density of parameters.
For complete details see the Technical Appendix.

4 Model Comparison and Diagnostics

The posterior probability of any desired restriction can be calculated in a
straightforward manner using output from the RJMCMC algorithm. For in-
stance, the posterior probability of over-identi�cation might be of interest
to the researcher. This will simply be the proportion of draws taken from
over-identi�ed models The posterior probability of each exogeneity restric-
tion or that each element of 
 equals zero can be calculated in the same
manner. In our empirical work we illustrate how these are done. However,
in the Bayesian IV literature, Zellner, Bauwens and van Dijk (1988) have
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proposed various discrepancy vectors and functions that measure the extent
to which restrictions (e.g. over-identifying restrictions) are in error. In our
context, it is natural to consider the BMA posterior of these discrepancy
measures. We will consider discrepancy measures for over-identi�cation and
under-identi�cation.
Following Zellner, Bauwens and van Dijk (1988) we decompose �z as

�z = (�01z;�
0
2z)

0 such that �1z has only one row. Then we de�ne the Gen-
eralized Indirect Least Squares (GILS) of 
 as: 
� = (�2z�

0
2z)

�1�2z�
0
1z,

and de�ne e�o = (�01z � �02z
�). The discrepancy function that we use isedo = �e�0
o
e�o

�
=k2j, where k2j is the number of instruments. If the over-

identifying restrictions hold, edo will be zero. As noted by Zellner, Bauwens
and van Dijk (1988) the posterior of edo can be obtained by directly drawing
from the (matrix Student) posterior distribution of �z in the unrestricted
full rank model, and calculating edo for each value of �z that is drawn. In our
case, for each over-identi�ed model visited by our RJMCMC algorithm, we
will draw one value of edo from the (matrix Student) posterior distribution of
�z in the corresponding unrestricted full rank model. By doing this we can
reconstruct the BMA posterior density of edo. One way to assess whether the
BMA posterior of edo is close to zero is by comparing it with draws from the
prior of edo. These can be obtained by getting a draw from the prior of �z
(and then transforming to a draw of edo) for each of the models visited by the
algorithm.7 A BMA posterior of edo that is closer to 0 than the BMA prior
signals that the data supports the over-identifying restrictions.
Zellner, Bauwens and van Dijk (1988) did not explicitly provide discrep-

ancy measures for under-identi�cation, but it is possible to adapt their ap-
proach to this case. The problem of under-identi�cation arises when the
rank of �2z is less than m, in which case (4) cannot be solved for 
. The
m � k2j matrix �2z has reduced rank if it can be written as the product of
a m � (m � 1) times a (m � 1) � k2j matrix. Using a linear normalization
restriction (Johansen, 1995, p. 72), a lower rank �2z could be written as:

�2z =

�
�0

Im�1

�
%

7If the prior of �z depends on 
 and the prior of 
 is improper, then we cannot draw
from the prior. Instead of this one could draw 
 from the posterior �rst and then �z from
the conditional prior of �z given 
.
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where � : (m�1)�1, % : (m�1)�k2j. Thus, similarly to the over-identi�cation
discrepancy measure, to de�ne the under-identi�cation discrepancy measure,edu, we decompose the full rank matrix �2z as �2z = ��01;2z; %0�0 such that �1;2z
has only one row, and de�ne �� = (%%0)�1 %�01;2z, and e�u = (�

0
1z��02z��). The

under-identi�cation discrepancy function that we use is edu = �e�0
u
e�u

�
=k2j.

Values of edu near 0 will signal that the under-identi�cation restriction does
not hold.

5 An Application to Estimating the Returns
to Schooling

This empirical illustration is based on Card (1995). Our Data Appendix pro-
vides details about the data including de�nitions of all variables and what
type of variable each is (i.e. whether each variable is in y, X� of Z�). As
noted at the end of Section 2, our model space for this application will in-
clude approximately 1016 models. In the following we will consider all models
equally likely, and the appendix describes the choices for the other prior para-
meters. As stressed previously, with this many models, it is computationally
infeasible to do BMA by carrying out Bayesian inference in every model and
then averaging across models using marginal likelihoods. Thus, with the
full model space, we cannot compare our RJMCMC to a conventional BMA
strategy. Accordingly, before we present a full empirical analysis using all
the models, we provide such a comparison using a reduced set of models.

5.1 Comparing RJMCMC to Conventional BMA

In this sub-section, we compare our RJMCMC algorithm to conventional
BMA using a reduced set of 7814 models that result from considering instru-
ment uncertainty only. That is, Z� will consist of 13 regressors that must
be allocated to either xi or zi, with the restriction that zi must contain at
least 4 of them (which is the minimum for the model to be over-identi�ed).
X� consists of 27 regressors and a constant and these will always enter in xi.
No restrictions on either � or 
 are considered. By reducing the number of
models we are able to calculate the marginal likelihood of each model individ-
ually. We can then compare the results to those provided by our RJMCMC
algorithm to evaluate the accuracy of our algorithm.
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Remember that our algorithm involves cold (T = 0), hot (T = 1) and
super-hot (T = 2) models and we refer to these as being of di¤erent �tem-
peratures�. As discussed previously, draws from the cold and hot models
can be used to carry out Bayesian inference under a normal approximation
and the prior of Drèze (1976). Here T = 2 represents models with the prior
of Kleibergen and van Dijk (1998),8 but (in order to illustrate a variety of
approaches) in the empirical application it will represent models with priors
in the style of Strachan and Inder (2004).
In order not to unfairly advantage RJMCMC, we deliberately choose a

poor starting value for this algorithm: the model we knew had the smallest
posterior probability amongst the hot models.9 In 20000 iterations10, the
number of distinct models visited by our algorithm was 47 and 44 for cold
and hot temperatures, respectively. The posterior probability of a model is
the proportion of times that the algorithm draws the model.
Tables 1, 2 and 3 present the best models for each temperature. In all

cases, these cover about 92% of the total probability mass. We can see
that for each temperature the posterior probability given by our algorithm
is very close to the one calculated over the whole set of 7814 models. Thus,
our RJMCMC algorithm is working well. Although posterior probabilities
are quite similar across temperatures, note that there are some di¤erences
between cold and hot temperatures, and that our algorithm is able to capture
well these di¤erences. For example, the model that excludes only instrument
9 from the actual set of instruments is ranked 2nd when T = 1 (with posterior
probability 18%) but is ranked 4th when T = 0 with posterior probability
being only 6% and is not included in the ranking when T = 2. On the other
hand, the model that uses all 13 variables in Z� as actual instruments is
the best model for all temperatures 0, 1 and 2 (with at least 41% posterior
probability).
Table 4 shows the posterior probability that each of the variables in Z�

8Since the MCMC methods for the Kleibergen and van Dijk (1998) approach are com-
putationally demanding, we reduce the set of models that must be estimated. We �rst run
our algorithm with only 2 temperatures (T = 0 and T = 1) and �nd the models visited
by this algorithm. We evaluate the marginal likelihood of each of the models using the
methods of Kleibergen and van Dijk (1998).

9That model was (0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 0; 0), where 0 means that the corresponding
variable in Z� entered in xi rather than zi. We take enough replications to ensure roughly
20000 iterations for each temperature.
10A run of 20000 iterations takes about one minute.
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I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 Ex. App.
1 1 1 1 1 1 1 1 1 1 1 1 1 0.42 0.41
1 1 1 1 1 1 1 1 1 1 0 1 1 0.30 0.31
1 1 1 1 0 1 1 1 1 1 1 1 1 0.07 0.07
1 1 1 1 1 1 1 1 0 1 1 1 1 0.06 0.05
1 1 1 1 0 1 1 1 0 1 1 1 1 0.04 0.04
1 1 1 1 1 1 1 1 0 1 0 1 1 0.02 0.02
1 1 1 1 1 1 1 1 1 0 1 1 1 0.01 0.01
1 1 1 1 1 1 1 1 1 0 0 1 1 0.01 0.01
1 0 1 1 1 1 1 1 1 1 1 1 1 0.01 0.01

Table 1: Posterior probability of best 9 models when T=0. The columns I1­I13 correspond to each of
the 13 instruments. The value 1 indicates the potential instrument is included in zi, and 0 indicates that
it is included in xi. The column labeled Ex. refers to the case in which each and every model of the
whole model space is estimated separately. App. refers to the probabilities produced by the RJMCMC
algorithm.

enters the model as an instrument. Again we can see that the posterior
probabilities produced by our RJMCMC algorithm are very close to the ones
produced by estimating each and every model. Note that again there are
some di¤erences between T = 0 and T = 1 (for instruments 5, 9 and 11) and
T = 2 di¤ers in that it has higher probability for these instruments. Our
algorithm captures these di¤erences.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 Ex. App.
1 1 1 1 1 1 1 1 1 1 1 1 1 0.48 0.48
1 1 1 1 1 1 1 1 0 1 1 1 1 0.18 0.20
1 1 1 1 1 1 1 1 1 1 0 1 1 0.17 0.17
1 1 1 1 1 1 1 1 0 1 0 1 1 0.03 0.03
1 1 1 1 0 1 1 1 1 1 1 1 1 0.02 0.01
1 1 1 1 1 1 1 1 1 0 1 1 1 0.02 0.01
1 0 1 1 1 1 1 1 1 1 1 1 1 0.01 0.01
1 1 1 1 1 1 1 0 1 1 1 1 1 0.01 0.01
1 1 1 1 1 0 1 1 1 1 1 1 1 0.01 0.01

Table 2: Posterior probability of best 9 models when T=1.See Table 1 for definition of labels in
columns.
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Table 3: Posterior probability of best models when T=2 (KvD prior). See Table 1 for definition of
labels in columns. App. refers to estimating separately each of the T=1 models visited by the
RJMCMC algorithm. Other labels defined as in Table 1.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 Ex. App.

1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0.69

1 1 1 1 0 1 1 1 1 1 1 1 1 0.04 0.05

1 1 1 1 1 1 1 1 1 1 1 0 1 0.03 0.00

0 1 1 1 1 1 1 1 1 1 1 1 1 0.03 0.03

1 0 1 1 1 1 1 1 1 1 1 1 1 0.02 0.03

1 1 1 1 1 1 0 1 1 1 1 1 1 0.02 0.03

1 1 1 1 1 0 1 1 1 1 1 1 1 0.02 0.03

1 1 1 0 1 1 1 1 1 1 1 1 1 0.02 0.03

1 1 1 1 1 1 1 0 1 1 1 1 1 0.02 0.03

1 1 1 1 1 1 1 1 1 1 0 1 1 0.02 0.02

1 1 0 1 1 1 1 1 1 1 1 1 1 0.02 0.02
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T=0 T=1 T=2
Instrument Ex. App. Ex. App. Ex. App.

1 1.00 0.99 0.99 0.99 0.96 0.97
2 0.99 0.99 0.98 0.99 0.97 0.97
3 0.99 0.99 0.99 0.99 0.97 0.98
4 1.00 1.00 0.99 0.99 0.97 0.97
5 0.87 0.87 0.97 0.98 0.95 0.95
6 0.99 0.99 0.98 0.98 0.97 0.97
7 0.99 1.00 0.99 0.99 0.97 0.97
8 0.99 0.98 0.99 0.98 0.97 0.97
9 0.87 0.89 0.76 0.75 0.98 0.98

10 0.98 0.97 0.97 0.97 0.98 0.99
11 0.64 0.63 0.78 0.77 0.97 0.98
12 1.00 1.00 1.00 1.00 0.95 1.00

13 1.00 1.00 1.00 1.00 0.99 1.00

Table 4: Posterior Probability for each potential instrument of being included in zi. T=2 refers to
super­hot models that use the prior of Kleibergen and van Dijk (1998). The column labeled Ex. refers
to the case in which the posterior probability is calculated by estimating each and every model of the
whole model space. App. refers to the probabilities calculated by using the RJMCMC algorithm (T=0
and T=1). In the case of T=2, App. refers to estimating separately each of the models visited by the
RJMCMC algorithm.
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5.2 Empirical Results Using the Full Model Space

We now turn to the full model space and use the prior of Strachan and Inder
(2004) for T = 2. We begin by presenting results which are not based on
Bayesian model averaging. Table 5 gives frequentist and Bayesian estimates
of the returns to schooling in the all-encompassing model (which includes all
elements of X� as exogenous regressors, all variables in Z� as instruments,
and treats all variables in y2 as endogenous). The point estimates of the
returns to schooling are similar using all approaches. The Bayesian posterior
medians (for T = 0; 1, 2) lie in between the 2SLS (11%) and the LIML
estimates (15%). The 95% Bayesian credible intervals for T = 0; 1 are wider
than 2SLS con�dence intervals but narrower than their LIML counterparts.
However, the Bayesian credible interval with the prior T = 2 is much wider. It
includes even negative values, indicating that identi�cation might be poor11.
The reason for the wider credible intervals with T = 2 is the non-existence
of prior moments for 
.
In a BMA exercise it is typical to report not only averages over the whole

model space, but also averages over restricted subspaces of the model space.
For this purpose let us de�ne four binary indicators: Ie, Ir, Id and Ic which
equal one for a particular subset of the models (the value zero indicates all of
the relevant models are included). The indicator Ie takes value one when all
variables in y2 are endogenous (i.e. no exogeneity restrictions are imposed).
Ir takes value 1 when the coe¢ cients of (ED76, AGE76) are both di¤erent
from 0.12 Id takes value one when edu (the under-identi�cation discrepancy
measure) is above its own posterior median. Thus, Id takes value one when
identi�cation is stronger. Ic takes value one when NEARC4 (conventionally
considered to be a very important instrument) is included in the model as
an instrument.
We begin with a discussion of returns to schooling estimates using BMA.

These are given in Table 6. Results for BMA over the full model space are
given in the rows labelled T = 0; 1; 2 in the column labelled Ie = 0. For
all of our three temperatures, our point estimate of returns to schooling is
0.015 and 95% credible intervals are fairly narrow. This point estimate is

11The Anderson canonical correlation LR test rejects the null of under-identi�cation (p-
value 0.0066) while the Sargan test fails to reject the validity of over-identifying restrictions
(p-value 0.2159). However, the Stock-Yogo test fails to reject that 2SLS estimates might
be subject to 30% or more bias due to weak identi�cation.
12The Data Appendix explains why this is an interesting restriction to consider.

21



substantively lower than those in Table 5. For instance, with LIML we found
a point estimate of 0.146, and 0.015 is outside the LIML 95% con�dence
interval.
The other estimates in Table 6, using subsets of the model space, shed

insight on why BMA is giving a lower estimate of returns to schooling than
any of the other IV based approaches. Consider �rst what happens if we do
BMA only over models in which all variables in y2 are endogenous (i.e. Ie =
1). It can be seen that results are much more consistent with the non-BMA
results of Table 5. That is, the 95% credible interval for T = 0; 1 exclude
negative values and are centered at 10%. Just as we found in Table 5, the
T = 2 credible interval is now very wide (and even contains negative values).
If we consider additional restrictions on the model space, the basic story
(i.e. that only considering models where all variables in y2 are endogenous is
necessary to obtain results similar to those found using standard IV methods)
is not altered. That is, conditioning on (Ir = 1; Id = 1) or (Ir = 1; Ic = 1)
does not change results in a substantive fashion.
Table 7 shows the prior and posterior percentiles of edu and this gives

evidence that identi�cation is much weaker when Ie = 1.13 This is a point
we will return to shortly.
Tables 8, 9 and 10 show the probability that each variable enters each

category. Tables 8 and 10 indicate that BMA has a strong preference for
parsimony. Our full model space allows the elements of Z� to enter as in-
struments, as exogenous regressors or be excluded from the model. Tables 8
and 10 indicate that some are included as instruments, but most are excluded
altogether from the model. Similarly, BMA allows the variables in X� (which
were always included in the models used to produce the results in Table 4)
to be either exogenous regressors or be excluded from the model. Table 10
indicates most are excluded from the model. Table 9 provides us with strong
evidence that two of the three elements of our �endogenous�y2 are actually
exogenous. And Figure 1, which shows BMA posterior densities (conditional
on Ie = 1) of the correlations between v2 and u1, supports this view. Lastly,
the 2SLS estimate of the returns to schooling in the best model selected14 by

13The discrepancy measure edo is not shown in some cases because there is probability
one of just-identi�cation for each temperature, with the unused instruments not entering
in the model at all. Two of these three instruments are AGE762 and IQ with probability
1. The third one could be either EDFDUM2 or EDFDUM1.
14By best model we mean the model that results from rounding the posterior probability

of each restriction to the nearest integer (0 or 1).
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OLS 0.051 0.061 0.072
2SLS 0.033 0.108 0.183
LIML 0.035 0.146 0.256
T=0 0.047 0.123 0.206
T=1 0.030 0.113 0.206
T=2 ­0.075 0.140 0.517

Table 5: Frequentist and  Bayesian estimates and 95% confidence intervals
of returns to schooling in the all encompassing model.

the RJMCMC is 0.012, with 95% con�dence interval being (0.004, 0.021).
Putting all these �ndings together, we can now see why BMA is estimating

returns to schooling as being lower than the traditional IV approaches of
Table 5. Most importantly, the assumption that the elements of y2 truly
are endogenous is crucial to obtaining the traditional IV results. However,
BMA is allocating relatively little weight to such models. Averaging over
the full model space (i.e. including also models with exogeneity restrictions
imposed) helps identi�cation and makes credible intervals of the returns to
schooling narrower and centered on 1.5% for each of the 3 temperatures
(Table 6). The posterior of edu con�rms that identi�cation is substantially
stronger if we use the full model space, and edo shows that the over-identifying
restrictions hold (Table 7). The probability that only three elements of Z�

enter as instruments is 100% for T = 0; 1; 2. The most likely instruments are
AGE762 and IQ, followed by EFDUM1 and EFDUM2. A further di¤erence
between BMA and non-BMA results arises since the former is much more
parsimonious than the latter (and this holds for all of our priors).
In sum, this empirical example shows that our RJMCMC algorithm can

be used to carry out BMA even in the very large model spaces that the re-
searcher will often encounter in practice. It also shows that BMA can matter
empirically. That is, BMA is leading to estimates of a feature of interest
(returns to schooling) which di¤er in important ways from conventional es-
timates. Furthermore, it provides insight into why such divergences occur
and what aspects of model speci�cation have the most important impact on
estimates of the returns to schooling.
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Ie=0 Ie=1
T=0 0.004 0.015 0.088 0.015 0.099 0.120
T=0, Ir=1 0.043 0.085 0.127 0.087 0.105 0.123
T=0, Ir=1, Id=1 0.003 0.069 0.089 0.087 0.105 0.123
T=0, Ir=1, Ic=1 0.069 0.085 0.126 0.088 0.105 0.124
T=1 0.005 0.017 0.088 0.015 0.099 0.120
T=1, Ir=1 0.040 0.084 0.126 0.087 0.105 0.123
T=1, Ir=1, Id=1 0.004 0.068 0.088 0.087 0.105 0.123
T=1, Ir=1, Ic=1 0.067 0.084 0.125 0.088 0.105 0.124
T=2 0.005 0.014 0.024 ­0.022 0.019 0.118
T=2, Ir=1 0.006 0.036 0.125 ­0.291 0.104 0.523
T=2, Ir=1, Id=1 ­0.002 0.025 0.048 ­0.166 0.103 0.260
T=2, Ir=1, Ic=1 0.003 0.106 0.129 ­0.998 0.108 1.338

Table 6: BMA posterior percentiles (2.5%, 50%, 97.5%) of returns to
schooling. The columns under Ie=1 correspond to the case in which
exogeneity restrictions are not considered, while those under Ie=0
refer to the case in which the model space includes also models
with exogeneity restrictions.
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Table 7: BMA posterior percentiles (2.5%, 50%, 97.5%) of ( od~ , ud~ ).

Ie=0 Ie=1
T=0 prior 1.11 299901 2460014 0.000 0.001 0.318
T=0 post 0.001 3.59 8.12 0.000 0.001 0.002
T=1 prior 1.35 270274 2367542 0.000 0.001 0.320
T=1 post 0.001 2.58 7.13 0.000 0.001 0.002
T=2 prior 0.047 435 3117025 0.000 0.002 0.542

ud~

T=2 post 0.001 0.401 7.35 0.000 0.001 0.002
T=0 prior 0.015 201 6223
T=0 post 0.000 0.000 0.005
T=1 prior 0.017 132 5897
T=1 post 0.000 0.000 0.005
T=2 prior 0.001 8.70 5482

od~

T=2 post 0.000 0.000 0.004

Figure 1: Figure 1: Posterior density for the correlation between u and
v conditional on Ie = 1 and T = 1. From left to right the correlations
correspond to u and the error terms of ED76, EXPER2 and KWW.
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Ie=0 Ie=1
T=0 T=1 T=2 T=0 T=1 T=2

EDFDUM1 0.63 0.61 0.76 0.08 0.09 0.39
EDFDUM2 0.37 0.39 0.24 0.92 0.91 0.61
EDFDUM3 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM4 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM5 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM6 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM7 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM8 0.00 0.00 0.00 0.00 0.00 0.00
NEARC4 0.00 0.00 0.00 0.00 0.00 0.00
NEARC2 0.00 0.00 0.00 0.00 0.00 0.00
NEARC4A 0.00 0.00 0.00 0.00 0.00 0.00
AGE762 1.00 1.00 1.00 1.00 1.00 1.00
IQ 1.00 1.00 1.00 1.00 1.00 1.00

Table 8: Probability of variables in Z* entering in the model as an instrument (in z).

Ie = 0
T=0 T=1 T=2

ED76 0.05 0.04 0.05
EXPER2 0.07 0.06 0.47
KWW 0.98 0.98 1.00

Table 9: Probabilities of ED76, EXPER2 and KWW being endogenous.
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Ie=0 Ie=1
T=0 T=1 T=2 T=0 T=1 T=2

ED76 0.03 0.04 0.00 0.45 0.46 0.10
EXPER2 0.28 0.37 0.01 0.49 0.50 0.16
KWW 0.70 0.62 1.00 0.09 0.09 0.95
AGE76 1.00 1.00 1.00 1.00 1.00 1.00
BLACK 1.00 1.00 1.00 1.00 1.00 1.00
SMSA76R 1.00 1.00 1.00 1.00 1.00 1.00
REG76R 0.00 0.00 0.00 0.00 0.00 0.00
FDUM1 0.00 0.00 0.00 0.00 0.00 0.00
FDUM2 0.00 0.00 0.00 0.00 0.00 0.00
FDUM3 0.00 0.00 0.00 0.00 0.00 0.00
FDUM4 0.00 0.00 0.00 0.00 0.00 0.00
FDUM5 0.00 0.00 0.00 0.00 0.00 0.00
FDUM6 0.00 0.00 0.00 0.00 0.00 0.00
FDUM7 0.00 0.00 0.00 0.00 0.00 0.00
FDUM8 0.00 0.00 0.00 0.00 0.00 0.00
REG661 0.00 0.00 0.00 0.00 0.00 0.00
REG662 0.00 0.00 0.00 0.00 0.00 0.00
REG663 0.00 0.00 0.00 0.00 0.00 0.00
REG664 0.00 0.00 0.00 0.00 0.00 0.00
REG665 0.00 0.00 0.00 0.00 0.00 0.00
REG666 0.00 0.00 0.00 0.00 0.00 0.00
REG667 0.00 0.00 0.00 0.00 0.00 0.00
REG668 0.00 0.00 0.00 0.00 0.00 0.00
SMSA66R 0.00 0.00 0.00 0.00 0.00 0.00
MOMDAD14 0.00 0.00 0.00 0.00 0.00 0.00
SINMOM14 0.00 0.00 0.00 0.00 0.00 0.00
DADED 1.00 1.00 1.00 1.00 1.00 1.00
MOMED 0.00 0.00 0.00 0.00 0.00 0.00
NODADED 0.00 0.00 0.00 0.00 0.00 0.00
NOMOMED 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM1 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM2 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM3 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM4 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM5 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM6 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM7 0.00 0.00 0.00 0.00 0.00 0.00
EDFDUM8 0.00 0.00 0.00 0.00 0.00 0.00
NEARC4 0.00 0.00 0.00 0.00 0.00 0.00
NEARC2 0.00 0.00 0.00 0.00 0.00 0.00
NEARC4A 0.00 0.00 0.00 0.00 0.00 0.00
AGE762 0.00 0.00 0.00 0.00 0.00 0.00
IQ 0.00 0.00 0.00 0.00 0.00 0.00

Table 10: Probability of being included as a regressor in the first structural equation (in x or y2).
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6 Conclusions

BMA has enjoyed an increasing popularity amongst econometricians work-
ing with the regression model with a large number of exogenous regressors.
The purpose of the present paper is to develop methods for BMA when
endogeneity may be present. In such a case, any variable could be an en-
dogenous variable, an exogenous variable or an instrument (and sometimes
the researcher is unsure which category a variable belongs to). Doing BMA
with such a setup is complicated by the huge model space that results and
(in contrast to the case where all regressors are exogenous) the lack of avail-
ability of analytical results for each model. To surmount these problems, this
paper develops a RJMCMC algorithm which draws jointly from the model
and parameter spaces. To surmount problems of slow convergence, we draw
on ideas from the simulated tempering literature and introduce cold, hot and
super-hot models into our algorithm. A further advantage of our algorithm
is that draws of di¤erent temperatures can be used to carry out Bayesian
inference under di¤erent priors. If we use the draws from the cold models we
are doing BMA under an approximation to the posterior, if we use hot draws
we are doing BMA using the prior of Drèze (1976) and if we use super-hot
draws we are doing BMA using a prior such as that of Strachan and Inder
(2004).
We illustrate our algorithm using the classic returns to schooling applica-

tion of Card (1995). We �nd our RJMCMC algorithm to work e¢ ciently and
empirical results show some interesting di¤erences between model averaging
and conventional econometric methodologies.
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Data Appendix
The data used in this paper was used in Card (1995) and provided on

Card�s website: http://emlab.berkeley.edu/users/card/data_sets.html. These
sources provide complete information about this data set. We use N = 2040
observations on individuals from 1976 from the National Longitudinal Survey
(this is the original cohort). In our modelling approach, each variable must
either be the main dependent variable of interest (y1), another endogenous
variable (y2), a potential regressor (X�) or a variable which could either be
an instrument or a regressor (Z�). We follow Card (1995) in our classi�cation
of variables and refer the reader to his paper for a justi�cation. The following
is a summary of the 45 variables we use along with the category each belongs
in. All variables refer to 1976 unless otherwise noted.
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Table A.1: Variables used in Application
Name Brief Description Type
LWAGE76 log wages y1
ED76 education y2
EXPER215 experience squared/100 y2
KWW score on Knowledge of World of Work test y2
AGE76 Age X�

BLACK Dummy for black X�

SMSA76R Dummy for urban X�

REG76R Dummy for south X�

FDUM1 Mom and Dad both >12 years education X�

FDUM2 Mom and Dad �12 and not both exactly 12 X�

FDUM3 Mom and Dad both =12 years education X�

FDUM4 Mom �12 years education and Dad missing X�

FDUM5 Dad�12 and Mom<12 years education X�

FDUM6 Mom �12 years education and Dad non-missing X�

FDUM7 Mom and Dad both �9 years education X�

FDUM8 Mom and Dad both non-missing X�

REG661 Dummy for region 1 in 1966 X�

REG662 Dummy for region 2 in 1966 X�

REG663 Dummy for region 3 in 1966 X�

REG664 Dummy for region 4 in 1966 X�

REG665 Dummy for region 5 in 1966 X�

REG666 Dummy for region 6 in 1966 X�

REG667 Dummy for region 7 in 1966 X�

REG668 Dummy for region 8 in 1966 X�

15Card de�nes experience as age - education - 6 and includes it, together with EXPER2,
as an endogenous explanatory variable while age is included as an instrument. To avoid
having a singular covariance matrix, we instead include age as a regressor (i.e. in X�)
and exclude experience from the analysis (but still include EXPER2 in y2). Note that
our speci�cation is just a reparameterization of that of Card (1995), and in our case the
return to schooling is given by the sum of the coe¢ cients of ED76 and AGE76.
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Table A.1 (continued): Variables used in Application
Name Brief Description Type
SMSA66R Dummy for urban in 1966 X�

MOMDAD14 Dummy for living with mom and dad at 14 X�

SINMOM14 Dummy for living with single mom at 14 X�

DADED Dad�s years of schooling X�

MOMED Mom�s years of schooling X�

NODADED Dummy for DADED imputed X�

NOMOMED Dummy for MOMED imputed X�

EDFDUM1 FDUM1*NEARC4 Z�

EDFDUM2 FDUM2*NEARC4 Z�

EDFDUM3 FDUM3*NEARC4 Z�

EDFDUM4 FDUM4*NEARC4 Z�

EDFDUM5 FDUM5*NEARC4 Z�

EDFDUM6 FDUM6*NEARC4 Z�

EDFDUM7 FDUM7*NEARC4 Z�

EDFDUM8 FDUM8*NEARC4 Z�

NEARC4 Dummy grew up near any 4 year college Z�

NEARC2 Dummy grew up near 2 year college Z�

NEARC4A Dummy grew up near 4 year public college Z�

AGE762 Age squared Z�

IQ Normed IQ score Z�
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Technical Appendix

Algorithm

To illustrate the general principle underlying the algorithm we use, suppose
that the vector of unknown parameters in model M can be decomposed
as �M = (�1M ; �2M). Let q(M (�)jM (r)) be a proposal density for models.
Because we are going to de�ne a move conditional on �1M , we require that
q(M (�)jM (r)) gives zero probability to modelsM (�) in which the dimension of
�1M changes. Let q(�2M j�1M ;M) be a proposal density for �2M . The general
expression for the acceptance probability for a move from (�

(r)

2M(r) ;M
(r)) to

(�
(�)
2M(�) ;M

(�)) conditional on �1M can be found for example at Waagepetersen
and Sorensen (2001) and it is equal to:

a = min

(
1;
q(M (r)jM (�))

q(M (�)jM (r))

p(Y; �1M ; �
(�)
2M(�) jM (�))

p(Y; �1M ; �
(r)

2M(r) jM (r))

q(�
(r)

2M(r) j�1M ;M (r))

q(�
(�)
2M(�) j�1M ;M (�))

p(M (�))

p(M (r))

)
where p(M�) is the prior probability of model M�. Following the strategy
of Holmes and Held (2006), we always choose q(�(�)

2M(�) j�1M ;M (�)) to be the

optimal choice p(�(�)
2M(�) jY; �1M ;M (�)), that is, the conditional posterior of

�2M given �1M and M = M (�). As a consequence of choosing such proposal
density, the expression for a simpli�es to:

a = min

�
1;
q(M (r)jM (�))

q(M (�)jM (r))

p(Y; �1M jM (�))

p(Y; �1M jM (r))

p(M (�))

p(M (n))

�
(7)

where

p(Y; �1M jM) =
Z
p(Y; �1M ; �2M jM)d�2M =

Z
p(�1M ; �2M jM)p(Y j�1M ; �2M ;M)d�2M

We use two indexes to describe the model space: (M;T ), where T takes
values 0 (for cold models, which are based on an approximation to the poste-
rior), 1 (for hot models, which use Drèze�s prior) and 2 (for super-hot models,
which use another prior p�(�;�jM), where � = (�0; 
0; vec(�2x); vec(�2z)0).
Let the prior probability of each (M;T ) be denoted as p(M;T ) = p(T )p(M jT ).
The function p(T ) can be chosen as a tuning parameter to ensure that the al-
gorithm spends enough time at each temperature. Let (�(r);�(r);M (r); T (r))

34



be the value of (�;�;M; T ) in the rth draw from the algorithm. Our pro-
posal density for (M;T ), which we denote as q(M (�); T (�)jM (r); T (r)), is such
that with probability �T (r) a candidate value for temperature (T

(�)) is drawn
from some distribution (q(T (�)jT (r))) while the model restrictions remain
constant (i.e. M (�) = M (r)) and with probability (1 � �T (r)) a candidate
model (M (�)) is drawn from some distribution (q(M (�)jM (r); T (r))) while the
value of temperature remains constant (T (�) = T (r)). The values de�ning
�T (r) are denoted as �

�
1 and �

�
2, with �

�
1 � � �2. These are constants that,

together with p(T ), can be calibrated in the burn-in period to ensure that
the algorithm visits each temperature enough times16.
The (r+1)th value of (�;�;M; T ) (denoted as (�(r+1);�(r+1);M (r+1); T (r+1))

is obtained as follows:
If T (r) = 0:

� Draw u from a uniform in (0; 1).

� If u < � �1:(propose a change from a cold model to the analogous hot
one conditioning only on �2z).

�Fix M (r+1) = M (r). Fix T (r+1) = 1 with probability a and �x
T (r+1) = 0 with probability (1� a), where a is de�ned as:

a = min

(
p(M (r+1); T (r+1) = 1)p(Y;�

(r)
2z jM (r+1); T (r+1) = 1)

p(M (r+1); T (r+1) = 0)p(Y;�
(r)
2z jM (r+1); T (r+1) = 0)

; 1

)

� If T (r+1) = 1 draw �(r+1) conditional on (�(r)2z ;M
(r+1); T (r+1))

and then draw (�(r+1)2z ; �(r+1); 
(r+1);�
(r+1)
2x ) conditional on (�(r+1)

;M (r+1); T (r+1)).

� If T (r+1) = 0 draw (�(r+1);�(r+1)) conditional on (M (r+1); T (r+1)).

� If u � � �1: (propose a change from a cold model to another cold model,
changing any of the model restrictions)

�Fix T (r+1) = T (r) = 0. Draw a candidate value M (�) from a pro-
posal distribution q(M jM (r); T (r+1) = 0). This proposal distribu-
tion changes any of the model restrictions with some probability.

16Liu (2001, p. 210) recommends that simulated tempering algorithms are tuned so that
all temperatures are visited with the same frequency.
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Fix M (r+1) =M (�) with probability a and �x M (r+1) =M (r) with
probability (1� a), where a is de�ned as:

a = min

�
p(M (�); T (r+1))p(Y jM (�); T (r+1))q(M (r)jM (�); T (r+1))

p(M (r); T (r+1))p(Y jM (r); T (r+1))q(M (�)jM (r); T (r+1))
; 1

�
�Draw (�(r+1);�(r+1)) conditional on (M (r+1); T (r+1)).

If T (r) = 1:

� Draw u from a uniform in (0; 1).

� If u < � �1: (propose a change from a hot model to the analogous cold
one conditioning only on �2z).

�Fix M (r+1) = M (r). Fix T (r+1) = 1 with probability a and �x
T (r+1) = 0 with probability (1� a), where a is de�ned as:

a = min

(
p(M (r+1); T (r+1) = 0)p(Y;�

(r)
2z jM (r+1); T (r+1) = 0)

p(M (r+1); T (r+1) = 1)p(Y;�
(r)
2z jM (r+1); T (r+1) = 1)

; 1

)

� If T (r+1) = 1 draw �(r+1) conditional on (�(r)2z ;M
(r+1); T (r+1))

and then draw (�(r+1)2z ; �(r+1); 
(r+1);�
(r+1)
2x ) conditional on (�(r+1)

;M (r+1); T (r+1)).

� If T (r+1) = 0 draw (�(r+1);�(r+1)) conditional on (M (r+1); T (r+1)).

� If � �1 � u � � �2: (propose a change from a hot model to another hot
model conditioning on �).

�Fix T (r+1) = T (r) = 1. Draw a candidate value M (�) from a pro-
posal distribution q(M jM (r); T (r+1)). This distribution proposes
models that could change any restriction except for those related
to �. FixM (r+1) =M (�) with probability a and �xM (r+1) =M (r)

with probability (1� a), where a is de�ned as:

a = min

�
p(M (�); T (r+1))p(Y;�(r)jM (�); T (r+1))q(M (r)jM (�); T (r+1))

p(M (r); T (r+1))p(Y;�(r)jM (r); T (r+1))q(M (�)jM (r); T (r+1))
; 1

�
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�Draw �
(r+1)
2z conditional on (�(r);M (r+1); T (r+1)) and then draw

(�(r+1); �(r+1); 
(r+1);�
(r+1)
2x ) conditional on (�(r+1)2z ;M (r+1); T (r+1))..

� If � �2 � u: (propose a change from a hot model to the analogous super-
hot model conditioning on all parameters):

�Fix M (r+1) = M (r). Fix T (r+1) = 2 with probability a and �x
T (r+1) = 1 with probability (1 � a), where a is de�ned as the
minimum of 1 and:

(1� � �2)
p(M (r+1); T (r+1) = 2)p(�(r);�(r)jM (r+1); T (r+1) = 2)

p(M (r+1); T (r+1) = 1)p(�(r);�(r)jM (r+1); T (r+1) = 1)

� If T (r+1) = 1: Draw �(r+1) conditional on (�(r)2z ;M
(r+1); T (r+1))

and then draw (�(r+1)2z ; �(r+1); 
(r+1);�
(r+1)
2x ) conditional on (�(r+1)

;M (r+1); T (r+1)).

� If T (r+1) = 2: Draw (�(r+1);�(r+1)) conditional on (M (r+1); T (r+1) =
2) using a kernel P �(�(r+1);�(r+1)j�;�) that is invariant for the
posterior p(�(r+1);�(r+1)jY;M (r+1); T (r+1) = 2).

If T (r) = 2:

� (Propose a change from a super-hot model to the analogous hot model
conditioning on all parameters):

�Fix M (r+1) = M (r). Fix T (r+1) = 1 with probability a and �x
T (r+1) = 2 with probability (1 � a), where a is de�ned as the
minimum of 1 and:

1

(1� � �2)
p(M (r+1); T (r+1) = 1)p(�(r);�(r)jM (r+1); T (r+1) = 1)

p(M (r+1); T (r+1) = 2)p(�(r);�(r)jM (r+1); T (r+1) = 2)

� If T (r+1) = 1: Draw�(r+1) conditional on (�(r)2z ;M
(r+1); T (r+1)) and

then draw (�(r+1)2z ; �(r+1); 
(r+1);�
(r+1)
2x ) conditional on (�(r+1);M (r+1); T (r+1)).

� If T (r+1) = 2: Draw (�(r+1);�(r+1)) conditional on (M (r+1); T (r+1) =
2) using a kernel P �(�(r+1);�(r+1)j�;�) that is invariant for the
posterior p(�(r+1);�(r+1)jY;M (r+1); T (r+1) = 2).
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Note that when we use the ratio of priors p(�;�jT = 2)=p(�;�jT =
1), both priors must use the same parameterization (i.e. �;�). Therefore
for most priors we will have to use the Jacobian of the transformation in
order to write p(:jT = 2) using the same parameterization as p(:jT = 1).
We give the relevant Jacobian for the Strachan and Inder (2004) type prior
below. However, as we use a parameter-augmented version of the prior of
Strachan and Inder (2004), this implies that p(:jT = 2) will not only depend
on (�;�), but also on an additional non-identi�ed matrix that we will denote
as �2. To deal with this, we augment also the Drèze prior with the additional
parameter �2, and so de�ne p(�;�; �2jT = 1) = p(�;�jT = 1)$(�2). The
density $(�2) could in principle be any, but we choose it to be equal to the
marginal prior of �2 in the setup described below. In this way, the ratio
of priors entering in the acceptance probability will be p(�;�; �2jM;T =
2)=p(�;�; �2jM;T = 1).
The proposal density for models (q(M�jM;T )) could be any provided

that it satis�es the following requirement: any model in the model space
could be proposed with some positive probability after a �nite number of
iterations. In order to describe the proposal density that we use let us de�ne
5 binary vectors (�1,�2,�3,�4; �E) that determine the restrictions in a model.
The binary vector �1 has as many elements as potential regressors there are
in X�. It takes value 1 when the corresponding regressor enters in xi, and
value 0 when it is excluded from the system. The vector �4 corresponds to y2.
It takes value 1 when the corresponding element in 
 is non-zero. �E has also
as many elements as y2. It takes value 1 when the corresponding variable is
endogenous (i.e. the corresponding element of �12 is non-zero). Each of the
vectors �2 and �3 has as many elements as potential instruments there are in
Z�. An element in �2 is 0 when the corresponding variable in Z

� is excluded
from the system and takes value 1 when it is included (either in xi or in zi).
Finally, an element in �3 is 1 when the corresponding variable in Z

� enters
in zi, and takes value 0 otherwise. Note that if an element in �

(r)
3 is one, then

the corresponding element in �(r)2 must also be one. Thus the current model
M (r) can be described by the 5 binary vectors (�(r)1 ; �

(r)
2 ; �

(r)
3 ; �

(r)
4 ; �

(r)
E ).

For the current modelM (r) let us consider 4 types of movements: C = 1)
Change only (�1; �2; �3), C = 2) Change only �3, C = 3) Change only �4,
C = 4) Change only �E. Under T = 0, q(M�jM;T = 0) is such that C
can take values (1; 2; 3; 4) each with equal probability (1=4). However, when
T = 1, C takes only values (1,2,3), each with probability 1=3. Conditional
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on C = 4, one of the elements in �(r)E is chosen randomly and its current
value is changed (from 0 to 1 if the current value is 0 or otherwise from 1

to 0). Similarly, conditional on C = 3 one of the elements in �(r)4 is chosen
randomly and changed.
When C = 1 we will propose movements that take instruments/regressors

in and out of the model. Let e�(r)2 be those elements of �(r)2 that correspond
to potential instruments that are currently not in xi (that is, those potential
instruments are either out of the model (�(r)2 = 0) or in zi (�

(r)
2 = 1; �

(r)
3 = 1)).

With the intention of improving convergence speed, when C = 1 we do not
only consider increasing or decreasing the number of instruments/regressors
by just one, but also we allow for a move that changes the set of instruments
while keeping the number of instruments the same. That is, with probability
ç one of the elements in (�(r)01 ;e�(r)02 )0 is chosen randomly and its current value is
changed. This is a move that changes the number of instruments/regressors.
If an element of �(r)1 is chosen, only its own value will be changed. But if an
element of e�(r)2 is chosen, the corresponding value in �(r)2 and in �(r)3 will be
changed. For example, if a variable in Z� was out of the model and is chosen,
it will be proposed as an instrument (in zi). But if it was already in zi, the
proposed movement will take it out from the model. Let Z�(r)�x be the set of
potential instruments that are currently not in xi and let e�(r)3 be all elements
of �(r)3 except for those that are currently in xi. If Z

�(r)
�x is not an empty set,

with probability (1-ç) we change a random number of elements in e�(r)3 while
leaving the value (e�(r)03 e�(r)3 ) constant (however if Z�(r)�x is the empty set, with
probability (1-ç) the candidate model will be equal to the current one). The
instruments to replace the current ones are going to be chosen from Z

�(r)
�x .

To do this, the number of elements of e�(r)3 to be changed, denote it as ~, is
drawn from a uniform between 1 and min(e�(r)03 e�(r)3 ;#(Z��x)�e�(r)03 e�(r)3 ), where
#(Z��x) denotes the number of elements in Z

�
�x. If (#(Z

�
�x) � e�(r)03 e�(r)3 ) = 0

(which implies there are currently no potential instruments excluded from the
model), we �x the candidate model equal to the the current one. Otherwise,
among those elements of e�(r)3 that are currently one, ~ of them are randomly
selected and changed to 0 (and the corresponding element in e�(r)2 will also be
changed to 0). Similarly, among those elements of e�(r)3 that are currently zero,
~ of them are randomly selected and changed to 1 (and the corresponding
element in e�(r)2 will also be changed to 1).
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When C = 2 we will move potential instruments that are in zi to xi and
viceversa. As in the case C = 1, we consider two types of movements: one
that changes the number of instruments by just one, and another that changes
the set of instruments while keeping the number of instruments the same.
Let b�(r)3 be those elements of �(r)3 whose corresponding element in �(r)2 is one
(that is, b�(r)3 corresponds to potential instruments that are currently in the
model, either in xi or in zi). Conditional on C = 2 we will propose changes
only to b�(r)3 , while keeping �(r)2 the same (that is, we are just moving potential
instruments from zi to xi and viceversa). With probability ç we propose a
move that changes the number of instruments: simply choose one element
in b�(r)3 randomly and change it. With probability (1-ç) we change a random
number of elements in b�(r)3 while leaving the value (�(r)03 �

(r)
3 ) constant. The

number of elements to be changed, denote it as ~, is drawn from a uniform
between 1 and min(�(r)03 �

(r)
3 ; �

(r)0
2 �

(r)
2 � �(r)03 �

(r)
3 ), where #(Z

�) denotes the
number of elements in Z�. If (�(r)02 �

(r)
2 � �(r)03 �

(r)
3 = 0) we �x M (�) = M (r).

Otherwise, among those elements of b�(r)3 that are currently one, ~ of them
are randomly selected and changed to 0. Similarly, among those elements ofb�(r)3 that are currently zero, ~ of them are randomly selected and changed to
1.
Thus, for each value of C (1; 2; 3; 4) the proposal density we consider is

symmetric and so it cancels out from the acceptance probability. Note that
the proposal density might propose a new modelM (�) such that �(�)03 �

(�)
3 < m

(so the number of instruments in zi is not enough for identi�cation). By
making the prior probability for such models equal to zero we make sure
that such proposed models are always rejected.

Speci�cation of prior in Drèze (1976)

De�ne Y = (y1; :::; yN)0; Y1 = (y11; :::; y1N)0; Y2 = (y21; :::; y2N)0; X = (x1; :::; xN)
0,

Z = (z1; :::; zN)
0 and the cross-product matrices:

AY Y = Y 0Y AY X = Y
0X AY Z = Y

0Z

AXX = X 0X AXZ = X
0Z AZZ = Z

0Z

Over-identi�ed models with no restrictions on �21
With regard to �, it is tempting to use an improper non-informative prior

for it. If there were no models with restrictions on the variance-covariance
matrix we could use the non-informative prior: p (�) / j�j�(m+1)=2, which
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implies p (
) / j
j�(m+1)=2. However, since the model space includes models
with exogeneity restrictions we need to specify a proper prior for the relevant
covariance parameters. Using the decomposition of 
 in (2), let us de�ne:

!11�2 = var(v1ijv2i) = !11 � !12
�122 !21e!21 = 
�122 !21 (8)

There is a one-to-one mapping from 
 to (e!21;
22; !11�2) (e.g. Bauwens,
Lubrano and Richard, 1999, p.305) and so we can �x the following prior
speci�cation on (e!21;
22; !11�2):

e!21 � N(0; ge!11�2Im) (9)


22 � IWm(S22; v22)

p(!11�2) / j!11�2j�1

where IWm(S22; v22) represents the inverted Wishart distribution with de-
grees of freedom equal to v22 and parameter matrix S22 (Bauwens et al.
(1999 p. 305)). Let 
 eE be a d eE � 1 vector containing the non-zero elements
of 
. Following the parameterization in Drèze (1976) we specify a normal
prior on (
0eE; vec(�x)0; vec(�2z)0)0 such that vec (�x) j
 � N(0; gV �x 
 
),

 eEj
 � N(0; g!11�2A), vec(�2z)j
 � N(0; gD

22), where (g; ge; V �x ; A;D)
are prior parameters. It can be shown that �22 = 
22, �11�2 = !11�2 and that

vec

�
�0

�2x

�
j� � N(0; gV �x 
 �). The same type of prior can be used

when there are restrictions on � (a zero restriction on � implies that the
corresponding variable becomes an instrument or that it completely drops
out from the system). In our empirical application of Section 5.2 we �xed:
g = ge = N2; V �x = A

�1
XX ; A = Id eE ; D = A�1ZZ , S22 = g

�1Im; v22 = m + 1.
In the analysis over the restricted model space in Section 5.1 we used the
same prior except for p (
) / j
j�(m+1)=2 and17 g = N . An advantage of
this prior speci�cation is that there are many analytical results for marginal
posteriors. The following proposition summarizes results regarding marginal
posterior densities that we use in our algorithm.

17We did not �x g = N2 in Section 5.1 because that would imply that the model that
includes all potential instruments in zi would get probability almost equal to 1. Conversely,
we did not use g = N in Section 5.2 because with that choice Bayesian and frequentist
estimates in the all-encompassing model would di¤er substantially.
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Proposition 1 De�ne S as:

S =

�
S11 S12
S21 S22

�
where S11 = (Y1� eZ
)0Mx(Y1� eZ
), S12 = (Y1� eZ
)0Mx(Y2� eZ), S21 = S 012
S22 = (Y2 � eZ)0Mx(Y2 � eZ), eZ = Z�02z and Mx = IN �XV �xX 0, with V �x
being de�ned below. De�ne also

�
Y 2 as the columns of Y2 that correspond

to the non-zero elements of 
. Similarly de�ne
�eZ as the columns of eZ that

correspond to the non-zero elements of 
. Then, using the prior de�ned
above, we can get the following posterior densities:

vec(�x)j(
; 
;�2z) � N(B�x ; V �x 
 
)e!21j(
22; !11�2; 
;�2z) � N(Be!21 ; Ve!21) 
22j(!11�2; 
;�2z) � IWm(S22; v22)

!11�2j(
;�2z) � IW1(S11�2; v11) 
 eEj�2z �Mtd eE�1(M
; P
; Q
; v
)

where Mtd eE�1(:) refers to the multivariate Student distribution of dimension
d eE � 1 (Bauwens, Lubrano and Richard (1999, p. 307)), and:

V �x = (
�
gV �x

��1
+ AXX)

�1 Ve!21 = !11�2
�
S22 +

1

ge
Im

��1
B�x = vec((AY X � �zA0XZ)V �x) Be!21 =

�
S22 +

1

ge
Im

��1
S21

S22 = S22 + S22 + g
�1�2zD

�1�02z v22 = v22 + k2 +N

S11�2 = S11 � S12
�
S22 +

1

ge
Im

��1
S21 + g

�1
0eEA�1
 eE
v11 = N + d eE v
 = N

P
 =
�eZ 0Mx

�eZ + 1
g
A�1 �

�eZ 0Mx(Y2 � eZ)(bS22)�1(Y2 � eZ)0Mx

�eZ
M
 = P

�1



"
�eZ 0MxY1 �

�eZ 0Mx(Y2 � eZ)(bS22)�1(Y2 � eZ)0MxY1

#
Q
 =

h
Y 01MxY1 � Y 01Mx(Y2 � eZ)(bS22)�1(Y2 � eZ)0MxY1

i
�M 0


P
M


bS22 = S22 + 1

ge
Im
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The posterior density conditional on � is:�

 eE

vec(�02z)

�
j� � N((T + T )�1(U + U); (T + T )�1)

T =

0@ a11 

�
Y
0

2Mx

�
Y 2 a12 


�
Y
0

2MxZ

a21 
 Z 0Mx

�
Y 2 A22 
 Z 0MxZ

1A ��1 =

�
a11 a12
a21 A22

�
a11 : 1� 1

T =

0@ (�11�2)
�1
��
gA
��1

+
�
g
e
Id eE
��1�

0

0 ��122 
 g�1D�1

1A
U =

 
�(g

e
�11�2)

�1
�e�21

0k2m�1

!
U =

 
vec(

�
Y
0

2MxY2a21) + vec(
�
Y
0

2MxY1a11)
vec(Z 0MxY1a12) + vec(Z

0MxY2A22)

!

where e�21 = (�22)�1 �21 and �e�21 contains only the rows of e�21 corresponding
to the rows of 
 where the non zero elements are located.

For d eE > 0, p(Y;�2z) is given by:��gV �x���(m+1)2
��V �x��m+12 CIW (S22; v22;m)CIW (1; v11; 1)

���S22 + g�1e Im����1=2 ���geIm����1=2 �
[CIW (S22; v22;m)]

�1CMt(P
; Q
; v
; d eE; 1)���gA���1=2 ��gD���m=2 j2�j�d eE=2 j2�j�(k2m)=2 j2�j�N(m+1)=2
where (CIW (:), CMt(:)) refers to the integrating constants of an Inverted
Wishart and Matrix Student distribution respectively, as de�ned in Bauwens,
Lubrano and Richard (1999, p. 305 and p. 307). For d eE = 0 (i.e. all the
elements of 
 are restricted to be zero) the expression for p(Y;�2z) is the same

but we need to write
��S11�2���v
=2 instead of CMt(P
; Q
; v
; d eE; 1). Finally,

p(Y;�) is given by:

��gV �x���(m+1)2
��V �x��m+12 exp

�
�1
2
tr(��1Y 0MxY )

�
exp

�
1

2
(U + U)0(T + T )�1(U + U)

�
���(T + T )�1��1=2 ��g�11�2A���1=2 ��gD 
 �22���1=2 j2�j�N(m+1)=2 j�j�N=2 (�11�2)�1 �

[CIW (S22; v22;m)]
�1 j�22j�(v22+m+1)=2 exp(tr(��122 S22))����g

e
�11�2Im

����1=2 exp��1
2

�
g
e
�11�2

��1 e�021e�21�
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Over-identi�ed models with restrictions on �12
In the extreme case that cov(v2i; u1i) = �12 = 0 (i.e. all variables are

weakly exogenous) and, thus, e�12 = 0, the prior for the remaining parame-
ters in the model is exactly the same as above. In the intermediate case in
which only some elements of �12 are restricted, decompose y2i into the weakly
exogenous variables ( yXi) and the exogenous variables (yEi). Furthermore,
decompose yXi into (y eXi; yXi), such that yXi are those variables of yXi whose
coe¢ cient in the equation for y1i is restricted to be zero. Then we can rewrite
the model by including yXi in zi (as an instrument) and y eXi in xi (as an ex-
ogenous regressor). This will result in a system of equations for yEi that is
equivalent to (1) albeit of a lower dimension. We use the same prior outlined
above, with the exception that the parts of (D,V �x) that corresponds to
(yXi; y eXi) are chosen to be equal to the identity matrix. The system is com-
pleted with reduced form equations for yXi which depend on the original set
of exogenous variables and with error terms that are independent from the
error terms in the equations of (y1i; yEi). The priors for the parameters in the
equations for yXi are natural-conjugate18 such that the marginall likelihood
for this part of the system is known analytically (Zellner, 1971).

Speci�cation of Cold Model

Using the prior of Drèze (1976) outlined above, the integrating constant of
the conditional posterior p(
; �;�2x;�jY;�2z) can be calculated analytically.
However, the integrating constant of p(�2zjY ) and consequently the marginal
likelihood �(Y ) are unknown. The cold model that we use has the same
distribution for p(
; �;�2x;�jY;�2z), but uses an approximation for p(�2zjY )
and p(Y ) that we denote as pc(�2zjY ) and pc(Y ), where the super-index c

denotes cold. Because �2z is asymptotically normal19, we choose pc(�2zjY ) to
be a multivariate Student density centered at the value of �2z that maximizes
the posterior density b�2z (obtained using the methods outlined in Johansen
(1988)) and with covariance matrix P� 
 b�22, where b�22 is the value of �22
18Speci�cally, conditional on the covariance matrix, mean coe¢ cients follow a normal

g-prior. The prior for the covariance matrix follows an inverted Wishart.
19Note that because �2z is a reduced form parameter, it is always identi�ed, and hence

the normal asymptotic approximation does not su¤er from the problem of weak instru-
ments.
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that maximizes the posterior20 and P� =
�
g�1D�1 + Z 0MxZ

��1
. To see how

this approximation of p(�2zjY ) gives us also an approximation for p(Y ) �rst
de�ne:

p(Y;�2z) =

Z
p (
; �;�2x;�;�2z) p (Y j
; �;�2x;�;�2z) d(
; �;�2x;�)

which can be obtained analytically when the prior of Drèze (1976) is used.
Then note that:

p (�2zjY ) =
p(Y;�2z)

p (Y )

which implies that pc (Y ) can be obtained as the ratio (p(Y;�2z)=pc (�2zjY ))
evaluated at �2z = b�2z. In order to design the RJMCMC algorithm, we need
to know the joint density of parameters and data in the cold model, and this
is de�ned as:

pc(
; �;�2x;�;�2z; Y ) = p
c (Y ) p(
; �;�2x;�jY;�2z)pc(�2zjY )

Prior speci�cation in the Strachan and Inder�s (2004)
approach

Over-identi�ed models with no restrictions on �12
Because this prior was originally proposed for the Vector Error Correction

Model, we give details here of how it can be adapted to the incomplete
simultaneous equations model. Decompose y2i as (y eEi; yEi), where y eEi are
the variables that enter into the equation for y1i with a non-zero coe¢ cient,
and yEi are those whose coe¢ cients are restricted to be zero. Similarly,
decompose the error term v2i into (v eEi; vEi). Referring to the notation used in
(1) let the rows of �2x that correspond to (y eEi; yEi) be denoted as (� eEx;�Ex),
respectively. Similarly, decompose the rows of �2z into (� eEz;�Ez). With this
notation let us rewrite (1) as:

y1i = 
0eEy eEi + �0xi + u1i (10)

y eEi = � eExxi +� eEzzi + v eEi
yEi = �Exxi +�Ezzi + vEi

20To be more precise, (b�2z; b�22) do not maximize the posterior density, but maximize the
product of the likelihood times the priors of �x and �2z only. In models with restrictions
on 
, these are ignored at the time of maximizing the posterior.
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The reduced form can be written as:�
y1i
y eEi

�
= ��xxi +�

�
zzi + v

�
1i (11)

yEi = �Exxi +�Ezzi + vEi

where:

��x =

�
�1x
� eEx

�
=

�
�0 + 
0eE��eEx

��eEx
�

��z =

�

0eE� eEz
� eEz

�
=

�

0eE
Id eE

�
� eEz

v�1i =

�
u1i + 


0eEv eEi
v eEi

�

� = E

��
v�1i
vEi

��
v�1i v0

Ei

��
=

�

�11 
�

1E


�
E1


�
EE

�
Note that the matrix that is subject to rank restriction is ��z. Following
Koop, Leon-Gonzalez and Strachan (2010) let us introduce a non-identi�ed
matrix �2 of dimension d eE�d eE, where d eE is the dimension of y eEi, and rewrite
��z as:

��z =

�

0eE
Id eE

�
��eEz =

�

0eE
Id eE

�
�2�

�1
2 �

�eEz =
�

0eE�2
�2

�
��12 �

�eEz = ��0

� =

�
�1
�2

�
=

�

0eE�2
�2

�
: (d eE + 1)� d eE � = ��0eEz ���12 �0 : k2j � d eE

Thus, for a given value of �2 there is a one-to-one mapping between the
parameters in (1) and the parameters in (11). Therefore, it is possible to
derive some of the properties that this prior implies on the structural pa-
rameters of (1). In particular, conditional on 
, the implied prior for 
 is
a type of Cauchy with no prior moments. In this way the prior is quite
non-informative, but still proper. The implied prior for ��eEz is a multivariate
version of the variance-gamma distribution analyzed by Madan.and Seneta
(1990). This distribution gives more weight to the tails and center of the
distribution, at the expense of the middle range. Using standard rules for
Jacobians (e.g. Muirhead (1982, p.57)) it can be veri�ed that the Jacobian
J from (�2; 
; �;�2x;�;�2z) to (�; �;��x;�Ex;�Ez;


�) is:

J = j�2�02j
� 1
2
(k2j�1)
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We proceed to put priors directly on the parameters of (11):

vec(�)j
� � N
�
0; Id eE 
 
�11

�
vec(�0) � N

�
0; gD 
 Id eE

�
vec

�
��x
�Ex

�
j
� � N

�
0; gV �x 
 


��
vec(�Ez)j
� � N

�
0; gD 
 
�

EE

�
We �x the prior parameters (g,D,V �x) in the same way as we did in the
prior of Drèze. The prior for 
� is also as in (9). An advantage of this prior
speci�cation is that it is possible to draw directly from the conditional pos-
teriors. In particular, the conditional posteriors (vec(�)0; vec(��x)

0; vec(�Ex)
0

; vec(�Ez)
0)0j
� and (vec(�0)0; vec(��x)0; vec(�Ex)0 ; vec(�Ez)0)0j
� are both

normal, while 
�j(�; �;��x; �Ex;�Ez) is an inverted Wishart (see Koop,
Leon-Gonzalez and Strachan (2010) for details).
Over-identi�ed models with restrictions on �12
We follow the same strategy as we did with the prior of Drèze (1976).

Using the same notation, y2i was decomposed as (y eXi; y eEi; yEi; yXi). We can
rewrite the model by including yXi in zi (i.e. as an instrument) and y eXi in
xi (i.e. as an exogenous regressor). This will result in a system of equations
for (y1i; y eEi; yEi) that is equivalent to (11) albeit of a smaller dimension.
Therefore we use the same prior for the parameters for this smaller system of
equations as in the case of no restrictions on �; with the exception that the
parts of (D,V �x) that corresponds to (yXi; y eXi) are chosen to be equal to the
identity matrix. The system is completed with reduced form equations for
yXi which depend on the original set of exogenous variables and with error
terms that are independent from the error terms in the equations of (y1i; yEi).
As discussed above, the priors for the parameters in the equations for yXi
are natural-conjugate such that the marginall likelihood for this part of the
system is known analytically (Zellner, 1971).

Prior speci�cation in the approach of Kleibergen and
van Dijk (1998)

We use the prior in expression (3.13) of Kleibergen and van Dijk (1998).
Using the notation in their paper, the prior parameters that we need to
choose are (P;A; h;G). In Section 5.1 we have �xed them as:

P = 0; A = g�1
�
AXX AXZ
A0XZ AZZ

�
; h = 5; G = 0:01Im+1 g = N
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We use the numerical methods in Kleibergen and Paap (2002, Section 5) to
calculate the Bayes factors. However, part of the Bayes factor calculation
involves calculating cr, which is the normalizing constant of the prior. As
explained by Kleibergen and Paap (2002, Section 5), this could be either
calculated using draws from the prior or in the case of an improper prior it
could be set equal to cr = (2�)�1=2(k2�m)

2
. Even though our prior is proper,

for simplicity we �x cr equal to (2�)�1=2(k2�m)
2
.
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