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Abstract: Spline functions have a long history as smoothers of noisy time series
data, and several equivalent kernel representations have been proposed in terms
of the Green's function solving the related boundary value problem. In this
study we make use of the reproducing kernel property of the Green's function
to obtain a hierarchy of time-invariant spline kernels of different order. The
reproducing kernels give a good representation of smoothing splines for medium
and long length �lters, with a better performance of the asymmetric weights in
terms of signal passing, noise suppression and revisions. Empirical comparisons
of time-invariant �lters are made with the classical non linear ones. The former
are shown to loose part of their optimal properties when we �xed the length of
the �lter according to the noise to signal ratio as done in nonparametric seasonal
adjustment procedures.

Keywords: equivalent kernels, nonparametric regression, Hilbert spaces, time
series �ltering, spectral properties.
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1. Introduction

The origin of smoothing splines appears to lie in the work on graduating
time series data by [Whittaker, 1923], but spline smoothing techniques were
generally regarded as numerical analysis methods, mainly used in engineering,
until extensive research by Grace Wahba demonstrated their utility for solving a
host of statistical estimation problems. It has now become clear that smoothing
splines, and their variants, provide extremely �exible data analysis tools. As
a result, they have become quite popular and have found applications in such
diverse areas as the analysis of growth data, medicine, remote sensing exper-
iments and economics. [Schoenberg, 1946] was the �rst who introduces the
word spline in connection with smooth, piecewise polynomial approximation.
However, the ideas were already used in the aircraft, ship-building, and automo-
bile industries. In the latter, the use of splines seems to have several indepen-
dent beginnings. Credit is claimed on behalf of de Casteljau at Citroën, Pierre
Bézier at Renault, and Birkhoff, Garabedian, and de Boor at General Motors
(GM), all for work occurring in the very early 1960s or late 1950s. These nu-
merical analysts found wonderful things to do with spline functions, because of
their ease of handling in the computer coupled with their good approximation
theoretic properties. Important references on splines from this view point are
[Golomb and Weinberger, 1959], [De Boor and Lynch, 1966], [De Boor, 1978],
[Schumaker, 1981], [Prenter, 1975], and the conference proceedings edited by
[Greville, 1968] and [Schoenberg, 1964a].

Generalizations of the problem proposed by [Schoenberg, 1964a,b] were
derived in [Kimeldorf and Wahba, 1971]. Historically that work is very close
to the one of [Golomb and Weinberger, 1959] and [De Boor and Lynch, 1966],
and later work on characterizing solutions to variational problems arising in
smoothing has been made easier by the lemmas given there. In that paper, the
authors demonstrated the connection between these variational problems and
Bayes estimates, a problem that has its historical roots in the work of [Parzen,
1962, 1970]. The formulas in [Kimeldorf and Wahba, 1971] were not very
well suited to the computing capabilities of the day and the work did not at-
tract much attention from statisticians, being rejected by mainstream statistics
journals as considered too �far out�. The �rst spline paper in an important sta-
tistical review is that on histosplines by [Boneva and Stefanov, 1971], which
lacks a certain rigor but certainly is of historical importance. In the later 1970s
a number of things happened to propel splines to a popular niche in the statistics
literature: computing power became available, which made the computation of



splines with large data sets feasible, and, later, inexpensive; a good data-based
method for choosing became available, and most importantly, splines engaged
the interest of a number of creative researchers. Simultaneously the work of
[Duchon, 1977], [Meinguet, 1979], [Utreras, 1979], [Wahba and Wendelberger,
1980], and others on multivariate thin-plate splines led to the development of a
practical multivariate smoothing method, which had few real competitors in the
so-called �nonparametric curve smoothing� literature. There rapidly followed
splines and vector splines on the sphere, partial splines and interaction splines,
variational problems where the data are non-Gaussian and where the observa-
tion functionals are nonlinear, and where linear inequality constraints are known
to hold. Along with these generalizations came improved numerical methods,
publicly available ef�cient software, numerous results in good and optimal the-
oretical properties, con�dence statements and diagnostics, and many interesting
and important applications. The body of spline methods available and under de-
velopment provided a rich family of estimation and model building techniques
that have found use in many scienti�c disciplines. Recent key references on
penalized and smoothing splines are [Eubank, 1988], [Wahba, 1990], [Green
and Silverman, 1994], [Eilers and Marx, 1996], [Hastie, 1996], [Hastie et al.,
2001], and [Ruppert et al., 2002]. In the mid-1990s, the attention was concen-
trated to analyze the connection between splines and another vibrant area of
data analytic research, known as reproducing kernel methods. Even if [De Boor
and Lynch, 1966] have already introduced the reproducing kernel methodology
to solve smoothing spline estimation problems, the emergence of support vec-
tor machines, starting with [Boser et al., 1992], have elucidated the connection
between these two sets of literature.

Reproducing kernel methods are performed within the functional analytic
structure known as a Reproducing Kernel Hilbert Space (RKHS). An early
RKHS reference is [Aronszajn, 1950] and contemporary summaries include
[Wahba, 1990, 1999], [Evgeniou et al., 2000], and [Pearce and Wand, 2006].
The latter show how penalized splines are embedded in the class of reproducing
kernel methods and help to connect these two bodies of research, envisaging
that support vector machines and other kernel methods have the most to gain
from this connection, particularly for the solution of classi�cation and predic-
tion problems.

In this study, we derive a reproducing kernel representation of smoothing
splines. Under the assumption of equally spaced observations, we show how
transform a smoothing spline into a kernel estimator with invariant local �tting
and smoothing properties. This enables us to build easily an hierarchy of kernel



splines of different orders.
The paper is structured as follows. In Section 2, we provide a basis function

representation of smoothing splines with particular emphasis on the cubic ones.
Section 3 describes the equivalent kernel representation based on the Green's
function, whose properties are here studied. A reproducing kernel perspective
is given in Section 4, where RKHS are introduced and several Sobolev spaces
illustrated. Section 5 deals with the problem of time series �ltering. The theo-
retical properties of time-invariant smoothing splines are analyzed by means of
spectral techniques, and we compared their performances using real life series.
Finally, Section 6 gives the conclusions.

2. Smoothing Spline of order m

Let us suppose that observations are taken on a continuous random vari-
able Y at n predetermined values of a continuous independent variable t. Let
{(ti, yi), i = 1, 2, ..., n} be the observed values of t and Y , assumed to be re-
lated by the regression model

yi = µ(ti) + εi i = 1, 2, ..., n (1)

where the εi are zero mean, uncorrelated random variables with a common vari-
ance σ2

ε , and µ(ti) are values of some unknown function at the design points
t1, t2, ..., tn. We will assume that 0 ≤ t1 ≤ ... ≤ tn ≤ 1. There is no loss of
generality in making this assumption (see [Eubank, 1988])1.

The determination of a suitable inferential methodology for the model (1)
will hinge on the assumptions it is possible to make about µ. There are two
different approaches of the regression analysis problem: parametric and non-
parametric.

Parametric methods require very speci�c, quantitative information from the
experimenter about the form of µ that places restrictions on what the data can
tell us about the regression function. Such techniques are the most appropriate

1This is equivalent to assume that the ti's are generated by a continuous, positive design
density f0 on [0, 1] through a relationship such as

Z 1

0

f0(t)dt =
2i− 1

2n
, i = 1, 2, ..., n

In words, this means that ti is the 100 (2i−1)
2n

-th percentile of the density f0 . The canonical case
of a uniform design corresponds to f0(t) = 1[0,1](t).



when the theory, past experiments and/or other sources are available, providing
detailed knowledge about the process under study. In contrast, nonparametric
regression techniques relay on the experimenter to supply only qualitative infor-
mation about µ and let the data speak for themselves concerning the actual form
of the regression curve. These methods are best suited for inference in situations
where there is little or no prior information available about the regression curve.
In this latter class lie smoothing spline techniques, which assume that µ belongs
to the m-th order Sobolev space

Wm
2 [0, 1] =

{
µ : µ(j)is absolutely continuous, j = 1, 2, ..., m− 1

µ(m) ∈ L2[0, 1]

}

The space Wm
2 [0, 1] ⊂ L2[0, 1], hence the properties of L2[0, 1] functions will

be applicable to the elements of Wm
2 [0, 1].

Suppose that µ belongs to the space Wm
2 [0, 1], a nonparametric regression

estimator of µ can be approximated by a polynomial function of order m− 1 as
stated by the Taylor's theorem.

Theorem 1 (Taylor's theorem) If µ ∈ Wm
2 [0, 1], then there exist coef�cients

θ0, θ1, ..., θm−1 such that

µ(t) =
m−1∑

j=0

θjt
j +

∫ 1

0

(t− u)m−1
+

(m− 1)!
µ(m)(u)du

where
(t− u)m−1

+ =
{

(t− u)m−1, t ≥ u;
0, t < u.

The Taylor's theorem suggests that if, for some positive integer m, the remain-
der term

Remm(t) =
∫ 1

0

(t− u)m−1
+

(m− 1)!
µ(m)(u)du (2)

is uniformly small, then we could write

yi
∼=

m−1∑

j=0

θjt
j
i + εi, i = 1, 2, ..., n (3)

In other words, the data would follow an approximate polynomial regression



model. We could then estimate the polynomial coef�cients by least squares or
some other methods (see e.g. [Kendall et al., 1983]).

The Taylor's theorem arguments for the use of polynomial regression are
tantamount to lump the remainder terms Remm(t1), ..., Remm(tn) into the ran-
dom error component of the model (1). If the remainders (2) at the ti's are small
relative to the random errors, polynomial regression (3) may work fairly well.
If not, problems can arise. Since both the remainder and random errors are un-
known there is no way to know whether or not the Taylor's theorem arguments
are applicable to a speci�c choice of m that is made with any given data set.
In view of the uncertainty about the magnitude of the remainder from a polyno-
mial approximation of µ and of the random errors, it would seem natural to try to
modify the polynomial regression estimator, attempting to compensate the pos-
sibility of large remainder terms. This line of reasoning leads to smoothing (and
least squares) spline estimators for µ. Smoothing polynomial splines provide
an alternative way of overcoming the limitations of a global polynomial model
by adding polynomial pieces at given points, called knots, so that the polyno-
mial sections are joined together ensuring that certain continuity properties are
ful�lled.

There are several ways of representing a spline function, some of which are
more amenable from the computational standpoint. The following one, known
as truncated power representation, has the advantage of representing the spline
as a multivariate regression model.

De�nition 2 (Spline of order m) A spline of order m with k knots at κ1, κ2, ..., κk

is any function of the form

µ(t) =
m−1∑

j=0

θjt
j +

k∑

i=1

ηi(t− κi)m−1
+ , ∀t ∈ [0, 1] (4)

for some set of coef�cients θ0, θ1, ..., θm−1, η1, ..., ηk.

This de�nition is equivalent to say that

(a) µ is a piecewise polynomial of order m−1 in each of the (k−1) subinterval
[κi, κi+1),

(b) µ has m− 2 continuous derivatives, and

(c) µ has a discontinuous (m− 1)th derivative with jumps at κ1, ..., κk.



The set of functions (t − κi)m−1
+ , i = 1, 2, ..., k, de�nes what is usually

called the truncated power basis of degree (m − 1). According to eq. (4),
the spline is a linear combination of polynomial pieces; at each knot a new
polynomial piece, starting off at zero, is added so that the derivatives at that
point are continuous up to order m− 2.

Let Sm(κ1, ..., κk) denote the space of all functions of the form (4).
Sm(κ1, ..., κk) is a vector space in the sense that is closed under �nite vector ad-
dition and scalar multiplication. Since the function 1, t, ..., tm−1,
(t − κ1)m−1

+ , ..., (t − κk)m−1
+ are linearly independent, it follows that

Sm(κ1, ..., κk) has dimension m + k.
In the sequel we shall assume that:

1. the observations are available at discrete points, yi, i = 1, 2, ..., n, and

2. the knots are placed at the design points at which observations are made
(κi = ti, i = 1, 2, ..., n).

We know that the behavior of polynomials �t to data tends to be erratic near the
boundaries, and extrapolations can be dangerous. These problems are exacer-
bates with splines. The polynomial �t beyond the boundary knots behave even
more wildly than the corresponding global polynomials in that region. This
leads to natural smoothing splines which add additional constraints, ensuring
that the function is of degree (m

2 − 1) beyond the boundary knots.

De�nition 3 (Natural spline of order m) A spline function is a natural spline
of order m with knots at t1, t2, ..., tn if in addition to properties (a), (b), and (c),
it satis�es

(d) µ is a polynomial of order (m
2 − 1) outside of [t1, tn].

The name natural spline stems from the fact that, as a result of (d), µ satis�es
the natural boundary conditions

µ(m
2

+j)(0) = µ(m
2

+j)(1) = 0, j = 0, ...,
m

2
− 1. (5)

Let NSm(t1, ..., tn) denote the collection of all natural splines of order m
with knots t1, t2, ..., tn. Then NSm(t1, ..., tn) is a subspace of Sm(t1, ..., tn)
obtained by placing m (linear) restrictions arising from property (d) on the co-
ef�cients in eq. (4). In particular, to ensure that is a natural spline of order m



we must have

θm
2

= ... = θm−1 = 0 (6)

in eq. (4) since it must be a polynomial of order (m/2) for t < t1. One may
verify that NSm(t1, ..., tn) has dimension n.

Example 1. (Cubic smoothing splines) Consider the cubic spline model, which
arises from setting m = 4 in eq. (4):

µ(t) =
3∑

j=0

θjt
j +

n∑

i=1

ηi(t− ti)3+, ∀t ∈ [0, 1] (7)

The original cubic spline model (7) has 4+n parameters. The natural bound-
ary conditions (5) require that the second and the third derivatives are zero for
t ≤ t1 and t ≥ tn. This implies to impose 4 restrictions (2 zeros and 2 linear)
on the parameters of the cubic spline. In fact, the second and third derivatives
are respectively

µ′′(t) = 2θ2 + 6θ3t + 6
n∑

i=1

ηi(t− ti)+,

µ′′′(t) = 6θ3 + 6
n∑

i=1

ηi(t− ti)0+.

For µ′′(t) to be zero for t ≤ t1 outside it is required that θ2 = θ3 = 0, whereas
for t ≥ tn we also need

∑
ηi = 0 and

∑
iηi = 0. On the other hand, µ′′′(t) = 0

for t ≤ t1 and t ≥ tn if and only if θ3 = 0 and
∑

ηi = 0.
[Lancaster and Salkauskas, 1986] showed that the following relations hold

for natural cubic smoothing splines:

Bγ = Dy (8)

where γ and y are vectors de�ned as follows,

yT = [y1 y2 ... yn],

γT = (γ2, γ3, ..., γn−1), γi = µ′′(ti)

and B and D are matrices of dimension (n − 2) × (n − 2), and (n − 2) × n



respectively, given by




1
3(t3 − t1) 1

6(t3 − t2) 0 · · · 0
1
6(t3 − t2) 1

3(t4 − t2) 1
6(t4 − t3) · · · 0

0 · · · 0
. . . ...

...
... . . . . . . 1

6(tn − tn−1)
0 · · · 0 1

6(tn − tn−1) 1
3(tn+1 − tn−1)







1
(t2−t1) − (t3−t1)

(t3−t2)(t2−t1)
1

(t3−t2) · · · 0

0 1
(t3−t2) − (t4−t2)

(t4−t3)(t3−t2)
1

(t4−t3) · · ·
0 · · · . . . . . . ...
...

... . . . 1
(tn−tn−1) 0

0 · · · 1
(tn−tn−1) − (tn+1−tn−1)

(tn−tn−1)(tn+1−tn)
1

(tn−tn−1)




If the unknown smooth function µ has to be estimated on the basis of the n
observations yi, i = 1, 2, ..., n, the estimator µ̂ is given by the solution of the
following optimization problem [Schoenberg, 1964b]

min
µ∈W m

2 [0,1]

[
n∑

i=1

(yi − µ(ti))2 + λ

∫ 1

0
(µ′′(t))2dt

]
(9)

The �rst term measures the closeness to the data, while the second one penalizes
curvature in the function, and λ > 0 established a trade-off between the two.
When λ = 0, µ̂ can be any function that interpolates the data, whereas if λ = ∞
the simple line �t, since no second derivative can be tolerated. These cases vary
from very rough to very smooth, and the hope is that λ ∈ (0,∞) indexes an
interesting class of functions in between.

The (unique) optimal solution µ̂ of problem (9) is a natural cubic spline
with knots at points ti. The estimated values are related to the observations yi

as follows [Wahba, 1990]

µ̂ = A(λ)y (10)



where µ̂T = (µ̂(t1), µ̂(t2), ..., µ̂(tn)) and A(λ) is the so called in�uential ma-
trix. Therefore, each µ̂(ti) is a weighted linear combination of all the observed
values, with weights given by the elements of the i-th row of A(λ). Clearly,
these weights depend on the value of λ. λ is a parameter to be estimated, and
the estimation is usually done with the Generalized Cross Validation (GCV) pro-
cedure which minimizes the mean square prediction error. On the other hand,
λ can be assumed as given and each cubic spline predictor can be approxi-
mated with time invariant linear �lters, as shown in [Dagum and Capitanio,
1999] which provided this explicit form of matrix A(λ):

A(λ) =

(
I −DT

(
1
λ
B + DDT

)−1

D

)
. (11)

3. The Equivalent Kernel Representation

Eq. (9) can be generalized to a natural smoothing spline estimator of order
m, de�ned as the solution of the problem

min
µ∈W m

2 [0,1]

[
n∑

i=1

f0(ti)(yi − µ(ti))2 + λ‖µ(m)‖2

]
(12)

where ‖ · ‖ denotes the L2(0, 1)-norm, f0(t), t ∈ [0, 1] is a probability density
function, and λ is a positive smoothing parameter.
Different choices of f0(t), t ∈ [0, 1], generally lead to different �nite sample
and asymptotic properties for the estimate µ̂(t). Ideally, the selection of f0(t)
may depend on the correlation structure of the data, but because it is usually
unknown and may be dif�cult to estimate we do not have a general optimal
f0(t). Intuitively, we can provide equal weight to each single observation that
is shown to give satisfactory estimators (see, e.g. [Lin and Carroll, 2000]).

The criterion (12) is de�ned on an in�nite-dimensional function space, that
is the Sobolev space of functions for which the second term is de�ned.
Remarkably, it can be shown that eq. (12) has an explicit �nite-dimensional,
unique minimizer which is the natural smoothing spline of order m, µ̂(t), with
knots at the unique values ti, i = 1, 2, ..., n. The result in eq. (10) can be
extended to any positive integer m, introducing a symmetric function Sλ(t, s)
which belongs to Wm

2 [0, 1] when either t or s is �xed, so that µ̂(t) is given by



µ̂(t) =
n∑

i=1

Sλ(t, ti)yif0(ti) (13)

The explicit expression of Sλ(t, s) is unknown. For the theoretical development
of µ̂(t), we will approximate Sλ(t, s) by an equivalent kernel function whose
explicit expression is available.
To do so, de�ned the Wm

2 [0, 1]-inner product as

< f, g >W m
2 [0,1]=< f, g >L2(f0) +λ < f (m), g(m) >L2(0,1)=

=
∫ 1

0
f(t)g(t)f0(t)dt + λ

∫ 1

0
f (m)(t)g(m)(t)dt (14)

we rewrite the minimization problem (12) as follows

min
µ∈W m

2 [0,1]
‖µ‖2

L2(f0) − 2 < µ, y >L2(f0) +λ‖µ(m)‖2
L2[0,1] (15)

Eq. (15) de�nes the following Euler conditions

λµ(2m)(t) + f0(t)µ(t) = f0(t)y(t), ∀t ∈ [0, 1] (16)
µ(k)(0) = µ(k)(1) = 0, k = m,m + 1, ..., 2m− 1

where µ(k) denotes the k-th derivative of µ.
For each yi belonging to L2(f0), it can be shown that the solution to the

boundary value problem (16) exists and is unique, if the corresponding homoge-
nous problem only admits the null solution (see e.g. [Mathews and Walker,
1979], and [Gyorfy et al., 2002]). In particular, the solution is determined by
the unique Green's function Gλ(t, s), such that

µ̂(t) =
∫ 1

0
Gλ(t, s)y(s)f0(s)ds =< Gλ(t, s), y(s) >L2(f0) (17)

In the smoothing spline literature, the equivalent kernel of the smoothing spline
estimator Sλ(t, s) is usually obtained by approximating the Green's function
Gλ(t, s); see e.g. [Speckman, 1981], [Cox, 1984a,b], [Silverman, 1984], [Messer,
1991], [Messer and Goldstein, 1993], [Nychka, 1995], and [Chang et al., 2001].

For the case of uniform design density, [Cox, 1984a] computed the Green's
function for eq. (16) with periodic boundary conditions by means of Fourier



series, and then �xed the natural boundary conditions (for m = 2). [Messer
and Goldstein, 1993] determined the Green's function for eq. (16) on the line
by means of Fourier transform methods, and then �xed the natural boundary
conditions on the �nite interval.

On the other hand, for �arbitrary� smooth design densities f0, [Nychka,
1995] for m = 1, [Chang et al., 2001] and [Abramowich and Grinshtein, 1999]
for m = 2, used the Wentzel-Brillouin-Kramers (WBK) method, although only
the latter explicitly mention it. The WKB method applies to the boundary value
problem

λµ(2m)(t) + f0(t)µ(t) = f0(t)y(t), ∀t ∈ R
µ(k)(t) →∞ for t → ±∞, k = m,m + 1, ..., 2m− 1 (18)

and deals with the asymptotic behavior of the solution as λ → 0.
There are three aspects to take into account in the equivalent kernel set-up:

(1) the accuracy of the Green's function as an approximation to the original
smoothing spline estimator, (2) the properties of the Gλ(t, s) estimator of the
regression function, and (3) the convolution kernel like properties of the Green's
function.

Concerning the point (1), in the literature several authors have identi�ed
approximations of the spline weight function. [Silverman, 1984]'s kernel repre-
sentation provides an excellent intuition about how a spline estimate weights the
data relative to fairly arbitrary distribution of the observation points. [Messer,
1991]'s Fourier analysis gives a high order approximation to the spline estima-
tor for all m ≥ 2, when {ti} are equally spaced. An extension to the case of
unequally spaced observations is given by [Nychka, 1995].

To evaluate the (2) properties of the Gλ(t, s) estimator of the regression
function, we note that the exact form for the Green's function will depend in
a complicated manner on both f0 and λ. In addition, Gλ(t, s) is not a con-
volution kernel and has a different shape depending on the distance of t and s
from the endpoints. However, suppose for the moment that a simple expression
for Gλ(t, s) is available. Under the assumption of uniform design density, one
might consider the approximations

E[µ̂(t)] = E


 1

n

n∑

j=1

Sλ(t, tj)yj


 =

1
n

n∑

j=1

Sλ(t, tj)µ(tj)

≈
∫ 1

0
Sλ(t, s)µ(s)f0(s)ds ≈

∫ 1

0
Gλ(t, s)µ(s)f0(s)ds (19)



and

V ar[µ̂(t)] ≈ σ2
ε

n

∫ 1

0
[Gλ(t, s)]2f0(s)ds (20)

In order to study eq. (19) and eq. (20), it turns out that is not necessary to
know the exact form of Gλ(t, s). Under suitable restrictions on the rate that λ
converges to zero, if µ has 2m continuous derivatives, then it is reasonable to
expect

E[µ̂(t)]− µ(t) ≈ (−1)m−1λ

f0(t)
µ(2m)(t), (21)

and

V ar[µ̂(t)] ≈ σ2
εCm

nf0(t)

(
f0(t)

λ

)1/2m

(22)

for t interior of [0, 1]. Here Cm is a constant depending only on the order of the
spline. Now set ρ(t) = (λ/f0(t))1/2m, one obtains that

E[µ̂(t)− µ(t)]2 ≈ ρ(t)4m[µ(2m)(t)]2 +
σ2Cm

nρ(t)f0(t)
(23)

In this form, ρ(t) can be interpreted as a variable bandwidth and the accuracy
of µ̂(t) is comparable to a 2m-th order kernel estimator. Based on the work
of [Fan, 1992, 1993], the pointwise mean square error is comparable to that of
locally weighted regression estimators. If we wanted to achieve a constant bias
or mean square error across t, we would have to consider not only the curvature
of µ, µ(2m)(t), but also the local density of the observations f0(t). This dis-
cussion is only relevant to points t in the interior of [0, 1]. The bias of a spline
estimate at the boundary may exhibit slower convergence rates, depending on
the derivatives of µ at the endpoints. This effect has been identi�ed in [Rice and
Rosenblatt, 1983] and is also well established for kernel estimators.

To study (3) the kernel like properties of the Green's function, we note that
Gλ(t, s) is not a convolution kernel, but it has quite analogous properties [Eg-
germont and LaRiccia, 2005]. In fact, there exist positive constants c, γ and δ
such that for all λ > 0,



sup
t∈[0,1]

‖Gλ(t, ·)‖∞ ≤ cλ−1

sup
t∈[0,1]

‖Gλ(t, ·)‖1 ≤ c (24)

sup
t∈[0,1]

‖Gλ(t, ·)‖BV ≤ cλ−1

and for every t, s ∈ [0, 1]

|Gλ(t, s)| ≤ γλ−1 exp(−δλ−1|t− s|). (25)

In eq. (24), ‖ · ‖p denotes the standard norm on Lp(0, 1), for 1 ≤ p ≤ ∞, and
‖ ·‖BV denotes the seminorm on the space of functions (no equivalence classes)
of bounded variation on [0, 1]. Note that convolution kernels have these prop-
erties, except for the exponential decay (but obviously, a convolution kernel
decays like a L1 function). Furthermore, as for kernel estimators, the behav-
ior of the Green's function can be analyzed as a function of λ. Particularly,
[Eggermont and LaRiccia, 2005] proved that there exists a constant c such that
∀λ > 0, θ ∈ [0, 1] and ∀p, 1 < p < ∞

sup
s∈[0,1]

‖Gλ(·, s)−Gθ(·, s)‖p ≤ cλ1+1/p

∣∣∣∣1−
λ

θ

∣∣∣∣ . (26)

Example 2. (Green's function of the cubic smoothing spline) Following
[Chang et al., 2001], we consider the cubic smoothing spline problem for �xed
time designs. The boundary value problem is characterized by the fourth order
differential equation

λµ(4)(t) + f0(t)µ(t) = f0(t)y(t), ∀t ∈ (0, 1)
µ(k)(0) = µ(k)(1) = 0, k = 2, 3. (27)

Let Gλ(s, t) be the Green's function associated with eq. (27). Then, the estimate
µ̂(t) satis�es

µ̂(t) =
∫ 1

0
Gλ(t, s)y(s)f0(s)ds, ∀t ∈ [0, 1] (28)



The Green's function Gλ(s, t) is explicitly obtained as the solution of

λ
∂

∂t4
Gλ(s, t) + Gλ(s, t) =

{
0 for t 6= s
1 for t = s

(29)

subject to the following conditions:

(a) Gλ(s, t) = Gλ(t, s) = Gλ(1− t, 1− s);

(b) ∂v

∂tv Gλ(0, t) = ∂v

∂tv Gλ(1, t) = 0, for v = 2, 3;

(c) ∂3

∂t3
Gλ(t, s)|s=t− = − ∂3

∂t3
Gλ(t, s)|s=t+ = 1

λ .

[Chang et al., 2001] derive explicitly Gλ(t, s) when f0 is the uniform density
function. Letting γ =

∫ 1
0 (f0(s))1/4ds and Γ(t) = γ−1

∫ 1
0 (f0(s))1/4ds, they

de�ne

Hλ(t, s) = HU
λ/γ4(Γ(t), Γ(s))Γ(1)(s)(f0(s))−1 (30)

to be the equivalent kernel of Sλ(t, s), equal to

HU
λ (t, s) =

λ−1/4

2
√

2

[
sin

(
λ−1/4

√
2
|t− s|

)
+ cos

(
λ−1/4

√
2
|t− s|

)]
exp

(
−λ−1/4

√
2
|t− s|

)

(31)

when f0(·) is the uniform density.
In general, Hλ(t, s) is not the only equivalent kernel that could be considered.
Another possibility is to use the one suggested by [Messer and Goldstein, 1993],
even if it has not a sharp exponential bound as that given in eq. (31).

An important outcome proved by [Chang et al., 2001] is that HU
λ (t, s) is the

dominating term of GU
λ (t, s), as stated in the following lemma.

Lemma 4 Suppose that GU
λ (t, s) is the Green's function of the differential equa-

tion (27) with f0(t) = 1[0,1](t). When λ → 0, the solution GU
λ (t, s) of eq. (29)

is given by

GU
λ (t, s) = HU

λ (t, s)

{
1 + O

[
exp

(
−λ−1/4

√
2

)]}
(32)



where HU
λ (t, s) is de�ned in eq. (31).

Most of the asymptotic theory for splines is based on showing that the cor-
rection term is negligible.

4. The Reproducing Kernel Hilbert Space Approach

The derivation of the Green's function corresponding to a smoothing spline
of order m requires the solution of a 2m × 2m system of linear equations for
each value of λ. A simpli�cation is provided by studying the function Gλ(t, s)
as the reproducing kernel of the Sobolev space Wm

2 (T ), where T is an open
subset of R.

A RKHS is a Hilbert space characterized by a kernel that reproduces, via
an inner product, every function of the space or, equivalently, a Hilbert space of
real valued functions with the property that every point evaluation functional is
bounded and linear.

Smoothing splines and reproducing kernel methods are two areas of data
analytic research emerge in the mid-1990s, although the essential ideas have
been around for much longer. Fundamental references in the smoothing splines
literature are [Whittaker, 1923], [Schoenberg, 1946, 1964b], [Wahba, 1990],
and more recently [Eilers and Marx, 1996], [Hastie, 1996], and [Ruppert et al.,
2002]. On the other hand, an early reference on RKHS theory is [Aronszajn,
1950], and contemporaneous summaries include [Wahba, 1999], [Evgeniou et al.,
2000], and [Cristianini and Shawe-Taylor, 2000].

Reproducing kernel methods have become prominent in the nonparametric
regression literature as a framework for the smoothing spline methodology, as
summarized by [Wahba, 1990]. However, the adoption of these ideas by the ma-
chine learning community has widened the scope of reproducing kernel methods
quite considerably, in particular for the solution of classi�cation and prediction
problems. Kernel based on smoothing splines offer the opportunity to incorpo-
rate some principles more straightforwardly than commonly used kernels (see
e.g. [Pearce and Wand, 2006]).

Each speci�c application usually requires the use of an adapted RKHS. Let
{(ti, yi), 1 ≤ i ≤ n} be the dataset, L(·, ·) be a loss function and λ > 0 be a
smoothing parameter. The estimate µ̂(t) within Wm

2 (T ), with respect to L and



λ , is the solution to

min
µ∈W m

2 (T )

{
n∑

i=1

L(yi, µ(ti)) + λ‖µ(m)‖2
L2(T )

}
. (33)

The minimization problem (33) is directly related to the Wm
2 -norm, obtained by

the seminorm

‖µ(m)‖2
L2(T ) =

∫

T

(
µ(m)(t)

)2
dt, (34)

determined by the roughness penalty term. Different (topologically equivalent)
Wm

2 -norms can be constructed taking into account several loss functions. For
continuous y(ti), examples of loss functions are

L(a, b) =
{

(a− b)2 (squared error loss)
(|a− b| − ε)+ (ε− insensitive loss for some ε > 0)

(35)

For yi ∈ {−1, 1}, as arises in two-category classi�cation, examples are

L(a, b) =
{

log(1 + exp(−ab))2 (Bernoulli log-likelihood)
(1− ab)+ (hinge loss)

Some of them are very well-documented in the literature, but there are cases
where the expression of the kernel is not available for the nonparametric esti-
mation of functions under shape restrictions.

The reproducing kernel representation of smoothing splines is not unique,
but depends on the speci�c norm we consider. As stated by [Gu and Wahba,
1992]: ¨The norm and the reproducing kernel in a RKHS determine each other
uniquely, but like other duals in mathematical structures, the interpretability,
and the availability of an explicit form for one part is often at the expenses of
the same for the other part¨.

4. 1. The Spaces and Their Norms

Let T denote an open subset of R, and Wm
2 (T ) the classical Sobolev Space,

i.e. the set of functions µ of L2(T ) whose weak derivatives µ(k), k = 1, 2, ..., m,



in the sense of generalized functions2, belong to L2(T ) ([Adams, 1975]). The
classical norms for these spaces are

‖µ‖2 =
m∑

j=0

∫

t∈T

(
µ(j)(t)

)2
dt (36)

but, for our particular application, the following ones seem more appropriate:

‖µ‖2 =
∫

µ(t)2dt + λ

∫

t∈T

(
µ(m)(t)

)2
dt. (37)

They are simpler to interpret as a weighted sum of the L2-norms of µ (square
error loss function) and its m-th derivative µ(m) (roughness penalty term), the
parameter λ regulating the balance. Eq. (36) and (37) are topologically equiva-
lent by virtue of the Sobolev inequalities [Agmon, 1965], which can be applied
to the cases of the real line or of a bounded open interval.

We now recall some facts about the reproducing kernel Hilbert space theory.
Let Dk

t be the derivative functional of order k at the design point t, that is

Dk
t (µ) = µ(k)(t), ∀t ∈ T,∀µ ∈ Wm

2 (T ).

If Dk
t is continuous, by the Riesz representation theorem, there exists a repre-

senter dk
t in Wm

2 (T ) of Dk
t , in the sense that

Dk
t (µ) =< µ, dk

t >, ∀t ∈ T,∀µ ∈ Wm
2 (T ).

A reproducing kernel Hilbert space is a Hilbert space in which the evaluation
operators D0

t are continuous functionals for all t in T . The function
2Let D(R) be the space of in�nitely differentiable functions φ with compact support, known

as test functions. De�ning the space of Schwartz distributions or generalized functions, D′(R),
to be the space of all continuous linear functionals (the topological dual space) of D(R), the
derivative in the sense of distributions or weak derivative of order p, Dp, is a linear operator
from D(R) to D′(R) satisfying the formula (obtained by p integration by parts):

Z

R
Dpf(s)φ(s)dλ(s) = (−1)−p

Z

R
f(s)Dpφ(s)dλ(s)

In other words, given the distribution f , its distributional derivative of order k is de�ned by

< f (k), φ >= −(−1)k < f, φ(k) >, ∀φ ∈ D(R)



K(t, s) = d0
t (s) is known as the reproducing kernel of the space, and the reader

is referred to [Aronszajn, 1950] for more extensive properties.
The Sobolev spaces Wm

2 (T ) is a RKHS, that is the functionals Dk
t are well

de�ned and continuous, if and only if m− k > 1/2 [Wahba and Wendelberger,
1980].

In this setting, our aim is to provide an invariant kernel representation for a
smoothing spline of general order m by means of the reproducing kernel (i.e.
Green's function) Km,λ(t, s) of Wm

2 (T ). Considering the norm (37), this is
possible only for the case of the real line. On the other hand, when T = (a, b) or
under different norms, the reproducing kernel will vary with the design points,
hence it is not appropriate to study the smoothing splines as linear �lters.

4. 2. An Hierarchy of Kernel Spline Estimators

When T = R, the space Wm
2 (R) falls into the family of Beppo-Levi spaces

described in [Thomas-Agnan, 1991]. It follows from the results of such paper
that the reproducing kernel is translation invariant, and can be written with a
slight abuse of notation as

Km,λ(t, s) = Km,λ(t− s).

It is given by

=Km,λ(ω) =
1

1 +
(
2π ω

λ

)2m (38)

where = denotes the Fourier transform 3, as de�ned in [Thomas-Agnan, 1991].
Even though the proof can be found in this reference, it is interesting to outline
it here in this very simple example. Under the norm (37), by de�nition, Km,λ

satis�es ∀µ ∈ Wm
2 (R)

∫ ∞

−∞
µ(t)Km,λ(t, s)dt + λ

∫ ∞

−∞
µ(m)(t)

∂m

∂tm
Km,λ(t, s)dt =

=< µ(t),Km,λ(t, s) >W m
2 (R)= µ(s). (39)

3The Fourier transform in L2(R) may be de�ned as follows

=f(ω) =

Z ∞

−∞
exp(−2πiωs)f(s)dλ(s), ∀f ∈ L2(R)

.



Using the Parseval identity 4 in these two integrals, and the Fourier inversion for-
mula 5 in the right hand side, one easily concludes that the function Km,λ(t, s)
is solution to the following equation

=Km,λ(ω, s) + (λ2πω)2m=Km,λ(ω, s) = exp(−2πiωs). (40)

This �rst shows that =Km,λ(ω, s) = exp(−2πiωs)=Km,λ(ω, 0), and therefore
the kernel is translation invariant, and that =Km,λ(ω, 0) is given by eq. (38).
From the formula (38) and the properties of Fourier transform, one concludes
that Km,λ can be expressed in terms of Km,1 by

Km,λ(t) =
1
λ

Km,1

(
t

λ

)
. (41)

Km,1 is a kernel which is familiar to the nonparametric statisticians since it is
the asymptotically equivalent kernel to smoothing spline of order m. The theory
for this equivalence can be found in [Silverman, 1984] as well as the analytic
expression of this kernel for λ = 1, and m = 1 or 2. [Thomas-Agnan, 1991]
found a formula for Km,1 for general m by contour integration. The result is
stated in the following proposition.

Proposition 5

Km,1(t) =
m−1∑

k=0

exp
(
−|t|ei π

2m
+k π

m
−π

2

)

2me(2m−1)(i π
2m

+i kπ
m )

. (42)

4The Parseval's formula says that for f and g in L2(R)

Z ∞

−∞
=f(ω)g(ω)dλ(ω) =

Z ∞

−∞
=g(ω)f(ω)dλ(ω).

Since the Fourier transform de�nes an automorphism of D(R), the Parseval formula provides a
way of extending it into an automorphism of D′(R).

5The Fourier inversion formula is given by

==f(ω) = f(−ω).

Fourier transform and differentiation in D′(R) satisfy the following identity

=(Dmf)(ω) = (2πiω)m=f(ω).



Proof. To compute the integral
∫∞
−∞

exp(2πiωs
1+(2πω)2m dω , for s ≥ 0, integrate on the

boundary of the upper half disc of the complex plane {|z| ≤ R, Im(z) ≥ 0},
and let R tend to ∞. The poles on the upper half plane are 1

2π exp
(
i π
m + ikπ

m

)
,

for k = 0, ..., m− 1. The integral is then equal to the product of 2πi by the sum
of the residues of the integrand at these poles, which yields eq. (42).

The most frequent case of application, which are m = 1, 2, and 3, are given
explicitly in this corollary.

Corollary 6

K1,1(t) =
1
2

exp (−|t|)

K2,1(t) =
1
2
e
− |t|√

2 sin

(
|t|
√

2
2

+
π

4

)

K3,1(t) =
1
6

{
e−|t| + 2e−

|t|
2 sin

(
|t|
√

3
2

+
π

6

)}

The kernel hierarchy representation of the spline estimator given in eq. (42)
enables to derive attractive features from the properties of kernel functions:
(a) the kernels in eq. (42) deform smoothly near the boundary in such a way as
to correct for boundary bias;
(b) the kernel can be evaluated by a simple scaling operation on a �xed function;
(c) the scaling function Km,1(t) is available in closed form for all orders of
kernel, and for estimating any derivative. It is a sum of exponentially damped
trigonometric polynomials.

The key idea is to exploit a certain symmetry in the construction of the
Green's function, approximating it by the kernel Km,1(t) which retains the
asymptotic properties of Gλ(t, s) and allows λ to enter as a scaling parame-
ter. On the other hand, these kernel estimate will inherit many of the properties
of the corresponding spline estimate, as shown in [Messer and Goldstein, 1993].
These authors proved that the spline equivalent kernel Km,1(t) of order m can
be viewed as containing an interior translation-invariant component which is of
order 2m at any �xed interior point.

Other reproducing kernel representations of smoothing splines can be de-
rived either by restricting the parametric set T to a bounded interval (a, b) or
by considering more general Wm

2 (T )-norms. In both cases, we cannot �nd an
hierarchy of convolution kernel estimators, as given in eq. (42).



When we restrict our attention to a bounded interval (a, b), the kernel repre-
sentation of a smoothing spline of order m cannot be derived within the RKHS
framework, but we make use of the Green's function property of the equiva-
lent kernel. Therefore, there are not computational gains with respect to what
described in section 3.

For general variational problems, other family of norms can be considered.
The most frequent ones encountered for the space Wm

2 (T ) are obtained by com-
pleting a seminorm of the form

∫
T (Jf)(t)2dt into a norm, where J is a linear

differential operator of order m. This is usually achieved by choosing a linear
operator (of boundary conditions) B from Wm

2 (T ) to Rm. [Schumaker, 1981]
gives some guidance for the initial value problem, and [Dalzell and Ramsay,
1993] for arbitrary B, but none provide an invariant kernel representation. An
important subclass of these problems has been solved by means of a different
use of the reproducing kernel methodology, as described in the learning ma-
chine literature. A brief and simpli�ed introduction to these classes of models
can be found in [Wahba, 1990], [Girosi et al., 1995], [Evgeniou et al., 2000],
and [Hastie et al., 2001]. These authors show that the solution of a general vari-
ational problem is �nite dimensional and it can be expressed in terms of the
reproducing kernel K(t, s) of the space Wm

2 (T )

µ̂(t) =
n∑

i=1

αiK(t, ti). (43)

One of the main attractive of this formulation is a Bayesian interpretation of
such models, in which µ can be viewed as a realization of a zero-mean stationary
Gaussian process, with prior covariance function K. However, we do not enter
in the details of such an approach, reminding the reader to the references given
above. This use of the RKHS methodology does not �t our need to �nd an
invariant general solution for smoothing spline of order m, as given by eq. (42).

5. Smoothing Splines in Time Series Filtering

Spline functions have a long history as smoothers of noisy time series data.
Empirical applications can be found in several studies, among others [Poirer,
1973], [Buse and Lim, 1977], [Smith, 1979], [Capitanio, 1996], [Dagum and
Capitanio, 1999], [Moshelov and Raveh, 1997], and [Kitagawa and Gersch,
1996].



A basic assumption in time series analysis is that the input series
{yt, t = 1, 2, ..., n} can be decomposed into the sum of a systematic compo-
nent, called the signal or nonstationary mean µ(t), plus an erratic component
εt, called the noise, such that

yt = µ(t) + εt. (44)

The noise εt is assumed to be either a white noise, WN(0, σ2
ε ), or more gen-

erally to follow a stationary and invertible AutoRegressive Moving Average
(ARMA) process.

If the input series is seasonally adjusted or without seasonality, the signal µ
represents the trend and cyclical components, usually referred to as trend-cycle
for they are estimated jointly. The trend-cycle can be deterministic or stochastic,
and have a global or local representation. If µ is differentiable, using the Taylor-
series expansion it can be represented locally by a polynomial of degree p of the
time distance j, between yt and the neighboring observations yt+j . Hence, given
εt for some time point t, it is possible to �nd a local polynomial trend estimator

µt(j) = a0 + a1j + ... + apj
p + et(j), j = −h, ..., h (45)

where a0, a1, ..., ap ∈ R and et is assumed to be purely random and mutually
uncorrelated with εt.

The coef�cients a0, a1, ..., ap can be estimated by ordinary or weighted least
squares or by summation formulae. The solution for â0 provides the trend-cycle
estimate µ̂t(0), which equivalently consists in a weighted average applied in a
moving manner [Kendall et al., 1983]. Once a (symmetric) span 2h + 1 of the
neighborhood has been selected, the wj's for the observations corresponding
to points falling out of the neighborhood of any target point are null or ap-
proximately null, such that the estimates of the n− 2h central observations are
obtained by applying 2h+1 symmetric weights to the observations neighboring
the target point. The missing estimates for the �rst and last h observations can
be obtained by applying asymmetric moving averages of variable length to the
�rst and last h observations respectively, i.e.

µ̂t =
h∑

j=−h

wjyt−j , t = h + 1, ..., n− h (central observations), (46)



µ̂p =
hp∑

r=1

wryr, p = 1, ..., h (initial observations),

µ̂q =
hq∑

z=1

wzyn+1−z, q = n− h + 1, ..., n (�nal observations),

where 2h + 1 is the length of the time invariant symmetric linear �lter and hp

and hq are the time-varying lengths of the asymmetric �lters.
Using the backshift operator B, such that Byt = yt−1, eq. (46) can be written
as

µ̂t =
h∑

j=−h

wjB
jyt = W (B)yt, (47)

where W (B) is a linear nonparametric estimator. The nonparametric estimator
W (B) is said to be of order p if

h∑

j=−h

wj = 1, (48)

h∑

j=−h

jiwj = 0, (49)

for some i = 1, 2, ..., p ≥ 2. In other words, it will reproduce a polynomial
trend of degree p− 1 without distortion.

Several nonparametric estimators have been developed, based on different
assumptions of smoother building. [Gray and Thomson, 1996a,b] used the same
criteria of �tting and smoothing of spline functions to develop a family of lo-
cal trend linear �lters. These authors show that their �lters are a generalization
of other widely applied smoothers due to [Henderson, 1916]. Within the con-
text of short-term trend estimation for current economic analysis, [Dagum and
Capitanio, 1997, 1998] have compared the 13-term Henderson (H13) �lter with
Cubic Smoothing Splines (CSS). Their results indicated that, for certain �xed
values of the smoothing parameter λ, the trend-cycle estimates from CSS were
better than those from the H13 on the basis of: (a) number of false turning points
in the �nal estimate of the trend-cycle and (b) time lag to detect a �true� turning



point. Furthermore, [Dagum and Capitanio, 1999] showed how approximate
the asymmetric cubic spline predictors by means of time-invariant linear �lters,
which are symmetric for middle observations and asymmetric for end points.
These authors analyzed the main properties of the in�uential matrix A(λ) for
the CSS, using the solution given in eq. (11). They found that, based on a
large number of numerical evaluations, as λ decreases (favoring �tting versus
smoothing), the nonzero values tend to concentrate along the main diagonal,
and to reproduce the same pattern on each row. Furthermore, for �xed λ, the
elements of A(λ) do not change for a number of observations n ≥ 30.

A different time-invariant representation of smoothing splines has been in-
troduced in the previous section by eq. (43). The main advantage of the re-
producing kernel formulation is given by the fact that we are able to obtain a
time-invariant linear approximation for a smoothing spline of general order m,
not only for the cubic one as done by [Dagum and Capitanio, 1999]. Further-
more, an important outcome of the RKHS theory is that smoothing splines can
be grouped into a hierarchy identi�ed by the Laplace density f0, and contain-
ing second and higher order estimators which are the products of trigonometric
polynomials with f0.
Here, we want to evaluate the goodness of the reproducing Kernel (KER) for-
mulation with respect to the �classical� Cubic Smoothing Splines (CSS) and
to the Linear Approximation (LA) provided by [Dagum and Capitanio, 1999].
The theoretical properties of time-invariant smoothing splines are analyzed by
means of spectral techniques, and we compare their performances relative to the
classical smoothers using real life series.

5. 1. Theoretical Properties of the Smoothing Spline Hierarchy

The weight system of the spline kernel hierarchy is directly obtained by the
kernel functions given in the Corollary 6 by specifying:

(a) the order 2m of the kernel, and

(b) the bandwidth parameter λ.

In general, the selection of λ is a crucial task and there is yet no universally
accepted approach for this choice. In smoothing spline problems, the trade-off
parameter λ is known as hyperparameter in the Bayesian terminology and it has
the interpretation of a noise to signal ratio: the larger the λ the smoother the



trend-cycle. The estimation of λ was �rst done using Ordinary Cross Validation
(OCV). OCV consisted of deleting one observation and solving the optimization
problem with a trial value of λ, computing the difference between the predicted
value and the deleted observation, accumulating the sums of squares of these
differences as one runs through each of the data points in turn, and �nally choos-
ing the λ for which the accumulated sum is the smallest. This procedure was
improved by [Craven and Wahba, 1979] who developed the Generalized Cross
Validation (GCV) method available in most computer packages. The GCV esti-
mate of λ is obtained by minimizing

V (λ) =
(1/n) |(I − A(λ))y|2
[(1/n)tr(I − A(λ)]2

(50)

where A(λ) is the in�uential matrix given in eq. (10), and its trace represents
the �degrees of freedom for the signal� and so, eq. (50) can be interpreted as
minimizing the standardized sum of squares of the residuals.

In time series linear �ltering, the selection of the bandwidth is directly de-
termined by �xing the length of the �lter. This latter can be selected according
to some criteria, generally the noise to signal (I/C) ratio as done in the non-
parametric seasonal adjustment package X11ARIMA. The I/C ratio measures
the size of the irregular component in the series; the greater it is, the higher
the order of the moving average selected. In order to calculate this ratio, a �rst
decomposition of the Seasonally Adjusted (SA) series is computed using a 13-
term Henderson �lter. The six �lost� points at the beginning and end of the
series are ignored. Hence, we have trend-cycle C and irregular I . We then cal-
culate, for both the C and the I series, the average absolute monthly growth rate
(multiplicative model) or the absolute monthly change (additive model), written
C and I . Thus, we have:

C =
1

n− 1

n∑

t=2

|Ct/( or −)Ct−1| (51)

I =
1

n− 1

n∑

t=2

|It/( or −)It−1| (52)

In the X11ARIMA method, the I/C ratio is then computed and:

(a) if it is smaller than 1, a 9-term Henderson moving average is selected;



(b) if the ratio is smaller than 3.5 but greater than 1, a 13-term Henderson �lter
is chosen;

(c) otherwise, we select a 23-term moving average.

Once the length of the �lter has been selected, the bandwidth parameter is cho-
sen to ensure that the 99% of the area under the kernel curve is covered. Such a
percentage takes into account the heavy tails of the Laplace density. Hence, we
compute the integral ∫ t

−t
K(x)dx = 0, 99

where K is the kernel function under investigation (second, third or �fth order),
and [−t, t] denote the symmetric interval at which corresponds a covered area
equal to 99%. If we �x the length of the symmetric �lter equal to 2h + 1, then
t = h/λ and hence λ = h/t. The number of decimals corresponding to the
value K(t) will de�ne the number of decimals in our weights.

Filters of any length, including in�nite ones, can be derived in the RKHS
framework. In this study, we will consider �lters of length 9, 13, and 23 terms
in according to those selected for the Henderson �lters in the smoothing of
monthly series by means of the X11ARIMA procedure.

The properties of linear �lters can be studied by analyzing their frequency
response functions de�ned by

H(ω) =
h∑

j=−h

wje
iωj , 0 ≤ ω ≤ 1/2 (53)

where wj are the weights of the �lter and ω is the frequency in cycles per unit
of time. In general, the frequency response functions can be expressed in polar
form as follow,

H(ω) = G(ω)eiφ(ω) (54)

where G(ω) is called the gain of the �lter and φ(ω) is called the phase shift of
the �lter and is usually expressed in radians. The expression (54) shows that
if the input function is a sinusoidal variation of unit amplitude and constant
phase shift ψ(ω), the output function will also be sinusoidal but of amplitude
G(ω) and phase shift ψ(ω) + φ(ω). The gain and phase shift vary with ω.
For symmetric �lters the phase shift is 0 or ±π, and for asymmetric �lter takes



values between ±π at those frequencies where the gain function is not zero.
For a better interpretation the phase shifts are often given in months instead of
radians, that is φ(ω)/2πω for ω 6= 0.

Figure 1 shows the gain functions of the symmetric 13-term �lters within
the spline hierarchy (similar results are obtained for the 9-term kernels).

Figure 1: Gain functions of symmetric 13-term spline kernels

The three �lters pass a lot of power at all the frequencies, in particular at
the highest ones associated to the noise, with the worst performance for the sec-
ond order kernel. This is due to the fact that when we restrict the spline to be
a time invariant �lter of short length, part of the smoothing properties of such
estimators are no longer optimal (see e.g. [Dagum and Luati, 2004]). The band-
width parameter selected to ensure �lter of 13 terms are equal to 0.875, 0.667
and 0.633 for the second order, third/fourth one, and �fth/sixth order kernel,
respectively. Since the bandwidth is directly related to the smoothing param-
eter λ which appears in the minimization problem (12), those values tend to
give more importance to the �tting part respect to the smoothing one. From
the view point of signal passing and noise suppression, the 23-term symmetric
�lters present better properties, as illustrated in Figure 2. In this case, the band-
widths selected are equal to 1.604 for the second order kernel, to 1.224 for the
third/fourth order one, and 1.162 for the �fth/sixth order �lter. The higher order
kernels perform better in terms of trend-cycle estimators, than the second order
one, and furthermore, the third order �lter tends to suppress more power at the
frequency ω = 0.10, related to cycle of 10 months, often interpreted as false
turning points.



Figure 2: Gain functions of symmetric 23-term spline kernels

The third order kernel within the hierarchy provides a new representation of
the CSS in general and of its linear approximation studied by [Dagum and Cap-
itanio, 1999]. This has important consequences in the derivation of the asym-
metric �lters, in particular for that corresponding to the last point, which is the
most important in current economic analysis.

Based on the results of the section 2 (eq. 10), we obtain, for central values,
the following 13-term LA �lter:

yt =
6∑

j=−6

A(λ)jyt+j (55)

where for λ = 0.11, the symmetric weights are:
[

0.0005 0.0011 −0.0037 −0.0212 −0.0062 0.2303 0.5984
]
.

For the last observation we have

yt =
0∑

j=−6

A(λ)jyt+j (56)

where for λ = 0.11, the asymmetric weights are:
[

0.0004 0.0019 −0.0004 −0.0231 −0.0482 0.1564 0.9132
]
.

A comparison is then performed with the 13-term third order kernel K2,1 within



the hierarchy, whose weights for the central observations are obtained as follows

wj =
K2,1(j/λ)∑6

i=−6 K2,1(i/λ)
, j = −6, ..., 6 (57)

and given by
[

0.0010 −0.0007 −0.0102 −0.0227 0.0210 0.2485 0.5265
]
.

The last point asymmetric weights are derived by K2,1 adapted to the length of
the �lter, that is

wj =
K2,1(j/λ)∑0

i=−6 K2,1(i/λ)
, j = −6, ..., 0 (58)

hence, equal to
[

0.0013 −0.0010 −0.0134 −0.0298 0.0275 0.3255 0.6898
]
.

Figure 3 shows that the gain of the symmetric kernel performs similarly to
that of LA, but the former passes less noise than the latter. On the other hand,
there is a strong better performance for the last point asymmetric kernel, that
does not amplify the gain power has done by LA, as illustrated in Figure 4.
For both the �lters the phase shift is less than one month (Figure 5). We do not
show here the results for �lters of length 9 and 23 terms, since the conclusions
drawn are similar.

Figure 3: Gain functions of symmetric 13-term CSS and third order spline ker-
nel



Figure 4: Gain functions of (last point) asymmetric 7-term CSS and third order
spline kernel

Figure 5: Phase shift functions of (last point) asymmetric 7-term CSS and third
order spline kernel

5. 2. An Empirical Application

The comparison of the trend-cycle estimates obtained with Cubic Smooth-
ing Splines (CSS), the Linear Approximation (LA) due to [Dagum and Capi-
tanio, 1999], and the KErnel Representation (KER) is done as follows:



(1) the input series for the three types of estimators is a seasonally adjusted se-
ries which has been modi�ed by replacing all extreme values with zero weights.
The identi�cation and replacement of extreme values is done with the default
option of X11ARIMA which de�nes as extreme value with zero weight any
irregular falling outside ±2.5σ.
(2) The CSS trend-cycles are estimated using the package �pspline� in the R
software based on [Heckman and Ramsay, 1996]. We required to select au-
tomatically the number of knots and to estimate the corresponding smoothing
parameter λ using the generalized cross-validation.
(3) We looked at the value of the I/C ratio given by the X11ARIMA method
which would have been used to determine the appropriate length of the time in-
variant linear approximation and kernel representation of the CSS, in according
to the range used by the procedure to select the Henderson �lter.
(4) The comparison among these three types of trend-cycle estimators is based
on measures of �delity and smoothness, as suggested by [Gray and Thomson,
1996a]. Fidelity is more commonly known as Mean Square Error (MSE), cal-
culated as an average of the squared differences (residuals) between the ob-
served and the estimated series. For comparative purposes we need an adimen-
sional measure, and thus, the MSE is standardized by the observations. That
is,

MSE =
1

n− 2h

n−h∑

t=h+1

(
yt − ŷt

yt

)2

(59)

where yt denotes the observed value at time t, ŷt the corresponding estimate
(applying the 2h + 1-term symmetric �lter), and n is the length of the series.

Smoothness is measured by the sum of squares of the third differences of
the estimated values, still divided by the observed data in view of standardizing
Q, that is

Q =
n∑

t=4

(
∆3ŷt

yt

)2

. (60)

The smaller Q, the closer ∆3ŷt is to zero, and the closer the estimated curve ŷt

is to a second-order polynomial in t.
In general, there is an inverse relationship between the MSE and Q. The
smaller MSE, the higher is Q. This is due to the fact that Q depends on the
variability of the �nal output whereas the MSE depends on the residual vari-



ance. Minimizing MSE ensures the trend estimate is in some sense close to
the �true� value, whereas minimizing Q ensures that the �tted trend polynomial
is close to a smooth polynomial of degree 2. A smoother is considered optimal
if eliminates all the noise power without modifying the signal, this is an ideal
case. In smoother construction, there is always a compromise between signal
passing and noise suppression. Hence, if a smoother leaves too much noise in
ŷt, the value of Q will be high. On the other hand, a �lter which removes all
the noise can at the same time suppress part of the signal and then will give a
small value of Q. For these reasons, it is important to consider the two measures
simultaneously, to evaluate how optimal is the performance of a smoother.

The trend-cycle estimators were applied to a sample of twenty Italian eco-
nomic indicators, but to illustrate how the CSS functions respond to the vari-
ability of the data and compare with the two approximations, we have selected
three typical cases from our sample.

The three Italian economic indicators are the Index of Industrial Produc-
tion of Energy (IIPE), Orders of Durable Goods (ODG), and Total Exportations
(TE). These are monthly series that cover the periods January 1990 - Decem-
ber 2006 for IIPE and ODG, and January 1991 - December 2006 for TE. Their
corresponding seasonally adjusted data are further modi�ed by extreme values
as described in (1) above, and the CSS, LA and KER trend-cycles are estimated.

Case 1. Index of Industrial Production of Energy

To estimate the CSS trend of the IIPE series we select the generalized cross-
validation technique for the estimation of the parameter λ, using the package
�pspline� in the software R, and we obtained an estimated value equal to 0.41.

We then evaluate the variability of this series and found that the I/C ratio
given by X11ARIMA was 2.27 indicating that this method would have chosen
the 13-term �lter for the estimation of the trend-cycle. Therefore, we obtained
the 13-term linear approximation of the CSS by choosing λ equal to 0.11, and
a bandwidth parameter equal to 0.667 to obtain a third order kernel of the same
length.
Figure 6 shows analogous patterns for the trend-cycle estimates, given the sim-
ilarity of the parameters selected by the three estimators.
The �tting and smoothing measures con�rmed the graphical analysis. The
MSE is more or less the same for the three estimators, equal to 0.000008 for the
CSS, to 0.000004 for LA, and equal to 0.000006 for KER. On the other hand,
the smallest value of the Q measure is obtained for the CSS (0.015), whereas



the kernel has a better performance relative to the LA with a Q value equal to
0.036 for the former and 0.066 for the latter.

Figure 6: Seasonally adjusted IIPE series and its trend-cycle estimates

Case 2. Orders of Durable Goods

For this series, the I/C ratio is equal to 2.39, indicating that the default option
of the X11ARIMA still selects the 13-term �lter. On the other hand, the GCV
selection of λ is 118.80, hence in the minimization problem (12) more impor-
tance will be given to the smoothing part relative to the �tting one.
Figure 7 clearly shows that the LA and KER provide similar estimates, that tend
to undersmooth the data; whereas the smoothest trend-cycle estimates are ob-
tained for the CSS.
The MSE is larger for the CSS (0.0008), con�rming that this �lter interpolates
less the data points, whereas the LA and KER present similar results, with the
�delity measure equal to 0.0002 for the former and 0.0003 for the latter. On
the other hand, the CSS presents the smallest value of Q, equal to 0.00001,
followed by the KER, with a value of 0.16804, and the LA has the worst perfor-
mance with Q = 0.32136.



Figure 7: Seasonally adjusted ODG series and its trend-cycle estimates

Case 3. Total Exportations

The automatic CSS for the Italian total exportations series produces a smoother
trend than LA and KER, as for the ODG series. This is due to the fact that
the selected parameters are strongly different. In particular, the GCV estimate
is 15.39, whereas the I/C ratio for the series is equal to 2.27, indicating the
appropriateness of the 13-term �lter. Therefore, the selected smoothing param-
eters are 0.11 and 0.667 for the LA and KER, respectively. This implies that the
LA and KER give very similar and poor results from a trend-cycle perspective
(see Figure 8). A better compromise is performed by CSS as con�rmed by the
�tting measure, equal to 0.0002 for both LA and KER, and to 0.0005 for CSS,
and by the smoothing measure Q, that is 0.0002 for CSS, 0.1053 for KER, and
0.2078 for LA.
Similar cases were present in other series of the sample, but if we use the
smoothing parameter determined by GCV in the two time-invariant represen-
tations, we will obtain symmetric �lters of much longer lengths than those se-
lected by the I/C ratio.



Figure 8: Seasonally adjusted ODG series and its trend-cycle estimates

In current economic analysis, long �lters are not useful, since they are made
of a large number of asymmetric weights that generate revisions and phase shifts
making dif�cult the detection of true turning points. On the other hand, with the
constraint of all the �lters to be of a �xed length, their statistical properties,
and those of the belonging hierarchy, are no longer necessarily optimal as in
the case when the optimal smoothing parameter is chosen. Hence, the statistical
properties of the �xed length smoothers have to be studied within the context of
their respective weighting systems.

6. Conclusions

In this study we derived a kernel representation of smoothing splines by
means of the Reproducing Kernel Hilbert Space (RKHS) methodology. We
made use of the reproducing kernel property of the Green's function which
solves the spline minimization problem.

We showed that the third order kernel is quite close to the time-invariant
representation of the cubic smoothing spline derived by [Dagum and Capitanio,
1999], with a better performance of the former in terms of signal passing and
noise suppression. The kernel representation has a computing advantage, in
the sense that it can be derived for every smoothing spline of general order m,



whereas the linear approximation provided by [Dagum and Capitanio, 1999] is
valid only for the cubic case. The symmetric weights of the kernel represen-
tation and those of the linear approximation are closer as the span of the �lter
increases, and we considered those lengths most often applied to monthly data.
Furthermore, there are important consequences in the derivation of the asym-
metric �lters, in particular for that corresponding to the last point that is the
most important in current economic analysis.

Applied to real time series, the kernel representation, whose length is se-
lected according to the I/C ratio, performs worse than a non linear cubic smooth-
ing spline with smoothing parameter determined by GCV. The use of the GCV
value in the time-invariant representations is not a solution, since we will ob-
tain symmetric kernels of too long lengths. This implies a larger number of
asymmetric weights that generate revisions and phase shifts making dif�cult the
detection of true turning points. Hence, the statistical properties of the �xed
length smoothers need to be �rstly studied within the context of their respective
weighting systems.
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