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ABSTRACT

The EU proposal on the quantity restraint of the emissions trading in the

Kyoto Protocol aims at reducing so called hot air that would be generated by the

purchase of emissions permits sold by a country whose actual emissions are much

lower than the assigned amount.  This proposal allows demanders to choose one out of

ten possible quantity restraints, but suppliers have no choice on the restraint.  In this

paper, we show that no quantity restraint of all demanders is not a subgame perfect

equilibrium, but quantity restraints with at least one country constitute the equilibria.

Furthermore, the EU proposal certainly benefits demanders including EU with the

sacrifice of suppliers.
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1. Introduction

The Kyoto Protocol to the Climate Convention in December 1997 requires that

Annex B Parties under the Protocol (that is, advanced countries and countries that are

undergoing the process of transition to a market economy) do not exceed their

assigned amounts, calculated pursuant to their quantified emission limitation and

reduction commitments. In order to implement this goal, it authorizes three major

mechanisms called the Kyoto mechanism. These are emissions trading, joint

implementation and the Clean Development Mechanism (CDM).  However, we must

design the details of these mechanisms as almost no details are given in the Protocol.

The Fourth Conference of Parties at Buenos Aires in November 1998 following the

Kyoto Conference adopted a "Plan of Action," but this plan is a timetable regarding

what should be argued when, and hence no details of the protocol are given.  Although

the Fifth Conference of Parties at Bonn in November 1999 unofficially called for the

ratification of the protocol by 2002, the details of the mechanisms will be determined at

Hague on November, 2000.

One of the central issues in the Kyoto Protocol has been supplementarity of

the Kyoto mechanism to domestic actions in reducing Greenhouse Gas (GHG)

emissions. The European Community and several countries have been proposing

quantitative constraints on the usage of three mechanisms.  Specifically, the European

Union Council of Ministers agreed on recommendations on definitions for

supplementarity for the Kyoto Protocol on May 18, 1999, and EU proposed this new

formula during the tenth sessions of the Subsidiary Bodies held at Bonn from May 31

to June 11, 1999 (see Council Conclusions on a Community Strategy on Climate

Change (1999)): Net acquisitions by an Annex B Party for all three Kyoto mechanisms
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together must not exceed the higher of the two following alternatives:

(1) 5% of : its base year emissions multiplied by 5 plus its assigned amount
2

; or

(2) 50% of: the difference between its annual actual emissions in any year of the period

from 1994 to 2002, multiplied by 5, and its assigned amount.

Net transfers by an Annex B Party for all three Kyoto mechanisms together

must not exceed (1).

Consider an example.  Assume that a country emitted 100 units of GHGs in

1990, and assume further that the country's assigned amount is 94% per year of the

emissions in 1990.  By using formula (1), we have {( )/ } . .100 5 94 5 2 0 05 24 25× + × × = .

That is, the country can rely on the Kyoto mechanism up to 24.25 units of acquisitions

from the year of 2008 to 2012.  Next, consider annual actual emissions from 1994 to

2002.  There must be nine numbers.  Suppose that annual actual emissions in 1999 are

124 units.  Applying (2), we obtain ( ) .124 5 94 5 0 5 75× − × × = .  That is, the country can

acquire up to 75 units from 2008 to 2012.  Thus, the country can choose one number out

of ten numbers from formulas (1) and (2).  The EU proposal says that the number is the

upper limit of acquisitions of the country.  On the other hand, if the country wants to

become a supplier, then the maximum transfers must not exceed the quantity obtained

by formula (1).

The EU proposal opens up two important strategic behaviors on the quantity

restraints in Annex B countries.  First, since a country that acquires emissions permits

and credits can choose her own upper limit out of possible ten numbers, the choice

itself is a strategy.  Second, since a country can choose a number that has not yet

realized, if the country wants to extend the upper limit, she would ban on the
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production of GHGs in 2001, and then cancel it at the beginning of 2002. By this way,

the upper limit would be relaxed.  On the other hand, because a country that supplies

emissions permits and credits has just one upper limit, she cannot use the limit as a

strategic variable.

Although the EU proposal put quantitative constraints to all three

mechanisms, the applicability of supplementarity to all of them is doubtful. The Kyoto

Protocol clearly states that both joint implementation and emissions trading are

supplemental to domestic actions (Articles 6 and 17). However, there is no explicit

statement on supplementarity for CDM (Article 12). Therefore, we do not impose any

quantity restraint on the supply accruing from CDM in this paper.

Baron, Bosi, Lanza and Pershing (1999) are the initiators analyzing the

proposal assuming that each country chooses the highest number among ten

possibilities. Further, Kaino (1999) evaluates supplementarity in the Kyoto Protocol

and then proposes some numerical simulation of the proposal.  In this paper, we focus

upon the strategic nature of the proposal.  Specifically, we examine how the quantity

restraints in the EU proposal affect on the total trading quantity of emissions permits,

the price of emissions permits, and the payoffs of demanders and a supplier, by using a

simple game-theoretic model. We find that each demander has a strong incentive to

choose a quantity restraint in the following two-stage game. In the first stage, each

demander simultaneously chooses whether or not she chooses a quantity restraint. In

the second stage, the demanders that decided to choose quantity restraints

simultaneously select their levels of quantity restraints, knowing the other demanders'

quantity restraint decisions in the first stage. Then emissions trades occur: the

quantities of all countries and the price are determined so that quantity demanded is
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equal to quantity supplied in a competitive emissions trading market.

We show that no quantity restraint of all demanders is not a subgame perfect

equilibrium of the above two-stage game. Rather, at least one demander always puts a

restraint as a subgame perfect strategy. On the other hand, the quantity restraints by

demanders have a negative impact on the supplier. As the number of demanders

choosing quantity restraints increases, the profit of supplier decreases, since the total

trading quantity and the price decrease. Although achieving the goal of the EU

proposal is uncertain, it certainly benefits demanders including EU with the sacrifice of

suppliers such as countries in transition to a market economy and developing

countries.

The paper is organized as follows.  Section 2 investigates the basic model

without CDM or supplier's quantity restraint. Section 3 introduces a more general

model with CDM and supplier's quantity restraint. For both models, we examine the

effects of quantity restraints of demanders on the total trading quantity, price, and the

payoff of a supplier as well as the payoffs of demanders. Section 4 discusses the future

agenda.
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2. The basic model without CDM or supplier’s quantity restraint.

Consider three countries, indexed by 0, 1, and 2.1 We assume that the

marginal abatement cost (MAC) curve of each country is linear, as illustrated in Figure

1 in which the horizontal axis denotes the quantity of emissions and the vertical axis

represents the marginal abatement cost. The vertical dotted line indicates the goal

amount assigned to each country by the Kyoto Protocol. We assume that countries 1

and 2 have the same MAC curve and the same assigned amount.


Figure 1 is around here.



In order to analyze the emissions trading market, it is convenient to

superimpose Figures 1-1 and 1-2 of the MAC curves such that the assigned amount of

every country is equal to the origin of the superimposed figure. See Figure 2.


Figure 2 is around here.



We denote the MAC curve of each country i in the superimposed figure by

MAC x a a b xi i i i i i( ) ( / )= − , i = 0 1 2, , , where xi  is the difference between country i’s

quantity of emissions and its assigned amount. Since countries 1 and 2 have the same

MAC curve and the same assigned amount,

(A1) a a1 2=  and b b1 2= .

We also assume that

(A2) a a1 0 0> > , b1 0> , and b0 0> .

                                                     
1 Throughout the paper, we focus on the case of three countries, one supplier and two demanders.
However, it is easy to show that our main results hold in a more general case in which there are n
demanders.
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 (A2) means that (i) a bi i/ > 0 , that is, the marginal cost to abate emissions increases as

the quantity of emissions decreases; and (ii) the MAC curve of country 0 is below that

of country 1 or 2 around xi = 0 , although the MAC curve of country 0 could intersect

that of country 1 or 2, because of no assumption on the relation between their slopes,

a b0 0/  and a b1 1/ .

Since the MAC curve of country 0 is below that of country 1 or 2 around

xi = 0 , country 0 is a supplier ( x0 0< ), while countries 1 and 2 are demanders

( x1 0> , x2 0> ) in the competitive emissions trading market, as Figure 2 shows. The

competitive equilibrium price is p( )∅  at which the total quantity demanded is equal to

the quantity supplied.2  The amount of emissions permits that each country

i ∈ { , }1 2 buys from country 0 at p( )∅  is xi ( )∅ .  Because countries 1 and 2 have the

same MAC curve, x x1 2( ) ( )∅ = ∅ . The total amount of emissions permits that country 0

sells to countries 1 and 2 at p( )∅  is x x1 2( ) ( )∅ + ∅ . The marginal abatement cost of

each country is equal to the price p( )∅ .

The area of the triangle a p e1 ( )∅  represents the surplus of each demander by

emissions trading (abusing notation, we use ai , bi , and p( )∅  to represent points on the

two-dimensional space, although they themselves are real numbers.) For example,

suppose that b1  is the status quo of country i ∈ { , }1 2 . Then the area of the triangle

a b1 10  denotes the abatement cost of country i  to achieve the goal ( xi = 0 ) without

emissions trading. On the other hand, with emissions trading, the cost to buy xi ( )∅  of

emissions permits from country 0 at the price p( )∅  is equal to the area of the
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rectangular p x ei( ) ( )∅ ∅0 , and the domestic cost of country i to reduce (b xi1 − ∅( ) ) of

emissions is equal to the area of the triangle ex bi ( )∅ 1 .  Therefore, the area of the

trapezoid p b e( )∅ 0 1  stands for the total abatement cost with emissions trading. The

difference between the abatement cost without emissions trading and that with

emissions trading is the surplus of each demander by emissions trading, which is equal

to the area of the triangle a p e1 ( )∅ .

Moreover, the area of the triangle fa p0 ( )∅  denotes the surplus of the supplier

by emissions trading. For example, suppose that b0  is the status quo of country 0.

Then the area of the triangle a b0 00  stands for the abatement cost of country 0 to

achieve the goal ( x0 0= ) without emissions trading. On the other hand, with emissions

trading, if country 0 reduces x x1 2( ) ( )∅ + ∅  of emissions in addition to the assigned

amount, then she can sell xi ( )∅  of emissions permits to each country i ∈ { , }1 2 . In

comparison to the case in which country 0 reduces emissions to the assigned amount

without emissions trading, the additional cost is equal to the area of the trapezoid

f x x a( [ ( ) ( )])− ∅ + ∅1 2 00 .  If country 0 sells x x1 2( ) ( )∅ + ∅  of emissions permits at the

price p( )∅ , then the surplus of country 0 by emissions trading is equal to the area of

the triangle fa p0 ( )∅ . Notice that the surplus of each country is independent of its

status quo.

We ask whether a demander has an incentive to choose a restraint on the

trading quantity of emissions permits.  In an attempt to examine this question, we

consider the following two-stage game (see Figure 3). In the first stage, each country

                                                                                                                                                           
2 In the following, we will analyze the situation in which each demander chooses a restraint on the trading
quantity of emissions permits. The symbol ∅  represents the case in which no country selects a quantity
restraint.
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i ∈ { , }1 2  simultaneously chooses whether or not she chooses a quantity restraint. In the

second stage, the countries that decided to choose quantity restraints simultaneously

select their levels of quantity restraints, knowing the other countries' quantity restraint

decisions in the first stage. Then emissions trades occur: the quantities of all countries

and the price are determined so that the quantity demanded is equal to the quantity

supplied. In other words, we assume that the emissions trading market is competitive.3


Figure 3 is around here.



We will derive the unique subgame perfect equilibrium of this game. Let

R ⊆ { , }1 2 be the countries that decide to choose quantity restraints in the first stage.

Also, let x Ri( )  be the equilibrium quantity of country i ∈ { , }1 2 , p R( )  be the equilibrium

price, and πi R( )  be the equilibrium payoff (surplus) of country i ∈ { , }1 2  when the

countries belonging in R choose quantity restraints.  There are three cases to consider.

Case 1: R = ∅ (the case of no quantity restraint)

As we see in the above, Figure 2 illustrates the equilibrium quantities and the

price for this case. We can compute them by solving the following simultaneous

equations: − = +x x x0 1 2  (the quantity demanded is equal to the quantity supplied),

p a a b x= −0 0 0 0( / ) , p a a b x= −1 1 1 1( / ) , and p a a b x= −1 1 1 2( / )  (the price is equal to the

marginal abatement cost of each country).  The equilibrium values are give by

(1) x x b b a a
a b a b1 2
0 1 1 0

1 0 0 12
( ) ( ) ( )
∅ = ∅ =

−
+

,

                                                     
3 Our two-stage model seems to be artificial, but we can clearly compare the results for all possible cases of
quantity restraint choices and can analyze the incentive problem on quantity restraints by using this
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(2) p a a b b
a b a b

( ) ( )∅ = +
+

0 1 0 1

1 0 0 1

2
2

, and

(3) π π1 2 1 1
1

1
1

2 1 0
2

1 1 0
2

1 0 0 1
2

1
2 2 2 2

( ) ( ) ( ( )) ( ) ( ( )) ( )
( )

∅ = ∅ = − ∅ ∅ = ∅ = −
+

a p x a
b

x a b b a a
a b a b

.

It is straightforward to check that the equilibrium values are strictly positive under

Assumption (A2).

Case 2: R = { , }1 2 (the case in which both countries 1 and 2 choose quantity restraints)

Figure 2 illustrates the equilibrium values for Case 2. Suppose that each

country i ∈ { , }1 2  sets her quantity restraint level at xi ({ , })1 2 , and she buys that amount

of emissions permits from country 0.  Then at the price p({ , })1 2 , the total quantity

demanded is equal to the quantity supplied. The total amount of emissions permits

that country 0 sells at p({ , })1 2  is x x1 21 2 1 2({ , }) ({ , })+ . The marginal abatement cost of

country 0 is equal to p({ , })1 2 . The area of the trapezoid a p gh1 1 2({ , })  represents the

payoff of each country i ∈ { , }1 2 , πi({ , })1 2 .

We assume that each country i ∈ { , }1 2  selects its quantity restraint level in

order to maximize its own payoff, given the quantity restraint level of the other

country. We can compute the unique Nash equilibrium as follows.  The payoff of

country i ∈ { , }1 2  is given by

πi i i ia p MAC x p x= − + −1
2 1( ( ) ) ,

where p a a b x= −0 0 0 0( / )  (the price is equal to the abatement cost of country 0),

− = +x x x0 1 2 (the quantity demanded is equal to the quantity supplied), and

                                                                                                                                                           
model.
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MAC x a a b xi i i( ) ( / )= −1 1 1 .

By using these equations, we obtain

πi i j ia a a b a b
b b

x a
b

x x= − − + −
L
NM

O
QP

1
2

2 2 2
1 0

1 0 0 1

0 1

0

0
( )  ( i j j i, , ;= ≠1 2 ).

Given x j , each country i ∈ { , }1 2  chooses xi  so as to maximize πi . The first order

condition is given by

∂π
∂

i

i
i jx

a a a b a b
b b

x a
b

x= − − + − =( )1 0
1 0 0 1

0 1

0

0

2 0  ( i j j i, , ;= ≠1 2 ).

From these simultaneous equations, we obtain

(4) x x b b a a
a b a b1 2
0 1 1 0

1 0 0 1
1 2 1 2

3
({ , }) ({ , }) ( )

= =
−

+
,

(5) p a a b b a b
a b a b

({ , }) { ( ) ]1 2 2
3

0 1 0 1 0 1

1 0 0 1
=

+ +
+

,

(6) π π1 2
1 0 0 1

0 1
1

2 0 1 1 0 0 1 1 0
2

1 0 0 1
21 2 1 2 2

2
1 2 2

2 3
({ , }) ({ , }) ( ({ , })) ( )( )

( )
= = + = + −

+
a b a b

b b
x b b a b a b a a

a b a b
.

It is straightforward to check that the equilibrium values are strictly positive under

Assumption (A2).

Case 3: R i= { } (the case in which only one demander i chooses a quantity restraint)

Figure 2 illustrates the equilibrium values for Case 3. Suppose that country i

sets her quantity restraint level at x ii({ }) , and she buys that amount of emissions

permits from country 0. Then at the price p i({ }) , the total quantity demanded is equal

to the quantity supplied. The amount of emissions permits that country j i≠  buys from

country 0 at p i({ })  is x ij({ }) . The total amount of emissions permits that country 0 sells

at p i({ })  is x i x ii j({ }) ({ })+ . Both the marginal abatement cost of country 0 and that of



11

country j are equal to the price p i({ }) . The area of the trapezoid a p i h1 ({ })�  represents

the payoff of country i , πi i({ }) . The area of the triangle a p i m1 ({ })  represents the

equilibrium payoff of country j, π j i({ }) .

We assume that country i  selects her quantity restraint level in order to

maximize her own payoff. We can compute the unique optimal quantity restraint level

of country i as follows. The payoff of i is given by

πi i i ia p MAC x p x= − + −1
2 1( ( ) ) ,

where p a a b x= −0 0 0 0( / )  , p a a b x j= −1 1 1( / ) , j i≠  (the price is equal to both the

abatement cost of country 0 and that of country j i≠ ), − = +x x x0 1 2 (the quantity

demanded is equal to the quantity supplied),  and MAC x a a b xi i i( ) ( / )= −1 1 1 .

By using these equations, we obtain

x b b
a b a b

a a a
b

xj i=
+

− −
L
NM

O
QP

0 1

1 0 0 1
1 0

0

0
( ) , j i≠ , and

πi i i
a

a b a b
b a a a b a b

b
x x=

+
− − +L

NM
O
QP

1

1 0 0 1
0 1 0

1 0 0 1

12
2 3

[ ]
( ) .

Country i chooses xi  so as to maximize πi . The first order condition is given by

∂π
∂

i

i
ix

a
a b a b

b a a a b a b
b

x=
+

− − +L
NM

O
QP =

1

1 0 0 1
0 1 0

1 0 0 1

12
2 2 3 0

[ ]
( ) [ ] .

From this equation, we have

(7) x i b b a a
a b a bi({ }) ( )

=
−

+
0 1 1 0

1 0 0 13
,

(8) x i b b a a a b a b
a b a b a b a bj({ }) ( )( )

( )( )
= − +

+ +
0 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1

2
3

, j i≠
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(9) p i a a b a b a b b a b a b
a b a b a b a b

({ }) [ ( ) ( )]
( )( )

= + + +
+ +

0 1 1 1 0 0 1 0 1 0 0 1

1 0 0 1 1 0 0 1

2 3 2
3

,

(10) πi ii a a b a b
b a b a b

x i({ }) ( )
( )

( ({ }))=
+
+

1 1 0 0 1

1 1 0 0 1

23
2

= −
+ +

a b b a a
a b a b a b a b

1 0
2

1 1 0
2

1 0 0 1 1 0 0 12 3
( )

( )( )
, and

(11) π j j ji a p i x i a
b

x i({ }) ( ({ })) ({ }) ( ({ }))= − =1
2 21

1

1

2 = − +
+ +

a b b a a a b a b
a b a b a b a b

1 0
2

1 1 0
2

1 0 0 1
2

1 0 0 1
2

1 0 0 1
2

2
2 3

( ) ( )
( ) ( )

, j i≠ .

It is straightforward to check that the equilibrium values are strictly positive under

Assumption (A2). 4

Let π0 0 0 0 1 2
1
2

1
2

( ) ( ( ) ) ( ) ( ( ) )[ ( ) ( )]R p R a x R p R a x R x R= − − = − +  be the

equilibrium payoff of country 0. We have the following result on the total equilibrium

trading quantity, the equilibrium price, and the equilibrium payoff of country 0.

Theorem 1. For i = 1 2, , x x x i x i x x1 2 1 2 1 21 2 1 2 0( ) ( ) ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > + > ,

p p i p a( ) ({ }) ({ , })∅ > > >1 2 0 , and π π π0 0 0 1 2 0( ) ({ }) ({ , })∅ > > >i .

Proof of Theorem 1: By (1), (4), (7), and (8),

x R x R1 2( ) ( )+ = b b a a a b r a b
a b a b a b r a b
0 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1

2 3 2
3 2

0( )[ ( ) ]
[ ][ ( ) ]

− + −
+ + −

>  for all R ⊆ { , }1 2 , where r R= .  By

partially differentiating this with respect to r, we obtain

∂
∂

[ ( ) ( )]x R x R
r

1 2+ = − −
+ + −

<a a b b a a
a b a b a b r a b

0 1 0
2

1
2

1 0

1 0 0 1 1 0 0 1
23 2

0( )
[ ][ ( ) ]

,

implying that x x x i x i x x1 2 1 2 1 21 2 1 2( ) ( ) ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > + . It follows from this

relation that p p i p a( ) ({ }) ({ , })∅ > > >1 2 0  and π π π0 0 0 1 2( ) ({ }) ({ , })∅ > >i .  �

                                                     
4 Note that x i xi i({ }) ({ , })= 1 2 , that is, the quantity restraint level when only one country choose a restraint is
equal to that when two countries choose restraints in our simple linear model.
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Figure 2 illustrates the results of Theorem 1. As the number of demanders

choosing quantity restraints increases, the total trading quantity, the price, and the

profit of the supplier decrease.

Concerning the equilibrium payoffs of two demanders, we have the following

relations.

Theorem 2.  For i j, { , }∈ 1 2 , i j≠ , π πj j i({ , }) ({ })1 2 > > > ∅π πj jj({ }) ( ) .

Proof of Theorem 2: First of all, by (6) and (11), we have

π πj j i({ , }) ({ })1 2 − = + −
+ +

>a b b a b a b a a
a b a b a b a b

0
2

0 1
3

1 0 0 1 1 0
2

1 0 0 1
2

1 0 0 1
2

2
2 3

0( )( )
( ) ( )

, i j, { , }∈ 1 2 , i j≠ .

Second, by (10) and (11), we obtain

π πj ji j({ }) ({ })− = −
+ +

>a a b b a a
a b a b a b a b

0
2

1 0
2

1
3

1 0
2

1 0 0 1
2

1 0 0 1
22 3

0( )
( ) ( )

, i j, { , }∈ 1 2 , i j≠ .

Third, by (3) and (10), we have

π πj jj({ }) ( )− ∅ = −
+ + +

>a a b b a a
a b a b a b a b a b a b

0
2

1 0
2

1
3

1 0
2

1 0 0 1 1 0 0 1 1 0 0 1
22 3 2

0( )
( )( )( )

, j ∈ { , }1 2 .  �

Figure 2 illustrates the results of Theorem 2.  Since α β δ+ < , the area of the

trapezoid a p gh1 1 2({ , })  is larger than the area of the triangle a p i m1 ({ }) , that is,

π πj j i({ , }) ({ })1 2 > . Also, it is clear that the area of the triangle a p i m1 ({ })  is larger than

the area of the trapezoid a p i h1 ({ })� , that is, π π πj i ji i j({ }) ({ }) ({ })> = . Further, since

α γ< , the area of the trapezoid a p i h1 ({ })�  is larger than the area of the triangle
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a p e1 ( )∅ , that is, π πi ii({ }) ( )> ∅ , i ∈ { , }1 2 .

Table 1 is the payoff matrix for the first stage decisions on quantity restraints.

For each country, deciding to choose a quantity restraint in the first stage is a dominant

strategy, since the payoff with choosing a quantity restraint is larger than that without

it, regardless of whether the other country chooses a quantity restraint.


Table 1 is around here.



To sum up, at the unique subgame perfect equilibrium of the two-stage game,

each country decides to choose a quantity restraint at the first stage, she sets her

restraint level at that specified in (4) at the second stage, and then she buys that

amount of emissions permits from country 0.

Finally, we compare the total equilibrium surpluses.

Theorem 3. π π π�� �� ��
({ , }) ({ }) ( )1 20

2
0

2
0

2
= = =∑ ∑ ∑< < ∅i , i = 1 2, .

Proof of Theorem 3: By using (1), (2), (4), (5), (7), (8), and (9), we have

π0 0 1 2
0 0 1

2
1 0

2

1 0 0 1
2

1
2

2
2

( ) ( ( ) )[ ( ) ( )] ( )
( )

∅ = ∅ − ∅ + ∅ = −
+

p a x x a b b a a
a b a b

,

π0 0 1 2
0 0 1

2
1 0

2

1 0 0 1
21 2 1

2
1 2 1 2 1 2 2

3
({ , }) ( ({ , }) )[ ({ , }) ({ , })] ( )

( )
= − + = −

+
p a x x a b b a a

a b a b
, and

π0 0 1 2
0 0 1

2
1 0

2
1 0 0 1

2

1 0 0 1
2

1 0 0 1
2

1
2

2 3
2 3

({ }) ( ({ }) )[ ({ }) ({ })] ( ) ( )
( ) ( )

i p i a x i x i a b b a a a b a b
a b a b a b a b

= − + = − +
+ +

.

It is easy to obtain from (3), (6), (10), (11), and the above equations that
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π��
( ) ( )∅ = −

+=∑ 0
2 0 1 1 0

2

1 0 0 12
b b a a
a b a b

,

π��
({ , }) ( )( )

( )
1 2 4

30
2 0 1 1 0 0 1 1 0

2

1 0 0 1
2=∑ = + −

+
b b a b a b a a

a b a b
, and

π��
({ })

( ) ( ) [( )( ) ( ) ]

( ) ( )
i

b b a a a b a b a b a b a b a b a b a b a b a b

a b a b a b a b=∑ =
− + + + + + +

+ +0
2 0 1 1 0

2
0 1 1 0 0 1

2
1 0 1 0 0 1 1 0 0 1 1 0 0 1

2

1 0 0 1
2

1 0 0 1
2

2 3 3 2

2 3
{ }

By comparing these values, we have

π π�� ��
({ }) ({ , })i= =∑ ∑−0

2
0

2 1 2 = + −
+ +

>a b b a b a b a a
a b a b a b a b
0
2

0 1
3

1 0 0 1 1 0
2

1 0 0 1
2

1 0 0 1
22 3

0( )( )
( ) ( )

 and

π π�� ��
( ) ({ })∅ −= =∑ ∑0

2
0

2 i = + −
+ + +

>a a b b a b a b a a
a b a b a b a b a b a b

0
2

1 0
2

1
3

1 0 0 1 1 0
2

1 0 0 1 1 0 0 1
2

1 0 0 1
22 2 3

0( )( )
( )( ) ( )

. �

Theorem 3 says that as the number of demanders choosing quantity restraints

increases, the total surplus, defined as the sum of the payoffs of all three countries,

decreases. Therefore, the equilibrium outcome in which two countries select quantity

restraints is not efficient.

3. The model with CDM and supplier’s quantity restraint.

In this section, we introduce the Clean Development Mechanism (CDM) and

supplier’s quantity restraint. There are three countries, indexed by 0, 1, and 2. As

before, country 0 is a supplier and countries 1 and 2 are demanders in the emissions

trading market. The MAC curves of countries 1 and 2 are the same and they are given

by MAC x a a b xi i i( ) ( / )= −1 1 1 , i = 1 2, . The MAC curve of country 0 is given by

(12) MAC x a a b x0 0 0 0 0 0( ) ( / )= −  .
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We assume that country 0 puts a quantity restraint level on the emission trading,

although the restraint level is given exogenously and county 0 has no choice, as stated

in the EU proposal. Denote the quantity restraint level of country 0 by xR
0 . The MAC

curve of CDM is given by

(13) MAC x a a d xCDM
0 0 0 0 0 0( ) ( / )= −

for x0 0≤ . Since it is uncertain which is cheaper between the marginal abatement cost

of the cheapest CDM project and the minimum marginal abatement cost in Annex B

parties, we use the common intercept a0  in (13) and in the supplier’s MAC curve in

(12).  Figure 4 illustrates these MAC curves.


Figure 4 is around here.



We assume

(A3) a a1 0 0> > , b1 0> , and d b0 0 0> > .

(A3) means that the MAC curve of country 0 is below the MAC curves of countries 1

and 2 around xi = 0 , while it is always above the MAC curve of CDM. By (12) and (13),

the constrained aggregate MAC curve of country 0 is given by

(14) AMAC x a a b d x b d x b x
a d x d a d x x b d x b

R

R R0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0( ) [ /( )] ( ) /
( ) / ( / ) ( ) /

= − + − + ≤ ≤
− − < − +

RS|T|
                  if 

            if  
,

provided that x0 0≤ .

Consider the same two-stage game on quantity restraints as that examined in

the previous section. The equilibrium quantities, price, and payoffs are given in Tables

2, 3, and 4.  See the appendix for the derivations of the equilibrium values. It is easy to

check that the equilibrium values are strictly positive under Assumption (A3).
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Tables 2, 3, and 4 are around here.
    

The equilibrium quantities change, depending crucially on the quantity

restraint level of country 0, xR
0 . Fix the values of the parameters a a b b0 1 0 1, , , , and d0 .

We will see that the point ( , )− −x x p1 2 , indicating the pair of the total equilibrium

quantity and the equilibrium price, lies on the first segment of the constrained

aggregate MAC curve for a sufficiently large value of xR
0 , while it lies on the second

segment of the curve for a sufficiently small value of xR
0 . First, for the case in which

neither country 1 nor 2 chooses a quantity restraint, the crucial value of xR
0  is A( )∅

(see the second column in Table 2). If xR
0  is larger than A( )∅ , then the equilibrium

quantities, x1( )∅  and x2( )∅ , are constant and the total equilibrium quantity,

x x1 2( ) ( )∅ + ∅ , is less than ( ) /b d x bR
0 0 0 0+  in which the constrained aggregate MAC

curve is kinked. As Figure 5-1 illustrates, the point ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  lies on the

first segment of the curve.  Also, if x AR
0 = ∅( ) , then x x b d x bR

1 2 0 0 0 0( ) ( ) ( ) /∅ + ∅ = +

and the point ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  coincides with the kink point of the curve.

Moreover, if x AR
0 < ∅( ) , then x1( )∅  and x2( )∅  decrease as the value of xR

0  decreases,

and x x b d x bR
1 2 0 0 0 0( ) ( ) ( ) /∅ + ∅ > + .  The point ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  lies on the

second segment of the curve, as Figures 5-2, 5-3, 5-4, 5-5, and 5-6 illustrate.

    
Figure 5-a and 5-b are around here.
    

Second, for the case in which only one country i chooses a quantity restraint,
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there are two crucial values of xR
0 , A i({ })  and B i({ })  (see the third and fourth columns

in Table 2). If x A iR
0 > ({ }) , then the equilibrium quantities, x ii({ })  and x ij({ }) , are

constant and x i x i b d x bi j
R({ }) ({ }) ( ) /+ < +0 0 0 0 . The point ( ({ }) ({ }), ({ }))− −x i x i p ii j  lies on

the first segment of the constrained aggregate MAC curve, as Figures 5-1 and 5-2

illustrate. Also, if B i x A iR({ }) ({ })≤ ≤0 , then the equilibrium quantity of country i, x ii({ })

(country j, x ij({ }) ) decreases (increases) as the value of xR
0  decreases and

x i x i b d x bi j
R({ }) ({ }) ( ) /+ = +0 0 0 0 . The point ( ({ }) ({ }), ({ }))− −x i x i p ii j  coincides with the

kink point of the curve, as Figure 5-3 illustrates. Notice that this corner solution case

always happens for any value of x B i A iR
0 ∈ [ ({ }), ({ })] . Moreover, if B i xR({ }) > 0 , then both

x ii({ })  and x ij({ }) decrease as the value of xR
0  decreases, and

x i x i b d x bi j
R({ }) ({ }) ( ) /+ > +0 0 0 0 . The point ( ({ }) ({ }), ({ }))− −x i x i p ii j  lies on the second

segment of the curve, as Figures 5-4, 5-5, and 5-6 illustrate.

Finally, for the case in which both countries 1 and 2 choose quantity restraints,

there are two crucial values of xR
0 , A({ , })1 2  and B({ , })1 2  (see the fifth column in Table

2). If x AR
0 1 2> ({ , }) , then the equilibrium quantities, x1 1 2({ , })  and x2 1 2({ , }) , are

constant and ( ) / ({ , }) ({ , })b d x b x xR
0 0 0 0 1 21 2 1 2+ > + . The point

( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lies on the first segment of the constrained aggregate

MAC curve, as Figures 5-1, 5-2, 5-3, and 5-4 illustrate. Also, if B x AR({ , }) ({ , })1 2 1 20≤ ≤ ,

then x1 1 2({ , })  and x2 1 2({ , })  decrease as the value of xR
0  decreases and

x x b d x bR
1 2 0 0 0 01 2 1 2({ , }) ({ , }) ( ) /+ = + . The point ( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2
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coincides with the kink point of the curve, as Figure 5-5 illustrates. Notice again that

this corner solution case always happens for any value of x B AR
0 1 2 1 2∈ [ ({ , }), ({ , })] .

Moreover, if B xR({ , })1 2 0> , then x1 1 2({ , })  and x2 1 2({ , })  decrease as the value of xR
0

decreases and x x b d x bR
1 2 0 0 0 01 2 1 2({ , }) ({ , }) ( ) /+ > + . The point

( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lies on the second segment of the curve, as Figure 5-6

illustrates.

The results of Theorem 1 concerning the total equilibrium quantity, the

equilibrium price, and the profit of country 0 remain to be true, as the following

theorem shows.

Theorem 4. For i = 1 2, , x x x i x i x x1 2 1 2 1 21 2 1 2 0( ) ( ) ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > + > ,

p p i p a( ) ({ }) ({ , })∅ > > >1 2 0 , and π π π0 0 0 1 2 0( ) ({ }) ({ , })∅ > > >i .

The proof of Theorem 4 is given in the appendix. Theorem 4 says that as the

number of demanders choosing quantity restraints increases, the total trading quantity,

the price, and the profit of the supplier decrease. Figures 5-a and 5-b illustrate the

results of Theorem 4. There are six cases to consider, depending on the quantity

restraint level of country 0, xR
0 .

Case 1: A xR( )∅ ≤ 0  (see Figure 5-1).

In this case, ( ) / ( ) ( ) ({ }) ({ }) ({ , }) ({ , })b d x b x x x i x i x xR
i j0 0 0 0 1 2 1 21 2 1 2+ ≥ ∅ + ∅ > + > + .  That

is, if the quantity restraint level of country 0 (the supplier) is large enough, then for

every configuration of the quantity restraint choices of two countries 1 and 2, the total
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equilibrium quantity is less than ( ) /b d x bR
0 0 0 0+  in which the constrained aggregate

MAC curve is kinked. Each of the three points ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2 ,

( ({ }) ({ }), ({ }))− −x i x i p ii j , and ( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2 lies on the first segment of

the curve. The same analysis as that in the previous section applies to this case.

 Case 2: A i x AR({ }) ( )< < ∅0  (see Figure 5-2).

In this case, x x b d x b x i x i x xR
i j1 2 0 0 0 0 1 21 2 1 2( ) ( ) ( ) / ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > + > + , that is,

only the total equilibrium quantity when neither country 1 nor 2 chooses a restraint is

larger than ( ) /b d x bR
0 0 0 0+  in which the constrained aggregate MAC curve is kinked,

while the other two total equilibrium quantities are less than it. The point

( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  lies on the second segment of the curve, while both the point

( ({ }) ({ }), ({ }))− −x i x i p ii j  and the point ( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  remain to lie on the

first segment of the curve.

Case 3: B i x A iR({ }) ({ })≤ ≤0 (see Figure 5-3).

In this case, x x b d x b x i x i x xR
i j1 2 0 0 0 0 1 21 2 1 2( ) ( ) ( ) / ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + = + > + . The

point ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  lies on the second segment of the curve, the point

( ({ }) ({ }), ({ }))− −x i x i p ii j  is equal to the kink point, and the point

( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lies on the first segment.

Case 4: A x B iR({ , }) ({ })1 2 0< < (see Figure 5-4).
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In this case, x x x i x i b d x b x xi j
R

1 2 0 0 0 0 1 21 2 1 2( ) ( ) ({ }) ({ }) ( ) / ({ , }) ({ , })∅ + ∅ > + > + > + . Both

the point  ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  and the point ( ({ }) ({ }), ({ }))− −x i x i p ii j lie on the second

segment of the curve, while the point  ( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lies on the first

segment.

Case 5: B x AR({ , }) ({ , })1 2 1 20≤ ≤ (see Figure 5-5).

In this case, x x x i x i b d x b x xi j
R

1 2 0 0 0 0 1 21 2 1 2( ) ( ) ({ }) ({ }) ( ) / ({ , }) ({ , })∅ + ∅ > + > + = + . Both

the point ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2  and the point ( ({ }) ({ }), ({ }))− −x i x i p ii j  lie on the second

segment of the curve, while the point ( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2 is equal to the kink

point of the curve.

Case 6: x BR
0 1 2< ({ , }) (see Figure 5-6).

In this case, x x x i x i x x b d x bi j
R

1 2 1 2 0 0 0 01 2 1 2( ) ( ) ({ }) ({ }) ({ , }) ({ , }) ( ) /∅ + ∅ > + > + > + . In

other word, if xR
0  is small enough, all three points ( ( ) ( ), ( ))− ∅ − ∅ ∅x x p1 2 ,

( ({ }) ({ }), ({ }))− −x i x i p ii j , and ( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lie on the second segment of

the curve.

Next we compare the equilibrium payoffs.

Theorem 5.

a) Case 1: A i xR({ }) < 0 . In this case, π πj j i({ , }) ({ })1 2 > , i j, { , }∈ 1 2 , i j≠ .
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Case 2: B x A iR({ , }) ({ })1 2 0≤ ≤ . In this case, π πj j i({ , }) ({ })1 2 >=< , i j, { , }∈ 1 2 , i j≠ , if and only if

(15) p i p x MAC x p i x i xj j j j j({ }) ({ , }) ({ , }) ( ({ , })) ({ }) ({ })) ({ , })) /− ⋅ >=< − ⋅ −1 2 1 2 1 2 1 2 2 .

Case 3: x BR
0 1 2< ({ , }) . In this case, π πj j i({ , }) ({ })1 2 > , i j, { , }∈ 1 2 , i j≠ .

b) In all cases, π π πj j ji j({ }) ({ }) ( )> > ∅ , i j, { , }∈ 1 2 , i j≠ .

The proof of Theorem 5 is given in the appendix.

Remark: Condition (15) for Case 2 in Theorem 5 can be rewritten in terms of the

parameters a a b b d0 1 0 1 0, , , ,  and xR
0 as follows:

       Case 2-(i): B i x A iR({ }) ({ })≤ ≤0 . In this case, π πj j i({ , }) ({ })1 2 >=< , i j, { , }∈ 1 2 , i j≠ , if and

only if a b b d a b d a b a b d a b b a x a aR
1 0

2
0 0 1 0 0 0 1 1 0 0 0 1

2
0 0 0 1 0

2
2 3( )[ ( ) ] [ ( ) ] /( )+ + + >=< + + − − .

       Case 2-(ii): A x B iR({ , }) ({ })1 2 0< < . In this case, π πj j i({ , }) ({ })1 2 >=< , i j, { , }∈ 1 2 , i j≠ ,

 if and only if

( )( ) ( ) [ ( ) ]b d a d a b a d a b a b d a b0 0 1 0 0 1
2

1 0 0 1
2

1 0 0 0 13 2+ + + + +

                                             >=< + + + + −a a d a b a b d a b d a x a aR
1 1 0 0 1

2
1 0 0 0 1

2
0 0 0 1 0

2
2 3( ) [ ( ) ] /( ) .

        Case 2-(iii): B x AR({ , }) ({ , })1 2 1 20≤ ≤ . In this case, π πj j i({ , }) ({ })1 2 >=< , i j, { , }∈ 1 2 , i j≠ ,

 if and only if

 ( )( ) ( ) ( ) [ ( ) ]b d a d a b a d a b x b b a a x a b d a bR R
0 0 1 0 0 1

2
1 0 0 1

2
0 0 1 1 0 0 1 0 0 0 13 4 4+ + + − − + +{ }
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>
=< + − +4 21 0

2
1
2

1 0 0 1
2

0 1 0 0 0
2a b b a d a b d a a a xR( ) [ ( ) ] .

According to Theorem 5, π πj j i({ , }) ({ })1 2 >  and π πj jj({ }) ( )> ∅ , i j, { , }∈ 1 2 ,

i j≠  if either A i xR({ }) < 0  or x BR
0 1 2< ({ , }) . In other words, deciding to choose a quantity

restraint in the first stage is a dominant strategy for each country if the point

( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  and the point ( ({ }) ({ }), ({ }))− −x i x i p ii j  lie on the same

segment of the constrained MAC curve of country 0 (see Figures 5-1, 5-2, and 5-6).

Figure 4 illustrates this result when A i x AR({ }) ( )< < ∅0 . Since α β δ+ < , the area of the

trapezoid a p gh1 1 2({ , })  is larger than the area of the triangle a p i m1 ({ }) , that is,

π πj j i({ , }) ({ })1 2 > . Moreover, since α γ< , the area of the trapezoid a p i h1 ({ })�  is larger

than the area of the triangle a p i e1 ({ }) , that is, π πi ii({ }) ( )> ∅ .

However, π j({ , })1 2  could be smaller than π j i({ })  if B x A iR({ , }) ({ })1 2 0≤ ≤ .

Figure 6 illustrates why this could happen, where i = 2  and j = 1. Let us consider two

different values a1  and a1  with a1  > a1 . Since the equilibrium quantities, prices, and

payoffs, x1 1 2({ , }) , p({ , })1 2 , π1 1 2({ , }) , x1 2({ }) , p({ })2 , and π1 2({ }) , change depending

on a1 , we denote x1 1 2({ , })  when a a1 1=  by x1 1 2({ , }) , x1 1 2({ , })  when a a1 1=  by

x1 1 2({ , }) , and so on. In Figure 6, we assume that in both the case of a a1 1=  and the

case of a a1 1= , the inequalities B x AR({ }) ({ })2 20≤ ≤  hold, that is, the point

( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lies on the first segment of the constrained aggregate

MAC curve of country 0, whereas the point ( ({ }) ({ }), ({ }))− −x x p1 22 2 2  is equal to the

kink point of the curve. In particular, notice that p p({ }) ({ })2 2= . Namely, even when
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the value of a1  rises from a1  to a1 , the equilibrium price in which only country 2

chooses a quantity restraint does not change, since the total equilibrium quantity

remains to be equal to ( ) /b d x bR
0 0 0 0+  at which the constrained aggregate MAC curve

of country 0 is kinked.5

Figure 6 shows that as the value of a1  increases, π1 2({ })  becomes larger than

π1 1 2({ , })  when the equilibrium price p({ })2  is constant. When a a1 1= , the area of the

trapezoid a p gh1 1 2({ , })  is larger than the area of the triangle a p m1 2({ })  since

δ θ α β+ > + , that is, π π1 11 2 2({ , }) ({ })>  since the left-hand side of Inequality (15) in

Theorem 5,  p p x({ }) ({ , }) ({ , })2 1 2 1 21− ⋅ , is larger than the right-hand side of (15),

MAC x p x x1 1 1 11 2 2 2 1 2 2( ({ , })) ({ }) ({ }) ({ , }) /− ⋅ − . On the other hand, when a a1 1= , the

area of the trapezoid a p gh1 1 2({ , })  is smaller than the area of the triangle a p m1 2({ })

since δ λ α γ+ < + , that is, π π1 11 2 2({ , }) ({ })<  since the left-hand side of (15) in Theorem

5, p p x({ }) ({ , }) ({ , })2 1 2 1 21− ⋅ , is smaller than the right-hand side of (15),

MAC x p x x1 1 1 11 2 2 2 1 2 2( ({ , })) ({ }) ({ }) ({ , }) /− ⋅ − . When the value of a1  rises from a1

to a1 , the difference p p({ }) ({ , })2 1 2−  decreases, whereas the difference

MAC x p1 1 1 2 2( ({ , })) ({ })−  increases. Moreover, the increase in x1 1 2({ , })  is smaller than

that in x x1 12 1 2({ }) ({ , })− . Accordingly, the relation between the right-hand side and

the left-hand side of (15) becomes reversed, and so does the relation between π1 1 2({ , })

and π1 2({ })  when the value of a1  changes from a1  to a1 .

                                                     
5 Also, note that x x2 12 1 2({ }) ({ , })≠ , that is, the quantity restraint level when only one country choose a
restraint is different from that when two countries choose restraints, in contrast to the case without CDM
or supplier’s quantity restraint. This is because the point ( ({ }) ({ }), ({ }))− −x x p1 22 2 2  is equal to the kink
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Figure 6 is around here.


Next we give numerical examples to show that in the case of

B x A iR({ , }) ({ })1 2 0≤ ≤ , π j({ , })1 2  may or may not be larger than π j i({ }) , depending on

the values of a a b b0 1 0 1, , , ,d0 , and xR
0 .

Example 1: Let a0 40= , a1 100= , b0 40= , b1 60= , and d0 50= . In this case, for all

xR
0 0≥ , π πj j i({ , }) ({ })1 2 > . Figure 7 illustrates this fact, where i = 2, j = 1, A( ) .∅ ≈ 20 87 ,

A({ }) .1 19 65≈ , B({ }) .2 19 13≈ , A({ , }) .1 2 17 78≈ , and B({ , }) .1 2 15 89≈ . Again, for each

country, deciding to choose a quantity restraint in the first stage is a dominant strategy,

since π πj j i({ , }) ({ })1 2 >  and π πj jj({ }) ( )> ∅ , i j, { , }∈ 1 2 , i j≠ .


Figure 7 is around here.



Example 2: Let a1 10000= and the values of the other parameters be the same as those in

Example 1, i.e., a0 40= , b0 40= , b1 60= , and d0 50= . Then π j({ , })1 2  is smaller than

π j i({ })  for some values of xR
0 , although π j({ , })1 2  is larger than π j i({ })  for most values

of xR
0 . Figure 8 illustrates this fact, where i = 2, j = 1, A( ) .∅ ≈ 52 838 , A({ }) .1 52 768≈ ,

B({ }) .2 52 713≈ , A({ , }) .1 2 52 698≈ , and B({ , }) .1 2 52 587≈ . If 52.692 52.733< <xR
0 , then

π π1 11 2 2({ , }) ({ })< ; otherwise π π1 11 2 2({ , }) ({ })≥ . Table 5 is the payoff matrix for the

first stage decisions on quantity restraints in the former case.  There are two Nash

                                                                                                                                                           
point of the constrained aggregate MAC curve of country 0, whereas the point
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equilibria of this game: one country chooses a quantity restraint, while the other does

not, since π πj j i({ , }) ({ })1 2 <  and π πj jj({ }) ( )> ∅ , i j, { , }∈ 1 2 , i j≠ . In any case, at least

one country chooses a quantity restraint at equilibrium, since π j j({ })  is always larger

than π j( )∅ , j ∈ { , }1 2 .

     
Figure 8 and Table 5 are around here.
     

4. Concluding Remarks

It is obvious that the real aims of the EU proposal are to promote domestic

reductions of GHG emissions, to stimulate technological investments, to control hot air

and to commit ambitious goals in the following commitment periods. Nevertheless, the

EU proposal has strategic economic consequences such that demanders gain and

suppliers lose whether EU's policy makers intend them or not.

In the sulfur allowance program conducted by the Environmental Protection

Agency (EPA) in the US, the permits have been traded by over the counter as well as in

an auction market. Cason and Plott (1996) pointed out that the trading rule of the

auction designed by EPA has serious flaws by an experimental method. We are sure

that the designers of the auction did not have ill will. However, researchers and policy

makers must bear in mind that a mistake without malice is really a mistake.

There have been various proposals on the design of institutions at the

Conferences of Parties to the Climate Convention. We now know that only common

sense and experience are not enough to design new institutions. Various approaches

such as theory and experiment in economics would be of importance.

                                                                                                                                                           
( ({ , }) ({ , }), ({ , }))− −x x p1 21 2 1 2 1 2  lies on the first segment of the curve.



27

Appendix

1. The derivations of equilibrium values with CDM and supplier’s quantity

restraint.

There are eight cases to consider.

Case 1: R = ∅ (the case in which neither country 1 nor 2 chooses a quantity restraint)

Case 1-1: − + ≤( ) /b d x b xR
0 0 0 0 0  or x AR

0 ≥ ∅( ) .

Suppose that − + ≤( ) /b d x b xR
0 0 0 0 0 .  Then p a a b d x= − +0 0 0 0 0[ /( )] , p a a b xi= −1 1 1( / ) ,

i ∈ { , }1 2 , and − = +x x x0 1 2 . By solving these equations, or simply by replacing b0  with

b d0 0+  in (1)-(3), we obtain the equilibrium values when x AR
0 ≥ ∅( )  in Tables 2-4. Note

that

x b d x b x x b d x bR R
0 0 0 0 0 1 2 0 0 0 0( ) ( ) / ( ) ( ) ( ) /∅ + + = − ∅ − ∅ + +

                                         =
+ + + − −

+ +

( ) [ ( ) ] ( )]

[ ( ) ]

b d a b d a b x b b a a

b a b d a b

R
0 0 1 0 0 0 1 0 0 1 1 0

0 1 0 0 0 1

2 2

2
{ }

,

which is non-negative if and only if x AR
0 ≥ ∅( ) .

Case 1-2: − + >( ) /b d x b xR
0 0 0 0 0  or x AR

0 < ∅( ) .

Suppose that − + >( ) /b d x b xR
0 0 0 0 0 . Then p a d x

d
a
d

x
R

= − −0 0 0

0

0

0
0

( ) , p a a b xi= −1 1 1( / ) ,

i ∈ { , }1 2 , and − = +x x x0 1 2 . By solving these equations, or simply replacing a0  with

a d x
d

R
0 0 0

0

( )−  and a b0 0/  with a
d

0

0
 in (1)-(3), we obtain the equilibrium values when

x AR
0 < ∅( )  in Tables 2-4. Notice that
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x b d x b x x b d x bR R
0 0 0 0 0 1 2 0 0 0 0( ) ( ) / ( ) ( ) ( ) /∅ + + = − ∅ − ∅ + +

                                         = + + − −
+

d a b d a b x b b a a
b a d a b

R
0 1 0 0 0 1 0 0 1 1 0

0 1 0 0 1

2 2
2

{[ ( ) ] ( )}
[ ]

,

which is negative if and only if x AR
0 < ∅( ) .

Case 2: R = { , }1 2 (the case in which every demander chooses a quantity restraint)

Case 2-1: − + <( ) / ({ , })b d x b xR
0 0 0 0 0 1 2  or x AR

0 1 2> ({ , }) .

Suppose that − + <( ) /b d x b xR
0 0 0 0 0 .  Then

πi i i ia p MAC x p x= − + −1
2 1( ( ) ) , i ∈ { , }1 2 ,

where p a a b d x= − +0 0 0 0 0[ /( )] , − = +x x x0 1 2 , and MAC x a a b xi i i( ) ( / )= −1 1 1 .

That is,

πi i j ia a a b d a b
b b d

x a
b d

x x= − − + +
+

−
+

L
NM

O
QP

1
2

2 2 2
1 0

1 0 0 0 1

1 0 0

0

0 0
( ) ( )

( )
, j i≠ .

Given x j , each country i  is assumed to choose xi  so as to maximize its own payoff.

The first order condition is given by

∂π
∂

i

i
i jx

a a a b d a b
b b d

x a
b d

x= − − + +
+

−
+

=( ) ( )
( )1 0

1 0 0 0 1

1 0 0

0

0 0

2 0 , i j i j, { , },∈ ≠1 2 .

From these equations, or simply by replacing b0  with b d0 0+  in (4)-(6), we obtain the

equilibrium values when x AR
0 1 2> ({ , })  in Tables 2-4. Notice that

x b d x b x x b d x bR R
0 0 0 0 0 1 2 0 0 0 01 2 1 2 1 2({ , }) ( ) / [ ({ , }) ({ , })] ( ) /+ + = − + + +

                                             = + + + − −
+ +

( ){[ ( ) ] ( )}
[ ( ) ]

b d a b d a b x b b a a
b a b d a b

R
0 0 1 0 0 0 1 0 0 1 1 0

0 1 0 0 0 1

3 2
3

,

which is positive if and only if x AR
0 1 2> ({ , }) .
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Case 2-2: − + =( ) / ({ , })b d x b xR
0 0 0 0 0 1 2  or B x AR({ , }) ({ , })1 2 1 20≤ ≤ .

Suppose that − + =( ) /b d x b xR
0 0 0 0 0 .  We show that if B x AR({ , }) ({ , })1 2 1 20≤ ≤ , then the

following strategy profile is a Nash equilibrium:

x x b d
bi

B
R

({ , }) ( )1 2
2

0 0 0

0
≡ + , i ∈ { , }1 2 .

Pick any i ∈ { , }1 2 .  Let x x x b d
bj j

B
R

= = +({ , }) ( )1 2
2

0 0 0

0
, j i≠ .  Then

πi i i
R

ix a a a b d a b
b b d

x a
b

x x( ) ( ) ( )
( )

= − − + +
+

−
L
NM

O
QP

1
2

2 2
1 0

1 0 0 0 1

1 0 0

0

0
0                         if x xi i

B≤ ({ , })1 2

           = − + − + − +L
NM

O
QP

1
2

2 2 2
1 0

0

0
0

1 0 0 1

1 0

0 0 0

0 0
0( ) ( )a a a

d
x a d a b

b d
x a b d

b d
x xR

i
R

i      if x xi i
B> ({ , })1 2

First of all, we prove that for any xi  such that 0 1 2≤ <x xi i
B({ , }) , d x

dx
i i

i

π ( ) > 0 , implying

that π πi i
B

i ix x( ({ , })) ( )1 2 > . If 0 1 2≤ ≤x xi i
B({ , }) , then

d x
dx

b b b d a a a b b d x b a b d a b x
b b b d

i i

i

R
iπ ( ) ( )( ) ( ) [ ( ) ]

( )
= + − − + − + +

+
2 2 2

2
0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1

0 1 0 0
.

Since d x
dx

i i

i

2

2 0π ( ) <  for any xi ≥ 0 , it is sufficient to prove that d x
dx

i i
B

i

π ( ({ , }))1 2  ≥ 0 . In

fact, d x
dx

i i
B

i

π ( ({ , }))1 2 =  2 3
2

0 1 1 0 0 1 0 0 0 1

0 1

b b a a x a b d a b
b b

R( ) [ ( ) ]− − + + ,

which is non-negative since x AR
0 1 2≤ ({ , }) .

Next we prove that for any xi  such that x xi i
B> ({ , })1 2 , d x

dx
i i

i

π ( ) < 0 , implying

that π πi i
B

i ix x( ({ , })) ( )1 2 > . If x xi i
B≥ ({ , })1 2 , then
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d x
dx

b b d a a a b b x a b b d x b a d a b x
b b d

i i

i

R R
iπ ( ) ( ) ( ) [ ]= − + − + − +2 2 2 2

2
0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1

0 1 0
.

Since d x
dx

i i

i

2

2 0π ( ) <  for any xi ≥ 0 , it is sufficient to prove that d x
dx

i i
B

i

π ( ({ , }))1 2  ≤ 0 . In

fact, d x
dx

i i
B

i

π ( ({ , }))1 2 =  2 3
2

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1

0 1 0

b b d a a x d a b d a b a b b
b b d

R( ) { [ ( ) ] }− − + + + ,

which is non-positive since x BR
0 1 2≥ ({ , }) .

Therefore, we conclude that π πi i
B

i ix x( ({ , })) ( )1 2 >  for any x xi i
B≠ ({ , })1 2 , and

the strategy profile ( ({ , }), ({ , }))x xB B
1 21 2 1 2  is a Nash equilibrium. By using this

equilibrium quantities, it is easy to get the equilibrium price and payoffs when

B x AR({ , }) ({ , })1 2 1 20≤ ≤  in Tables 3 and 4.

Case 2-3: − + >( ) /b d x b xR
0 0 0 0 0  or x BR

0 1 2< ({ , }) .

Suppose that − + >( ) /b d x b xR
0 0 0 0 0 . Then

πi i i ia p MAC x p x= − + −1
2 1( ( ) ) , i ∈ { , }1 2 ,

where p a d x d a d xR= − −0 0 0 0 0 0 0( ) / ( / ) , − = +x x x0 1 2 , and MAC x a a b xi i i( ) ( / )= −1 1 1 .

By simply replacing a0  with a d x dR
0 0 0 0( ) /−  and a b0 0/  with a d0 0/  in (4)-(6), we

obtain the equilibrium values x BR
0 1 2< ({ , })  in Tables 2-4. Notice that

x b d x b x x b d x bR R
0 0 0 0 0 1 2 0 0 0 01 2 1 2 1 2({ , }) ( ) / ({ , }) ({ , }) ( ) /+ + = − − + +

                                             = − − + + + +
+

2 3
3

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1

0 1 0 0 1

b b d a a x d a b d a b a b b
b a d a b

R( ) { [ ( ) ] }
[ ]

,

which is negative if and only if x BR
0 1 2< ({ , }) .
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Case 3: R i= { } (the case in which only one demander i chooses a quantity restraint)

Case 3-1: − + <( ) /b d x b xR
0 0 0 0 0  or x A iR

0 > ({ }) .

Suppose that − + <( ) /b d x b xR
0 0 0 0 0 . Then

πi i i ia p MAC x p x= − + −1
2 1( ( ) ) ,

where p a a b x j= −1 1 1( / ) , j i≠ , p a a b d x= − +0 0 0 0 0[ /( )] , − = +x x x0 1 2 , and

MAC x a a b xi i i( ) ( / )= −1 1 1 . By replacing b0  with b d0 0+  in (7)-(11), we obtain the

equilibrium values when x A iR
0 > ({ })  in Tables 2-4. Notice that

x i b d x b x i x i b d x bR
i j

R
0 0 0 0 0 0 0 0 0({ }) ( ) / [ ({ }) ({ })] ( ) /+ + = − + + +

                                         = + + + + + −
+ + + +

( )[ ( ) ][ ( ) ][ ({ })]
[ ( ) ][ ( ) ]

,b d a b d a b a b d a b x A i
b a b d a b a b d a b

R
0 0 1 0 0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 1 0 0 0 1

3
3

which is positive if and only if x A iR
0 > ({ }) .

Case 3-2: − + =( ) /b d x b xR
0 0 0 0 0  or B i x A iR({ }) ({ })≤ ≤0 .

Suppose that − + =( ) /b d x b xR
0 0 0 0 0 . We show that if B i x A iR({ }) ({ })≤ ≤0 , then the

following strategy is the best choice for i:

x i x a b d a b b b a a
a bi

B
R

({ }) [ ( ) ] ( )≡ + + − −0 1 0 0 0 1 0 1 1 0

1 0
.

The payoff of i is provided by

πi i i ix a
a b d a b

b d a a a b d a b
b

x x( )
[ ( ) ]

( )( ) ( )=
+ +

+ − − + +L
NM

O
QP

1

1 0 0 0 1
0 0 1 0

1 0 0 0 1

12
2 3   if x x ii i

B≤ ({ })

           =
+

− + − +L
NM

O
QP

a
a d a b

d a a a x a d a b
b

x xR
i i

1

1 0 0 1
0 1 0 0 0

1 0 0 1

12
2 3

( )
[ ( ) ]                   if x x ii i

B> ({ }) .
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First of all, we prove that for any xi  such that 0 ≤ <x x ii i
B({ }) , d x

dx
i i

i

π ( ) > 0 , implying

that π πi i
B

i ix i x( ({ })) ( )> . If 0 ≤ ≤x x ii i
B({ }) , then

d x
dx

a
a b d a b

b d a a a b d a b
b

xi i

i
i

π ( )
[ ( ) ]

( )( ) ( )=
+ +

+ − − + +L
NM

O
QP

1

1 0 0 0 1
0 0 1 0

1 0 0 0 1

1

3 .

Since d x
dx

i i

i

2

2 0π ( ) <  for any xi ≥ 0 , it is sufficient to prove that d x i
dx

i i
B

i

π ( ({ }))  ≥ 0 . In fact,

d x i
dx

b b a a a b d a b a b d a b a b d a b x

b b a b d a b
i i

B

i

R
π ( ({ })) ( )[ ( ) ] [ ( ) ][ ( ) ]

[ ( ) ]
,=

− + + − + + + +

+ +
0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0

0 1 1 0 0 0 1

2 3 3

which is non-negative since x A iR
0 ≤ ({ }) .

Next we prove that for any xi  such that x x ii i
B> ({ }) , d x

dx
i i

i

π ( ) < 0 , implying

that π πi i
B

i ix i x( ({ })) ( )> . If x x ii i
B≥ ({ }) , then

d x
dx

a
a d a b

d a a a x a d a b
b

xi i

i

R
i

π ( ) ( )=
+

− + − +L
NM

O
QP

1

1 0 0 1
0 1 0 0 0

1 0 0 1

1

3 .

Since d x
dx

i i

i

2

2 0π ( ) <  for any xi ≥ 0 , it is sufficient to prove that d x i
dx

i i
B

i

π ( ({ }))  ≤ 0 . In fact,

d x i
dx

b b a a a d a b a b d a b a d a b a a b b x
b b a d a b

i i
B

i

Rπ ( ({ })) ( )[ ] {[ ( ) ]( ) }
( )

,= − + − + + + +
+

0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0

0 1 1 0 0 1

2 3 3

which is non-positive since x B iR
0 ≥ ({ }) .

Therefore, we conclude that π πi i
B

i ix i x( ({ })) ( )>  for any x x ii i
B≠ ({ }) , and

x ii
B({ })  is the best choice for i. By using this equilibrium quantity, it is easy to obtain the

equilibrium quantity of j i≠ , price, and payoffs when B i x A iR({ }) ({ })≤ ≤0  in Tables 2-4.

Case 3-3: − + >( ) /b d x b xR
0 0 0 0 0  or x B iR

0 < ({ }) .
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Suppose that − + >( ) /b d x b xR
0 0 0 0 0 . Then

πi i i ia p MAC x p x= − + −1
2 1( ( ) ) ,

where p a a b x j= −1 1 1( / ) , j i≠ , p a d x d a d xR= − −0 0 0 0 0 0 0( ) / ( / ) , − = +x x x0 1 2 , and

MAC x a a b xi i i( ) ( / )= −1 1 1 . By simply replacing a0  with a d x dR
0 0 0 0( ) /−  and a b0 0/

with a d0 0/  in (7)-(11), we obtain the equilibrium values when x B iR
0 < ({ })  in Tables 2-

4. Note that

x i b d x b x i x i b d x bR
i j

R
0 0 0 0 0 0 0 0 0({ }) ( ) / [ ({ }) ({ })] ( ) /+ + = − + + +

                                          = + + + + −
+ +

d a b d a b a d a b a a b b x B i
b a d a b a d a b

R
0 1 0 0 0 1 1 0 0 1 0 1 0 1 0

0 1 0 0 1 1 0 0 1

3
3

{[ ( ) ]( ) }[ ({ })]
( )( )

,

which is negative if and only if x B iR
0 < ({ }) .

2. Proof of Theorem 4.

We will show that x x x i x i x x1 2 1 2 1 21 2 1 2 0( ) ( ) ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > + > .  It

follows from this relation that p p i p a( ) ({ }) ({ , })∅ > > >1 2 0 , and

π π π0 0 0 1 2 0( ) ({ }) ({ , })∅ > > >i . There are six cases to consider.

Case 1: A xR( )∅ ≤ 0 . By using the same idea as that of the proof of Theorem 1, it is easy

to prove that ( ) /b d x bR
0 0 0 0+ ≥  x x x i x i x xi j1 2 1 21 2 1 2 0( ) ( ) ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > + > .

Case 2: A i x AR({ }) ( )< < ∅0 . By using the same idea as that of the proof of Theorem 1, it

is easy to check that ( ) /b d x bR
0 0 0 0+ > x i x ii j({ }) ({ })+ > x x1 21 2 1 2 0({ , }) ({ , })+ > .
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Moreover, x x b d x bR
1 2 0 0 0 0( ) ( ) ( ) /∅ + ∅ > + . Therefore, we have the desired result.

Case 3: B i x A iR({ }) ({ })≤ ≤0 .  In this case, x x b d x bR
1 2 0 0 0 0( ) ( ) ( ) /∅ + ∅ > + ,

( ) / ({ }) ({ })b d x b x i x iR
i j0 0 0 0+ = + , and ( ) / ({ , }) ({ , })b d x b x xR

0 0 0 0 1 21 2 1 2 0+ > + > . From

these inequalities, we have the desired result.

Case 4: A x B iR({ , }) ({ })1 2 0< < . By using the same idea as that of the proof of Theorem 1,

it is easy to check that x x1 2( ) ( )∅ + ∅ > x i x ii j({ }) ({ })+ > ( ) /b d x bR
0 0 0 0+ . Moreover,

( ) / ({ , }) ({ , })b d x b x xR
0 0 0 0 1 21 2 1 2 0+ > + > . Therefore, we have the desired result.

Case 5: B x AR({ , }) ({ , })1 2 1 20≤ ≤ . By using the same idea as that of the proof of Theorem

1, it is easy to check that x x1 2( ) ( )∅ + ∅ > x i x ii j({ }) ({ })+ > ( ) /b d x bR
0 0 0 0+ . Moreover,

( ) / ({ , }) ({ , })b d x b x xR
0 0 0 0 1 21 2 1 2 0+ = + > . Therefore, we have the desired result.

Case 6: x BR
0 1 2< ({ , }) . By using the same idea as that of the proof of Theorem 1, it is

easy to prove that x x x i x i x xi j1 2 1 21 2 1 2( ) ( ) ({ }) ({ }) ({ , }) ({ , })∅ + ∅ > + > +  > +( ) /b d x bR
0 0 0 0 .  

�

3. Proof of Theorem 5.

First of all, we will prove the result for the relation between π j({ , })1 2  and π j i({ }) ,

i j, { , }∈ 1 2 , i j≠ . There are four cases to consider.
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Case 1: A i xR({ }) < 0 . By using the same idea as that of the proof of Theorem 2, it is easy

to prove that π πj j i({ , }) ({ })1 2 > .

Case 2: B x A iR({ , }) ({ })1 2 0≤ ≤ . By using the relation that

MAC x p i x a MAC x x i xj j j j j j j( ({ , })) ({ }) ({ , }) ( ({ , })) ({ })) ({ , }))1 2 1 2 1 2 1 21− ⋅ = − ⋅ − ,

it is easy to obtain that

π πj j i({ , }) ({ })1 2 −

            = − ⋅ − − ⋅ −p i p x MAC x p i x i xj j j j j({ }) ({ , }) ({ , }) ( ({ , })) ({ }) ({ })) ({ , })) /1 2 1 2 1 2 1 2 2 .

The desired result immediately follows from the above equation.

Case 3: x BR
0 1 2< ({ , }) . By using the same idea as that of the proof of Theorem 2, it is

easy to prove that π πj j i({ , }) ({ })1 2 > .

Next we will prove that π πi ii({ }) ( )> ∅ , i ∈ { , }1 2 . For the case in which neither

1 nor 2 chooses a quantity restraint, we denote the equilibrium payoff of i when

x AR
0 ≥ ∅( )  by πi ( )∅  and that when x AR

0 < ∅( )  by πi ( )∅ . That is,

πi
a b b d a a

a b d a b
( ) ( ) ( )

[ ( ) ]
∅ ≡ + −

+ +
1 1 0 0

2
1 0

2

1 0 0 0 1
22 2

 and

πi
Ra b d a a a x

a d a b
( ) [ ( ) ]

[ ]
∅ ≡ − +

+
1 1 0 1 0 0 0

2

1 0 0 1
22 2

 (see Table 4).

Moreover, for the case in which only i chooses a quantity restraint, we denote the
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equilibrium payoff of i when x A iR
0 > ({ })  by πi i({ }) , that when B i x A iR({ }) ({ })≤ ≤0  by

πi
B i({ }) , and that when x B iR

0 < ({ })  by πi i({ }) . That is,

πi i a b b d a a
a b d a b a b d a b

({ }) ( ) ( )
[ ( ) ][ ( ) ]

≡ + −
+ + + +

1 1 0 0
2

1 0
2

1 0 0 0 1 1 0 0 0 12 3
,

πi
B i({ }) ≡  { [ ( ) ] ( )}{ ( ) [ ( ) ]}x a b d a b b b a a b b a a x a b d a b

a b b

R R
0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1

1 0
2

1

3 3
2

+ + − − − − + + ,

πi i({ }) ≡ a b a d a b d a a a x
a d a b a d a b

R
1 1 1 0 0 1 0 1 0 0 0

2

1 0 0 1 1 0 0 1
2

3
2 3

( )[ ( ) ]
( )( )

+ − +
+ +

(see Table 4).

There are four cases to consider.

Case 1: A xR( )∅ ≤ 0 . In this case, π πi i( ) ( )∅ = ∅  and π πi ii i({ }) ({ })= . By using the same

idea as that of the proof of Theorem 2, it is easy to prove that π πi ii({ }) ( )> ∅ .

Case 2: A i x AR({ }) ( )< < ∅0 . In this case, π πi i( ) ( )∅ = ∅  and π πi ii i({ }) ({ })= .  Notice that

∂π
∂

i
Rx
( )∅ >
0

0  and 
∂π

∂
i

R
i

x

({ })

0
0= . Therefore, it is sufficient to show that π πi ii({ }) ( )> ∅  if

x AR
0 = ∅( ) . Let x AR

0 = ∅( ) . Then π πi i( ) ( )∅ = ∅ .  Moreover, by the above result for the

Case 1, π πi ii({ }) ( )> ∅ . Thus we have the desired result.

Case 3: x B iR
0 < ({ }) . In this case, π πi i( ) ( )∅ = ∅ and π πi ii i({ }) ({ })= . By using the same

idea as that of the proof of Theorem 2, it is easy to prove that π πi ii({ }) ( )> ∅ .

Case 4: B i x A iR({ }) ({ })≤ ≤0 . In this case, π πi i( ) ( )∅ = ∅  and π πi i
Bi i({ }) ({ })= .  Notice that
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∂π
∂

i
Rx
( )∅ >
0

0  and ∂π
∂
i
B

R
i

x
({ })

0
0≥  if x AR

0 ≤ ∅( ) . Moreover, π π πi
B

i ii i({ }) ({ }) ( )= > ∅  if

x A iR
0 = ({ })  and π π πi

B
i ii i({ }) ({ }) ( )= > ∅  if x B iR

0 = ({ }) . These imply that π πi
B

ii({ }) ( )> ∅

if B i x A iR({ }) ({ })≤ ≤0 .

Finally, we will prove that π πj ji j({ }) ({ })> , i j, { , }∈ 1 2 , i j≠ . Without loss of

generality, let i = 2 and j = 1. For the case in which only 2 chooses a quantity restraint,

but 1 not, we denote the equilibrium payoff of 1 when x AR
0 2> ({ })  by π1 2({ }) , that

when B x AR({ }) ({ })2 20≤ ≤  by π1 2B({ }) , and that when x BR
0 2< ({ })  by π1 2({ }) . That is,

π1
1 1 0 0

2
1 0

2
1 0 0 0 1

2

1 0 0 0 1
2

1 0 0 0 1
22 2

2 3
({ }) ( ) ( ) [ ( ) ]

[ ( ) ] [ ( ) ]
≡ + − + +

+ + + +
a b b d a a a b d a b

a b d a b a b d a b
,

π1
1 0 1 0 0 0

2

1 0
22

2
B

Rb b a a a x
a b

({ }) [ ( ) ]≡ − − , and

π1 2({ }) ≡ a b a d a b d a a a x
a d a b a d a b

R
1 1 1 0 0 1

2
0 1 0 0 0

2

1 0 0 1
2

1 0 0 1
2

2
2 3

( ) [ ( ) ]
( ) ( )

+ − +
+ +

 (see Table 4).

There are three cases to consider.

Case 1: A xR({ })2 0< . In this case, π π1 12 2({ }) ({ })=  and π π1 11 1({ }) ({ })= . By using the

same idea as that of the proof of Theorem 2, it is easy to prove that π π1 12 1({ }) ({ })> .

Case 2: B x AR({ }) ({ })2 20≤ ≤ . In this case, π π1 12 2({ }) ({ })= B  and π π1 11 1({ }) ({ })= B .  Notice

that ∂π
∂
1

0

2 0
B

Rx
({ }) <  and ∂π

∂
1

0

1 0
B

Rx
({ }) > . Therefore, it is sufficient to show that



38

π π1 12 1B B({ }) ({ })>  if x AR
0 1= ({ }) . Let x AR

0 1= ({ }) . Then π π1 12 2B({ }) ({ })=  and

π π1 11 1B({ }) ({ })= . By using the same idea as that of the proof of Theorem 2, it is easy to

prove that π π1 12 1({ }) ({ })> .

Case 3: x BR
0 2< ({ }) . In this case, π π1 12 2({ }) ({ })=  and π π1 12 1({ }) ({ })= . By using the

same idea as that of the proof of Theorem 2, it is easy to prove that π π1 12 1({ }) ({ })> .�
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Figure 8. Comparison of Equilibrium Payoffs: Example 2
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Table 1. The Payoff Matrix for the First Stage Decisions 
               without CDM or Supplier's Quantity Restraint.
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Table 2. The Equilibrium Quantities with CDM and Supplier’s Quantity Restraint.
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Table 3. The Equilibrium Prices with CDM and Supplier’s Quantity Restraint.
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≡ − +
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2 3
3
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3
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({ , }) ( )
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≡ −

+ + +
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Table 4. The Equilibrium Payoffs with CDM and Supplier’s Quantity Restraint.



1

2

Restraint

No
restraint

Table 5. The case in which only one country chooses a quantity restraint.

Restraint
No
restraint

π1 1 2({ , })
π2 1 2({ , })

π1 2({ })
π2 2({ })

π1({ })∅
π2({ })∅

π1 1({ })
π2 1({ })


