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1 Introduction

The literature on the quantitative aspects of the interactions between fiscal and monetary policy
has recently gained a considerable degree of attention in general equilibrium macroeconomic
modelling. Contributions such Schmitt-Grohé and Uribe (2005a), Marzo (2003), Kollmann (2006)
and Schmitt-Grohé and Uribe (2006) evaluate the optimality of alternative combinations of fiscal
and monetary policy in DSGE models, assuming that the former takes place through changes
in one or two distortionary tax rates, typically labour and/or capital, or a generic output tax.
In this paper we analyze the same problem when three distortionary tax rates (on consumption,
labour and capital income) are available, and monetary policy is conducted via a standard Taylor
rule. Our main result, contrary to what found in Schmitt-Grohé and Uribe (2006), is that the
optimal degree of monetary policy’s response to output varies depending on which of the above
tax rates is employed as fiscal policy instrument.

The relevance of tax burden’s composition is evident from the observation of the way fiscal
policy is actually implemented, and can suggest that the use of an average tax rate can be a
poor indicator of the true distortions on agents’ marginal decisions triggered by fiscal policy.
Furthermore, its relevance for the setting of monetary policy is supported by a number of results
on Ramsey optimal policy. In a simpler framework with no capital accumulation, Correia, Nicolini,
and Teles (2003) provide equivalence theorems on the mix between consumption and labor-income
taxes as a substitute for state-contingent debt in the delivery of Ramsey allocations. However, it
is unclear how the proposed allocations should be implemented for the purpose of stabilization
around distorted steady states.

The aim of this paper is to fill the gap in the literature by deriving benchmark results about
the impact of alternative sources of distortionary taxation on monetary policy. We build a New
Keynesian DSGE model with Calvo pricing, capital accumulation and distortionary tax rates on
consumption, labor and capital income. We compute optimized simple rules for monetary and
fiscal policy when one tax instrument at a time varies, while keeping the other two distortionary
tax rates fixed at their steady-state levels. The optimal rules maximize a measure of intertemporal
(conditional) utility, in order to account fully for the transitional effects of alternative policy
arrangements. To that end, we approximate the solution to the system of optimality conditions
through the second-order Taylor approximation around the distorted steady states suggested by
Schmitt-Grohé and Uribe (2006).

Our results contrast the findings of Schmitt-Grohé and Uribe (2006) regarding the optimality
of acyclical monetary policy. We show that the optimal degree of responsiveness of monetary
policy to output can depend on the instrument for tax policy. In particular, when labor-income
taxes follow a simple rule, acyclical monetary policy generates indeterminacy, i.e. it is consistent
with multiple equilibria. This means that the combination between rules for monetary and fiscal
policy is incapable of pinning down a unique desired macroeconomic outcome. However, the
choice of the optimal policy mix satisfies the logic outlined in Leeper (1991), and minimizes the
welfare effects of the dispersion in markups.

Our analysis presents two additional insights concerning the interaction between fiscal and
monetary policy as a function of the degree of nominal rigidities. First, when prices are sticky,
inflation stabilization is optimal independently from the tax instrument considered. Hence, op-
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timal fiscal policy is ‘passive’ in the sense that the fluctuations of government liabilities require
no adjustment to the price level in order to sustain fiscal solvency (see Leeper, 1991). This is
explained by the fact that, with Calvo pricing, movements in the inflation rate generate an inef-
ficient (welfare-reducing) dispersion of markups between the firms that change prices and those
that cannot.

The second set of results indicates that, when prices are flexible, fiscal-policy rules that pre-
scribe unexpected variations in the price level are optimal independently from the tax instrument
considered. Interestingly though, the quantitative findings indicate that an fiscal policy ‘active’ in
the sense of Leeper (1991) need not arise from a strong reaction of taxes to changes in government
liabilities. The reason is that, in Leeper (1991)’s framework, taxes are lump-sum. Distortionary
taxes instead affect real allocations both directly through their impact on equilibrium choices,
and indirectly through inflation expectations. Thus, although the logic of Leeper (1991) applies,
the quantitative dynamics is different from the baseline setting with lump-sum taxes.

The remainder of this paper is organized as follow. Section 2 builds the model under price
rigidity, describing the behaviour of consumers, firms, policy authorities and equilibrium condi-
tions. Section 3 is concerned with the exposition of the quantitative results: after giving account
of calibration and computational strategies, we discuss the model’s main results and present the
relevant robustness checks, including the analysis of the flexible prices case. Section 4 presents
some concluding remarks.

2 The model

The structure of the model follows the New Keynesian tradition. It combines nominal price
rigidities in the form advocated by Calvo (1983) with real distortions due to monopolistic compe-
tition in intermediate-product markets. The novel element is the introduction of three forms of
distortionary taxation — on consumption, labor and capital income — in the household’s budget
constraint. There are exogenous shocks to both productivity and government consumption.

2.1 The household sector

The demand side of the model economy is populated by a representative infinitely-lived consumer.
The agent enjoys utility from current consumption ct and disutility from hours worked `t. The
history of events st = {s0, . . . st} up to date t is assigned a time-0 probability mass µ(st). The
uncertainty in the choice process is summarized by the conditional-expectation operator E0[·] :=∑

st+1 µ(st+1|st). Given this structure, the household’s allocation problem takes the form

max
{ct,`t,it,kt+1,Ab,t}∞t=0

E0

[ ∞∑
t=0

βtu (ct, `t)

]

s. t. (1 + τ c
t )Ct + ηtAb,t + It+ ≤ (1− τ `

t )Wt`t

+
[
(1− τk

t )rt + τk
t δ

]
Kt + Ab,t−1 + T̄R + Ωt. (1)
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where the choice variables with lower-case letters are deflated by the price level. The intertemporal
discount factor of the consumer is β ∈ (0, 1). We should stress that our framework refers to a
cashless economy, which however preserves the comparability with Schmitt-Grohé and Uribe
(2006), as this specificity is explicitly considered by them.

The portfolio of financial assets includes one-period riskless nominal bonds Ab,t with price
ηt. The representative household also owns the claims to the profit ωι of the monopolistically-
competitive firm ι. The gross interest rate on bonds is denoted as Rt. Let Ωιt denote the
dividend stream generated by firm ι and appropriated by household. The total dividend payment
to household is

Ωt :=
∫

ι∈$

ωιΩιtdι. (2)

For the purpose of analytical simplicity, we assume that the allocation of ownership shares across
agents is constant, and beyond the control of households.

The representative consumer controls the evolution of the real capital stock kt through the
individual decision on investment it. Capital services are rented to the firms of the intermediate-
good sector at the rate rt. Capital accumulation follows a linear law of motion

kt+1 = it + (1− δ)kt. (3)

Three types of distortionary taxes enter the consumer’s budget constraint. There are taxes
on consumption, labor income and capital income at the average rates τ c

t , τ `
t and τk

t respectively.
Capital taxes are imposed on the nominal return of capital. Following Kim and Kim (2003),
we introduce a depreciation allowance on capital taxation, with rt as the rental rate of capital.
Households also enjoy a nominal flow T̄R of real government transfers. These transfers are fixed
at the steady-state level, and are introduced to improve the calibration of the model.

2.2 The final-good sector

The model includes a perfectly-competitive market where a representative firm sells a final prod-
uct. The firm purchases intermediate goods and re-packages them through the Dixit-Stiglitz
technology

yt ≤
[∫

ι∈$

y
θ−1

θ
ιt dι

] θ
θ−1

, (4)

where ι indexes the inputs over the measure $ of intermediate firms. The demand for each
intermediate good yιt follows from the static profit maximization problem

max
{yιt}ι∈$

Pt

[∫

ι∈$

y
θ−1

θ
ιt dι

] θ
θ−1

−
∫

ι∈$

Pιtyιtdι, (5)

4



and takes the form

yιt =
[
Pιt

Pt

]−θ

yt. (6)

At a zero-profit equilibrium, the following price index of final goods can be derived

Pt =
[∫

ι∈$

P 1−θ
ιt dι

] 1
1−θ

. (7)

2.3 The intermediate-good sector

In the intermediate sector, firm ι ∈ $ uses capital and labor as production inputs according to a
constant returns-to-scale technology

yιt ≤ ztk
α
ιt (`ιt)

1−α
. (8)

where zt is an exogenous productivity shock common to all firms

ln[zt+1] = ρz ln[zt] + σzε
z
t+1, (9)

and εz
t ∼ N(0, 1). Capital services are rented from centralized markets, and are perfectly mobile

across firms.

Each firm chooses kιt and `ιt taking their rental rates as given. The allocation problem for
production factors is

max
{`ιt+n,kιt+n}∞n=0

E0

∞∑
n=0

Ξt+n|tPt+n

[
Pιt+n

Pt+n
yιt+n − wt+n`ιt+n − rt+nkιt+n

]
, (10)

subject to the constraints 6 and 8. The stochastic discount factor Ξt+n|t collects the prices of the
claims that pay each one unit of money for a given state of nature at t + n, normalized by the
probability of the state.

Sticky prices arise from staggered price contracts in the tradition of Calvo (1983). Each firm
is allowed to change the price of its intermediate good with a fixed probability 1 − φp. A price
that cannot be re-set optimally in the current period increases at the steady-state rate of inflation
π̄. Along with the assumption of monopolistically-competitive markets, this mechanism implies
that firms are willing to satisfy unexpected fluctuations in demand even if they cannot change
their prices. Because of constant-returns to scale and no fixed costs, when a re-optimization takes
place the price-setting decision of firm ι in period t involves choosing a contingent plan for P̃ιt

such that

max
P̃ιt

Et

∞∑
n=0

Ξt+n|tφn
pPt+n

[
π̄nP̃ιt

Pt+n
yιt+n −mct+nyιt+n

]
. (11)

where mct+n is the stream of future marginal cost of production.
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2.4 Fiscal and monetary policy rules

The government faces the flow budget constraint1

Dt + Ptτt = Rt−1Dt−1 + Ptg
c
t + Ptt̄r. (12)

Real total taxation is denoted as τt, and gt indicates total government spending. The government
issues one-period riskless (non-state contingent) nominal bonds denoted by Dt.

The total revenues from taxation are decomposed into consumption taxes τ c
t , capital taxes τk

t

and labor taxes τ `
t

τt := τ c
t ct + τk

t (rt − δ)kt + τ `
t wt`t. (13)

Public spending is an exogenous process

ln[gc
t+1] = ρg ln[gc

t ] + (1− ρg) ln [ḡc] + σgε
g
t+1. (14)

with εg
t ∼ N(0, 1). There are also transfers t̄r to households that are fixed to their steady-state

level. Government transfers are introduced for the purpose of achieving a realistic calibration of
the steady-state ratio between public debt and output. The intertemporal budget constraint of
the government is written as

RtDt ≤
∞∑

p=0

Et+p

(
1

Rt+p

)p[
Pt+pτt+p − Pt+pgt+p

]
. (15)

with total public spending gt := gc
t + tr. This amounts to saying that the maximum level

of outstanding debt in every period should not exceed the discounted sum of future primary
surpluses.

The literature on public finance provides plenty of results of equivalence between different
types of taxation in terms of welfare impact. In these cases, the allocation achieved under a
given tax structure can be replicated through alternative structures where the redundant tax
rates are removed. Renström (2006) shows that the tax equivalence proposition breaks down in
a dynamic framework where the consumption plans of households can be changed at a frequency
higher than tax rates. Correia, Nicolini, and Teles (2003) provide equivalence theorems on the
mix between consumption and labor-income taxes as a substitute for state-contingent debt in
the delivery of Ramsey optimal allocations. Like in the seminal contribution of Ramsey (1927),
these equivalence theorems arise in simplified economies that include only a limited number of
frictions. This provides the motivation for including proportional tax rates on consumption, labor
and capital income in the model.

From an operational point of view, the tax rates on consumption, labor and capital income are
the three instruments that the government can employ for cyclical fiscal policy. In this paper, we
impose a fiscal feedback rule that makes one of the tax rates change, while holding the other two
constant at their steady state values. Following Schmitt-Grohé and Uribe (2006), we define the

1Our government budget constraint differs from the one employed by Schmitt-Grohé and Uribe (2006) since we
do not have money issuance here.
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total amount of government liabilities lt in equilibrium lt := Rtdt. Hence, the flow government
budget constraint in equilibrium can be expressed in terms of total liabilities

lt =
Rtlt−1

πt
+ Rt (gt − τt) . (16)

The evolution of total distortionary taxes is linked to the outstanding value of government liabil-
ities through the simple rule:

τt = ψ0 + ψ1

(
lt−1 − l̄

)
+ ψ2

[
gt +

(
Rt−1 − 1

Rt−1

) (
lt−1

πt

)]
. (17)

where l̄ denotes the deterministic steady state of government liabilities. Suppose that the tax
rate on consumption τ c

t is the instrument for fiscal policy. From equation (17), we get

τ c
t = ψ0/ct −

[
τ̄k(rt − δ)kt + τ̄ `wt`t

]
/ct

+ ψ1

(
lt−1 − l̄

)
/ct + ψ2

[
gt +

(
Rt−1 − 1

Rt−1

)(
lt−1

πt

)]
/ct. (18)

Similar expressions can be derived for τk
t and τ `

t .

The fiscal rule 17 allows us to distinguish between two kinds of liability stabilization. A simple
fiscal feedback rule à la Leeper (1991) is obtained by setting ψ2 = 0, whereas a balanced budget
rule holds when ψ1 = 0 and ψ2 = 1. In the case of liability targeting, Leeper (1991) distinguishes
between two policy regimes. With ‘active’ fiscal policy, the evolution of government liabilities
plays an important role in the determination of the price level. A ‘passive’ fiscal policy, instead,
is such that tax policy does not constrain the path of the inflation rate. Combining the fiscal
rule for liability targeting with the flow budget constraint, a linear difference equation can be
obtained: lt = (Rt/πt)(1−ψ1πt)lt−1 + rest. An active fiscal policy requires: |1−ψ1π̄| > 1. This
condition implies that government liabilities grow at a rate higher than the real interest rate. In
order to make the problem stationary, the initial price level should adjust accordingly.

Finally, we assume that the central bank sets policy rates according to a simple feedback rule

ln
[
Rt

R̄

]
= απ ln

[πt

π̄

]
+ αy ln

[
yt

ȳ

]
+ αR ln

[
Rt−1

R̄

]
. (19)

This formulation has become standard since the work of Taylor (1993).

2.5 Aggregation and equilibrium

Under Calvo pricing, all the firms that are allowed to change their idiosyncratic prices choose the
same new price. Hence, the average price level can be written as:

(Pt)
1−θ = φp (π̄Pt−1)

1−θ + (1− φp)
(
P̃t

)1−θ

,
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which can be re-written as

1 = φp

(
π̄

πt

)1−θ

+ (1− φp) (p̃t)
1−θ

,

with p̃t := P̃t

Pt
and πt := Pt

Pt−1
.

Proposition 1 Equilibria of this set of economies are sequences of prices
{Pt}∞t=0 := {P ∗t , P̃ ∗t , R∗t , η

∗
t , w∗t , r∗t , s∗t }∞t=0, quantities {Qt}∞t=0 := {{Qh

t }∞t=0, {Qf
t }∞t=0, {Qg

t }∞t=0}
with {Qh

t }∞t=0 := {c∗t , `∗t , k∗t+1, i
∗
t , a

∗
b,t}∞t=0, {Qf

t }∞t=0 := {y∗t , k∗t , `∗t }∞t=0, {Qg
t }∞t=0 := {gc∗

t , tr
∗
, τ c∗

t ,

τk∗
t , τ `∗

t , d∗t }∞t=0, and stochastic shocks {Et}∞t=0 := {εz
t , ε

g
t }∞t=0 that are bound in a neighborhood of

the deterministic steady state, and such that:

(i) given prices {Pt}∞t=0 and shocks {Et}∞t=0, {Qh
t }∞t=0 is a solution to the representative house-

hold’s problem;

(ii) given prices {Pt}∞t=0 and shocks {Et}∞t=0, {Qf
t }∞t=0 is a solution to the representative problem

of the firm;

(iii) given quantities {Qt}∞t=0 and shocks {Et}∞t=0, {Pt}∞t=0 clears the markets for both goods and
factors of production

y∗t =
[
c∗t + i∗t + g∗t + tr

∗]
s∗t , (20)

s∗t = (1− φp) [p̃∗t ]
−θ + φp

[
π∗t
π̄

]θ

s∗t−1, (21)

and the markets for bonds

R∗t =
1
η∗t

, (22)

a∗b,t = d∗t . (23)

(iv) given quantities {Qt}∞t=0, prices {Pt}∞t=0 and shocks {Et}∞t=0, {Qg
t }∞t=0 satisfies both the

government flow and the intertemporal budget constraint;

(v) fiscal and monetary polices are set according to the simple rules outlined earlier.

3 Quantitative results

In this section we discuss the results of the model with price rigidity. After dealing with calibration
and computational issues, we discuss the optimal cyclical response of monetary policy depending
on the tax instrument employed, present the relevant set of experiments and compare our results
to the contribution of Schmitt-Grohé and Uribe (2006). In the last subsection, concerned with
the analysis of the flexible prices model, we show that standard results about the desiderability
of monetary/fiscal policy configuration vis-a-vis the degree of nominal rigidities hold even in our
more sophisticated (and distorted) framework.
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3.1 Calibration

we calibrate the model on quarterly data for an average G-7 economy. The parameter values are
reported in Table 1. The long-run inflation rate is set to 4% a year. The intertemporal discount
factor β equals 0.9949. Households devote a steady-state share of time to market activity equal
to 0.4.

we choose an investment-output ratio of 0.24 at the steady state. The quarterly depreciation
rate is consistent with an annual rate of 10%. The resulting capital-output ratio (9.95) is close
to what data for the U.S. suggest (see Christiano, Eichenbaum, and Evans, 2005). The price-
marginal cost markup factor is set at θ/(θ − 1) = 1.25, as suggested by Bayoumi, Laxton, and
Pesenti (2004). Following Pappa (2004), we choose φp = 2/3, which implies an average contract
duration of 1/(1− 2/3) = 3 quarters. The capital elasticity of output α is 0.4 (see Kim and Kim,
2003).

The steady-states tax rates on consumption, labor and capital income are set at, respectively,
0.12, 0.3168 and 0.36; these values, interpreted as long-run tax rates on those macroeconomic
aggregates, match the G-7 averages from Kim and Kim (2003).The steady-state ratio between
public debt and output is calibrated at 70%, with government consumption representing a share
of 15% of output. The resulting ratio between public transfers and output is approximately 0.10.
In the model with lump-sum taxes, we adjust the ratio between public transfers and output to
achieve a public-debt share of output of 70%.

3.2 Computational aspects

3.2.1 Welfare evaluation

The coefficients of the policy rules for both monetary and fiscal policy are chosen to maximize
a utility-based welfare function. In this paper, we consider a measure of conditional household
welfare

W0 := E

[ ∞∑
t=0

βt (log(ct)− γ`t)
∣∣∣s̃ ∼ (s,Ω)

]
(24)

that takes into account the transitional costs of moving from the initial state s̃ to the stochastic
steady state of the model, with s and Ω as the mean and the covariance matrix of the distribution
of the initial state. In order to obtain accurate welfare results, we solve the model through the
second-order Taylor expansion method of Schmitt-Grohè and Uribe (2004).2 The approximate
solution is then used to compute the second-order expansion of the utility function so to obtain
an accurate welfare criterion”.

We compare the outcomes of different policies by computing the permanent change in con-
sumption, relative to the model’s steady state, that yields the expected utility level of the distorted
economy. Given steady states of consumption c̄ι and hours worked ¯̀ of model ι, this translates

2We use the code kindly shared by Martin Uribe on his webpages.
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into the number Φι
c such that

∞∑
t=0

βtu
(
[1−∆ι

c] c̄
ι, ¯̀) = Wι

0. (25)

Four elements determine the size of the welfare metric. On the right-hand side of the equality,
there are the deterministic steady state, its stochastic counterpart, and the transition from the
deterministic to the stochastic long-run equilibrium of ι. On the left-hand side, instead, there
are the deterministic steady states of the benchmark model with respect to which the current
distorted economy is compared. In expression 25, we follow the standard practice of using the
model’s own steady states as the benchmark.

Following Kollmann (2006), we decompose the conditional welfare cost ∆ι
c into two compo-

nents denoted as ∆ι
E and ∆ι

V . Denoting by hats the log-deviations from the deterministic steady
state, the following approximation holds:

u
(
[1−∆ι

c] c̄, ¯̀) ≈ u
(
c̄, ¯̀) + (1− β)

∞∑
t=0

βt

(
E

[
ĉt − ¯̀̀̂

t|s0

]
− 1

2
VAR [ĉt|s0]

)
. (26)

we compute the change in mean consumption ∆ι
E that the household faces while giving up the

total fraction of certainty-equivalent consumption ∆ι
c

u
(
[1−∆ι

E ] c̄, ¯̀) = u
(
c̄, ¯̀) + (1− β)

∞∑
t=0

βt
(
E [ĉt|s0]− ¯̀E

[
ˆ̀
t|s0

])
. (27)

Since the solution method is non-certainty equivalent, we can also calculate the change in condi-
tional variance of consumption that is consistent with the total welfare cost of policies

u
(
[1−∆ι

V ] c̄, ¯̀) = u
(
c̄, ¯̀)− (1− β)

1
2

∞∑
t=0

βtVAR [ĉt|s0] , (28)

where hats denote log-deviations from the deterministic steady states. It can be shown that the
three measures of welfare are linked in the following way:

(1−∆ι
c) = (1−∆ι

E) (1−∆ι
V ) . (29)

Since there are no closed-form solutions for the infinite summations in the expressions for ∆ι
V

and ∆ι
E , we simulate the conditional moments for 10000 periods and compute the discounted

sum. The (finite-horizon) conditional moments are computed through the analytical formulas
presented in Appendix E.

3.2.2 Local validity of approximate solutions

Second-order perturbations are defined only within small neighborhoods around the approxima-
tion points, unless the function to be evaluated is globally analytic (see Anderson, Levin, and
Swanson, 2004). Since the conditions for an analytic form of the policy function are hardly es-
tablishable, the problem of validity of the Taylor expansion remains. We approach this issue at

10



different levels. First, we calibrate the processes for exogenous shocks in such a way that their
fluctuations are constrained within small intervals, like Schmitt-Grohé and Uribe (2006). How-
ever, given the large degree of inertia in public debt fluctuations induced by the fiscal rules, this
might not be enough to guarantee the local validity of the approximation.

The second step consists in imposing a constraint on the simulated values that restricts the
unconditional mean of public debt to be arbitrarily close to its the deterministic steady state. This
means that the stochastic steady state of public debt fluctuates within a small range around the
deterministic steady state. In this, we follow Kollmann (2006). For a variable x, the constraint
takes the form

∣∣∣E
[
b̂
]∣∣∣ < κ1. (30)

This constraint is made operational in the following way. We solve the model and simulate it to
obtain the conditional moments as discussed in the previous subsection. During the simulation,
we discard the parameter combinations of the fiscal and monetary policy rules that produce
unconditional means of public debt which do not comply with the restriction 30.

The reason for introducing this type of constraint relates to the large persistence induced
by the fiscal-policy rule, which could make the stochastic steady states drift far apart from the
deterministic steady states. In that case, the Taylor approximation to the system of first-order
conditions would not be locally valid any longer. The parameter κ1 is calibrated equal to 0.01.3

3.3 Main results with price rigidity

In this subsection, we present the results with simple rules for a policy mix in the model with
price rigidity that: (a) generate unique rational-expectations equilibria; (b) achieve the highest
level of conditional welfare in the admissible region of parameters for the policy rules; (c) comply
with the constraint 30. We compute the welfare-maximizing values of the parameters for the fiscal
and monetary policy rules over a grid. The parameter ψ1 is allowed to vary within [0, 4]. The
inflation coefficient απ takes values in [0, 2]. The parameters αy and αR are bound over [0, 1].4

3.3.1 Cyclical monetary policy and tax instruments

Table 2 is the key table summarizing our results. It reports the coefficients of the policy rules with
the associated welfare level and costs under five different specifications. Our main discussion stems
from panel [a], which reports the results of the fully-optimized (unconstrained) rules maximizing
the measure of conditional welfare W0. The remaining configurations (panels [b]-[e]) analyze
ad-hoc policy rules and are meant mainly to verify the robustness of the crucial results.

Firstly, panel [a] shows that optimal monetary policy follows the Taylor principle, namely
the prescription that the coefficients on the inflation objective should be larger than one. When
lump-sum taxes are the fiscal-policy instrument, all the values of ψ1 that generate unique rational-
expectations equilibria share the same welfare level. This is due to the fact that the real allocation

3Numerical experiments show that the results are substantially unaffected for κ1 ≤ 0.05 and κ1 ≤ 0.1.
4We should emphasize that the results do not change if we allow the coefficient on the output gap to exceed

unity.
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is unaffected by fiscal policy when taxes are lump-sum and follow a passive rule. However, the key
result from panel [a] of Table 2 is that the optimal degree of cyclicality in monetary policy depends
on the policy mix. Except for the case of time-varying taxes on labor, optimal monetary policy
does not respond to output. Instead, with a policy rule for labor-income taxes, the optimized
coefficient on the gap between current and long-run output5 takes the largest value within the
admissible range.

Some insight on the role of cyclical monetary policy can be gained by looking at the pattern
of macroeconomic adjustment generated by the optimizing policy mix. Figures 1(a)-1(d) report
the impulse responses from monetary-policy rules that maximize conditional welfare with and
without response to the output gap. Three aspects are worth noting. First, for a given degree
of responsiveness of monetary policy to output, the initial sign of the responses of the variables
is the same under all the tax instruments, with the exception of the rule for labor-income taxes.
The difference lies only in the quantitative magnitude of the fluctuations. Second, like for lump-
sum taxes, with a policy rule for taxes on either consumption or capital income, the nominal
rate of interest rises modestly when monetary policy is acyclical, and falls when the central bank
pursues a cyclical stance after a positive productivity shock. Finally, in the case of labor-income
taxes (see figure 1(d)), acyclical monetary policy generates multiple equilibria, and the corre-
sponding impulse responses cannot be computed without further assumptions on the mechanism
of equilibrium selection.

The fall of policy rates when the central bank leans against the wind’ appears counterintuitive.
In particular, one would expect the presence of a cyclical component to strengthen the response
of monetary policy to a positive supply shock. This indicates that there should be an inverse
relation between inflation variability and the output coefficient of the Taylor rule. Figure 2 plots
the variance of πt as a function of αy, where all the policy parameters are chosen to maximize
conditional welfare. Except for the case of time-varying taxes on labor income, figure 2 indicates
that inflation variability is a monotonic increasing function of the responsiveness to output. As
a result, the fall of inflation after a productivity shock is larger the higher the coefficient on the
output gap.

Schmitt-Grohé and Uribe (2006) suggest that inflation changes following positive supply
shocks have important welfare implications. Given the structure of the Calvo setting, the frac-
tion of firms that are allowed to change prices makes the relative price P̃t/Pt drop. Since the
markups of these firms will keep close to the steady state, their real marginal costs fall. As a
result, the markups of the firms that cannot change prices are bound to increase, thus raising
the economy-wide markup. The inefficient dispersion of markups explains why cyclical monetary
policy is welfare-reducing.

With time-varying taxes on labor income, the optimal response to a positive productivity
shock induces a fall in the nominal rate of interest. Hence, the optimizing policy mix with time-
varying taxes on labor does not eliminate the inefficiency from markup dispersion. In order to
provide intuition, figure 3 reports the impulse responses from a positive productivity shock for the
policy rules that maximize conditional welfare as a function of αy. While varying the coefficient

5Coherently with the model-solution method, we use the expression ‘output gap’ to denote the deviation of
current output from the distorted deterministic steady state. This differs from the notion usually employed in the
literature on monetary-policy rules, which refers to the output deviation from frictionless potential output.
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on the output gap, the other policy parameters are set so that conditional welfare is maximized.
There are two forces at work. On one hand, the globally-optimizing coefficient on the output gap
objective induces the smallest initial fall in the interest rate. This is consistent with the smallest
initial fall in prices. On the other, the magnitude of the initial response of the real return of
capital drops as a function of αy because capital accumulation becomes more sluggish. At the
same time, the fraction of output absorbed by household bond holdings rises.

Another key ingredient in the macroeconomic adjustment with time-varying taxes for labor
income is the fact that hours worked fall after a positive productivity shock (see figure 1(d)).
With Calvo pricing, the fraction of firms that cannot change prices reduces the amount of labor
services employed as a response to transitory technological improvements. This happens inde-
pendently from the operative instrument for fiscal policy. However, when labor taxes are the
fiscal-policy instrument, the overall quantitative impact of the monopolistic distortion on the
aggregate demand for labor is negative.

The decline in hours worked is due also to the sluggish adjustment in consumption and capital.
The response of capital to the positive productivity shock is small because of the inertial reaction
of investment, which causes the rental rate of capital to fall on impact. Since both consumption
and investment respond by little, the time share devoted to leisure must increase in order to
contain the rise in output.

These considerations shed light on patterns different from those discussed in the literature. In
particular, Schmitt-Grohé and Uribe (2006) argue that responding to the output gap is suboptimal
for the class of Taylor rules considered here. Using the standard New Keynesian model, they find
that the welfare costs of policy mistakes are increasing in the responsiveness of monetary policy
to output. The results discussed here indicate that this consideration need not hold across tax
instruments. Figure 4 plots the percentage changes of welfare costs from the minimized costs as a
function of αy, holding the other parameters of the policy rules at the optimal levels. Two lessons
emerge. The first one is that, with the exception of time-varying taxes on consumption, policies
that are too responsive to output with respect to the optimal setup do not cause large welfare
losses. The second is that sound monetary policy need not stick to responding to inflation alone.
When labor-income taxes follow a simple policy rule, underestimating the optimal response to
output raises the welfare costs by the same magnitude of the policy mistakes under time-varying
taxes for capital income.

3.3.2 The value of tax instruments

The negative response of labor supply to a positive productivity shock is at the root of an
additional aspect, that is the fact that the minimized welfare costs fall as monetary policy becomes
more responsive to output. Figure 5 plots the percentage change of the welfare costs minimized at
each admissible value of αy with respect to the welfare costs of optimal policy mix. All the policy
parameters are chosen so that conditional welfare is maximized for each value of the output-gap
coefficient of the Taylor rule. The introduction of time-varying taxes for labor income makes
the welfare-cost curve downward-sloping in the responsiveness of monetary policy to output. As
noticed earlier, this is explained by the fact that the drop in hours worked is an increasing function
of the welfare-maximizing values of αy (see figure 3). The larger the fall of hours worked, the
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lower the initial drop of the inflation rate, and the lower the dynamic distortions due to markup
changes.

Two points are worth noting from figure 2. When taxes on labor income are the instrument
for fiscal policy, the variance of inflation is negatively related to αy. This is coherent with the
pattern documented above. The important aspect is that the optimal policy mix minimizes the
variability of inflation. With the exception of time-varying taxes for labor income, the policy
rules achieve perfect inflation stabilization around the distorted steady state. Kollmann (2006)
obtains this result by choosing a welfare-maximizing equilibrium with a high inflation coefficient
in the Taylor rule. The results presented here, instead, indicate that the size of the feedback
parameter on inflation need not matter as long as the Taylor principle holds.

An additional measure of the value of alternative tax instruments is provided in figure 6. This
figure plots the percentage change in welfare costs from the minimized cost as a function of the tax
responsiveness to government liabilities, holding the other parameters at the welfare-maximizing
values. Figure 6 shows that a lack of response to total liabilities exacerbates the welfare loss
in the case of time-varying taxes for capital income. Fiscal-policy mistakes have no significant
impact with time-varying taxes on consumption and labor income.

3.3.3 The role of interest-rate inertia

The optimized policy mix with lump-sum taxes incorporates a large degree of interest-rate inertia.
However, this feature is not constant across tax instruments. In the model with time-varying
taxes on labor income, monetary policy exhibits no smoothing. Panel [b] of Table 2 restricts the
optimized Taylor rules to having no interest-rate inertia. With the exception of the policy rule for
lump-sum taxes, there are no large falls in welfare from not responding to the past policy stance.
Figure 7 reports the percentage increase in welfare costs due to policy mistakes in the choice
of αR. The results indicate that these policy mistakes have only a limited impact on welfare.
Hence, although the optimal degree of policy inertia is different across fiscal-policy instruments,
deviations from the optimal values can be tolerated. This confirms that autocorrelation in the
policy rates plays a minor role for the implementable policy mix.

3.3.4 Ad-hoc policy rules

A natural benchmark for comparing the performance of the fully-optimized policy mix is the
parametrization proposed by Taylor (1993) for monetary policy. To that end, we search for the
constrained rules with απ = 1.5, αy = 0.5 and αR = 0 that maximize conditional welfare over
ψ1. Panel [c] of table 2 shows that the model with lump-sum taxes displays the largest fall in the
level of conditional welfare. Among the distortionary tax instruments, the rule with time-varying
taxes on capital income generates a sizeable increase in welfare costs.

In many formulations of DSGE models, a common assumption regarding the way tax revenue
is rebated to households in a lump-sum fashion so to continuosly balance the budget makes the
government flow budget constraint a trivial equilibrium condition, which thus drops out of the
model. Panel [d] of Table 2 reports the optimized rules for monetary policy with balanced budget
rules. Since there are only few grid points with determinate equilibria, we omit the results for
capital-income taxes. The pattern of cyclicality across fiscal-policy instruments is the same as
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with the fully-optimized policy mix. Balanced budget rules achieve the same welfare levels of
simple feedback rules. The only difference concerns the case of labor-income taxes, for which the
transition towards the stochastic steady states is more costly than for fully-optimal policy rules.

3.3.5 Inflation targeting

The optimal policy rules of panel [a] achieve perfect inflation stabilization around the distorted
steady state. Hence, it is interesting to consider the optimal policy mix where monetary policy
contemplates constant inflation. Panel [e] of Table 2 reports the welfare-maximizing coefficients
for a simple rule for monetary policy with π̂t = 0. The optimized parameters involve a respon-
siveness of taxes to government liabilities that is not substantially different from those of panel
[a]. However, the conditional costs in variance are very small. With time-varying taxes on capital
income, the achieved welfare level is slightly higher than that under the rule from panel [a].

3.4 An economy with flexible prices

In a model with price stickiness and nominal debt, the distortions generated by markup changes
are the key for interpreting the welfare implications of the mix between fiscal and monetary policy.
In this section, we consider a setting with flexible prices where inflation does not lead to inefficient
price dispersion. As a result, unanticipated inflation changes that realign the real value of public
debt to that prescribed by the intertemporal solvency condition are no longer welfare reducing.

Kollmann (2006) shows that the adoption of an active stance for fiscal policy induces large
inflation volatility. In the context of simple linear rules for monetary policy, this can be a source
of excessive variability in the nominal interest rate. The local validity of the approximate solution
might not hold any longer. Hence, along with the exogenous bound 30, we impose a condition
that rules out excessive aggressiveness in the conduct of monetary policy:

E [Rt] > 2σR̂t
. (31)

Large deviations of the nominal interest rate from the steady state are also likely to prescribe vio-
lations of the zero bound at some point in time (see Schmitt-Grohé and Uribe, 2005b). Enforcing
the constraint 31 is consistent with imposing a zero lower bound on policy rates.

Table 3 reports the policy coefficients that maximize conditional welfare. Three main results
emerge. First, except for the case of time-varying taxes on consumption, the optimal policy mix
entails active fiscal policy (ψ1 ≥ 2) and passive monetary policy (απ < 1). Second, like in the
model with price rigidity, optimal monetary policy can respond to output depending on the tax
instrument adopted. Third, optimal monetary policy is characterized by no interest-rate inertia
(αR = 0).

The optimality of active fiscal policy follows from the lack of welfare costs due to price changes.
The analysis of Leeper (1991) suggests that, in this case, the response coefficient of taxes to
government liabilities should be large. Thus, it is interesting to investigate the reason for which
this prescription does not hold in the case of a policy rule for consumption taxes.

Figure 8 plots the impulse responses to a positive productivity shock when the optimized tax
rule is restricted to the active and passive regions, as suggested in Leeper (1991). When fiscal
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policy is constrained to the standard region of activeness — i.e. ψ1 ∈ [2, 4] —, the optimizing
rule for monetary policy is R̂t = 1.1π̂t + 0.3ŷt, and is very similar to one from panel [a] of Table
3. Figure 8 shows that the drop of inflation on impact for ψ1 ∈ [0, 1.9] is larger than the drop
for ψ1 ∈ [2, 4]. This is due to the fact that, in order to generate a response of consumption
of equal magnitude irrespective of ψ1, the required increase of the outstanding level of debt is
larger under ψ1 ∈ [0, 1.9] than under ψ1 ∈ [2, 4]. Figure 10(b) plots the percentage change with
respect to the minimized welfare cost as a function of ψ1, while holding the other parameters at
the welfare-maximizing level. With time-varying taxes on consumption, the closer the tax rule
gets to the region with ψ1 ∈ [2, 4], the larger the welfare costs become.

Summing up, with flexible prices and time-varying consumption taxes, a policy mix with a
low feedback coefficient on total liabilities supports a Pareto-improving allocation. In particular,
the distinction between ‘active’ and ‘passive’ policy based on the quantitative reaction of taxes
to government liabilities can lead to misleading conclusions when taxes are distortionary. The
reason is that changes to distortionary taxes affect both the inflation rate in the initial period
through their expected impact on the government flow budget constraint, and the real allocations
at each point in time.

The subsequent point of interest concerns the optimal responsiveness of monetary policy to
output with flexible prices. Figure 10 compares the impulse responses to a productivity shock
for welfare-optimizing policy rules with αy = 0 and αy > 0. We can see that, independently
from the instrument for fiscal policy, the optimizing degree of responsiveness to output generates
the largest reaction of inflation on impact. This confirms the results discussed earlier. Table 4
reports the variability of some selected macroeconomic variables under alternative policy rules.
The third and fourth columns confirm that the optimal policy mix maximizes the variance of
inflation. Table 4 shows also that, when inflation variability is large, also the variance of the
nominal interest rate is sizeable. Despite this, all the optimal rules underlying Table 4 comply
with the bound 31 that rules out excessive aggressiveness in monetary policy, and that preserves
the stationarity of the solution. Figure 11 suggests that, except in the case of time-varying lump-
sum taxes, deviations from the optimal coefficient on the output gap lead to a substantial drop
in the optimized welfare level.

A final note concerns the optimal degree of policy inertia. Mistakes in the choice of this
parameter lead to non-existence of valid equilibria with time-varying taxes on capital income and
lump-sum. Figure 12 shows that, with a policy rule for consumption taxes, the increase in welfare
costs can be substantial as it goes up to 15% as αy approaches 1.

4 Conclusion

This paper studies the role of tax composition for the optimal design of simple rules for monetary
and fiscal policy. We formulate a New Keynesian model with Calvo pricing and three types of
distortionary taxes — taxes on consumption, capital and labor income. We assume that one of
the tax rates varies at a time as a function of the deviation of government liabilities from the
deterministic steady state. The second-order approximation method of Schmitt-Grohé and Uribe
(2004) is used to obtain a nonlinear solution, and to compute welfare-maximizing coefficients for
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the policy rules.
Three main results emerge. In a model with price stickiness, inflation stabilization is optimal

independently from the tax instrument considered, and optimal fiscal policy is passive in the
sense of Leeper (1991). Differently from Schmitt-Grohé and Uribe (2006), we find that the
optimal degree of responsiveness of monetary policy to output can depend on the instrument for
tax policy. In particular, when labor-income taxes follow a simple policy rule, underestimating
the optimal response to output can lead to a substantial welfare loss. This is due to the fact that
acyclical monetary policy is unable to pin down unique macroeconomic equilibria, and the policy
mix produces different outcomes that are equally achievable by the policy planner. Finally, with
flexible prices, ‘active’ rules for fiscal policy that prescribe unexpected variations in the price
level are optimal independently from the tax instrument. This confirms the results obtained by
Kollmann (2006).
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A First-order conditions

The first-order conditions from the firm’s allocation problem are

wt = mcιt(1− α)ztk
α
ιt (`ιt)

−α
, (32)

rt = mcιtαzt

[
`ιt

kιt

]1−α

. (33)

with real marginal costs per unit of output mcιt.
Optimal price decisions for firms that can adjust prices at t follow from the optimality condition

Et

∞∑
n=0

Ξt+n|tφn
p

[
1− θ

θ

π̄nP̃ιt

Pt+n
+ mct+n

](
π̄nP̃ιt

Pt+n

)−θ−1

yt+n = 0. (34)

After deflating the household’s budget constraint by the price level, we obtain the following
from the consumer’s optimization problem

uc = (1 + τ c
t )ςt,

u` = −(1− τ `
t )wtςt,

ηt = βEt
ςt+1

ςtπt+1
,

Et
ςt+1

ςt

[
(1− τk

t+1)rt+1 + τk
t+1δ

]
+ (1− δ)Et

ςt+1

ςt
=

1
β

,

where ςt is the Lagrange multiplier on the budget constraint.

B Equilibrium price dispersion

Definition 1 The price-dispersion term st can be arranged as:

st :=
∫ 1

0

[
Pιt

Pt

]−θ

dι

= (1− φp)

[
P̃t

Pt

]−θ

+ (1− φp)φp

[
π̄P̃t−1

Pt

]−θ

+ (1− φp)φ2
p

[
π̄2P̃t−2

Pt

]−θ

+ . . .

= (1− φp)
+∞∑

j=0

φj
p

[
π̄jP̃t−j

Pt

]−θ

= (1− φp)p̃−θ
t + φp

[πt

π̄

]θ

st−1.

Proof. It follows from the assumptions that only the histories of no price re-optimization matter
for price-setting decisions, and that price re-negotiations set the same new prices.

Proposition 2 Equation (34) can be re-written in a recursive fashion:

x1
t =

θ − 1
θ

x2
t ,
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with the following terms:

x1
t := Et

∞∑
n=0

Ξt+n|tφn
pmct+n

(
π̄nP̃t

Pt+n

)−θ−1

yt+n

= mct [p̃t]
−θ−1

yt + φpEtΞt+1|t

[
π̄p̃t

πt+1p̃t+1

]−θ−1

x1
t+1,

x2
t := Et

∞∑
n=0

Ξt+n|tφn
p

(
π̄nP̃t

Pt+n

)−θ

yt+n

= [p̃]−θ
t yt + φpEtΞt+1|t

[
π̄p̃t

πt+1p̃t+1

]−θ

x2
t+1,

p̃t :=
P̃t

Pt
.

C Model equations

The equations coded into the solution algorithm are the following:

1/ct = ςt(1 + τ c
t )

γ = (1− τ `
t )wtςt
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ςt+1

ςt

Rt

πt+1
=

1
β

Et
ςt+1

ςt

[
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t+1)rt+1 + τk
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]
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1
β
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α
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mct = rt

yt =
zt

st
kα

t `1−α
t

kt+1 = it + (1− δ)kt
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]θ
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t (rt − δ)kt + τ `
t wt`t = Rt−1dt−1/πt + gt

ln[zt+1] = ρz ln[zt] + σzε
z
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ln[gc
t+1] = ρg ln[gc

t ] + (1− ρg) ln [ḡc] + σgε
g
t+1
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The system is closed with the rules for fiscal and monetary policy.

D The state-space representation of the model

The first-order conditions of the model economy can be arranged in the following way:

EtH (et+1, et, xt+1, xt|σ) = 0, (35)

where y is a vector of co-state variables. The state variables are collected in x:

xt :=
[

x1,t

x2,t

]
, (36)

with vectors of endogenous state variables x1,t, and exogenous state variables x2,t:

x2,t+1 = Λ1x2,t + Λ2σεt+1, (37)

with matrices Λ1 and Λ2. The scalar σ ≥ 0 is known.
With steady-state indexation, and consumption taxes as the fiscal-policy instrument, we define

the following vectors and matrices (analogous vectors are defined in the other cases):

x1,t = [kt st dt−1 Rt−1]
′
,

x2,t = [zt gt]
′
,

et =
[
yt Rt dt mct ct πt `t rt wt ςt x1

t τ c
t

]′
,

Λ1 =
[

1 0
0 1

]
,

Λ3 =
[

0 0 0 σz 0
0 0 0 0 σg

]′
.

E Computation of conditional second moments

The computation of conditional moments requires analytical formulas for multistep-ahead fore-
casts. Kim, Kim, Schaumburg, and Sims (2003) suggest that using the expressions of the full
second-order approximation for the recursive calculation of these forecasts introduces spurious
higher-order terms. This problem can be avoided by exploiting the linear (first-order) part of the
solution.

Let ê
(2)
t denote the full second-order solution, and ê

(1)
t denote the linear part. We can write

the system of solutions
[

ê
(2)
t

ê
(1)
t ⊗ ê

(1)
t

]
= M1

[
x̂

(2)
t

x̂
(1)
t ⊗ x̂

(1)
t

]
+ K1, (38)

[
x̂

(2)
t+1

x̂
(1)
t+1 ⊗ x̂

(1)
t+1

]
= M2

[
x̂

(2)
t

x̂
(1)
t ⊗ x̂

(1)
t

]
+ K2 + ut+1. (39)

Define

Xt =

(
x̂

(2)
t

x̂
(1)
t ⊗ x̂

(1)
t

)
, (40)
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Yt =

(
ê
(2)
t

ê
(1)
t ⊗ ê

(1)
t

)
, (41)

Equations 39 and 38 can be re-written by repeated substitution as

Xt+k = Mk
2 Xt +

k−1∑

i=0

M i
2(K2 + ut+k−i), (42)

Yt+k = M1Xt+k + K1 = K1 + M1M
k
2 Xt +

k−1∑

i=0

M1M
i
2(K2 + ut+k−i). (43)

The expectation conditional on an initial state vector takes the form

E (Yt+k|Xt) = K1 + M1M
k
2 Xt +

k−1∑

i=0

M1M
i
2K2. (44)

The conditional variance can be computed from

Yt+k − E (Yt+k|Xt) =
k−1∑

i=0

M1M
i
2ut+k−i, (45)

Cov(Yt+k|Xt) = E
{
[Yt+k − E (Yt+k|Xt)] [Yt+k − E (Yt+k|Xt)]

′ |Xt

}
, (46)

=
k−1∑

i=0

M1M
i
2Σu

(
M1M

i
2

)′
, (47)

where Σu := E(utu
′
t). From Paustian (2003), we know that ut takes the form

ut =
(

σNεt

σ2 (N ⊗N) (vec(I)− εt ⊗ εt)

)
. (48)

Marzo, Strid, and Zagaglia (2006) show that the variance matrix of ut is

Eutu
′
t =

(
σ2NN ′ 0

0 2σ4 (N ⊗N) vec(I)vec(I)′ (N ⊗N)′
)

. (49)
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Figure 2: Variance of inflation (%) as a function of αy, model with price rigidity
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Legend: For a each value of αy , we search for the remaining parameters of the policy rules that
maximize W0. This figure reports the percentage variance of inflation at each (constrained)
welfare-maximizing combination of parameters.
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Figure 4: Percentage change in welfare costs from policy mistakes on αy, model with price rigidity
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Legend: Denote by a star the parameter values that maximize W0 (·) over the full grid
{απ, αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
. For

a given αy, this figure plots

100× [
Φι

c (α∗π, αy , α∗R, ψ∗1)− Φι
c

(
α∗π, α∗y , α∗R, ψ∗1

)]
/Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
.
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Figure 5: Percentage change in welfare costs from welfare-maximizing policy rules as a function
of αy, model with price rigidity
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Legend: Denote by a star the unconstrained parameter values that maximize W0 (·) over the
full grid {απ , αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
.

For a given αy, a new set of welfare-maximizing parameters {ᾱπ , αy, ᾱR, ψ̄1} is computed
with Φι

c

(
ᾱπ , αy, ᾱR, ψ̄1

)
. This figure plots

100× [
Φι

c

(
ᾱπ , αy, ᾱR, ψ̄1

)− Φι
c

(
α∗π , α∗y, α∗R, ψ∗1

)]
/Φι

c

(
α∗π , α∗y , α∗R, ψ∗1

)
.
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Figure 6: Percentage change in welfare costs from policy mistakes on ψ1, model with price rigidity

0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025
(6.1) Lump−sum taxes

Feedback on government liabilities
0 1 2 3 4

−4

−3

−2

−1

0
(6.2) Consumption taxes

Feedback on government liabilities

0 1 2 3 4
0

2

4

6
(6.3) Capital−income taxes

Feedback on government liabilities
0 1 2 3 4

0

0.2

0.4

0.6

0.8
(6.4) Labour−income taxes

Feedback on government liabilities

Legend: Denote by a star the parameter values that maximize W0 (·) over the full grid
{απ, αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
. For

a given ψ1, this figure plots

100× [
Φι

c

(
α∗π , α∗y, α∗R, ψ1

)− Φι
c

(
α∗π , α∗y, α∗R, ψ∗1

)]
/Φι

c

(
α∗π , α∗y , α∗R, ψ∗1

)
.
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Figure 7: Percentage change in welfare costs from policy mistakes on αR, model with price rigidity
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Legend: Denote by a star the parameter values that maximize W0 (·) over the full grid
{απ, αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
. For

a given αR, this figure plots

100× [
Φι

c

(
α∗π , α∗y, αR, ψ∗1

)− Φι
c

(
α∗π , α∗y, α∗R, ψ∗1

)]
/Φι

c

(
α∗π, α∗y , α∗R, ψ∗1

)
.
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Figure 8: Impulse responses to a positive productivity shock (%) with rule for consumption taxes,
model with flexible prices
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Legend: The parameter values of the underlying policy rules are chosen to maximize con-
ditional welfare. Passive fiscal policy restricts ψ1 ∈ [0, 1.9], whereas for active fiscal pol-

icy ψ1 ∈ [2, 4]. The optimal rules with active fiscal policy are: R̂t = 1.1π̂t + 0.3ŷt and
τc
t = 0.571 + 2.0 (lt−1 − l).
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Figure 9: Percentage change in welfare costs from policy mistakes on ψ1, model with flexible
prices
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Legend: Denote by a star the parameter values that maximize W0 (·) over the full grid
{απ, αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
. For

a given ψ1, this figure plots

100× [
Φι

c

(
α∗π , α∗y, α∗R, ψ1

)− Φι
c

(
α∗π , α∗y, α∗R, ψ∗1

)]
/Φι

c

(
α∗π , α∗y , α∗R, ψ∗1

)
.
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Figure 11: Percentage change in welfare costs from policy mistakes on αy, model with flexible
prices
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Legend: Denote by a star the parameter values that maximize W0 (·) over the full grid
{απ, αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
. For

a given αy, this figure plots

100× [
Φι

c (α∗π, αy , α∗R, ψ∗1)− Φι
c

(
α∗π, α∗y , α∗R, ψ∗1

)]
/Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
.
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Figure 12: Percentage change in welfare costs from policy mistakes on αR, model with flexible
prices
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Legend: Denote by a star the parameter values that maximize W0 (·) over the full grid
{απ, αy , αR, ψ1}. The corresponding conditional welfare cost is Φι

c

(
α∗π , α∗y, α∗R, ψ∗1

)
. For

a given αR, this figure plots

100× [
Φι

c

(
α∗π , α∗y, αR, ψ∗1

)− Φι
c

(
α∗π , α∗y, α∗R, ψ∗1

)]
/Φι

c

(
α∗π, α∗y , α∗R, ψ∗1

)
.
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Table 1: Calibration of the model

Description Parameter Value
Subjective discount factor β 0.9948
Weight on disutility from work γ 1
Elasticity of substitution of intermediate goods θ 5
Rate of capital depreciation δ 1.1(1/4) − 1
Capital elasticity of intermediate output α 0.4
Fraction of firms not setting prices optimally φp 2/3
Steady-state inflation π̄ 1.04(1/4)

Persistence of productiviy shock ρz 0.92
Standard dev. of productivity shock σz 0.01
Steady-state average consumption taxes τ̄ c 0.12
Steady-state average capital-income taxes τ̄k 0.36
Steady-state average labor-income taxes τ̄ ` 0.3168
Steady state ratio of gov. transfers to output tr/ȳ 0.1005
Steady state ratio of gov. consumption to output ḡc/ȳ 0.15
Persistence of government spending shock ρg 0.90
Standard dev. of government spending shock σg 0.01
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Table 2: Optimized policy rules with price rigidity

[a] Fully optimized monetary-policy rules
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes* 1.1 0.0 0.9 0.6 65.3633 6.14 -9.05 13.930
Consumption taxes 1.1 0.0 0.5 0.2 -54.4477 -0.002 -16.89 13.931
Capital-income taxes 2.0 0.0 1.0 1.9 -54.4607 0.004 -16.18 13.931
Labor-income taxes 1.1 1.0 0.0 0.2 -54.4627 0.005 -16.17 13.929

[b] No interest-rate smoothing (αR = 0)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes* 2.0 0.0 0 0.5 65.3254 6.16 -9.05 13.930
Consumption taxes 1.5 0.0 0 0.2 -54.4480 -0.002 -16.19 13.931
Capital-income taxes 2.0 0.0 0 1.9 -54.4648 0.007 -16.18 13.931
Labor-income taxes 1.1 1.0 0 0.2 -54.4627 0.010 -16.18 13.929

[c] Taylor rules (απ = 1.5, αy = 0.5, αR = 0)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes* 1.5 0.5 0 0.7 64.7354 6.44 -9.05 13.929
Consumption taxes 1.5 0.5 0 1.0 -54.4674 0.008 -16.18 13.929
Capital-income taxes 1.5 0.5 0 1.0 -54.5219 0.036 -16.18 13.929
Labor-income taxes 1.5 0.5 0 - - - - -

[d] Balanced-budget targets (ψ2 = 1)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes 1.1 0.0 0.9 0 65.3633 6.14 -9.05 13.930
Consumption taxes 1.1 0.0 0.5 0 -54.4476 -0.002 -16.19 13.930
Capital-income taxes - - - 0 - - - -
Labor-income taxes 1.3 0.4 0.4 0 -54.5105 0.029 -16.18 13.929

[e] Inflation targeting (π̂t = 0)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes - - - - - - - -
Consumption taxes - - - 0.2 -54.4486 -0.002 -0.004 0.002
Capital-income taxes - - - 1.9 -54.4526 0.0003 -0.001 0.002
Labor-income taxes - - - - - - - -

Legend: *Any combination of passive fiscal policy for lump-sum taxes with ψ1 ∈ [0.1, 1.9]
yields the same welfare level.
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Table 3: Optimized policy rules in a model with flexible prices

[a] Fully optimized monetary-policy rules
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes* 0.9 0.2 0.0 3.7 65.3317 6.159 6.11 0.047
Consumption taxes 1.1 0.6 0.0 1.1 -54.4477 -0.002 -0.003 0.001
Capital-income taxes 0.9 0.0 0.0 2.0 -54.4474 -0.002 -0.003 0.0007
Labor-income taxes - - - - - - - -

[b] No interest-rate smoothing (αR = 0)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes* 0.9 0.2 0.0 3.7 65.3317 6.159 6.11 0.047
Consumption taxes 1.1 0.6 0.0 1.1 -54.4477 -0.002 -0.003 0.001
Capital-income taxes 0.9 0.0 0.0 2.0 -54.4474 -0.002 -0.003 0.0007
Labor-income taxes - 0.0 - - - - - -

[c] Taylor rules (απ = 1.5, αy = 0.5, αR = 0)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes 1.5 0.5 0 - - - - -
Consumption taxes 1.5 0.5 0 1.4 -54.4482 -0.0019 -0.004 0.002
Capital-income taxes 1.5 0.5 0 0.1 -54.4488 -0.0016 -0.004 0.002
Labor-income taxes 1.5 0.5 0 - - - - -

[d] Balanced-budget targets (ψ2 = 1)
απ αy αR ψ1 Wι

0 %Φι
c %∆ι

E %∆ι
V

Lump-sum taxes - - - 0 - - - -
Consumption taxes 1.3 0.0 0.0 0 -54.4484 -0.002 -0.004 0.002
Capital-income taxes 1.0 0.1 0.0 0 -54.4445 -0.022 -0.023 0.001
Labor-income taxes - - - 0 - - - -

Legend: *The welfare function is flat over the values of ψ1 that generate unique valid equilibria.
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Table 4: Standard deviations for the fully-optimized rules

Price rigidity Price flexibility
αy = 0 αy 6= 0 αy = 0 αy 6= 0

[a] Lump-sum taxes
Output 0.71 0.63 0.69 0.69
Consumption 0.51 0.46 0.50 0.50
Capital 0.72 0.64 0.71 0.71
Inflation 0.005 0.05 0.004 2.43
Hours worked 0.48 0.35 0.45 0.45
Tax rate 0.06 0.06 11.14 0.33
Bond holdings 0.03 0.07 20.38 2.35
Nominal interest rate 0.01 0.04 0.01 2.32

[b] Consumption taxes
Output 0.94 0.81 0.89 2.51
Consumption 0.69 0.59 1.91 3.41
Capital 0.73 0.66 0.45 2.44
Inflation 0.01 0.04 0.45 13.34
Hours worked 0.77 0.58 0.96 2.36
Tax rate 3.47 2.77 2.03 3.13
Bond holdings 1.58 1.24 60.88 11.23
Nominal interest rate 0.02 0.03 0.05 13.17

[c] Capital-income taxes
Output 1.27 1.17 0.62 0.68
Consumption 0.76 0.73 0.48 0.51
Capital 1.82 1.79 0.64 0.75
Inflation 0.007 0.06 2.50 1.58
Hours worked 0.98 0.77 0.33 0.39
Tax rate 10.01 8.15 2.63 3.58
Bond holdings 1.46 2.19 2.32 1.63
Nominal interest rate 0.03 0.04 2.25 1.58

[d] Labor-income taxes
Output - 0.07 - -
Consumption - 0.02 - -
Capital - 0.04 - -
Inflation - 0.15 - -
Hours worked - 0.49 - -
Tax rate - 0.36 - -
Bond holdings - 0.66 - -
Nominal interest rate - 0.09 - -

Legend: This table reports unconditional standard deviations of selected variables generated
by the optimized rules of panel [a] in Table 2 and Table 3.

39


