
 
 

Copyright belongs to the author. Small sections of the text, not exceeding three paragraphs, can be used 

provided proper acknowledgement is given.  

 

The Rimini Centre for Economic Analysis (RCEA) was established in March 2007. RCEA is a private, 

nonprofit organization dedicated to independent research in Applied and Theoretical Economics and related 

fields. RCEA organizes seminars and workshops, sponsors a general interest journal The Review of 

Economic Analysis, and organizes a biennial conference: The Rimini Conference in Economics and Finance 

(RCEF) . The RCEA has a Canadian branch: The Rimini Centre for Economic Analysis in Canada (RCEA-

Canada). Scientific work contributed by the RCEA Scholars is published in the RCEA Working Papers and 

Professional Report series. 

 
The views expressed in this paper are those of the authors. No responsibility for them should be attributed to 

the Rimini Centre for Economic Analysis. 
 

 

The Rimini Centre for Economic Analysis  

Legal address: Via Angherà, 22 – Head office: Via Patara, 3 - 47900 Rimini (RN) – Italy 

www.rcfea.org -  secretary@rcfea.org 
 

 

 

 

 

WP 11-29 
 

 

 

Mark J. Holmes 

Department of Economics, Waikato University, New Zealand 

 

Jesús Otero 

Facultad de Economía, Universidad del Rosario, Colombia 

 

Theodore Panagiotidis 

Department of Economics, University of Macedonia, Greece 

The Rimini Centre for Economic Analysis (RCEA), Italy 

 

 

 

INVESTIGATING REGIONAL HOUSE PRICE 

CONVERGENCE IN THE UNITED STATES: 

EVIDENCE FROM A PAIR-WISE APPROACH 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6311298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INVESTIGATING REGIONAL HOUSE PRICE CONVERGENCE IN THE UNITED STATES: 
EVIDENCE FROM A PAIR-WISE APPROACH♦ 

 
 
 
 

Mark J. Holmes 
Department of Economics 

Waikato University 
New Zealand 

holmesmj@waikato.ac.nz 

Jesús Otero 
Facultad de Economía 

Universidad del Rosario 
Colombia 

jesus.otero@urosario.edu.co 
 

Theodore Panagiotidis 
Department of Economics 
University of Macedonia 

Greece 
tpanag@uom.gr 

 
 
 

January 2011 
 
 
 

Abstract 
 

In this paper we examine long-run house price convergence across US states using a novel 
econometric approach advocated by Pesaran (2007) and Pesaran et al. (2009). Our 
empirical modelling strategy employs a probabilistic test statistic for convergence based on 
the percentage of unit root rejections among all state house price differentials. Using a 
sieve bootstrap procedure, we construct confidence intervals and find evidence in favour of 
convergence. We also conclude that speed of adjustment towards long-run equilibrium is 
inversely related to distance.  
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1. Introduction 

Housing is distinct from other assets in that it is a durable consumption good and is often 

the most important asset in household portfolios. Recent studies such as Goodhart and 

Hofmann (2007) and Paiella (2009) document the significant effect of house prices on 

economic activity through channels that include a positive elasticity of consumption to 

housing wealth. While fluctuations in regional house prices have the potential to influence 

relative regional economic activity, there is also the potential to influence labour mobility 

through the affordability of housing and relocation costs. Against this background, the 

degree and nature of house price convergence can have implications for the necessity and 

form of regional adjustment policies. For a variety of reasons, there is hence considerable 

value in understanding how regional house prices behave in relation to each other over 

time.  

Starting from the work of Meen (see for example, Meen (1999)), it has been argued 

that shocks to regional house prices “ripple out” across the economy. While the notion of 

such a ripple effect may rely on factors such as spatial patterns in the determinants of house 

prices, migration, equity transfer, and spatial arbitrage, it also requires some degree of 

long-run constancy, or a long-run equilibrium relationship, between regional house prices.  

However, evidence in favour of extensive long-run equilibrium relationships across all US 

states is sparse. Indeed, evidence for the convergence of US regional house prices is much 

weaker than evidence on the convergence of regional per capita income. 1 The main focus 

of our paper is the investigation of long-run equilibrium relationships or convergence 

between US house prices at both state and Metropolitan Statistical Area (MSA) levels.  A 

                                                 
1 See, for example, Clark and Coggin (2009) and references therein. With regard to support in the literature 
on income convergence, Carlino and Mills (1996) provide an example where unit root testing leads to the 
conclusion that per capita earnings convergence occurs across US states and regions.  
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further area of debate addressed by studies such as Pollakowski and Ray (1997) is whether 

house price relationships between contiguous states are any stronger than between 

non-contiguous states. This too remains an unresolved issue and we contribute to the 

debate by considering whether distance between states is a factor that helps explain the 

speed of adjustment towards long-run equilibrium involving bivariate house price 

differentials.   

In our investigation, the stationarity of house price differentials is used as an 

indicator of long-run regional house price convergence based on a tendency for house 

prices to not necessarily be equal, but instead move together over time. For our empirical 

analysis, we utilise a novel econometric procedure advocated by Pesaran (2007) and 

Pesaran et al. (2009). In this approach, a probabilistic definition of convergence is 

proposed and forms the basis of the test. The idea behind this is that for a sample of N 

states, unit root tests are conducted on all ( ) 21−NN  house price differentials.  Under the 

null hypothesis of non-stationarity or non-convergence, one would normally expect the 

fraction of house price differentials for which the unit-root hypothesis is rejected to be 

close to the size of the underlying unit-root tests, denoted as α . However, it can be argued 

that the null of non-stationarity for all state pairs can be rejected if the fraction of rejections 

exceeds α . A distinctive feature of the pair-wise approach is that it is applicable when N is 

large relative to T (the time dimension of the panel). Although the underlying individual 

unit-root tests are not cross-sectionally independent, under the null of non-convergence (or 

divergence) it can be shown that the fraction of the rejections converges to α , as 

∞→TN , . 

In testing for non-stationarity, panel unit root tests such as Maddala (1999), Levin 

et al. (2002) and Im et al. (2003) have been employed as a means of addressing low test 
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power attached to univariate methods. As noted by Pesaran et al. (2009), the pair-wise 

methodology offers three key advantages over existing panel methods. First, the joint null 

hypothesis of these panel unit root tests is that all the series have a unit root. For example, 

Hiebert and Roma (2010) employ the Im, Pesaran and Shin (2003) panel unit root test in 

their analysis of house price convergence among US cities. However, this hypothesis can 

be rejected even if the proportion of the series for which the unit root null is rejected is 

small. The pair-wise approach directly addresses the question of what proportion of the 

house price differentials is stationary. Second, the presence of unobserved common factors 

complicates the application of the panel unit root tests where cross-section dependence can 

lead to size distortion. The so-called second generation panel unit root tests (following the 

terminology in Breitung and Pesaran (2008)) have attempted to allow for possible 

cross-section dependence through unobserved common factors, but their applications are 

complicated by the uncertainties surrounding the number of unobserved factors, the nature 

of the unit root process (whether it is common or country specific), and the fact that longer 

data spans are required for modelling the cross-section dependence. The pair-wise method 

is robust to cross-sectional dependence. Third, the use of panel unit root tests can 

necessitate that all series measured against a common base.  In a wider sense, this is 

common practice in studies of regional convergence.  However, the outcome of the 

convergence test can be sensitive to the choice of base region or state.2 The pair-wise 

methodology does not involve what can be a problematic choice of a single reference state 

in the computation of log house price differentials. 

                                                 
2 For example, the house prices of regions i and j might be found as non-stationary when measured against a 
national or base index k, but stationary when measured against one another. This would be the case when 
there is a highly persistent factor that is common to regions i and j, but is not shared by the index k. 
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The paper is organised as follows. Section 2 discusses the relevant background 

literature on house price convergence. Section 3 describes the pair-wise methodology.  

While this paper is primarily concerned with the degree and nature of regional convergence 

for the US states, we are neither concerned with identifying the determinants of house 

prices themselves nor with establishing whether these determinants have the long-run 

effects postulated in the proposition of convergence. Section 4 discusses the data employed 

and results. Our results are supportive of long-run regional house price convergence where 

distance between regions is a significant factor driving the speed of adjustment towards 

long equilibrium. Our results are robust to house prices that are adjusted by per capita state 

income as well as house prices measured at the more disaggregated MSA level. The final 

section offers concluding remarks. 

 

2. Existing Literature 

While the majority of time-series studies of housing markets are carried out on national 

data, Meen (1996) argues that housing markets may be better characterised as a series of 

interconnected sub-national markets.  For many, house prices represent the interaction of 

supply conditions and the individuals’ desires to live and work in certain locales (Glaeser 

and Gottlieb, 2009). On the demand side, the convergence of regional per capita incomes 

may be one driver of regional house price convergence. Other factors include interest rates 

and the availability of mortgage finance, consumer confidence and unemployment, 

speculation, the rental market, inherited wealth, amenities across sub-national markets, and 

demographic factors. On the supply side, changes in housing supply take time to achieve 

and can be regarded as relatively price-inelastic in the short-run. Approvals to build new 

housing can take several quarters or years and if granted, the act of physical construction 
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can itself be a lengthy process. In the short-run therefore, demand fluctuations can translate 

into large short-run house price fluctuations. In the long-run, the supply of housing is 

relatively price-elastic. While this is facilitated through sufficient time for approvals for 

building consent and construction completion, other supply factors such as the opportunity 

cost for builders over alternative forms of investment as well as construction costs will also 

play a role.  

Regional sensitivities to demand- and supply-side factors may influence the extent 

of house price convergence. Factors such as labour and capital mobility may be important, 

but the influence on housing markets of the movement of people and firms can be complex; 

see, for example, Clark and Coggin (2009) and references therein. The usual models of 

spatial equilibrium argue that house prices can vary according to differences in amenities 

(weather, congestion, etc) and planning rules. In this vein, examples of recent work on the 

US includes Hwang and Quigley (2006) who confirm the importance of changes in 

regional economic conditions, income, and employment on local housing markets, along 

with the lags in market responses to exogenous shocks and the variations arising from 

differences in local parameters; and Holly et al. (2010) who model the dynamic adjustment 

of state real house prices and identify a significant spatial effect, even after controlling for 

state specific real incomes, and allowing for a number of unobserved common factors.  

Regional house price interactions may occur from the gradual dissemination of 

information across space following any shock. In an efficient market, we might expect all 

regions to react at the same time to a common shock. However, there are many reasons 

why lags may arise in the case of housing. Indeed, studies such as Tirtiroglu (1992) have 

contributed to the accumulating evidence of inefficiency. Given the presence of lags in 

house price adjustment, one might expect price relationships between contiguous areas to 
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be stronger than between non-contiguous areas because information can be transmitted and 

acted upon relatively more quickly. Clapp and Tirtiroglu (1994) find a strong positive 

association between the change in an index of prices for constant quality housing in a given 

town and lagged prices in neighbouring as opposed to non-neighbouring towns. Using a 

study period of 1975 to 1994, Pollakowski and Ray (1997) find a relationship between 

spatial prices, but the relationship is no stronger between contiguous than non-contiguous 

regions. Capozza et al. (2002) explore the dynamics of real house prices by estimating 

serial correlation and mean reversion coefficients from a panel data set of 62 metropolitan 

areas from 1979-1995. They find that mean reversion is greater in large metropolitan areas 

and faster-growing cities with lower construction costs. They also find that substantial 

overshooting of prices can occur in high real construction cost areas, which have high 

serial correlation and low mean reversion.   

More recently, Kuethe and Pede (2010) analyse the effects of macroeconomic 

shocks on house prices in the Western United States using quarterly state level data from 

1988-2007. They explicitly incorporate locational spillovers through a spatial econometric 

adaptation of a vector autoregression. Their results suggest that the inclusion of spatial 

information leads to significantly lower mean square forecast errors. Gupta and Miller 

(2009) examine time-series relationship between house prices in Los Angeles, Las Vegas, 

and Phoenix. Estimating VAR models and undertaking Granger causality tests, they obtain 

reasonably good forecasts of turning points. Rapach and Strauss (2009) investigate 

differences in real housing price forecasting ability across US states during the period 

1995-2006. They find important differences across states relating to differences in average 

housing price growth. Finally, Clark and Coggin (2009) examine the Office of Federal 

Housing Enterprise Oversight (OFHEO) U.S. house price database for the period 
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1975-2005. After reducing the dimensionality of ten geographic regions to two 

super-regional factors via principal components factor analysis, they apply the 

methodology of unobserved components to explore the existence of trends and cycles in 

these regions. They find mixed evidence that regions and factors are converging to a 

common growth path, even after allowing for the possibility of a structural break. 

With regard to house price linkages in other countries, a large literature now exists 

supporting the notion of a causal link or ripple effect from house prices in the South East of 

England to other regions of the UK. However, the literature to date can only offer mixed 

evidence that long-run equilibrium relationships across regional house prices actually exist 

(see, for example, Holmes and Grimes (2008) and references therein). Other studies 

include Stevenson (2004) who finds evidence of ripple effects taking place in the Irish 

housing market based on Dublin as the epicentre; Oikarinen (2006) who finds that Finnish 

house price changes in a diffuse manner from the Helsinki Metropolitan Area to the 

regional centres, and then to the peripheral areas; Luo et al. (2007) who consider eight 

Australian cities and identify the existence of four levels of diffusion patterns based on 

Sydney, then Melbourne followed by Perth and Adelaide and then other cities; and Burger 

and Rensburg (2008) who examine five metropolitan areas of the South African housing 

market. They find that the large middle-segment house prices strongly converge in the 

long-run, but the evidence of convergence in medium middle-segment house prices is 

relatively weak. The methodologies employed by these studies rely mainly on unit root and 

cointegration testing, causality and impulse-response analysis. 

 

3. A pair-wise approach to testing for convergence 

The notion of time series convergence is associated with testing the null hypothesis of a 
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unit root in bivariate house price differentials. In a sense, support for the alternative 

hypothesis, that is finding that a house price differential is stationary is equivalent to saying 

that the two prices are cointegrated with a known cointegrating vector equal to [ ]'1, 1− . 

Since the unit root tests may include a constant and deterministic trend, a rejection of the 

null implies that regional house prices move together in the long-run but not necessarily 

such that they are equal.  In this paper we employ the Pesaran (2007) pair-wise testing 

procedure to analyse convergence across a large number of cross section units. As argued 

above, this approach avoids the pitfalls associated to the utilisation of a particular cross 

sectional unit as a benchmark. Let ity  be house price data in US State i  at time t , where  

1,...,i N=  and 1,...,t T= . Pesaran’s pair-wise approach is based on the examination of the 

time series properties of all ( )1 / 2N N −  possible house price gaps (or differentials) 

between States i  and j , denoted as ijt it jtg y y= − , where 1,..., 1i N= −  and 

1,...,j i N= + . Consider next the application of the augmented Dickey and Fuller (ADF) 

(1979) or the Elliott, Rothenberg and Stock (ERS) (1996) test of order p  to each of the 

possible house price gaps, and let ,ij TZ  be an indicator function equal to one if the 

corresponding unit-root test statistic is rejected at significance level α . More formally, in 

the case of the ADF test, , 1ij TZ =  if ( ) , ,ADF T pp K α< , where ( )ADF p  is the test statistic 

of order p , , ,T pK α  is the critical value for the ( )ADF p  of size α , using T  observations. 

Similarly, when applying the ERS test, , 1ij TZ =  if ( ) , ,ERS T pp K α< . 

 Pesaran (2007) considers the fraction of the ( )1 / 2N N −  gaps for which the 

unit-root hypothesis is rejected, which is given by: 
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and shows that under the null hypothesis of non-stationarity the expected value of NTZ  is:  

 ( )limT NT oE Z H α→∞ = . (2) 

In the case of a unit-root test (such as ADF or ERS), under the null hypothesis of 

convergence one would expect the proportion of rejections to be high and tending towards 

100% as T →∞ ; analogously, under the divergence alternative the proportion of 

rejections ought to be low and around α . Pesaran (2007) indicates that there are some 

difficulties involved in developing a formal procedure to test whether the proportion of 

rejections NTZ  is statistically different from α , because the derivation of the variance of  

NTZ  is complicated due to the fact that ,ij TZ  and ,ik TZ  are not independent from each other. 

Thus, inference on NTZ  can be based on the derivation of the empirical distribution of the 

fraction of rejections using the bootstrap methodology. 

 The implementation of the bootstrap is not an issue pursued by Pesaran (2007), but 

in a subsequent paper by Pesaran, Smith, Yamagata and Hvozdyk (PSYH) (2009) when 

applying the pair-wise approach to test for purchasing power parity. More specifically, the 

model considered by these authors consists of the following set of equations: 

 ' '
it i t i t ity ε= + +α d γ f  (3) 

 , 1 ,
1

ip

it i i i t il i t l it
l

ε η λ ε ψ ε υ− −
=

Δ = + + Δ +∑  (4) 

 '
, 1 ,

1

sp

st s t s t sl s t l st
l

f f f eφ ξ− −
=

Δ = + + Δ +∑μ d  (5) 

where 1,2,...,s m=  is the number of assumed common factors, ( )'1,t t=d  is a vector of 
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deterministic components that includes intercept, and intercept and trend, tf is a 1m×  

vector of unobserved factors, with elements denoted stf , and itε  denotes the 

corresponding idiosyncratic elements. The factors stf  and/or the idiosyncratic elements 

itε  may be ( )0I  or ( )1I . 

 Following PSYH, we use the cross-sectional average of ity , denoted 

1
1

N
t iti

y N y−
=

= ∑ , as an estimate of the common factor that induces cross-section 

dependence.3 To account for cross-section dependence house prices for each state are then 

regressed on the estimated common factor, that is: 

 ˆˆ ˆ ˆ ,it i i i t ity t yα δ γ ε= + + +  (6) 

where the trend term is included if the corresponding estimated coefficient, îδ , is found to 

be statistically significant. The tables in the Appendix summarise the results of estimating 

the factor equations for the two house price datasets used in the paper (details of which are 

provided in the next section); it should be noted that the linear trend term is included if 

statistically significant at the 5% level. 

 The next step is to examine the time series properties of the estimate of the common 

factor ty , which may be ( )0I  or ( )1I . This involves estimating the following ( )ADF p  

regression for ty : 

                                                 
3 An application of the Bai and Ng (2002) test confirmed the presence of a single common factor driving US 
state house prices. The largest principal component was found to account for over 97% of house price 
variance, and the estimated factor loadings were very similar across the states, which provide support for 
using the cross-sectional mean as an estimate of the common factor in yit. If we followed the procedure 
advocated by Bai and Ng (2004) whereby the common factor is the accumulated sum of the largest principal 
component based on first differenced data, a similar sieve bootstrap analysis yielded results that are 
qualitatively the same as those that are presented in this paper. 
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 1
1

ˆˆˆ ˆ ,
p

t t l t l t
l

y y b y eμ φ − −
=

Δ = + + Δ +∑  (7) 

which may also include a trend term if it is statistically significant, and where the optimal 

number of lags of the dependent variable p  may be determined e.g. using the Akaike 

information criterion (AIC). To illustrate the implementation of the bootstrap, let us 

consider for instance the case where ty  has a unit root with a drift but no deterministic 

trend. Imposing a unit root on (7) and allowing for a drift, that is setting ˆ 0φ = , implies the 

following restricted version of (7): 

 
1

ˆ ˆ ˆ
p

t l t l t
l

y c y uμ −
=

Δ = + Δ +∑ . (8) 

 Thus, when a unit root is imposed on the factor ty , the bootstrap samples of ty , 

denoted ( )b
ty , can be computed using the following mechanism: 

 ( ) ( ) ( ) ( )
1

1

ˆ ˆ ˆ
p

b b b b
t t l t l t

l
y y c y uμ − −

=

= + + Δ +∑ , (9) 

where bootstrap residuals ( )ˆ b
tu  are generated by randomly drawing with replacement from 

the set of estimated and centred residuals ˆtu  in (8), and the first ( )1p +  values of ty are 

used to initialised the process ( )b
ty . 

 In turn, the bootstrap samples of ity , denoted ( )b
ity , are generated as: 

 ( ) ( ) ( )ˆˆ ˆ ˆ ,b b b
it i i i it ity t yα δ γ ε= + + +  (10) 

where ˆiα , îδ  and îγ  are the OLS estimates of iα , iδ  and iγ  in (6), respectively, and 

 ( ) ( ) ( ) ( ) ( )
, 1 , 1

1

ˆˆ ˆ1
ip

b b b b
it i i i t il i t it

l
ε η λ ε ψ ε υ− −

=

= + + + Δ +∑ , (11) 
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where bootstrap residuals ( )b
itυ  are generated by randomly drawing with replacement from 

the set of estimated residuals itυ  in equation (4), and the first ( )1p +  values of îtε  are used 

to initialised the process ( )b
itε . The AIC is used to select the optimal lag order ip . 

 Having obtained ( )b
ity , it is possible to compute all possible house price gaps (or 

differentials) between States i  and j , that is ( ) ( ) ( )b b b
ijt it jtg y y= − , so that one can then 

calculate the fraction of these price gaps for which the unit root hypothesis can be rejected 

the fraction either using the ( )ADF p  or ( )ERS p  test. The procedure already described is 

repeated 1,...,b B=  times to derive the empirical distribution of the bootstrapped fraction 

of rejections. 

 

4. Data and empirical analysis 

We follow Pollakowski and Ray (1997) among others and employ the Freddie Mac 

Conventional Mortgage Home Price Index (CMHPI) for 48 US states.4 The quarterly 

house price data, expressed in natural logarithm form, covers the study period 

1975Q1-2008Q4. The computation of the index is based on mortgages that were purchased 

or securitized by Freddie Mac or Fannie Mae since January 1975.5 The CMHPI uses a 

statistical method based entirely on "repeat transactions". Any time a house's value is 

observed twice over time (via either a sale or an appraisal), the change in the price 

                                                 
4 We exclude Alaska and Hawaii from our analysis on the grounds that these states are not geographically 
contiguous with any other state in the US, so some of the mechanisms that may underpin long-run constancy 
of house price ratios across states within the US may not operate in these cases. 
5 These mortgages are "conventional" in their financing in that they are not insured or guaranteed by any 
federal government agency such as the Federal Housing Administration or Veterans Administration. 
Although not specified in the name, the index is based on mortgages for single unit residential houses only; it 
does not reflect condominiums, multi-family or commercial properties. Finally, the mortgages are 
"conforming": at the time of purchase they met Freddie Mac or Fannie Mae underwriting standards, and they 
did not exceed the allowable loan limit set for the two companies. 
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contributes one observation of house price growth over that time period. As argued by 

Stevens et al. (1995), this method can produce “constant quality indices”.  In this study, we 

also consider house price affordability across states. This is of importance insofar as it can 

affect decisions regarding business and household migration, as well as rental vacancy 

levels, municipal tax revenues, and building industry activity; see, for example, Strassman 

(2000). We therefore also examine regional convergence using house prices that are 

expressed in per capita state income terms. For this purpose, we adjust house prices by state 

income using data provided by the Bureau of Economic Analysis and interpolated state 

population data obtained from the US Census Bureau (where the latter variable is available 

only until 2007Q4). Thus, when accounting for affordability and state population the house 

price data are available for the period 1975Q1-2007Q4, and will be referred to as 

“adjusted” as opposed to “unadjusted”. 

In real estate economics, the old adage “location, location, location” can raise an 

interesting objection to using housing prices averaged over numerous locations within a 

state. Indeed, it is well known that enormous housing price differentials may arise even 

within the same state, so that aggregation of metropolitan house prices to the state level 

may serve to smooth fluctuations across locations, and this may subsequently work in 

favour of finding convergence. In other words, one might argue that there is considerable 

heterogeneity in housing prices within states, since there are different housing markets 

within them, and that this heterogeneity is being masked by the employment of state-level 

house data. For this reason, we also employ data at a more disaggregated level. In 

particular, we analyse CMHPI data for the 81 MSAs and MSADSs (Metropolitan 

Statistical Area Divisions) which have a complete unbroken run of data for the period 

1975Q1 to 2008Q4. This more disaggregated dateset is considered in “unadjusted” form, 
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as it was not possible to find suitable variables at the metropolitan area level to adjust for 

affordability all the 81 MSAs and MSADs that are being considered. 6  A further 

consideration related to the use of state- and MSA-level data is that the former may be 

expected to exhibit stronger spatial contiguity effects, while the latter might be more 

strongly affected by the nationwide economic factors. In examining the pair-wise 

convergence, there is therefore further value in analysing tests based on both datasets.  

Table 1 reports the percentage of rejections of both the ADF and ERS tests. As can 

be seen, in all cases the percentage of rejections exceeds the size of the unit root test 

statistics. For example, the ADF test applied to unadjusted house prices leads to a rejection 

frequency of 31.83% at the 5% significance level. In the case of unadjusted house prices 

the corresponding rejection frequency is lower (i.e. 19.24%). These results are focused on 

the point estimates of the proportion of the pair-wise tests that reject the null hypothesis of 

no convergence. It is important to consider the precision of these estimates because the 

positive cross-section dependence between the test outcomes is likely to increase the 

uncertainty considerably. We therefore employ the factor augmented sieve bootstrap 

approach outlined in the previous section. In doing so, the cross-section dependence is 

interpreted in terms of a factor model. As explained, the parameters of an underlying factor 

model are estimated directly, and we subsequently use these estimates to bootstrap the 

pair-wise rejection rates, treating this factor model as an approximation to the true data 

generation process (the bootstrap results are based on 2,000 replications). 

Tables 2 and 3 report the respective distributions of the bootstrapped fraction of 

                                                 
6 Interestingly, when we move forward in time and start the empirical analysis in 1980Q1, we end up with a 
dataset consisting of 143 MSAs and MSADs which have a complete unbroken run of data, which implies a 
total of 10,153 possible price differentials. The results not reported here, but they are remarkably similar to 
those obtained when the sample period starts in 1975Q1 (these results are available from the authors upon 
request).  



 15

rejections for the unadjusted and adjusted house price data. Focusing on unadjusted prices 

and the case where a unit root is imposed on the factor (Table 2, upper panel), the mean of 

the bootstrap distribution for the ADF test at 27.22% for 0.05α =  is close to the 

corresponding point estimate at 31.83% reported in Table 1. When the unit root is not 

imposed (Table 2, lower panel), the corresponding proportion of rejections for the same 

unit-root test is higher at 29.38%, and the error band around this mean estimate is rather 

wide, largely due to the strong positive dependence that exists across the test outcomes. 

Nevertheless, the 95% bootstrap confidence interval, which ranges from 19.86% to 

40.34%, does not cover 5% which is the value we would expect if the null of 

non-convergence were true for all bivariate pairs. Notice also that in the case where a unit 

root is imposed on the factor, the confidence intervals are not symmetric about the mean; 

with the interval above the mean being wider than the one below the mean. It is clear that 

cross-section dependence introduces a large degree of uncertainty into the estimate of the 

proportion of rejections.  

The results from using the disaggregated MSA and MSAD data are presented in the 

Appendix (Tables 2a and 2b). These results are not qualitatively different from those 

obtained using the unadjusted price dataset at the state level. The proportion of price 

differentials for which the unit-root null hypothesis is rejected for 0.05α =  is 34.44% and 

36.98% for the ADF and ERS tests compared to 31.83% and 37.50% using the state level 

data.  As before, the bootstrapped confidence intervals do not overlap 10 or 5%. Table 3 

reports the distribution of the bootstrapped fraction of rejections based on adjusted prices. 

Again, these results are also in line with those from Table 2. When we consider 

affordability, the 90 and 95% bootstrap confidence intervals never cover the 10 or 5% test 

size irrespective of the type of unit root test conducted or the imposition of a unit root on 
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the common factor. 

 The results so far are supportive of long-run convergence between US state house 

prices. Studies such as Clapp and Tirtiroglu (1994), Pollakowski and Ray (1997) and Meen 

(1999) have considered the hypothesis that house price relationships between contiguous 

regions might be stronger than between non-contiguous regions, but the evidence is not 

conclusively in favour of this. In terms of the pair-wise methodology, statistical evidence 

of the existence of an inverse relationship involving distance between any two states and 

the speed of adjustment towards long-run equilibrium would be consistent with support for 

the hypothesis.  In order to address this hypothesis, we employ the Euclidian distance 

between the population centres of any two states, based on the geographic coordinates 

(latitude and longitude) obtained from the Census Bureau for the year 2000.7 In the case of 

measuring the speed of adjustment, we employ an approximation of the half-life of a shock 

to long-run equilibrium based on the estimated autoregressive parameters obtained from 

the unit root tests. The estimated half-life is inversely related to the speed of adjustment.  

For the 525 cases where non-stationarity is rejected using the ADF test at the 10% 

significance level, the approximated half-life (in quarters) and distance (in logs) are plotted 

in Figure 1. One can observe a clear positive relationship and therefore supportive evidence 

that is consistent with the hypothesis and spatial effects in regional house price 

convergence.8 Indeed, a simple OLS regression provides a statistically significant estimate 

of the slope coefficient, equal to 2.56 with a heteroscedasticity-consistent standard error of 

0.44. This analysis can be extended in two ways. First, we examine the possibility of a 

                                                 
7 We are most grateful to Gary Wagner who kindly provided these data, which were used in Garrett, Wagner 
and Wheelock (2007).  
8 Rey and Montouri (1999) represent an early example of detailed evidence of the role played by spatial 
effects in the context of US regional income convergence.  
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non-linear type of relationship between half-life and distance, by including the second and 

third power of the distance measure. However, the estimated coefficients on these 

additional terms do not turn out to be statistically significant. In a second and more fruitful, 

extension, we investigate any potential asymmetry in this relationship, by means of 

quantile regression techniques; see Koenker and Bassett (1978) and Koenker and Hallock 

(2001). The results of this exercise provide a median coefficient of 2.28 accompanied by a 

(Huber Sandwich) standard error of 0.47. Figure 2 reveals that the slope coefficient only 

increases up to the 0.8 quantile. In other words, the relationship between half-life and 

distance is positive but not necessarily be symmetric, insofar as distance has an increasing 

effect up to a point which might be regarded as a threshold effect. 9 The findings here are in 

contrast to Hiebert and Roma (2010) who are not able to detect a significant (linear) role 

for distance in explaining relative house prices among US cities. 

The analysis thus far provides support for the existence of a relationship between 

strength or speed of convergence (half-life) and distance. Another interesting issue worth 

examining is a potential relationship between significance of convergence and distance. In 

order to do this, we estimate a regression model relating the p-values of the 525 cases for 

which the null hypothesis of non-stationarity is rejected using the ADF test at the 10% 

significance level against an intercept term and distance measured in logs. 10 We find that 

                                                 
9 To examine conditional symmetry we carry out the symmetric quantiles test proposed by Newey and 
Powell (1987). The idea of the test is the following. Let ( )β τ  and (1 )β τ−  be the values of two sets of 
coefficients for symmetric quantiles around the median, and let 1

2( )β  be the value of the coefficients at the 

median. Newey and Powell (1987) test whether the average value of ( )β τ  and (1 )β τ−  is equal to 1
2( )β , 

that is [ ]1 1
2 2( ) (1 ) ( )β τ β τ β+ − = . The results are available upon request and reveal asymmetry; for instance, 

for 0.1τ =  the test yields [ ]2
2 23.421 0.000χ = . 

10 Given that p-values are bounded between 0 and 1, we apply the logistic transformation, so that the 
dependent variable is p-value

1-p-valuelog ⎡ ⎤⎣ ⎦ . 
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the estimate of the slope coefficient has the expected positive sign (0.086), although it is 

not statistically different from zero (t-ratio 0.964). This finding can be contrasted with 

Chmelarova and Nath (2008). They look at relative consumer price index data for 

seventeen US cities over the study period 1918-2007 and find a significant relationship 

between (the logarithm of) distance and ADF p-values thereby suggesting that the 

significance of convergence decreases with distance. Although we focus on a wider 

number of cross-sectional units for a different study period, our analysis suggests that this 

does not apply in the case of house prices. The strength or speed of house price 

convergence may decline with distance, but the significance of convergence does not. 

 

5. Concluding remarks 

In this paper, we have presented evidence that long-run house price convergence is present 

across US states and Metropolitan Areas.  This finding has important implications for 

relative affordability and labour mobility as well as state-wide wealth effects. In reaching 

our finding, we have conducted a probabilistic test of convergence based on the unit root 

testing of all pair-wise house price combinations. This is an approach that provides several 

key advantages over existing panel unit root methods.  We have also provided further 

insight into regional house price behaviour through the identification of a positive but 

asymmetric relationship involving distance between states and the half-life of shocks to 

long-run equilibrium. With regard to an unresolved issue, this finding is consistent with the 

view that house price relationships are likely to be stronger between contiguous than 

non-contiguous regions.  
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Table 1. Proportion of price differentials for which the unit-root null hypothesis is rejected 
 

 
Unit-root test Unadjusted house prices Adjusted house prices 

 α = 10% α  = 5% α  = 10% α  = 5% 
ADF 46.54 31.83 29.43 19.24 
ERS 50.53 37.50 32.54 23.32 

 
Notes: The unit-root regressions include linear trend if it is statistically significant at the 5 
per cent level, and the number of lags is selected using the Akaike information criterion 
with max 12p = . The significance level of the unit-root test statistics is α . 
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Table 2. Distribution of the bootstrapped fraction of rejections – Unadjusted prices 
 

Imposing a unit root on factor 
 
Test α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

           
ADF 10% 36.71 36.70 5.94 25.35 26.95 28.90 44.42 46.72 48.50
 5% 27.22 27.13 5.59 17.02 18.35 20.21 34.57 36.88 38.83
      
ERS 10% 36.11 35.99 5.50 25.44 27.12 29.08 43.26 45.12 46.72
 5% 26.33 26.15 5.09 16.84 18.35 20.04 32.98 34.75 36.26
 
 

Without imposing a unit root on factor 
 
Test α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

           
ADF 10% 39.05 39.10 5.45 28.81 30.32 32.00 46.01 48.14 50.00
 5% 29.38 29.34 5.23 19.86 21.10 22.87 36.08 38.30 40.34
           
ERS 10% 37.99 38.03 5.13 27.75 29.61 31.38 44.51 46.63 48.14
 5% 27.78 27.66 4.79 18.35 19.95 21.72 33.95 35.99 37.41
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Table 3. Distribution of the bootstrapped fraction of rejections – Adjusted prices 
 

Imposing a unit root on factor 
 
Test α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%
           
ADF 10% 28.14 28.01 5.18 18.44 20.04 21.54 34.85 36.97 38.39
 5% 19.28 19.15 4.50 11.08 12.23 13.65 25.27 26.68 28.46
           
ERS 10% 30.74 30.76 4.99 21.54 22.78 24.38 37.23 39.10 40.96
 5% 21.29 21.01 4.40 13.48 14.36 15.69 27.13 28.91 30.41
 
 

Without imposing a unit root on factor 
 
Test α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%
           
ADF 10% 27.51 27.31 5.14 18.00 19.42 21.10 34.05 36.08 38.03
 5% 18.82 18.62 4.43 10.81 12.06 13.30 24.65 26.06 27.93
           
ERS 10% 30.23 30.05 4.97 20.66 22.34 23.94 36.79 38.65 40.25
 5% 20.90 20.66 4.39 13.03 14.01 15.43 26.77 28.55 30.14
 
 



 22

 
Figure 1. Half-life (in quarters) against distance (in logs)  
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Figure 2. Slope and 95% coefficient intervals 
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Note: The shaded area indicates the 95% confidence interval for the OLS slope coefficient. 
Coefficient covariances were calculated using a Huber Sandwich method. A bootstrap 
selection does not provide qualitatively different results. 
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Appendix 1a. Factor estimate equations for unadjusted house prices 
 

State Intercept (s.e.) Trend (s.e.) ty (s.e.) 2R  
AL 1.914 (0.1173) 0.004 (0.0004) 0.542 (0.0298) 0.997 
AR 0.194 (0.2008) -0.003 (0.0006) 0.987 (0.0510) 0.989 
AZ -3.808 (0.3545) -0.012 (0.0011) 1.954 (0.0900) 0.982 
CA -5.787 (0.5020) -0.013 (0.0016) 2.416 (0.1274) 0.980 
CO -0.261 (0.0826)   1.067 (0.0172) 0.966 
CT -2.982 (0.7662) -0.006 (0.0024) 1.658 (0.1945) 0.937 
DE -0.625 (0.0847)   1.128 (0.0176) 0.968 
FL -3.078 (0.4495) -0.009 (0.0014) 1.776 (0.1141) 0.974 
GA 1.403 (0.1923) 0.004 (0.0006) 0.643 (0.0488) 0.994 
IA 3.111 (0.3483) 0.007 (0.0011) 0.275 (0.0884) 0.971 
ID 0.463 (0.0651)   0.922 (0.0136) 0.972 
IL 2.087 (0.2224) 0.008 (0.0007) 0.472 (0.0564) 0.994 
IN 2.880 (0.2400) 0.007 (0.0008) 0.307 (0.0609) 0.988 
KS 1.140 (0.0405)   0.758 (0.0084) 0.984 
KY 2.266 (0.1712) 0.006 (0.0005) 0.451 (0.0435) 0.995 
LA -1.643 (0.4692) -0.009 (0.0015) 1.465 (0.1191) 0.943 
MA -2.384 (0.1429)   1.443 (0.0298) 0.946 
MD -1.749 (0.4157) -0.003 (0.0013) 1.423 (0.1055) 0.981 
ME -1.106 (0.0942)   1.213 (0.0196) 0.966 
MI 3.512 (0.4226) 0.011 (0.0013) 0.130 (0.1073) 0.974 
MN -0.219 (0.0497)   1.059 (0.0104) 0.987 
MO 0.750 (0.1614) 0.001 (0.0005) 0.821 (0.0410) 0.995 
MS 1.268 (0.0365)   0.722 (0.0076) 0.985 
MT 0.116 (0.0832)   1.002 (0.0173) 0.961 
NC 1.630 (0.1997) 0.005 (0.0006) 0.584 (0.0507) 0.993 
ND 1.409 (0.0657)   0.703 (0.0137) 0.951 
NE 1.904 (0.2837) 0.004 (0.0009) 0.556 (0.0720) 0.983 
NH -3.365 (0.7092) -0.007 (0.0022) 1.750 (0.1800) 0.945 
NJ -1.734 (0.1055)   1.329 (0.0220) 0.964 
NM -0.891 (0.3384) -0.004 (0.0011) 1.239 (0.0859) 0.978 
NV -3.342 (0.3567) -0.011 (0.0011) 1.863 (0.0905) 0.980 
NY -1.927 (0.1159)   1.374 (0.0242) 0.960 
OH 3.504 (0.2479) 0.009 (0.0008) 0.149 (0.0629) 0.988 
OK -2.065 (0.4992) -0.012 (0.0016) 1.587 (0.1267) 0.909 
OR 1.707 (0.6381) 0.008 (0.0020) 0.590 (0.1620) 0.961 
PA 1.225 (0.4051) 0.005 (0.0013) 0.675 (0.1028) 0.979 
RI -1.715 (0.1241)   1.332 (0.0259) 0.952 
SC 1.387 (0.1254) 0.003 (0.0004) 0.661 (0.0318) 0.997 
SD 2.616 (0.3326) 0.006 (0.0010) 0.366 (0.0844) 0.978 
TN 1.646 (0.1447) 0.004 (0.0005) 0.592 (0.0367) 0.996 
TX -1.919 (0.3998) -0.010 (0.0013) 1.524 (0.1015) 0.951 
UT 1.772 (0.5573) 0.006 (0.0017) 0.568 (0.1415) 0.956 
VA -1.389 (0.3232) -0.003 (0.0010) 1.338 (0.0820) 0.987 
VT -0.604 (0.0785)   1.121 (0.0164) 0.972 
WA -0.120 (0.4049) 0.004 (0.0013) 1.019 (0.1028) 0.986 
WI 2.324 (0.2709) 0.007 (0.0008) 0.442 (0.0688) 0.989 
WV 1.313 (0.0648)   0.735 (0.0135) 0.956 
WY -1.520 (0.7221) -0.008 (0.0023) 1.448 (0.1833) 0.887 
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Appendix 1b. Factor estimate equations for adjusted house prices 
 

State Intercept (s.e.) Trend (s.e.) ty (s.e.) 2R  
AL 1.411 (0.3966) -0.003 (0.0001) 0.881 (0.0457) 0.931 
AR 2.373 (0.3837) -0.003 (0.0001) 0.769 (0.0442) 0.937 
AZ -7.250 (0.5597) 0.002 (0.0001) 1.782 (0.0645) 0.854 
CA -6.074 (1.1318) 0.007 (0.0003) 1.632 (0.1305) 0.808 
CO 0.984 (0.6180) 0.001 (0.0002) 0.852 (0.0712) 0.527 
CT 3.692 (1.3388) 0.001 (0.0003) 0.508 (0.1543) 0.077 
DE 3.972 (0.9379) 0.001 (0.0002) 0.513 (0.1081) 0.158 
FL -10.627 (0.5594) 0.003 (0.0001) 2.170 (0.0645) 0.908 
GA -1.009 (0.3511) -0.003 (0.0001) 1.123 (0.0405) 0.948 
IA 2.554 (0.6168) -0.002 (0.0002) 0.753 (0.0711) 0.767 
ID 0.900 (0.6433) -0.001 (0.0002) 0.918 (0.0742) 0.708 
IL 2.750 (0.3905) 0.001 (0.0001) 0.681 (0.0450) 0.710 
IN 5.983 (0.2212) -0.002 (0.0001) 0.340 (0.0255) 0.937 
KS -1.753 (0.4850) -0.003 (0.0001) 1.235 (0.0559) 0.926 
KY 3.864 (0.3944) -0.001 (0.0001) 0.590 (0.0455) 0.739 
LA -1.754 (1.0359) -0.001 (0.0003) 1.234 (0.1194) 0.571 
MA 6.427 (1.3910) 0.004 (0.0004) 0.404 (0.1603) 0.469 
MD -1.219 (0.8536) 0.002 (0.0002) 1.109 (0.0984) 0.538 
ME -3.948 (0.7983) 0.002 (0.0002) 1.230 (0.0920) 0.594 
MI 3.048 (0.5087) 0.001 (0.0001) 0.657 (0.0586) 0.582 
MN -4.449 (0.3301)   1.517 (0.0383) 0.923 
MO 0.259 (0.2731) -0.001 (0.0001) 0.988 (0.0315) 0.938 
MS 1.011 (0.4357) -0.004 (0.0001) 0.951 (0.0502) 0.951 
MT 1.261 (0.7816)   0.889 (0.0906) 0.421 
NC 1.644 (0.1707) -0.002 (0.0000) 0.826 (0.0197) 0.982 
ND -1.124 (0.8135) -0.003 (0.0002) 1.183 (0.0938) 0.800 
NE 2.979 (0.5295) -0.002 (0.0001) 0.690 (0.0610) 0.836 
NH -4.550 (1.0279) 0.002 (0.0003) 1.452 (0.1185) 0.565 
NJ 1.256 (1.2903) 0.003 (0.0003) 0.791 (0.1487) 0.386 
NM -6.637 (0.6248) 0.002 (0.0002) 1.770 (0.0720) 0.823 
NV -3.750 (0.9555)   1.355 (0.1108) 0.531 
NY 2.632 (1.2145) 0.003 (0.0003) 0.648 (0.1400) 0.428 
OH 3.369 (0.3661) -0.001 (0.0001) 0.638 (0.0422) 0.755 
OK 2.167 (0.7375) -0.003 (0.0002) 0.778 (0.0850) 0.816 
OR -3.186 (0.9057) 0.004 (0.0002) 1.361 (0.1044) 0.743 
PA 3.202 (0.6715) 0.001 (0.0002) 0.639 (0.0774) 0.336 
RI -0.326 (1.3472) 0.003 (0.0003) 1.004 (0.1553) 0.438 
SC 0.168 (0.3628) -0.002 (0.0001) 1.006 (0.0418) 0.908 
SD 0.855 (0.6870) -0.003 (0.0002) 0.957 (0.0792) 0.856 
TN 1.694 (0.3009) -0.002 (0.0001) 0.827 (0.0347) 0.946 
TX 0.475 (0.5252) -0.004 (0.0001) 0.943 (0.0605) 0.923 
UT -0.414 (1.0552) 0.001 (0.0003) 1.045 (0.1216) 0.355 
VA -3.184 (0.5095) 0.001 (0.0001) 1.351 (0.0587) 0.803 
VT 1.637 (0.7715) 0.001 (0.0002) 0.804 (0.0889) 0.394 
WA -1.285 (0.5221) 0.004 (0.0001) 1.120 (0.0602) 0.868 
WI 0.666 (0.3271)   0.944 (0.0379) 0.825 
WV -0.018 (0.7918) -0.002 (0.0002) 1.071 (0.0913) 0.747 
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Appendix 2a. Proportion of price differentials for which the unit-root null hypothesis is 
rejected when using MSA and MSAD unadjusted price data 

 
 

Unit-root test 1975Q1 – 2008Q4 
 α = 10% α  = 5% 

ADF 47.87 34.44 
ERS 50.12 36.98 

 
Notes: The results are based on Conventional Mortgage Home Price Indices (CMHPI) for 
81 Metropolitan Statistical Areas (MSAs) and Metropolitan Statistical Area Divisions 
(MSADs), for which we have complete information for the whole sample period. The 
unit-root regressions include linear trend if it is statistically significant at the 5 per cent 
level, and the number of lags is selected using the Akaike information criterion with 

max 12p = . The significance level of the unit-root test statistics is α . 
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Appendix 2b. Distribution of the bootstrapped fraction of rejections when using 
MSA and MSAD unadjusted price data 

 
 

Imposing a unit root on factor 
 
Test α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

           
ADF 10% 31.18 31.24 4.99 21.76 23.09 24.69 37.56 39.48 41.39
 5% 22.30 22.16 4.45 14.23 15.31 16.73 28.03 29.88 31.70
      
ERS 10% 31.89 31.70 4.95 22.81 24.20 25.68 38.31 40.34 42.47
 5% 22.84 22.53 4.47 14.88 16.08 17.40 28.58 30.62 32.65
 
 

Without imposing a unit root on factor 
 
Test α Mean Median SD 2.5% 5% 10% 90% 95% 97.5%

           
ADF 10% 36.03 36.20 4.60 26.79 28.24 30.09 41.82 43.31 44.75
 5% 26.44 26.45 4.21 18.21 19.51 21.08 31.76 33.24 34.72
      
ERS 10% 36.47 36.57 4.76 27.04 28.80 30.68 42.44 44.04 45.80
 5% 26.78 26.73 4.33 18.61 19.84 21.45 32.28 33.80 35.49
 


